CHAPTER 2

QUANTUM CHEMICAL METHODS

The quantum chemical methods are devided into 2 classes. The first class
comprises of semiempirical methods in which a set of empirical parameters are
employed, thereby replacing the time-consuming parts of the calculations. The
second class of method is ab initio which means energies and other properties
are calculated from the first principles. For ab initio method is summarized in

Fig. 2.1.

2.1 The Schridinger equation

The main target of ab initio calculation is to compute energy and other
properties of molecule. In quantum mechanics [41), these properties can be
gained by solving the solution of the Schrédinger equation,

HY = EY¥ @.1)

Here H is the Hamiltonian, a differential operator representing the total
energy, which 1s the sum of kinetic and potential parts,

H=T+V 2.2)

The first part is the kinetic energy operator T, which is a sum of differential

operators,
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The sum 18 over all particles 1 (nuclei and electrons) and m; is the mass of
particles 1. A the is Plank’s constant. The second part is potential energy

operator, is the coulomb interaction,
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where the sum is over pairs of particles (i, j) with electric charges e;, ¢
separated by a distance r;. For electrons, ¢; = -e, while for a nucleus with
atomic number Z;, e; = +Ze. |

E is numerical value of the energy of the state; that is the energy relative
to a state in which the constituent particles (nuclei and electrons) are at infinite
separation and at rest. ‘¥ is the wave function. It depends on the cartesian
coordinates of all particles and also on the spin angular momentum components
in a particular direction. The square of the wave function, ¥? is interpreted as a
measurement of the probability distribution of the particles within the molecule.

The acceptable solutions of eq. (2.1) must be suitable symmetry under
interchange of identical particles. For boson particles, the wavefunction is
unchanged, that is symmetric, under such interchange. For fermion particles, the
wavefunction must be multiplied by -1; that is antisymmetric. Electrons are
fermions, so that ¥ must be antisymmetric with respect to interchange of the
coordinates of any pair of electrons. This is termed antisymmetric principle.

The Schrédinger equation for any molecules have many possible
solutions, corresponding to different stationary states. The state with lowest
energy is the ground state.

In molecular system, the Hamiltonian for N electrons and M nuclei is
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In the above equation, M, is the ratio of mass of nucleus A to the mass of an
electron, and Z, is the atomic number of nucleus A. The Laplacian operators v:
and V, involve differentiation with respect to the coordinates of the ith electron
and At/ nucleus, ri, is the distance between the ith electron and Ath nucleus.

Rag is the distance between the As/ nucleus and the Bt/ nucleus.
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2.2 Molecular orbital theory

Molecular orbital theory is an approach to molecular quantum
mechanics, using one-electron functions or orbitals to approximate the full
wavefunction. The first major step in simplifying the general molecular
quantum mechanics is the separation of the nuclear and electronic motions. This
is possible because the nuclear masses are much greater than those of the
electrons therefore, nuclei move much more slowly. The separation of the
problem into two parts is called the adiabatic or Born-Oppenheimer
approximation [42). Therefore, the second term of eq. (2.5), the kinetic energy
of the nuclei, can be neglected and the last term of eq. (2.5), the repulsion
between the nuclei, can be considered to be constant. The remaining term in eq.
(2.5), are called the electronic Hamiltontan (H,,..) or Hamiltonian describing the

motion of N electrons in the field of M point charges,
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The corresponding approximation to the total wavefunction is the multiplication
product of electronic wavefunction yr,,,c({ri];{RA]), which describes the motion

of the electrons that explicitly depends on the electronic coordinates, but

parametrically depends on the nuclear coordinates and of nuclei wavefunction

y/m,({R \ ]) which describes the vibration, rotation, and translation of a molecule.

HirhiRy)) = sk R val(RA)) 2.7)

The solution to a Schrddinger equation involving the electronic

Hamiltonian,
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The electronic energy, €., 1s also parametric on the nuclear coordinates,

b = EacliRa)) (2.9)

The total energy for fixed nuclei must also include the constant nuclear

repulsion energy,

(2.10)

The nuclear Hamiltonian (H,.) for the motion of the nuclei in the average field

of the electrons,
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The total energy sm([R A}) provides a potential for nuclear motion. This

function constitutes a potential energy surface.
The electronic Hamiltonian in eq. (2.6) depends only on spatial
coordinates of the electrons. To describe the behavior of an electron, it is

necessary to specify its spin. In the context of nonrelativistic theory, there are
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two spin function a(®w) and B(w), corresponding to spin up and spin down,
respectively. From each spatial orbital, y(r), one can form two different spin

orbitals, x(x)

y(Da(w)
or (2.12)
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The four coordinates of electron is denoted by x,

x L {r, ®} (2.13)

The wavefunction for an N-electron system is then a function of x;, x;, ... , xy.
That is W(xy, Xa, ... , xn). Wavefunction must corresponds to the antisymmetric
or Pauli exclusion principle, a many electron wavefunction must be
antisymmetric with respect to the interchange of the coordinates x (both space

and spin) of any two electrons, i.e.,

WXLy oon s Xiy e 5 Xjy ey X)) = =W(Xy, oo, Xj wer 5 Xiy - » XN) (2.14)

So the electronic wavefunction must be written as Slater determinant of spin

orbital,
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or short notation,
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where the factor (N!)"? is a normalization factor.

