Chapter 3
Piecewise Linear Interpolation Method

3.1 Introduction

In solving problems in computational physics, we often encounter non-
linear, mathematical equations which are difficult to solve, or even. worse, not
amenable to be approaches by analytic methods developed up to now. Then we
turn to numerical methods to attack them instead. These methods, when used
to compute with high speed computers available at present, often yield some sat-
isfactory solutions. However, there are disadvantages with these methods, such
as when they are used to solve the same problems, but may result.in different
solutions. Sometimes it is hard to determine which method is mofe accurate.
The methods that give solutions consistently converging to those from analytic
methods, when such analytic solutions are available, are generally accepted to be
applied to problems for which there is no analytic solution in closed form. In this
work we investigate a new method developed by Rajamiki and Saarinen (1991).

They explained that the method has the capability to preserve the shape
of a propagating distribution and great applicability in many flow problems, such
as strong convection, convection-diffusion, and reaction-diffusion problems. Their
explanation made us curious to use their method to investigate the transport of
cosmic rays across the solar-flare shock. Because this problem is similar those
above, the method should be applied to it too if it works with those mentioned
by its authors. We find, however, that when the ﬁlethod is applied tol‘ determine
a solution of a problem having a peak-distribution initial condition, iwe obtain
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result that is significantly different from that of an analytic method. Our efforts
to implement and test this method constituted a major portion of ithe work of
this thesis. The method is called the Piecewise Linear Interpolatior; Method or
PLIM for short. Before we present details about PLIM, we briefly réview linear,
first-order, partial differential equations of two independent variabies, and the
method of characteristics for determining their solutions.

3.2 Linear, First-Order Partial Differential Equations

The following discussion is derived from the literature of Zauderer (1989).
Consider a linear, first-order, partial differential equation of two iildependent

variables in the general form

alt, )5+ blt, )0 = oft 2), (3.1)

at

where the unknown variable U is a function of t, z and the coefficients a,band c

are continuously differentiable in some region. We solve eq. (3.1) under the initial

condition

U(Ovz) = f(z)’ (32)

where domain is ¢ > 0 and 0 < z < L and boundary condition at U(0,0) and

U(0, L) are supposedly known.

At each point (t, z) where a(t, z) and b, ) are defined and not both zero,
the left side of eq. (3.1) is a directional derivative of U(¢,z) in the direction of

[a,b]. The equations

dt
p a(t, z)
5 : (3.3)

7 b(1, z)

I
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determine a family of curves t = #(s),z = z(s) whose tangent vector [t'(s), 2/ (s)]
coincides with the direction of the vector [a, 8] at each point where [a, 4] is defined

and not zero. Therefore, the derivative of U/(t, z) along these curves becomes

dU dU

== L), ()

G oud
gt ds = Pz ds
ou Q(i

—+b
aat E dz’

consequently yielding

dU
d_.s = ¢(t}z) (3.4)

using the chain rule and egs. (3.1) and (3.3).

The family of curves t = {(s), z = z(s), and U = U(s), determined by
the solution of a system of ordinary differential equations, egs. (3.3) and (3.4),
are called the characteristic curves of the partial differential equation eq. (3.1).
Because eq. (3.3) can be solved independently of eq. {3.4), the curves in the (t, z)-
plane determined from eq. (3.3) are occasionally also referred to as characteristic
base curves. The approach to solve eq. (3.1) by making use of egs. (3.3) and (3.4)
is called the method of characteristics. It is based on a geometric interpretation
of the partial differential equation.

The existence and uniqueness theory for ordinary differential equations,
assuming certain smoothness conditions on the functions g, 4, and ¢, guarantees
that exactly one solution curve [{(s), z(s),U(s)] of eqs. (3.3) and (3.4), i.e., 2
characteristic curve, passes through a given point (io, 29, Us) in (t,z:r,U)-space.
As a result, we are not interested in determining 2 general solution ojf eq. (3.1),

but rather a specific solution U = U(Z, z) that passes through or contai.ins a given
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curve ' associated with eq. (3.2). This problem is known as the initial valye .
problem for eq. (3.1). |
The method of characteristics for solving the initial value problem for eq.

