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 Quicksort is one of the most popular internal sorting algorithms. In this 

research, we propose multikey quicksort for sorting sequence of integers and strings 

using predecessor pivots, successor pivots and the collect-center partition.  

Predecessor pivots and successor pivots are used to reduce the recursive calls 

while the collect-center partitioning is used to reduce the number of swaps.  We 

compare the performance of our algorithm, called CC5sort, with the performance of 

the quicksort using adjacent pivot quicksort and the original collect-center partition. 

We tested an efficiency of CC5sort in four different types of data sets; nearly sorted 

data, nearly reverse sorted data, repeated element data and random ordered data. 

Our experiments show that CC5sort significantly exhibits the faster running time for 

random ordered data with a lot of repeated elements than collect-center partitioning 

and APQsort. 
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Chapter I 

Introduction 

 

1.1 Backgrounds 

Sorting [1, 2, 3] is one of the fundamental problems in computer science. It appears 

as a sub-process in many algorithms. It is one of important technique for data processing, in 

business, science or social science. For the sorted data, finding the element with a specific 

key is fast. On the other hand, the unsorted data requires looking though the whole list. 

Sorting is a process that purposely arranges items using specified key values. A sequence 

might be arranged in ascending or descending order.  

For example, a library management system requires book names to be sorted in 

which it arranges books according to their names see Fig. 1.1. For a registration system of 

the university, faculty may generate a student list sorted by student names, by student ID or 

by student grade point average. Furthermore, sorting has been widely applied to other fields 

of management and sciences such as binary search [1, 2], activity selection problem [1, 2], 

fractional knapsack problem [1, 2], minimum spanning tree [1, 2], etc. 

Sorting algorithms can be classified into 2 types according to their memory usages: 

the internal sorting and the external sorting. 

Internal sorting algorithm performs solely within the primary memory, such as cache, 

RAM. Prior to the sorting process, all required data must be initially read and recorded in the 

primary memory. There are many algorithms that are designed to run as the internal sorting 

algorithm, for example, bubble sort [1, 2], selection sort [1, 2], insertion sort [1, 2, 3], shell 

sort [1, 2, 3], internal-merge sort [1, 2], quicksort [1, 2, 3], heap sort [1, 2, 3] and radix sort [1, 

2, 3] etc. 
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External sorting algorithm uses both primary memory and secondary memory. 

Normally, loading data to the primary memory is impossible due to the size of the data. 

Therefore, it requires the second memory (external memory) such as, hard disc or tape. 

External sorting typically sorts many chunks of small data that resides in the primary memory 

temporarily. Subsequently, those chunks of small data will be combined with the data in 

primary memory into a single large data. One common well-known external sorting based 

algorithm is external - merge sort. 

 In this research, we focus on improving the sorting process for repeat elements by 

using quicksort because of its popularity and devide-and-conquer characteristic. Form our 

study, many active researches are still proposed the improvement of the quicksort. 

Quicksort is a powerful sorting algorithm that takes O(n log n) time on the average 

and the best case. However, the worst case of quicksort happens when the selected pivot is 

the least/highest element in each partition process. This problem leads to various ideas to 

improve quicksort. 

Fig. 1.1 Benefit of sorting 

SORT 
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1) Pivot selection: In order to improve worst case scenario of quicksort 

algorithm, a new pivot selection method is introduced. To avoid choosing a pivot with the 

least/highest value, researchers choose the pivot element at a random index as in [5], the 

middle index of the partition as in [6], or (especially for longer partitions) the median of the 

first, the middle and the last elements of the partition as in [7], the median from median-of-five 

as in [4].  

2) Using the faster algorithm for a small sub-array: For a case that the array 

consists of a few elements, the other sorting algorithm might be used instead of quicksort. 

For example, Sedgewick [8] suggested to use Insertion sort which has a smaller constant 

factor and run faster on an array that consists of elements less than 10. It can increase 

efficiency of quicksort approximate 20 percent. 