2.3 The Hartree-Fock approximation

The simplest antisymmetric wavefunction, which can be used to describe

the ground state of an N-electron system, ‘¥, is a single Slater determinant,

¥ o= XX Xy o Xy) .17

The vanation principle states that the best wavefunction of this functional form

is the one which gives the lowest possible energy,

E, = (¥HWY) (2.18)
where H is the full electronic Hamiltonian. The variational flexibility in the
wavefunction (2.17) is in the choice of spin orbitals, one can derive eigenvalue

equation, called the Hatree-Fock equation which determines the optimal spin
orbitals of the form

frix) = earlx) | (2.19)

where f{i) is an effective one-electron operator, called the Fock operator, of the

form

2 A, (2.20)
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"¥(i) is the average potential experienced by the ifh electron due to the

where v
presence of the other electrons. The essence of the Hatree-Fock approximation
is to replace the complicate many-electron problem by one-electron problem in
which electron-electron repulsion is treated in an average way.

The Hartree-Fock potential v (i), or equivalently the “field” seen by the
ith electron, depends on the spin orbitals of the other electrons. Thus the
Hartree-Fock equation (2.19) is nonlinear and must be solved iteratively. The
procedure for solving the Hartree-Fock equation is called the self-consistent-
JSield (SCF) method.

From eq. (2.20), the best (Hatree-Fock) spin orbitals is the Hartree-Fock

integro-differential equation

N N .
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where h(1) is core-Hamiltonian operator

1 4 Z
h(1 = -=Vi. -t
M T (2.22)
Jo(1) is the coulomb operator
Z 4
L) = IdleZb(z)l N (2-23)

Ky(1) is the exchange operator
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Therefore, the Fock operator f{1) can be written as

1) = h(1) + 2[50)-K,0)

b=1

and the Hartree-Fock potential v''*(1),

v = E[Jb(l)-Kh(l)]

the orbital energy &,,
£, = [alnla] + hi_l[aauab] - [ablba)
and Eq = i[alh[a] + %22[3&[%} - [abjba]
E, - ie, . ;—iZ[aqbb] - [ablba)

a=] aw] b=}
For closed-shell restricted Hartree-Fock wavefunction

[‘H:) = lZlZ:ZaZ4 ZN-tZN)
]WHT’;%V_’-: WNIZ&ZUZ)
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(2.24)

(2.25)

(2.26)

2.27)

(2.28)

(2.29)
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In eq. (2.30) is the eliminated spin form, the calculation of molecular orbitals
become equivalent to the problem of solving the spatial integro-differential

equation

fin)w.(r) 7 &wi(n) (2.31)

Solving this equation numerically, Roothaan introduces a set of known basis
functions {¢(r)/ p = 1,2, ..., K} and expand the unknown molecular orbitals in

the linear expansion of these functions,
K
v, = 2Cub, i=1,2,..,K (2.32)
p=l

The quality of the molecular orbitals is related to the quality of the basis
set, set of basis functions, used, The early STO basis function (Slater Type
Orbital) introduced by Slater [43], is based on approximation of hydrogen-like
atomic orbitals according to empirical rules. They were mostly used for the
calculations of small molecules, The advantage of using a few functions of STO
gives more accurate representation of atomic orbitals, the integrations of the

functions are very time-consuming. The STO form is

n

¢ Nr™'exp(-8 1Y, ,.(6,D) (2.33)
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where B, n and Y),, are the exponent coefficient, principle quanturn number,
and the angular part of the wavefunction, respectively.
An alternative to the STOs is the use of a GTO (Gaussian Type Orbital)

[44]), which represents a STO sum of gaussian functions of the form

¢ ™ = a Nexp(-§, r*)Y,,.(6,) (2.34)

where a and {3 are the suitable coefficients and exponents, respectively.
According to the assumption above, the larger the expansion of GTOs,

the more equivalence to a STO is obtained. Another type of atomic orbital is the

GLO (Gaussian Lobe Orbital) [45],[46] which is the simplest form of basis

functions. Its form is
. #%° = Nexp(-f 1) (2.35)

The angular part 1s omitted. Instead, GLOs are combined together to
reproduce the conventional orbital shapes.