(3.1) proceeds as follows. We assume that the initial curve C associated with eq.

(3.2) is given parametrically as

= t('r)
NS D (3.5)
U = U(7)

for a given range of the parameter 7. The curve may be of finite or infinite extent
and is required to have a continuous tangent vector at each point. Every value
of 7 fixes a point on curve C through which a unique characteristic curve passes.
The family of characteristic curves determined by the points of curve C may be

parameterized as

t = t(s,7)
= TCR" (3.6)
U = Uls,T)

with s = 0 corresponding to the initial curve C in eq. (3.5). That is, we have

t0,7) = t(r)
2(0,7) = =z(7) (3.7)
U(,r) = U(r).

Eq. (3.6), in general, yields a barametric representation of a surface in
(¢,z,U)-space that contains the initial curve €. Assuming the equations t =
t(s,7) and z = z(s,T) can be inverted to give s and 7 as functions of t and z, which
is the case if the Jacobian z,t; — 1,2z, # 0 on C, these functions can be introduced
into the equation U = U(s, 7). The resulting function U[s(i, z),7(t, 2)] = U(t, 2)
satisfies eq. (3.1) in a neighborhood of the curve C in view of eq. (3.4) and the
initial condition eq. (3.5), i.e., U[(7), z(T)] = U(7), and is a unique solLtion of the

|
given initial value problem. The smoothness requirements placed on tHe functions
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a, b, and c in eq. (3.1) imply that U(¢, z) must be continuously differentiable near

the curve C. !
Now let us consider an equation that will be used in this work and to
illustrate the procedures outlined above. If in eq. (3.1) we let a(t, z)=1,b(t,2) =

constant b, we obtain

ou AU |
- Fhaos(t,2). | (3.8)

Eq. (3.8) with an initial condition, eq. (3.2), constitutes initial value problem
which will be solved by the method of characteristics in the following. The initial

curve C associated with eq. (3.2) is parameterized as

t-—= 0 ‘
7= (3.9)
U = U0,7)

where t > 0,0 < z < I and boundary condition of U/(0,0) and U(0, L) are given

functions. The equations corresponding to Eq. (3.3) are

dt

e

= (3.10)
& = b

which can be integrated to yield ¢ = #y + s and z = 2y + bs. For s = 0, a
comparison with the first two equations in eq. (3.9), yields to = 0 and z = 7, so

we obtain the characteristic base curve as

t = s
z = T+bs. (3.11)
Substituting ¢ and z from eq. (3.11) into eq. (3.4) yields
dU
—— = ¢(s, T + bs), (3.12)

ds
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which can be integrated to obtain

s
Uls,7) = Us = 0,7) +fc(g,-r + BE)dE. (3.13)

0
Because the Jacobian z,t, —t,3, = —1 # 0, we can find s and 7 in terms of t and

z (which can be done easily in this case) using eq. (3.11):

s = i
= (3.14)
Finally, when inserting s and = from eq. (3.14) into eq. (3.13), we obtain the

solution of the initial value problem as

1
Uty z) = U(0, 2 — bt) + f o€,z — bt + bE)dE. (3.15)

Q

In practice, we usually consider a finite range of z values, so it is necessary
to consider a boundary condition for any z-boundary at which the flow is di-
rected inward. When the characteristic enters the domain of interest through a
z-boundary, we obtain a formula similar to eq. {3.15). These results are indis-
pensable because they will be used in computations in the next section. Now we
have completed the review and are ready to investigate the PLIM method.
3.3 The Piecewise Linear Interpolation Method

The Piecewise Linear Interpolation Method {PLIM) was introduced in a
recent paper by Rajamaki and Saarinen (1991). However, this paper only presents
a rough description of the method, and we have had to figure out many of the
details (and correct several errors in the paper) for ourselves.‘ Therefore, the
following section summarizes the relevant discussion in the original work, along

with some details and corrections that we have worked out. Considér a system
|




of first order partial differential equations,

oU  OF _
at = 9z
where
U = (U],Uz,...,Un), Uk=Uk(U1,U.2,...
F = (F,F,...,F),
P = (P[,Pg,...,Pn),

B = Fi(ur, ua, ..
Pk = Pk(ul,?..tg,

14

(3.16)