3) Mixtures of quicksort and other sorting algorithm: This technique improves 

quicksort performance by blending its strengths with other sorting algorithm advantages. For 

instance, Wainwright combined quicksort and bubble sort [9] to terminate the sorting 

algorithm if the array of data is “sorted”. This prevents wasteful time-consuming sorting 

process. Another example is a “split-end” quicksort in which is suitable for elements with a 

repeated keys [10]. 

Quicksort uses a recursive "divide and conquer" technique to sort the data see Fig 

1.2. Its efficiency depends on 3 different factors, 1) the number of comparisons 2) the 

number of swaps 3) the number of recursive calls. Comparisons and swaps occur within a 

single recursive call. If it can reduce number of recursive calls, then number of comparisons 

and number of swaps should be reducing as well. 



 
4 

 

 

Fig.1.2 Example of quicksort 

Selecting a good pivot [4] greatly improves the speed of the quicksort algorithm. 

There are many text books [1, 2, 3] that suggest the use of the first element in the array as 

the pivot; however this causes poor performance to the sorting if the data is already sorted. 

The better method is to utilize the median of sample elements such as median-of-three, 

median-of-five [4], median-of-seven and median-of-nine. 

Using the insertion sort for a small sub-array helps reduce the speed of overall 

running time. Insertion sort consumes  ( )2nΟ  time on average case. For its best case, it takes 

( )nΟ  time. This algorithm is more efficient for a small array [8].  

 

Fig.1.3 Example of insertion sort 
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The “Collect Center Partition” for the quicksort uses two pointers to gather the pivot 

elements in the middle. It swaps the elements not equal to the pivot to the left sub-array or 

right sub-array forcing the elements equal to the pivot to the middle.  

CC5sort [11] is designed to improve efficiency of quicksort by reducing the number 

of recursive calls using “predecessor pivot” and “successor pivot” and selecting pivot from 

the median-of-five [4]. Moreover, CC5sort also applies “Collect Center Partition [12]” method 

to reduce the number of swaps within a recursive call. In addition CC5sort collects elements 

that values are equal to predecessor pivot and successor pivot. CC5sort will be able to 

identify correct positions of predecessor pivot group elements, pivot group elements, 

successor pivot group elements, and therefore, reduces the number of recursive calls. 

1.2 Objective 

 This thesis explains the implementation of “CC5sort” function as the primary method 

for improving and enhancing quicksort algorithm. CC5sort utilizes “predecessor pivot”, 

“successor pivot”, and “Collect Center Partition” to reduce the number of recursive calls and 

accelerate the sorting time of redundant elements. In addition, CC5sort will be compared with 

adjacent pivot quicksort (APQsort) [13] and original collect-center-partition (CCsort) [12], to 

measure advantages and disadvantages of CC5sort. 

1.3 Project scope 

 In this thesis, 1) data arrays consist of integers and strings 2) programming codes are 

implemented in C# language 3) four different groups of data sets are tested; nearly sorted 

data, nearly reverse sorted data, repeated element data are uniform distribution and random 

ordered data 4) performance of CC5sort will be compared with APQsort and CCsort. 

1.4 Expected Result 

 CC5sort reduces number of times for calling recursively and process in a shorter time 

period for a larger number of repeated elements, comparing to the traditional quicksort,  
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APQsort from a research by Rungpiphop S. and Sinapiromsaran K. [13] and CCsort from a 

research by Kim and Park [20]. 

 

 



Chapter II 

Related Work 

 

From chapter 1, we discuss researches related to quicksort. Many studies have been 

proposed in order to improve it. In this thesis, concepts of CC5sort algorithm are explained.  

2.1 Improve the pivot selection 

This is the process to choose the pivot to avoid the worst case of quicksort and find 

the best pivot. Many researches propose many techniques to improve this, such as using the  

Median [4, 5, 16, 17, 22, 23]. 

 

2.1.1 Median 

  Median is the representative of the list that is greater or equal to half of the elements. 

However, determining a median may require looking to the whole list. So some heuristic 

methods are suggested.   

Median-of-three picks the median of three elements from the first, the middle and the 

last elements. The median-of-three uses only 2 comparisons. 

