CHAPTER III

PHASE TRANSITIONS AND CRITICAL PHENOMENA
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Before going into the actual subject of the thesis we summarize the theoretical
background of the phase transitions, crtical phenomena and the development of this

field.
8.1 Introduction (Huang 1987, Binney 1992, Yeomans 1992, Robertson 1993)

- The thermodynamic pm@i% of a matter in equilibrium can be considered

to fall into two groups. Those which vary smoothly and those which have sharp

. discontinuities. As-an example-of the- first group we may cite' the properties ‘of ~

ideal or nearly ideal gas (energy, entropy, specific heat, equation of state), of
ideal or nearly ideal solids, of ideal or nearly ideal mixtures of gases or solids:

paramagnetism and diamagnetism; and of electrons and phonons in normal metals,
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The second group is usually associated with phase transitions of various types;
liquid-vapor equilibrium and the critical point, order-disorder transition in alloys,
ferromagnetism, antiferromagnitism, superconductivity, etc.

Standard statistical mechanics can handle the first group with relative ease;
for example, - treatment of an ideal system when the interactions between gas
molecules or between phonons are ignored. Equilibrium in the first-order phase
transition, between the crystal and vapor phases, and the form of the vapor
pressure curve can then be determined by thermodyﬂamics.
| F01: a slightly non-ideal gas, .intera.ction between molcc.ules can be taken
into account by perturbation theory; a chosen thermodynamic property is expressed
as a series of ascending powers of a parameter which measures the strength of the
interaction. As long as only a finite number of terms are considered the continuity
of thermodynamic properties connot be destroyed. Discontinuous behavior can be
introduced only by taking the perturbation series to inﬁnity: In fact the pfoblem
dealing with phase transitions is the strong interaction problem in which the
interactions can no- longer be treated as a small perturbation but play a dominant
role in the calculations and in the resulting physical properties.

3.2 Critical Point and Order Parameter (Yeomans 1992, Ma 1967)

" A phase diagram of a typical fluid is shown :n Figure. 3.1.. As the
temperature and pressure vm;y, water can exist as soiid, liquid, or gas. Well
| f:leﬁned phase boundlarics‘ separate the regions in which each state is _stable.
Crossing the phasg boundaries, there is a jump in the density an-d laten heat,

Consider moving along the line of liquid-gas coexistence. As the

temperature increases, the difference in density between liquid and gas decreases
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continuousty to zero as shown in Figure. 3.2. It becomes zero at the critical point
beyond which it is possible to move continuousty from liquid-like to a gas-like
fluid. The difference in density, which becomes non-zero below the critical

temperature, is called the order parameter of the liquid-gas transition.
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Figure 3.1 Phase diagram of a fluid
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Figure 3.2 Value of the densities of the coexisting liquid and gas along the

VApor pressure curve
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Analogous behavior is seen in the magnetic phase transitions. The phase
diagram of a simple ferromagnet is shown in Fig. 3.3. The transition occurs at zero
magnetic field, H=0. Crossing the phase boundaries at temperature less than the
critical temperature, there is a jump in magnetization. Above the critical
temperature, it is possible to move continuously from a stability of negative
magnetization to one of positive magnetization. The critical point itself, separates
these two behaviors. The magnetization is continuous but its derivatives are

discontinuous.

H

Figure 3.3 Phase diagram of a ferromagnet

The order parameter for the ferromagnetic phase transition is the
magnetization. Its variation with temperature along the coexistence curve, H=0, is

shown in Fig. 3.4. The order parameter of other systems are listed in Table 3.1

Order parameter

Figure 3.4 Zero field magnetization of s ferromagnet |




Table 3.1 Example of diversity of phase transition

Transition Example Order Parameter
Liguid-Gas H,0 density
Ferromagnetism - | Fe magnetism
Antiferromagnetism | MnO sublattice magnetism
Ferrimagnetism Fe,O, sublattice magnetism
Structural SrTio, atomic displaccmgnt .
Ferroelectric BaTiO, electric polarization
Order- disorder CuZn Sublattice atomic concentration
Phase separation CCIL+CF,, concentration difference
Superfluid liquid 4He condensate wavefunction
Superconductivity Al, No,Sn ground state wavefunction
Liquid crystalline Rod molecules various