,un,t,z)

oy UnsEy Z)

cey Uyt 2},

and the unknown variables are uy = ui(f,z) for k = 1,2,...,n, where n is the

number of equations in eq. (3.16). This system of equations is not yet ready for

the application of piecewise linear interpolation. Firstly, we need to perform some

manipulations as follows:

The z — 1 space i3 assumed to be divided into rectangular mesh cells, as

shown in Figure 3.1. In these mesh cells the Jacobian matrices

[ ot
Juyq
%
Wy = Ouy

au,
\ 3u1

[ oA
aul
aF,
Wg =} Quy

dF,
\ 3u1

are evaluated by numerical differences.

v,
aUQ
U,

aUQ

au,
3u2

oF,
31:2
aF,

3u2

OF,
8‘&2

Both Wy and Wy are assumed to be -

3U1_
Ju,,
3U2
Ju,

o,
ou,

3F;
ou,
JF,
du,

aF,
.

\

(3.17)

)

constant matrices in each mesh cell. In addition Wy must be nonsingular, so its

inverse Wﬁl must exist.
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At
L
z
2 Az Z%Hu
Figure 3.1 Discretization mesh
In the mesh cell, PLIM approximates
U = Up+Wy(u-—ug(t2)) (3.18)
F = Fp+Wp(u- uy(t, z)), )
where u = (u;,us,...,ua) and the subscript L refers to linear z-¢ dependent
vector functions. We define the cellwise constant velocity matrix as

V =WgW{'. (3.19)
Multiplying through the first equation of eq. (3.18) by W', we obtain
W' U= Wg'Up + (u — ug(t,2))

and
(w—ugft,z)) = Wgl (U =Uyg). {3.20)

Plugging eq. (3.20) into the second equation of eq. (3.18), and using eq. {3.19),

we get

F=F,+ V(U-Up). (3.21)

Thereafter putting this into eq. (3.16) and rearranging yields
— +V— =Py, (322
i,
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where

|
PM :P—-g:(FL—'VUL)' i

To form equations that are suitable for the application of the piecewise

linear interpolation method the matrix V is diagonalized to yield
V =8v§™!, (3.23)

where v is a diagonal matrix which includes eigenvalues of matrix V, i.e., the
characteristic velocities of the system of equations. Eq. (3.16) is an initial value
problem with respect to time. Thus if the problem is well-posed, all the eigenval-

ues have to be real. Multiplying eq. (3.22) by S~ yields

Jx ox
-éJT -+ V; = p, . (3.24)

o

where x = S7!U, p = S7!Py,. Hence, n uncoupled, linear equations in the
mesh cell have been derived. Now x can be solved by using piecewise linear

interpolation. The original vector functions U and F are related to x in eq.

(3.24) by
U = Sx
F = Sv(x—S$"'U.)+Fy,

(3.25)
where the second equation is obtained by putting eq. (3.23) into eq. (3.21) and
using x = S™1U,

The system of equations in eq. (3.24) can be solved separately by the
method of characteristics outlined in the preceding section. Each equation is

analogous to eq. (3.8), so each component variable z has a solution corresponding

to eq. (3.15):

t :

z(t,z) = z(0,z — vt) + f p(T,z — vt +vr)dr ‘ (3.26)
2 |
l
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if the characteristic enters the domain of interest through the boundary at ¢t =0

!
or ;
4

z(t,z) = z(t — z/v,0) + f p(t — z/v+ 1,v7)dr

t—z/v

if the characteristic enters through, say, z = 0.

The main problems in finding solutions are related to = at the boundary
point where the characteristic enters the mesh cell. If there is no information
on the distribution of the variable z in the mesh cell, an accura.tia numerical
solution can be achieved only in the very special case where vAt/Az is an integer
for every eigenvalue v. Hence, interpolation is needed to determine z at the
incoming boundary point and the scheme ideelly has the following properties:

1. It is such that any distribution at the boundary of the mesh cell can
be reasonably approximated.

2. It preserves the shape of propagating distribution in some sense.

3. Conservation of z in the mesh cell can be satisfied.

4. Overshoots and uncontrolled strong variations can be avoided.

5. The propagation of a front within a mesh cell is described, because
fronts are very common in flow problems.

6. 1t uses values of only one mesh interval, because then no extra schemes
are needed for the end points or for the discontinuity points of the 2-interval.

