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CHAPTER I

INTRODUCTION

The theories of blow-up of partial differential equations have been studied

extensively in the past few decades inspired by Fujita’s work “On the blowing up

of solutions of the Cauchy problem for ut = ∆u+u1+σ” in 1966. Fujita considered

the Cauchy problem 
ut = ∆u+ up, x ∈ Rn, t > 0

u(x, 0) = u0(x), x ∈ Rn,

where u0 is a nonnegative initial data, p > 1 and ∆ is the Laplacian on Rn. Fujita’s

result, which have been affected the direction of blow-up study since then, suggests

that if 1 < p < 1 + 2/N , then the solution to any nontrivial initial values blows

up in a finite time and if p > 1 + 2/N , then the global solution to the equation

exists for sufficiently small initial data and the solution blows up in a finite time

for sufficiently large initial data. Such pc = 1 + 2/N is called a critical exponent

and plays an important role in studying blow-up theory.

Since then, there have been several kinds of extensions to Fujita’s blow-up

result concerning variously on domains and initial sources. In 2007, Yang dealt

with the problem involving the p-Laplace operator

ut
|x|s = ∆pu+ uq, (x, t) ∈ Ω× (0, T )

u(x, 0) = u0(x) ≥ 0, u0 6= 0, x ∈ Ω

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
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where Ω is a smooth bounded domain in Rn, n > p, ∆pu = div(|∇u|p−2∇u),

0 ≤ s ≤ 2, p ≥ 2, p − 1 < q <
np− n+ p

n− p
. Yang’s result indicates that the

blow-up behavior of the solution is concerned with both p and q.

Lately, there has been some attention turning from equations on Euclidean

domain Rn to manifolds. In 1999, Zhang considered the blow-up properties of the

Cauchy problem 
ut = ∆u+ V (x)uq, x ∈M, t > 0

u(x, 0) = u0(x), x ∈M,

where (M, g) is an n-dimensional noncompact complete Riemannian manifold with

n ≥ 3, V (x) ∈ L∞loc, Cr−m ≤ V (x) ≤ Crm for some C ≥ 0, m > −2 and ∆ is the

Laplace-Beltrami operator defined by ∆u =
1√

det g(x)

∂

∂xi
(
√

det g(x)gij(x)
∂u

∂xj
).

Zhang further assumed that there exists a constant α > 2 such that |B(x, r)| ≤

Crα when r is large and for all x ∈ M and obtained the result suggesting if

1 < q ≤ 1 + (2 +m)/α and u0 ≥ 0, then the problem possesses no global positive

solution.

In this work, we investigate the problem

ut = ∆pu+ uq, (x, t) ∈M × (0, T )

u(x, 0) = u0(x) ≥ 0, u0 6= 0, x ∈M

u(x, t) = 0, (x, t) ∈ ∂M × (0, T ),

(1.1)

where T > 0 is fixed, (M, g) is an n-dimensional smooth compact Riemannian

manifold with boundary, p ≥ 2, p− 1 < q <
np− n+ p

n− p
and ∆p is the p-Laplace-

Beltrami operator defined by ∆pu =
1√

det g(x)

∂

∂xi
(
√

det g(x)gij(x)|∇u|p−2 ∂u

∂xj
).

We apply Yang’s result of blow-up criteria on Rn to compact manifolds. The

result is obtained as follows.
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Definition 1.1. Let u be a nontrivial classical solution of (1.1). We say that u

blows up in a finite time if there exists T0 > 0 such that u exists for all x ∈ M ,

t ∈ (0, T0) and lim
t→T−

0

u(x0, t) =∞ for some x0 ∈M .

Theorem 1.2. Let u be a nontrivial classical solution of (1.1). Define the energy

functional of (1.1) by E(u) =
1

p

∫
M

|∇u|pdV − 1

q + 1

∫
M

|u|q+1dV . Suppose that

E(u0) ≤ 0. Then u blows up in a finite time.



CHAPTER II

PRELIMINARIES

In this chapter, we introduce some basic concepts in Riemannian geometry

used throughout this thesis. We first start with the definition of smooth manifolds.