From eq. (2.31), the problem of caiculating the Hartree-Fock molecular
orbitals reduces to the problem of calculating the set of expansion coefficients
Cu

By substitution  the linear expansion (2.32) ‘into the Hartree-Fock

equation (2.31) and using the index v, gives

K K
m)Zlcw\,(l) = eiZlc\,icb\,a) (2.36)

then multiply by ¢; (1) on the left and integrate

K K
Zlqudrm;(l)f(l»u(n . siElcuiIdr,¢;(1)¢D(1) (2.37)
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and define two matrices, are the overlap matrix S, has elements
S, = Jangme,0 (2.38)

and the Fock matrix F, has elements

. fang: a8, (2.39)

g2
Il

Therefore, the integrated Hatree-Fock equation is written as
K K
D2EC: = £28.0; i=12..,K (2.40)
=l val

These are the Roothaan-Hall equations, proposed by Roothaan [47] and by Hall

[48]) which can be written as the single matrix equation
FC = SCe (2.41)

where C is a K x K square matrix of the expansion coefficients c,;

€y L2 Cix
c = | Ok | (2.42)
chx Cxz cxr._]

and € is a diagonal matrix of the orbital energies g;,
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ra, 0]
e = ! & 1' (243)
Lo e
F., = H + G, (2.44)
where H' is the core-Hamiltonian matrix
Ho = Jdng;(mng,0) (2.45)
G, is the two-electron part of the Fock matrix
N/ZNA2 r i
Go = 22 (o) - o) 246
A=l o=l .
Ps is the density matrix
N/2
P = 22.cnch (2.47)
a=1
and (polao) = Jdndg:(1)4,0)i6:04,2) (2.48)

For ' solving the Roothaan-Hall equation, iterative process called Self
Consistent Field (SCF) procedure are required. The outline of mathematical
steps to solve the Roothaan-Hall equations for a closed-shell system are shown

in Fig. 2.2. More detailed descriptions can be read in the literature [49].
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2.4 Population analysis

The probability of finding an electron in various regions of space, p(r), is

called the charge density and defined as,

N/IN/2

2.2 P, (1) (2.49)

=i v=l

I

p(r)

Therefore, the total number of electrons is

N/2

23 Jdrly, (o) (2.50)

I
1l

By substitution eq. (2.32) into eq. (2.50) and using the index p, the eq. (2.50)

becomes

N/2N/2 N2

N = 22PS, = 2(PS), = uPS (2.51)
p=l

pal v=i

(PS),, indicated the number of electrons to be associated with ¢,,. This is called
a Mulliken population analysis [50]. The net charge of an atom is given by

Q= Z, - 2(®S),, (2.52)

where Z, 1s the charge of atomic nucleus A.

One important property of molecule involving the electrons distribution

1s dipole moment, p. The dipole moment of molecule can be calculated as
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H = <"Po

where the first term is the contribution of the electrons, of charge -1, and the

q'0> + 2Z.R, (2.53)

second term is the contribution of the nuclei, of charge Z, to the dipole

N
moment. The electronic dipole moment operator is -2 _r, , a sum of one-electron

i=1
operators.

Therefore,

N/ZN/2
n = -2 2P + 2 Z,R, (2.54)
A=l o= A

A vector equation with components (for example the x component) is

N/2N/2

™ = -;);PM(Mdo) + 22X, (2.55)
where
(be) = J.drl¢;.(r DXide(r) (2.56)

With the same manner, p, and p, can be also computed.
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2.5 The tunneling phenomenon

When the particle penetrates with kinetic energy E through the wall, the
wavefunction decays exponentially. If the walls are thin and energy of the
particle is less than that of the wall, the decay of the wavefunction ceases, and it
begins to oscillate again (Fig. 2.3). Such leakage through classically forbidden

zones is named tunneling or barrier penetration.

Figure 2.3 A particle with the kinetic energy E incident on a finite
barrier V (for E < V),

Through the Schrédinger equation, the probability of tunneling. can be
evaluated. The optimal form of the Schrédinger equation is inside a barrier (a

region where V > 0),

d*y 2m(V-E)y
o e (2.57)
and the general solution of this equation is
)12
v = Ae™ + Be™ where o = {Erl(-;—}a)} (2.58)
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where m denotes mass of the particle.
To keep the wavefunction finite, the parameter A is set to zero. Hence the

wavefunction inside a long barrier becomes
v = Be™ (2.59)

that decreases exponentially towards zero as x increases.

For the finitely long barrier of Fig. 2.4, wy(x) is sinusoidal (with
amplitude A,,) inside the wall (x < xo), and decays exponentially within the
barrier (Xo < x < x). At x=x; oscillating starts again with amplitude A, The
probability of finding the particle inside and outside the wall, beyond the

barrier, are proportionalto A’ and A2, respectively.

n

Thus the penetration probability, P, can be written as:

A |
P = (A_] (2.60)

where - = = e (2.61)

therefore, P =~ g2l (2.62)
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Figure 2.4 Wavefunction for a long barrier of finite length.
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