The basic idea of PLIM is to form the distribution of z within the mesh
cell by representing the unknown variables at each boundary of the mesh cell in

terms of a piecewise linear approximation. For convenience in computation we

define

8, =

Az ‘

1. E (3.27)
9{ = — I

At |
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and 6 without a subscript can stand for either 8, or 6¢ depending on the interpo- -

lation, while 2(0,6.) or z(8,,0) is denoted by z(8).

Define in the interpolation interval
z(f) =z, + Az(8) for 6 €0,1] (3.28)

where z;, refers to linear dependence between the known end points, z(0) and
z(1), and Az(f) is the deviation from zy. Defining the zeroth and first central

morments for the piecewise linear function Az(#), one obtains

mo = | Ac(d)dd
(3.29)

Wl =

A T —

1
6 - 5) Az(§)dé

These moments are useful parameters, since they relate directly to the conserva-

tion and shape of Az(#8).
z

II T ‘.7
/| o= -
/ | ; ) front-type
/] 1/
| NS
/ ; . 5 /
/ . 1‘ Az, | II ---
Lo |/ triangul
I | / riangular
/ | JI
bo d VL) AJ-oT |
e FTT |
Iy fam —— — —:: } }
: } I
| ]
| | 9
0 011 Oz 0 1 |

Figure 3.2 Front-type and triangular distributions
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Now consider the construction of Az(#), as shown in Figure 3.2, between
the end points #(0) = z; and z(1) = z;. The conditions to limit the lovershoots,

undershoots, and the uncontrolled variations of z(6) are

min(:v,-,a:;) S T(G) S ma.x(:c;,:n_f)
dxz(8) < |z — z4] (3.30)
agé |~ J

where § is a numeric parameter. Rajamiki and Saarinen recommends defining it

as
4y

|z — 4]

where é; = 1077 and &, = 0.05 are used in this work.

Under these conditions, two piecewise linear approximating function fam-
ilies can be constructed: the triangular approximations and the front-type ap-
proximations as shown in Figure 3.2. Variables Az, and 8, in the triangular
approximation or 6,; and #,, in the froni-type approximation can be evaluated
using eq. (3.29), and hence Az(#) can be evaluated.

The triangular approxima.ﬁon with the joint at position 6, and height

Az, results in

9
T+ (xy — ;)0 + G——A.’nh, when § < 8,
z(0) = 1’*_ 0 (3.32)
T+ (x; — z;)0 + Azy, when 8, <49,

1 — 84

and the front-type approximation leads to

z;, when 8 < 8y
8d—46
z(0) =< z; + (x5 — xi)m, when 8, < 0 < ) (3.33)
Ty, when 6;,; <4,

The next task is to determine the parameters 8, Azy or 6, 9};2 as func-

tions of mg and m.. The conditions defined in eq. (3.30) restrict the acceptable
|
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values of these moments. Hence Az(#) must be determined using the values

Imol < 5(1 = &)z — ]

fa; — @il ?
L

- Z’l'rf - mila

(3.34)

4 [mol* (

-2 —— < <
(WW 1<dlay—z]) == ey = o
4

where m, = 6m.sgn{z; — ;) + E—-—;—l
ST L

~ |mal.
The new parameter m,, introduced to replace m, is useful because it
serves as a pattern-recognizing parameter for different piecewise linear approxi-

mations, namely

N

<
My >

¢ for triangular approximation
0 for front—type approximation.

When my, < 0 (triangular approximation), substituting Az(#) from eq. (3.32)

into eq. (3.29) and integrating, one obtains

A:rh
2t
el (3.36)
me = 6 h 9
and
A.’Eh = 2mg
— 53
My 2

When m,, > 0 (front-type approximation) we obtain Az(§) from eq. (3.28)

¥

namely
Az(f) = z(8) -z (3.38)

where 2z, = z; + (z; — z;)0. Inserting Az(f) with (6) from eq. (3.33) into eq.