 Median-of-five was used in Brest et al. (2000) and Cerin (2002) [22]. It chose a pivot 

from five elements of the array; the first, middle, last and two other elements randomly picked 

through a random number between the first and last elements. These elements were selected 

then the pivot was chosen as a median. Their algorithm identified the rest as an element that 

smaller and greater than the pivot. The median-of-five used 6 comparisons. 

Median-of-seven chose a pivot from seven elements of the array. The first five 

elements were selected as following: low, high, ┌(low+high)/2┐, ┌(low+high)/4┐and 

┌3*(low+high)/4┐. While the other two elements were selected randomly. 

Median-of-nine chose a pivot from nine elements of the array. The number of 

elements to be selected had increased by two. The nine elements were explicitly selected as 
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following: low,  high, ┌(low+high)/2┐, ┌(low+high)/8┐, ┌(low+high)/4┐, 

┌3*(low+high)/8┐, ┌5*(low+high)/8┐ and ┌7*(low+high)/8┐. Thus, more elements were 

involved in the selection process. 

  This research, we use median-of-five to select the pivot. The detail of median-of-five is 

shown in the next section.   

 

2.1.1.1 Median-of-five 

Median-of-five [4] is one of many methods of selecting pivot from calculating the 

median of the data. This calculation requires five elements. The five elements are the first 

element, element in between of the first and the middle (can be written in the form of equation 

as ┌(first+last)/4┐), the middle element, element in between of the middle and the last (can 

be written in the form of equation as ┌3*(first+last)/4┐ ) and the last element. 

 

First ┌(first+last)/4┐ Middle ┌3*(first+last)/4┐ Last 

Fig.2.1 Five elements of median-of-five 

Set the candidate list as V[0] = First, V[1] = Last, V[2] = (First+Last )/2, V[3] = 

(First+Last )/4, V[4] = 3*((First+Last )/4) 

 

.V[0] V[3] V[2] V[4] V[1] 

Fig.2.2 Five candidates for the median-of-five 

Median-of-five finds the median by  

1. comparing between V[0] and V[1], if V[0] is greater than V[1] then it swaps V[0] 

and V[1];  

2. comparing between V[1] and V[2], if V[1] is greater than V[2] then it swaps V[1] 

and V[2];  
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3. comparing between V[2] and V[3], if V[2] is greater than V[3] then it swaps V[2] 

and V[3];  

4. comparing between V[3] and V[4], if V[3] is greater than V[4] then it swaps V[3] 

and V[4]. 

 

Fig.2.3 Sequence of comparison among five elements 

 

As a result, median value of the 5 elements repositions to the middle position. This 

pivot selection method tends to return the actual median of whole array. Regarding this 

principle, it can be translated into pseudo code as following,   

 

Procedure Median of five (A[ ], first, last) 

 V[0] = first; 

 V[1] = Last; 

 V[2] = (first+last)/2; 

 V[3] = (first+last)/4; 

 V[4] = 3*((first+last)/4); 

 

 For(i = 0  ; i< 5; i ++) 

  For ( j = 0; j < 4 ; j++) 

   IF ( A[V[j]] > A[V[j+1]] ) THEN 

    Swap V[j] and V[j+1] 

   ENDIF 

  Return V[2]; 

  ENDFOR 

 ENDFOR 
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END Median of five 

 

2.2 Proposed the location of pivot elements. 

One way to improve quicksort is to swap pivot elements toward the end (Split-end- 

partition [10]) or the middle (Collect-center-partition [12]) of the array. We are interested in 

improving collect-center-partition. 

2.2.1 Collect-Center-Partitioning 

Collect-center-partitioning [7] has been proposed by Kim and Park in 2009. It is a method 

for managing the redundant elements using four pointers i, j, ipL, ipR. The ipL pointer is used 

for partition elements less than pivot to the left. The ipR pointer is used for partition elements 

greater than pivot to the right. The i and j pointers are similar to pointers in quicksort. If every 

element of the array has the same value, CCsort will terminate immediately. This technique is 

suitable for data that has numerous repetitions of elements. Initially, CCsort begins the 

process of partitioning by scanning through elements that have values greater/less than 

pivot. Therefore, if i points to an element that has value less than pivot, that element will be 

repositioned to the ipL of the pivot. On the other hand, if j points to an element that has value 

greater than the pivot, that element will be repositioned to the ipR of the pivot. This process 

depicts in Fig. 2.4.  