Definition 2.1. Let M be a topological space and n ∈ N. M is called a differen-

tiable (or smooth, or C∞) manifold if the following properties hold:

(i) (Topological assumption) M is Hausdorff and second countable;

(ii) (Locally Euclidean) For each p ∈M , there is a homeomorphism ϕ : U → V

from a neighborhood U of p inM onto an open set V in Rn, such a ϕ : U → V

is called a chart of p;

(iii) (C∞-compatibility condition) There is a collection {ϕα : Uα → Vα}α∈I of

charts with
⋃
α∈I Uα = M and for any α, β ∈ I, the map

ϕβ ◦ ϕ−1α : ϕα(Uα
⋂
Uβ)→ ϕβ(Uα

⋂
Uβ)

is smooth as a map between open subsets of Rn. Such a map ϕβ ◦ ϕ−1α is

called a chart transition map. �

Next we introduce the concept of a manifold with boundary which is of im-

portant application in PDE. Denote the upper half-space of Rn by

Rn
+ = {x ∈ Rn : x = (x1, ..., xn), xn > 0}.

Let Rn

+ be the closure of Rn
+ in Rn. The definition of a manifold with boundary

is stated as follows.
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Definition 2.2. Let M be a topological space which is Hausdorff and second

countable. It is called a smooth manifold with boundary if at each p ∈ M there

exists a homeomorphism

ϕ : U → R̄n
+

from a neighborhood U of p in M onto an open subset of R̄n
+. As before, ϕ is

called a chart. In addition, if p, q ∈ M and ϕ : U → R̄n
+, ψ : V → R̄n

+ are charts

at p, q respectively, then ψ ◦ ϕ−1 is smooth in the sense that is can be extended

to a smooth map between open subsets of Rn. �

Now we introduce a Riemannian metric, a concept that plays an important

role in Riemannian Geometry.

Definition 2.3. A Riemannian metric on M is a collection of inner products

gp : TpM × TpM → R, (p ∈M)

which is symmetric and positive definite and p 7→ gp defines a smooth map into the

tensor bundle T 0,2(M). A smooth manifold together with a Riemannian metric

is called a Riemannian manifold. We sometimes denote gp by gp(X, Y ) = 〈X, Y 〉p

for all X, Y ∈ TpM , p ∈M . �

Example 2.4. The Euclidean metric g on Rn is given in standard coordinates by

g = δijdx
idxj = (dx1)2 + ...+ (dxn)2.

For vectors u, v ∈ TpRn, gp(u, v) = δiju
ivj =

∑n
i=1 u

ivi = u · v. That is, g is the

Euclidean dot product on Rn. �

Having define a Riemannian metric, we can now extend the definition of some

operators in PDE, such as gradient and divergence, to smooth manifolds, as pre-

sented below.
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Definition 2.5. For any C1 function f on a Riemannian manifold (M, g), define

a vector field called the gradient of f , denoted by ∇f or gradf , by

〈∇f,X〉 = X(f)

for all smooth vector field X on M . In a local coordinate {xi}, we have

∇f = gij
∂f

∂xi
∂

∂xj
.

�

To define the divergence on smooth manifolds, we begin with the definition of

the Levi-Civita connection.

Definition 2.6. A Levi-Civita connection or covariant derivative on M (more

precisely TM) is a map

∇ : Γ(M)× Γ(M)→ Γ(M)

sending (X, Y ) 7→ ∇XY which is bilinear over R and the following axioms hold

(i) ∇fXY = f∇XY

(ii) ∇X(fY ) = (Xf)Y + f∇XY

(iii) X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉

(iv) ∇XY −∇YX = [X, Y ]

for all f ∈ C∞(M), X, Y , Z ∈ Γ(M), where Γ(M) is the space of all smooth

vector fields. �

Now we can define the divergence on smooth manifolds.
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Definition 2.7. For any C1 vector field X on M , we define the divergence of X

with respect to the Riemannian metric by

divX = tr(ξ 7→ ∇ξX).

�

Definition 2.8. Let f be a C2 function on M . Define the Laplacian of f , ∆f , by

∆f = div grad f = div∇f .

In a chart ϕ : U → Rn,

∆f =
1√

det g(x)

∂

∂xi
(
√

det g(x)gij
∂(foϕ−1)

∂xj
).

�

Proposition 2.9. Let f be a smooth function on M and X a vector field on M .

Then

div(fX) = f divX + 〈∇f,X〉.

In particular, if X = ∇h for some smooth function h, then

div(f∇h) = f∆h+ 〈∇f,∇h〉.

�

Now we introduce a brief concept on an integration on Riemannian manifolds.