(3.29) and integrating we get for the front-type approximation

1
my = "2'(-1‘; =z )(1 = Oy — Oi2)

: 1 1 , (3.39)
m. = 5(:.':; - ;) E(Bhl + Oh2) — 5(91211 + On1h2 + 63,) ~ g]
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which can be solved for 85, 8,2 in terms of Mg, My S

1 1 Imo] \* ik

mo myo M
6 0 T o e —— — — .
T e [(2 o = 1) 71 - I] o

Eqs. (3.28) — (3.40) show how the piecewise linear distribution of z(4)

can be represented at all boundaries of the mesh cell. The complete represen-
tation for one mesh cell is composed of Ty, T2, Ty, &4 al the corner points and
Moe1, Y, Mag2, Mo, and M1, Mo, M2, Me. at the boundaries as shown in Figure
3.3. All quantitics along the lower boundary are known from the initial condi-

tion or the results of the previous time step. In the following discussion, we also

assume that vAt < Az,

gy, Mgy
|
I3 Iy
|
|
™Mo Mot2
Mery Met2
|
|
|
|
|
I T4 — vAL Zz .
0 0
mOz‘J mcz

Figure 3.3 Schematic diagram showing all parameters on cell boundaries

Let us recall eq. (3.26), which can be formed in terms of 8, and 4; from

|
eq. (3.27) as

&
2(8.,8,) = (0,8, — kb;) + At / (9,8, — kf, -+ k¥) d¥, (3.41)
0

—

’ BOOUANDI TWILNY AL T I3 ]
- o -

1R NI PN
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and when 4, = 1, we obtain

&
(6., 1) = z(0,1 — kb,) + At f p(9,1 — kf, + k9) dd, (3.42)
0

where & = vAt/Az, and in this section we consider only the case & < 1. For
reducing the computations in testing PLIM with our sample problem, we consider

the special of case p = 0, so that eq. (3.42) becomes

2(0,.1) = (0,1 — k6,), (3.43)

which is the value of (8 =1 — ké,) along the z,-z4 boundary.
Now the unknown value z4 in Figure 3.3 can be obtained by eq. (3.43)
with 8, = 1, 1.c.,
zo=2(1,1) = 2(0,1 — k), (3.44)
and because we already have in hand the distribution of z(0, §,) as derived above.

Then (0,1 — k) can be evaluated using eq. (3.32) or (3.33). The next task is to

evaluate the moments myg; and 1. as follows
1. When the distribution between &; and @ is a triangular approximation:

e For 1 -k < 8, we obtain a triangular distribution on the z,-z4 bound-

ary:
4
T2+ (T4 — 22)0 + Q—AJ:,,, when 8 < 8,
z(8) = 1"_ 0 (3.45)
Tz + (324 - .132)9 + mAIU, when 8, < 0,
where p
1—
b, = — A
Az, (3.46)
Az, = —T—(k+6,-1)




Comparing with eq. {3.36) we obtain immediately

Mgt

Mgt

Az, Az

2k,
A.’L‘h

Az, 1
T (9" B 5)

5 = --—-—(k-l—ﬂh-l)

M(k—}-gh—l)(

1 —

———
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1),

(3.47)

¢ For 1 -k > 0, the distribution on the z,-z, boundary is a linear

function, thus Az(8) = z(6) — z1, = 0, yielding

Moz = Mg = 0.

(3.48)

2. When the distribution between z; and r, is a front-type approximation:

o For 1 =k <6y, then the distribution on the z,-z4 boundary is front-

type:

and we obtain using eq. {3.39)

a2

Met2

zg, when 8 < 8,
-6,
2+ (x4 — :1:2)-———1—-, when 8, <8< 4,
902_81)1
T4, when 8,5, <4,
a~ 1-81‘12
S [
1 -6
8112 = k ]
Ty =
. 9 1:2(1 _gul vy gv'))
Ty~ I N A R Y
2 UTET T )
: ) (6 + 6
2(354—-’52 2( vl v2)

1 1
—3 (01 + by + 63,) — g}

%(14 — z3) {1 - % + (01 + Onz) (

1 k
—3—k(9§1 + Or16h2 + 075) — g} -

1

k

1
2

)

(3.49)