8.8 Critical Exponents (Binney 1992, Huang 1987)

Let us review briefly some phenomena of ferromagnetic critical point. It is

 found from experiments that the magnetization, the susceptibility, the critical

isotherm, and the specific heat all obey power laws near T T We defined the

critical exponents o, [, 7 & as

c o« fr-1f°

M o< (r-1)°

% o lr-1" 3.1)
B oc M
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-Somctimes, people introduce exponent o, ¥’ for T<7. For instance
x o« (T-T)" : T>T., x o« (T-T)": T<T.. Butit scems (and theory
confirms) that one always has o =a’, ¥ =%’, and these primed exponents have

fallen into disuse.

8.4 Correlation Function (Binney 1992)

, Much of knowledge about phase transition is derived from experiments in :
which particles are scattered by a nearly critical system. The correlation function is
" an example. Scattering experiments show that, for T#0, correlation function
(G(r)) is small at both large and small %. Furthermore when T=T one finds
the asymptotic form of correlation function when the distance (7) is large compared

to the inter-molecular distance.

G(r) o< e (3.2

d=2+1

when d is the dimensionality of the system and 7 is a further critical exponent. In

|T-T
fact, for small | % approximately

G(r). = . @3.3)
-

where the length & is called the correlation length. As the system approaches the

critical point, this quantity grows without limit. One finds that

E: o Ir-1J” (3.4)
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where Vv is the sixth and final critical exponent.

Before the end of this of section, I summarize some the linear combination
of the critical exponents. Only two of the six critical exponents defined above are

independerit, because of the following “ scaling law”;

Fisher: Y = v(2-1)
" Rushbrooke o +2fB +y = 2

Widom Y = @ -1

Josephson vd = 2-a

where, in the last relation, d is the dimensionality of space.
8.5 Universality(Yeomans 1992, Bellac 1991)

We need to justify why the critical exponents are more interesting than the
critical temperature T, itself. It tums out that, while as T, sensitive depends on
the details of the interatomic interaction, the critical exponents depend on only a
few fundamental parameters. For a short range interaction model these are the
dimensionality of space, d and the symmetry of the order parameter.

Table 3.2 gives some numerical values for the critical exponents of several
systems. The crtical exponents of different transition as liquid-gas transition of
xenon and the separation of a mixture of two organic chemicals are equal to each
other the cxpgri_mental error. This phenomena is called universality.

We assign each system to a universality class in such a way that any two
systems in the same universality class have the same dimensionality, d, and order
parameters of the same dimensionality, D. Table 3.1 shows that all systems in the

same universality class have the same critical exponents.
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Table 3.2 Values of critical exponents

4

Xe Binary fluid P -brass He | Fe Ne

D 1 1 1 2 3 3

o < 0.2 0.1131+0.005 0.05140.06 -0.01410.016 -0,0310.12 0.0410.12

B 0.3540.015 0.322140.002 0.3051-0.05 0.3440.01 0.3710.01 0.35810.003

¥ 1.34 1.23940.002 1.2540.02 1.3340.03 4.340.1 1.331:0.02

5 4.2:; * 4854003 : ‘ 3.9510.15 1.3310.015 4.2940.05

M 0.1t.1 0.01710.015 0.0840.07 0.02140.05 0.07+.04 0.041+0.01
.' v = (.57 0.62510.06 0.6510.02 0.672:[:0.601 0.6910.02 0.6410.1

For more evidence, see Fig 3.5 plotted by Guggenheim (1945)(Binney
1992). The coexistence curves of eight different fluids are plotted in reduce units,

T/T and p/ p; . When close to critical point, all data lie on the same curve and
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Figure 3.5 The coexistence curve of eight different fluid piotted in l;cduced

variubles. The fit assume an exponent B = 1/3,



3.6 Models

In this section we introduce some models that play an important role in the
development of the theory of phase transition. ' Many important results related to
phase transition have been derived from studying particular model.‘

We shall be concemed about models of what happens on a lattice of N
sites. This lattice may be one, two or three dimensions which is denoted by d,
and we shall assume that the sample is cubic, having L=N : sifes on a side, The
model’s order parameter is defined at each lattice point. The order parameter may
be a scalar since its value at each lattice point is a single real number, or may be a
complex value ,or a ’vector, or even a tensor. We shall denote the real
dimensionality of order parameter by D. When D=1 implies that the order
parameter is a scalar, D=2 implies that order parameter is two vectors or complex

val_ucs and so forth.
3.8.1 The Ising Model (Binney 1992)

The Ising model is a model of a ferromagnet or antfferromagnet. It
was invented by W. Lenz (1888-1957) and it was first solved by E. Ising in 1925,
who treated the case d =1 which does not have a phase transition.