Definition 2.10. Let {Uα} be an open cover of a smooth manifold M . A col-

lection {ρα : M → [0, 1]} ⊂ C∞(M) is called a partition of unity subordinate to

{Uα} if the following conditions hold:

(i) ∀p ∈M , ρα(p) = 0 for all but a finite number of α’s;

(ii) ∀p ∈M ,
∑

α ρα(p) = 1;
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(iii) ∀α, suppρα := {q ∈M : ρα(q) 6= 0} is a subset of Uα. �

Definition 2.11. Let (Mn, g) be a Riemannian manifold, {ϕα : Uα → Rn} an

atlas of M and {ρα} a partition of unity subordinate to {Uα}. Define

dV =
∑
α∈A

ρα
√

det g(x)dx1 · · · dxn.

Then, we define an integration of a smooth function f on M by∫
M

fdV =
∑
α∈A

∫
ϕ(Uα)

fρα
√

det g(x)dx1 · · · dxn.

�

Theorem 2.12 (The Divergence Theorem for Compact Riemannian Manifold).

Let (M, g) be a compact Riemannian manifold with boundary. For any C1 vector

field X, ∫
M

(divX)dV =

∫
∂M

〈X, ν〉dS,

where ν is the outward-pointing unit normal vector field along ∂M , dS is the

corresponding volume form on ∂M . �

The next theorem is cited from real analysis used for application in differenti-

ation under the integral sign, as demonstrated in the next chapter.

Theorem 2.13. Let (X,M, µ) be a measure space. Suppose that f : X × [a, b]→

R (−∞ < a < b < ∞) and that f(·, t) : X → R is integrable for each t ∈ [a, b].

Let F (t) =

∫
X

f(x, t)dµ(x). If
∂f

∂t
exists and there is a g ∈ L1(µ) such that∣∣∣∣∂f∂t (x, t)

∣∣∣∣ ≤ g(x) for all x, t, then F is differentiable and F ′(t) =

∫
∂f

∂t
(x, t)dµ(x).

�



CHAPTER III

PROOF OF THEOREM 1.1

Proof. Suppose that u does not blow up in a finite time. We assume further

that there exist t0 ≥ 0 such that E(u(t0)) ≤ 0. First we claim that d
dt
E(u(t)) =

−
∫
M

|ut|2dV . To see this, compute

d

dt
E(u(t)) =

d

dt

(
1

p

∫
M

|∇u|pdV − 1

q + 1

∫
M

|u|q+1dV

)
=

d

dt

(
1

p

∫
M

|∇u|pdV
)
− d

dt

(
1

q + 1

∫
M

|u|q+1dV

)
. (3.1)

Consider the first term of on the RHS of (3.1). We aim to use Theorem 2.13

to differentiate under the integral sign. Note that |∇u|p is integrable since M is

compact. Note that

∂

∂t
|∇u|p =

∂

∂t
〈∇u,∇u〉

p
2 =

p

2
〈∇u,∇u〉

p−2
2
∂

∂t
〈∇u,∇u〉.

Since the metric tensor is smooth,
∂

∂t
|∇u|p exists. By compactness of M and

continuity of the metric tensor,
∂

∂t
|∇u|p = p〈∇u,∇u〉

p−2
2 〈∇u,∇ut〉 is bounded,

i.e.,
∂

∂t
|∇u|p ≤ k for some k > 0. Clearly, k ∈ L1(M). Therefore, by Theorem

2.13, we have

d

dt

(
1

p

∫
M

|∇u|pdV
)

=
1

p

∫
M

∂

∂t
|∇u|pdV

=
1

p

∫
M

p

2
〈∇u,∇u〉

p−2
2
∂

∂t
〈∇u,∇u〉dV. (3.2)
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In a local coordinate {xi}, we have 〈∇u,∇u〉 = gij
∂u

∂xi
∂u

∂xj
and so

∂

∂t
〈∇u,∇u〉 =

∂

∂t

(
gij

∂u

∂xi
∂u

∂xj

)
= gij

(
∂

∂t

(
∂u

∂xi

)
∂u

∂xj
+
∂u

∂xi
∂

∂t

(
∂u

∂xj

))
= gij

(
∂2u

∂xi∂t

∂u

∂xj
+
∂u

∂xi
∂2u

∂xj∂t

)
= 2gij

(
∂u

∂xi
∂2u

∂xj∂t

)
= 2〈∇u,∇ut〉. (3.3)

Substituting (3.3) into (3.2), we obtain

d

dt

(
1

p

∫
M

|∇u|pdV
)