(3.50)

(3.51)
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e For 8y < 1~k < 85, we obtain a triangular distribution on the T9-Tq

boundary similar to eq. (3.45) but with

0,

A

Then we get

My

M2

1- 9!;2
k
1
5(z2 —z4)

2

Ty

k

Ar,
92

4

(Gpr — 1)
2k
1

(z4 — 22}

Az,
=

6
(Ona — 1)(

1 — 8y
k

Iq— I

bk

1 — 8y

(3.52)

(3.53)

1

2

).

o Yor 8y; < 1—k, the distribution at z,-74 boundary is a linear (constant)

function, so Az(f) = z(d) — 2, = 0, yielding

Mgz = Mgy = 0.

(3.54)

The values of z3 , mg , and m.y are calculated in a similar fashion.

- Two moment values, mg,, m.,, must still be evaluated. Before doing that

we define

lo

I

z(0)d

13w

dé.

-
/

(3.55)

Consequently, we obtain the relations between them and moments defined in eq.

(3.29) as

I+
2
Ty —xy;

me + T

mp +

(3.56)




Figure 3.4 illustrates Iy’s and I.'s at each boundary.
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Figure 3.4 Schematic diagram showing /o and I, on a boundary

Physically, if z is interpreted as a flux of particles, its integral with proper

limits respective to distance is the number of particles, which should be conserved

al any time, i.e., at #; = 0 and at a later time 8, = 1 these integrals should be

equal:
1-& 1
f 2(0.8;) df; = f z(1,8;) b, (3.57)
-k 0
and with some modifications we obtain another relation
1-k 1 1 |
/k (a, k- 5) 2(0,6,) dd, = Of (a, . E) z(1,0,)d6..  (3.58)

At vertical boundaries we know from eq. (3.43) that z(8,,6, = 1) = (0,4, =



l—kf);),so
i 1 !_
oy = fx(a,,nda, = = [ =(0.6.)ds.
0 1=k
' 17 (1-6, 1
Ly = f 6, — =) 2(6,1)d6, = .-/' = _ ") «(0,6,)ds,
£2 J £ )i(t t kl_k( I 2)35( )

and z(6,,0. = 0) = z(0,8, = —k0,), s

IOtl =

2(6,,0) db, ry - [ 2(0.6.) as,

0
1 6, 1
Iy = /(Bt"—) (6;,0)d8, = . (—--k——~§):1:(0,02)d02.
Q

From eq. (3.57) we obtain

o O
>~

1=k
lo, = [ z(0,4,) dé.

-k
0

1 1-k
= f z(0,6,) do, + f 2(0,6.) dé, + [ 2(0,6,) d6
—k 0 1
= kloy + 103 — kloe.
Using eq. (3.59) and (3.60), we obtain
To: = Iy, + k(fou = Ioiz)

and eq. (3.58) yields

—k

1
Icz S

/

1-k 0 1
= kf z(o,ez)d0,+f (az—§)z(0,az)d0
k —k ‘
1 1 1wk 1
+ 0/ (02—5) 2(0,6,)d6, + 1[ (02-5) 2(0,8.) d8,.

Using eq. (3.59) and (3.60), and after much laborious work, we finally get

(9: +k— %) 2(0.6.) db,

k
I, = I‘?z + kz([cﬂ ~ L)+ 5(102 + Igz — foiz — fou)-

26

(3.59)

(3.60)

(3.61)

(3.62)
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Next, we want eq. (3.61) and (3.62) in terms of moments using eq. (3.56) with

proper substitutions for mo, m,, z; and =z, obtaining

1
g, = mgz + k(nlgﬂ — 771032) + 5(1'1 + x5 — Iy — $4)
k
+;($1 — Iy + &3 — .’L‘4)
° . (3.63)
Mo = m + kMg — meay) + 5‘(m0z + MY, — mog — moy)
1, ..
+ij')‘(k2 = l)(.I'l — Ty — I3+ .7.34).