 

Fig. 2.4 Collect-center-partitioning 

When partitioning is complete, collect-center-partitioning achieves 3 sub-groups of 

elements 1) the first group contains elements that have values less than the pivot 2) the 

second group contains elements that have values are equivalent to pivot and 3) the third 

group contains elements that have values are greater than the pivot. 
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Fig. 2.5 Three sub-groups of elements after partitioning process is complete 

From previous paragraph, it can be translated into the pseudo code as following (in 

this case, selected pivot is the rightmost array),   

 

Function Split-end partition (A[ ], left, right) 

 i = pl = left;   

 j = pr = right – 1;  

 pivot = A[right]; 

 

 LOOP  

  WHILE (A[i] < pivot AND i≤ j) DO 

    Swap A[i] and A[pl]; 

    pl = pl + 1; 

   ENDIF 

   i = i + 1; 

  ENDWHILE 

WHILE (A[j] > pivot AND i≤ j) DO 

  Swap A[j] and A[pr]; 

  pr = pr – 1; 

 ENDIF 

 j = j – 1;  

ENDWHILE 

IF (i> j) THEN    

 Exit LOOP; 

ENDIF 

Swap A[i] and A[pr]; 

Swap A[j] and A[pl]; 

 END LOOP 
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  Consider the list of elements: 6, 8, 3, 6, 4, 6, 9, 6, 6. The collect-center-partition 

performs step-by-step as follow.   

First, it selects the right element of array as the pivot. Then, it assigns i and ipL as a 

pointer at the first position. Then, it assigns j and ipR as a pointer at the last position. 

 

It compares element at pointer i with the pivot and moves pointer i to the right until it 

founds an element that does not equal to the pivot (value 6). In this case, pointer i stops at 

2nd element which value is 8.   

 

It compares element at pointer j with the pivot and moves pointer j to the left until it 

founds an element that does not equal to the pivot (value 6). However, the element at 7th 

position which value 9 is greater than the pivot. As a result, it swaps between the element at 

7th and the pivot. After that, pointer j keeps moving to the left until it finds an element that 

does not equal to the pivot (value 6). Note that, the element at 5th position corresponds to this 

condition. Therefore, pointer j stops at the element at 5th position.   

 

It swaps elements at pointer i with value 8 and at pointer ipR with value 6 and moves 

pointer ipR one position to the left. Then, it swaps elements at pointer j with value 4 and at 

pointer ipL with value 6 and moves pointer ipL one position to the right. 
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It compares elements at pointers i with the pivot and moves pointer i to the right until 

it finds an elements that does not equal to the pivot. However, the element at 3rd position with 

value 3 is less than the pivot. Therefore, it swaps this element with element at pointer ipL and 

moves pointer ipL one position to the right. Then, it moves pointer i to the right as it stops at 

the element 8th position with value 8. 

 

It compares elements at pointers i with j. As pointer i points at the element at 8th 

position while pointer j points at the element at 5th position. Since pointer i is at the position 

after pointer j, this concludes the partitioning process. 

 

At the end of the partitioning process, every element that has value equal to the pivot 

is gathered in the middle part of the array. Elements that have values less than pivot are 

gathered at the left sub-array while elements that have values greater than pivot are gathered 

at the right sub-array. The process repeats for sub-arrays until the stopping criteria is met. 

Consequently, the data will be sorted in a sequential order.   

2.2.2 Adjacent Pivot Quicksort 

Adjacent pivot quicksort (APQsort) uses predecessor pivot or successor pivot and 

pivot for partitioning. If both predecessor and successor pivot are used for partitioning, more 

comparisons and swaps are needed. APQsort uses three patterns for partitioning; partition 

by using predecessor pivot (PD partition), partition by using successor pivot (SC partition) 

and partition by split-end-partition [7]. It identifies pseudo-predecessor pivot (p-PD) and 

pseudo-successor pivot (p-SC). 

1) First case: If the pivot equals to pseudo-predecessor pivot and pseudo-

successor pivot, then it uses split-end-partition. 