=
1

p

∫
M

p

2
〈∇u,∇u〉

p−2
2 (2〈∇u,∇ut〉) dV

=

∫
M

〈∇u,∇u〉
p−2
2 〈∇u,∇ut〉dV

=

∫
M

|∇u|p−2〈∇u,∇ut〉dV

=

∫
M

〈|∇u|p−2∇u,∇ut〉dV. (3.4)

By Proposition 2.9, we get

〈|∇u|p−2∇u,∇ut〉 = div(|∇u|p−2(∇u)ut)− div(|∇u|p−2∇u)ut. (3.5)

By the divergence theorem, Theorem 2.12, we have∫
M

div(|∇u|p−2(∇u)ut)dV =

∫
∂M

〈|∇u|p−2(∇u)ut, ν〉dS. (3.6)

Since u(x, t) = 0 for all x ∈ ∂M, t ≥ 0, ut(x, t) = 0 on ∂M . Thus

∫
∂M

〈|∇u|p−2(∇u)ut, ν〉dS =

0. By (3.4), (3.5) and (3.6), we get

d

dt

(
1

p

∫
M

|∇u|pdV
)

=

∫
M

div(|∇u|p−2(∇u)ut)dV −
∫
M

div(|∇u|p−2∇u)utdV

=

∫
∂M

〈|∇u|p−2(∇u)ut, ν〉dS −
∫
M

div(|∇u|p−2∇u)utdV

= −
∫
M

div(|∇u|p−2∇u)utdV = −
∫
M

(∆pu)utdV. (3.7)
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Consider the second term on the RHS of (3.1). Observe that
∂

∂t
|u|q+1 exists since

q + 1 ≥ 2. Since M is compact, |u|q+1 is bounded. Then Theorem 2.13 gives

∂

∂t

(
1

q + 1

∫
M

|u|q+1dV

)
=

1

q + 1

∫
M

∂

∂t
(u2)(q+1)/2dV

=
1

q + 1

∫
M

q + 1

2
(u2)(q−1)/22uutdV

=

∫
M

|u|qutdV. (3.8)

Thus, by (1.1), (3.7) and (3.8)

d

dt
E(u(t)) = −

∫
M

(∆pu)utdV −
∫
M

|u|qutdV

= −
∫
M

((∆pu) + |u|q)utdV

= −
∫
M

|ut|2dV.

It follows that, for all t ≥ t0,

−
∫ t0

t

∫
M

|uτ |2dV dτ =

∫ t0

t

E ′(u(τ))dτ = E(u(t0))− E(u(t)).

Therefore∫ t

t0

∫
M

|uτ |2dV dτ +
1

p

∫
M

|∇u|pdV − 1

q + 1

∫
M

|u|q+1dV = E(u(t0)). (3.9)

Define f(t) =
1

2

∫ t

t0

∫
M

u2dV dτ . Then, f ′(t) =
1

2

∫
M

u2dV and

f ′′(t) =

∫
M

uutdV

=

∫
M

u(∆pu+ uq)dV

=

∫
M

u div(|∇u|p−2∇u)dV +

∫
M

|u|q+1dV.

Using Proposition 2.9 and Theorem 2.12, we obtain,∫
M

u div(|∇u|p−2∇u)dV =

∫
M

div(|∇u|p−2u∇u)dV −
∫
M

|∇u|p−2〈∇u,∇u〉dV

=

∫
∂M

〈|∇u|p−2u∇u), ν〉dS −
∫
M

|∇u|pdV

= −
∫
M

|∇u|pdV.
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Thus,

f ′′(t) = −
∫
M

|∇u|pdV +

∫
M

|u|q+1dV .

Hence, by (3.9),

f ′′(t) =
q + 1− p

p

∫
M

|∇u|pdV − (q + 1)E(u(t0)) + (q + 1)

∫ t

t0

∫
M

|uτ |2dV dτ.

(3.10)

Since E(u(t0)) ≤ 0,

q + 1− p
p

∫
M

|∇u|pdV − (q + 1)E(u(t0)) > 0 (3.11)

and so, for all t ≥ t0,

f ′′(t) > (q + 1)

∫ t

t0

∫
M

|uτ |2dV dτ .

The inequality (3.11) is strict because

∫
M

|∇u|pdx 6= 0; if

∫
M

|∇u|pdx = 0, then

u is constant in x and so u is not a solution of the problem.

By choosing c = (q + 1)

∫ t1

t0

∫
M

|uτ |2dV dτ for some fixed t1 > t0, we have

f ′′(t) > (q + 1)

∫ t

t0

∫
M

|uτ |2dV dτ > (q + 1)

∫ t1

t0

∫
M

|uτ |2dV dτ = c ≥ 0

for all t > t1.