In case where PLIM conditions are violated i.e. [y, < Az.min(m;:,,:u) or

fo: > Az.max(z3,z4), we will adjust x3 in that [, must conserve. New T is

computed {from
Jo. — 824 /2
Az—§/2

'——
Iq =

where ¢’ is given. Thereafter we recompute mg, and m,, from z§ and the others
with old value.
Now we have determined the procedure for evaluating the unknown vari-

ables of a mesh cell. In the next section we apply the method to two sample

problems.

3.4 Numerical Results

The PLIM has been tested with two simple problems. The first has
distribution at incoming boundary of two-step function, and the second has dis-
tribution of rising exponentially and at a certain point dropping suddenly to zero.
The results of computation by PLIM were compared with the analytic solution.
We find that the results for the first problem agrees precisely, but those for the
second diflers significantly such that the conservation of shape breakdowns. The

two problems have the same equation,

dz dx
5{ + ’U'é; ={ (364)
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Problem 1: Eq. (3.64) with initial and boundary condition as follows:

N 1, when z < 24
#0,2) = { 0, when 2z > z, (3.65)
z(1,0) = 1, fort >0

Before we solve problem 1, eq. (3.65) must be approximated reasonably to be

used by PLIM. We know that MAz < =, <(M+1)Azfora positive integer M,

For - < MAz we set 2(0,z) =1, and for z > (M + 1)Az we seté‘ 2{0,2) = 0,

but for MAz < z < (M +1)Az we approximate z(0,z) so that eq. (3.30) is
not violated, having a finite slope. Then eq. (3.65) is approximated by

1, when z € 29~ 8
1
z(0,z) = -Z—ﬁ-(zo+ﬂ-—z), when zp - < z< 2+ 8

 (366) |
0, when z > 20+ 8 |
z(,0) = 1, fort > 0 }

for a given § > 0.

An analytic solution of eq. (3.64) with the initial and boundary condition
eq. (3.66) is obtained by using eq. (3.15):

z(t, z)=z(0,z — ut) (3.67) l

where the integral term in eq. (3.15) is zero here. When replacing z in eq. (3.66) |

with z — vt we obtain the analytic solution from eq. (3.67)

1, whenz <vi4+zp—

z(t,z) = -21—ﬁ[zo+ﬂ-—(z—vt)], when vi+ 20— f<z<vt+20+ f

0, when z > vt + 29+
(3.68)

Now the PLIM solution of eq. (3.64) with the initial and boundary con-
dition eq. (3.66) is obtained by using the procedure detailed in the preceding

section. Below are the results of PLIM with the analytic solution, eq. (3.68),

|
|
shown for comparison. . !
|
|
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Figure 3.5 Analytic and PLIM solutions of problem 1

Problem 2: Eq. (3.64) with initial and boundary conditions as follows:

2(0,2) = e (m=2)/2 when z < 2, :
T 10, whenz > 2, - (3.69)
z(t,0) = Lot for¢ >0, i
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In the same way as the preceding problem, we approximate eq. (3.69) reasonably
to be used by PLIM. We know that MAz < zo < (M + 1)Az for a pt!)sitive integer
M. For t =0, we keep £(0,z) = 0 for z > (M +1)Az. For z < MA: we consider

z(0,z) = ™=/ (3.70)
and compute the integral
1
A f (0, % +8Az)d8.
0

We obtain

Lo = Az(0, 2;)(e2/* = 1), | (3.71)

and next we compute the integral

1 1
li. = Azf (0 - —2-) z(0, z; + 8 Az)df
0

to obtain
/ A I;

Lic = 2(0, z;)e2** — ol - —29 (3.72)
where z; = 1Az, and ¢t = 0,1,2,..., M — 1. We then can compute the moments
myg and m;. from the relation

1
mig = flp— §[I(0, i+ Az) + .’L‘(O, z;)]
(3.73)

my = lie— Ilé-[:c(O, z; + Az) — z(0, 2;))

where z(0,z;) and z(0,z; + Az) are computed from eq. (3.70). We can also
compute pattern-recognizing moments m;, from m;; and m;. above and find
that they are negative, so we use the triangular approximation to approximate
eq. (3.69) for = < MAz From eq. (3.73), we can compute the triangular

approximation variables:

A:c.-h = ‘2m.-0 E
ic 1 i .
b = sm + 5 - G
mio 2
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Then we obtain the approximate initial condition function X(0, z)1 for z < MAz,

as
b;
rﬂl‘,‘h, wher‘l 0 S_ 0; S 9,‘}1
X(0,z) = z(0, z:)+[2(0, z:4+A2)—2(0, )]0+ .
1-6; ;
-I—B—A;B,'h, when Bih < 3{ S 1
— Uik !