In 1944 Onsager (1903-1976) solved the model forkd=2 in the

absence of an externally applied magnetic field and showed that the crtical

exponents of the. model were quite different from the Landau-theory prediction.--We-- - «- —

still have no exact solution for d=3 model or for d=2 model in non -zero magnetic

field,
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We conéider a lattice in d- dimension of sites {i} labeled 1,2,...,N, which
we take to be hypercubic. The order parameters are classical spin variables S,
. associated with each point_of the lattice, which takes only two values; (1,-1) of
(spin up or down).

* . . .
The system s Hamiltonian is

o)
0

1
-EE,JUS,SJ'—.B‘ZS, (3.5)
where B is an external field, the subscripts label lattice sites, and J; is the

exchange interaction defined by

{J , 1 and j neighbouring sites

J = 0, otherwise (3.6)

iJ

The partition function of the model can be written

Zexp[ B (Bfl;s, -%% RS )] 3.7)

15}

Zldn.g

where {§,} indicates that the sum is over all possible lattice sites.

If in equation (3.5) we set J< 0, neighboring spiﬁs try to align parallel to,
one another and parallel to B. This case is the model of a ferromagnet. If we set
J> 0, neighboring spins try to align .;mtiparalled to one another and (3.7) becomes

the partition function of an antiferromagnet.




3.6.2 The XY and Heisenburg Models

The magnetic dipoles of the Ising model can foint inlonly two
directions. It tums out that qualitatively different phase transitions can occur in
systems of spiné that have greater flexibility of orientation.

~The spin of XY model are unit vectors confined to rotate in a plane.
The Heisenburg model consists of an array of D dimensio.nal spin. The XY model
may be considerd to be a special case of D=2 of the Heisenburg model% In this
model neighboring spins are assumed to have exchange energy JS,S, so that the

partition function of the system becomes

1
zﬂchﬂl = %exl{ B (B‘ES! _5 % Ji.jSiSJ J]

Since two dimensional vectors may be represented by complex numbers, the order

parameter of the XY model may be replaced by a complex order parameter . The

1 . -
exchange energy then becomes E-J (\y, L PR A A J).

8.6.3 The Gaussian and Landau Ginzberg Models (Goldenfeld 1992)
The Landau-Ginzburg approach has played an important role in the

theory of superconductivity and other critical phenomena. The system Hamiltonian

in term of the scalar order parameter S(x) is

~H(S(®)) = I d‘{%(vsf +%5S= +%uOS‘ —h‘,S] (3.8)



67

where s = 5(x).5(x) - IEey

S4 — (SI)I

133

The coefficients r,, u, are functions of temperature, and A, is the applied magnetic

(Vsy?

field. _
The Gaussian model’s Hamiltonian is similar to the Landau-Ginzburg model

but without the quartic term ( u, = 0 ).
8.7 Mean Field Theory

The mean field theory was invented by P.E. Weiss (1865-1940) as a
theory of magnetism, and for a long time it was the only theory of phase
transitions. Therefore it has a very important place in the development of this field
and even today. It is usually the fist tool applied to sort out the essential physics
of a new type of phase transition.

The solution from mean field theory is an example of an approximate
solution. . There are many numencal solutnons of various models; the mean field
theory often seems to be crude, l’.he exact solutions are too complicated. A
peculiar feature of a critical phenomena is that there is just a few things one can do
to improve the mean field theory suﬁstantially without solving the problem exactly.

This makes the theory of critical phenomena a very difficult field.




8.8  Renormalization Group

This method allows us to simplify calculations in the critical regime to the
points at which critical exponents could be extracted without ever working out the

partition function of the problem. More details are discussed in the chapter.
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