If c > 0, then we have

f ′(t) >

∫ t

t0

cdτ + f ′(t0) = c(t− t0) + f ′(t0) and

f(t) ≥
∫ t

t0

(c(τ − t0) + f ′(t0))dτ + f(t0) =
c

2
(t− t0)2 + f ′(t0)(t− t0) + f(t0)

which implies that lim
t→∞

f(t) = lim
t→∞

f ′(t) =∞.

Consider the case c = 0 for all t1 ≥ t0. Then

∫ t1

t0

∫
M

|uτ |2dV dτ = 0 which implies

that ut = 0. By (3.10), we have

f ′′(t) =
q + 1− p

p

∫
M

|∇u|pdV − (q + 1)E(u(t0)). (3.12)
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Since ut = 0, u is constant in t and so f ′′(t) is a constant. If f ′′(t) = 0, then,

by (3.12), we have

∫
M

|∇u|pdV = 0. Then u is a trivial solution which is a

contradiction. On the other hand, if f ′′(t) = c > 0, then lim
t→∞

f(t) = lim
t→∞

f ′(t) =∞

as previously done.

We note that

f ′′(t) ≥ (q + 1)

∫ t

t0

∫
M

|uτ |2dV dτ

f(t)f ′′(t) ≥ q + 1

2

(∫ t

t0

∫
M

|u|2dV dτ
)(∫ t

t0

∫
M

|uτ |2dV dτ
)
.

By Hölder’s inequality, we have

f(t)f ′′(t) ≥ q + 1

2

(∫ t

t0

∫
M

uuτdV dτ

)2

=
q + 1

2

(∫ t

t0

f ′′(τ)dτ

)2

=
q + 1

2
(f ′(t)− f ′(t0))2.

Claim that there exists a constant α > 0 such that f(t)f ′′(t) ≥ (α + 1)(f ′(t))2 as

t→∞. Choose any 0 < α < q−1
2

. Then 0 < α+ 1 < q+1
2

. Since lim
t→∞

(f ′(t))2 =∞,

we can choose t2 > t0 such that (
√

q+1
2
−
√
α + 1)f ′(t2) ≥

√
q+1
2
f ′(t0). Then

q+1
2

(f ′(t)− f ′(t0))2 − (α + 1)(f ′(t))
2

=
((√

q+1
2
−
√
α + 1

)
f ′(t)−

√
q+1
2
f ′(t0)

)
×
((√

q+1
2

+
√
α + 1

)
f ′(t)−

√
q+1
2
f ′(t0)

)
≥ 0.

Thus, for t ≥ t2,

f(t)f ′′(t) ≥ q + 1

2
(f ′(t)− f ′(t0))2 ≥ (α + 1)(f ′(t))2
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as claim. Let g(t) = (f(t))−α. Then

g′′(t) = −α(f−α−1(t)f ′′(t) + (−α− 1)f−α−2(t)(f ′(t))2)

= −αf−α−2(t)(f(t)f ′′(t) + (−α− 1)(f ′(t))2)

≤ −αf−α−2(t)((α + 1)(f ′(t))2) + (−α− 1)(f ′(t))2)

= 0

for all t ≥ t2. Hence g(t) = f(t)−α is concave for all t ≥ t2.

Since f−α(t) > 0 and lim
t→∞

f(t) =∞, lim
t→∞

f−α(t) = 0.

Using the mean value theorem of concave functions, since f−α(t) is concave for

all s, t ∈ (t0,∞),

f−α(t) ≤ f−α(s) + (f−α(s))′(t− s) for all t ≥ t0.

Observe that (f−α(s))′ = −αf−α−1(s)f ′(s) = −α
(
f−α

f
f ′
)

(s) < 0.

Thus, it can be concluded that

f−α(t) ≤ f−α(s) + (f−α(s))′(t− s)→ −∞

as t→∞ which is a contradiction.

Therefore u blows up in a finite time.



CHAPTER IV

CONCLUSION

A blow-up criterion in Yang’s result was studied and adjusted in this work. We

obtained a condition of the initial function suggesting that a nontrivial classical

solution of the p-Laplace heat equation blows up in a finite time whenever E(u0) ≤

0 where u0 is the initial function of the problem and the energy functional E(u)

is defined as in Chapter I.

Another unfinished goal in this work is to extend Yang’s existence of solution

theorem to manifolds.
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