(3.75)
where §; = (2 — z)/Az. Now for MA: < = < (M 4 1)Az the front-type

+

approximation should be more reasonable than the triangular approximation and

we approximate (0, z) as X(0, z) given by

z(0, zr), when 2y < 2 < 20— f
X(O1Z)= E.(%..EAJ_).(ZO‘Fﬂ—Z), when 20*ﬂ<2520+ﬁ (376)

Q, when z > zy 4 (.

Next we consider the boundary condition

2(t,0) = e~ (otet)/A, (3.77)

Computing the integral

1 .
Lo = At / 2(t; + A1, 0)db; E
0

we obtain |
A z
Lip ===z(t;,0)(e "A"* ~ 1), (3.78) |

v

and then computing the integral

! 1
ch = At/ (0 J E) x(tJ- + GAL, O)dG,
0

i
we obtain

A A L |
I = -—;m(tj,O)e—vAt/A + @Ijo — “;—0, . (3.79) \
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where ¢; = jAt, and 7 = 0,1,2,... indicates the grid point along the ¢ axis. We |

now can compute moments m;q and m;. from

|
1 i
Mo = IjO - E[I(tj + Ata 0) + x(tjv 0)] )
(3.80

1
M;c = ch - 'ﬁ[x(tj + Af,O) - :C(tj,O)]

We can then compute pattern-recognizing moments mjn, from m; and -
mj. above and find that they are all negative, so we use the triangular approxima- .

tion to approximate eq. (3.77). From eq. (3.80) we can compute the triangular

approximation variables;

A:th = 2mj0 :
: _dmye 1 (3.81)
0; oY + 5" ‘
Then we obtain X(£,0) as an approximation to z(¢,0) :
4]
rAIjh, when 0 < Bj < 93';1
X(4,0) = z(t;, 0)+[x(; 4 AL, 0)—z(1,,0)]8; 41 7
1-—48;
=3, Az;n, when 8;, < 8; < 1.
g

(3.82)
where 8; = (¢ —1;)/At. Now we have completed the approximation of eq. (3.69),
yielding of eqs. (3.75), (3.76), and (3.82).

An analytic solution of eq. (3.64) with the initial and boundary condition
eqs. (3.75); (3.76), and (3.82) is obtained by using eq. (3.15) as in the first
problem. When replacing = in egs. {3.75) and (3.76) with z — vf, we obtain the
analytic solution. If 2 — vt < MAz we get eq. (3.75) with §; = (z — vt — z ) Az

as the analytic solution. If z — vt > M Az we get from eq. (3.76):

z(0, 2pr), when zp S z— vt < z—-f |
X(t,z) = E(iz’l[%t)[z(r}-ﬁ--(2:—~v13)], when zo—ﬂ<z-—-vt'_<'i.zo+ﬁ |
0, when z — vt > z5+ 4. ‘ i

(3.83) ‘

: |
! |
[ l
]

[
I
i [
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Now the PLIM solution of eq. (3.64) with the initial and boundary condi- ;

tions of eq. (3.75), (3.76), and (3.82) is obtained by using the procedure detailed

in the preceding section. Below are the results of PLIM with the analytic solution

above shown for comparison:
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Figure 3.6 Apalytic and PLIM solutions of problem 2
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We use v = 0.123, At = 0.10, Az = 0.03, § = 0.005 in both problems.

3.5 Conclusion

From figure 3.5 we find that a step function conserves its shape when it

is moving. The PLIM solution agrees well with analytic one. In figure 3.6 we
|

find that the shape of a peak function deteriorates gradually whileiit is moving,
In addition, the solution near the peak computed by PLIM does nét agree with
those computed by analytic method. These shows that PLIM can né)t be applied
to peak function while it works very well with step function. So it ca.ifmot be used

to investigate the transport of cosmic rays across the solar-flare sho!f:k.
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