2) Second case: If the difference of pivot and pseudo-predecessor pivot is less than 

the difference of pivot and pseudo-successor pivot, then  
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a.  If the pivot equals to pseudo-predecessor pivot, then it uses SC partition. 

b.  Otherwise, it uses PD partition. 

3) Third case: If the difference of pivot and pseudo-successor pivot is less than the 

difference of pivot and pseudo-predecessor pivot, then 

a.  if the pivot equals to pseudo-successor pivot, then it uses PD partition; 

b.  otherwise, it uses SC partition. 

 

The PD partition and SC partition are shown below. 

 

The PD partition 

1) For each element that is less than the pivot, it moves that element to the left sub-

array and if it is greater than or equal to pseudo-predecessor pivot then it is defined as a new 

pseudo-predecessor pivot and moves to the leftmost position. 

2) For each element that is greater than or equal to the pivot, it moves that element to 

the right sub-array. 

After finishing PD partition, the value of pseudo-predecessor pivot will equal to the 

real predecessor pivot. It moves the elements equal to the pivot and predecessor pivot to the 

correct position as shown in Fig.2.6. In case of the predecessor pivot position adjacent to the 

pivot position, all elements in left sub-array are sorted and no recursive call is needed.  

 

 
 

Fig. 2.6 APQsort with predecessor pivot partition 

 

The SC partition 

1) For each element that is less than or equal to the pivot, it moves that element to the 

left sub-array. 

 2) For each element that is greater than the pivot, it moves that element to the right 

sub-array and if it is less than or equal to pseudo-successor pivot then it is defined as a new 

pseudo-successor pivot and moves to the rightmost position. 
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After finishing SC partition, the value of pseudo-successor pivot will equal to the real 

successor pivot. It moves the elements equal to pivot and successor pivot to the correct 

position as shown in Fig.2.7. In case of the successor pivot position adjacent to the pivot 

position, all elements in the right sub-array are sorted and no recursive call is needed. 

 

 
 

Fig.2.7 APQsort with successor pivot partition 

 

Both processes generate three sub-arrays; the left sub-array, the middle sub-array 

(contains only pivot) and the right sub-array but the characteristics of elements in sub-arrays 

after partitioning are shown in table 2.1 

 

Table 2.1 APQsort partition characteristics 

 

 The pseudo code of APQsort is as followed. 

 

Function APQsort (A[ ], left, right) 

 IF size of list A≤M THEN  

  Call InsertionSort(A, left, right); 

 ELSE 

  Select pivot with Median of three; 

  IF (pivot – p-PD == p-SC – pivot) THEN 

   {ind_L, ind_R} = Split-end partition(A, left, right); 

  ELSE IF (pivot – p-PD ≤ p-SC – pivot) THEN  

   IF (pivot – p-PD ≠ 0) THEN 

Subarray PD partition SC partition Split-end partition 

The left sub-array  element <PD  Element < pivot   element < pivot  

The middle sub-array 
 element  = PD and 

element  =  pivot  

 element  =  pivot  

and element = SC 

 element = pivot  

The right sub-array  element > pivot   element >SC  element > pivot  
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    {ind_L, ind_R} = PD partition(A, left, right); 

   ELSE 

    {ind_L, ind_R} = SC partition(A, left, right); 

   ENDIF 

  ElSE 

   IF (p-SC – pivot ≠ 0) THEN 

    {ind_L, ind_R} = SC partition(A, left, right); 

   ELSE 

    {ind_L, ind_R} = PD partition(A, left, right); 

   ENDIF 

  ENDIF 

 

  Recursively call APQsort(A, left, ind_L);  

  Recursively call APQsort(A, ind_R, right); 

 ENDIF 

End APQsort 

 

Function PD partition (A[ ], left, right) 

Set values of i, j, bound left (indL), bound right (indR), pivot and predecessor pivot (PD); 

  

 LOOP 

  WHILE (A[i] < pivot AND i≤ j) DO 

   IF (A[i] ≥ PD) THEN 

    IF (A[i] == PD) THEN  

     Swap A[i] and A[indL]; 

     indL =  indL + 1; 

    ELSE  

     Update value of PD and Swap A[i] and A[indL]; 

     indL = indL + 1; 

    ENDIF 

   ENDIF 

   i = i + 1; 

  ENDWHILE 
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  WHILE (A[j] >= pivot AND i≤ j) DO 

   IF (A[j] == pivot) THEN  

    Swap A[j] and A[indR]; 

    indR = indR – 1; 

   ENDIF 

   j = j – 1; 

  ENDWHILE 

  IF (i≥ j) THEN  

   Exit LOOP; 

  Swap A[i] and A[j]; 

 ENDLOOP 

 

 Move the elements are equal to PD and pivot to the correct positions; 

 Return index of PD and pivot; 

End PD partition 

 

Procedure SC partition (A[ ], left, right) 

Set values of i, j, bound left (indL), bound right (indR), pivot and successor pivot (SC); 

 

 LOOP 

  WHILE (A[i] <= pivot AND i≤ j) DO 

   IF (A[i] == pivot) THEN 

    Swap A[i] and A[indL]; 

    indL = indL + 1; 

   ENDIF 

   i = i + 1; 

  ENDWHILE 

  WHILE (A[j] > pivot AND i≤ j) DO 

   IF (A[j] <= SC) THEN 

    IF (A[j] == SC) THEN  

     Swap A[j] and A[indR]; 

     indR = indR – 1; 

    ELSE 
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     Update value of SC and Swap A[j] and A[indR]; 

     indR = indR – 1; 

    ENDIF 

   ENDIF 

   j = j – 1; 

  ENDWHILE 

  IF (i≥ j) THEN  

   Exit LOOP; 

  Swap A[i] and A[j]; 

 ENDLOOP 

 

 Move the elements are equal to pivot and SC to the correct positions; 

 Return index of pivot and SC; 

End SC partition 

   

2.3 Related Researches  

In 1962, Hoare [5] was the pioneer of proposing quicksort with the random pivot from 

the list of elements.  

In 1965, Scowen [16] proposed “Quickersort” that applied similar principle of 

quicksort but it selected pivot at the middle of the data. This algorithm achieved O(n log n) if 

that data had been sorted, which meant the middle element was the median of the list. 

In 1969, Singleton [17] proposed the new heuristic method of selecting pivot close to 

the median of the list. This estimation of data came from calculating median from three 

different elements: the first element, the middle element, and the last element. This method 

was known as “median-of-three”. Certainly, this method of selecting pivot ensured a better 

median approximation. 

In 1978, Sedgewick [8] proposed quicksort without recursion and applied with 

median-of-three and call insertion sort when sub-array less than 9 or 10 elements. This 

method improved quicksort competency for approximately 20 percent.  
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In 1980, Cook and Kim [18] proposed the new sorting method. This method was 

purposely for data that nearly sorted. It, initially, scanned through elements and collects all 

elements that were not in the right order. If collected elements were more than 30 elements, it 

called quicksort to rearrange these elements. If collected elements were less than 30 

elements, it applied insertion sort. Finally, it combined two sets of sorted data into a single 

complete sorted data.  

In 1983, Motzkin [19] proposed “Meansort”. It used the mean instead of the median; 

however, it included function of calculating average of each sub-group of data during the 

partition process. This meansort algorithm surprisingly reduced the probability of occurrence 

of quicksort worst case since selected pivot was the average of the data.  

In 1985, Wainwright [20] proposed “Bsort”. It included function of sequence 

inspection whether data was correctly in a sequential order. This algorithm was designed 

base on the principle of bubble sort. It swop adjacent elements immediately. Bsort worked 

effectively on data that almost sorted. 

In 1987, Wainwright [21] proposed “QSORTE” as a development from bsort 

algorithm. Qsort omitted process of swapping elements and improved the method of data 

checking. 

In 1993, Bentley and Mcilroy [10] proposed a new method of selecting pivot from 

median-of-median. First it split data into three groups and selected the median-of-three in 

each group. Second it determined the median of these three numbers. This method 

additionally proposed a new way of partitioning that dealing with redundant elements. 

In 1996, Sarwar and colleagues [22] proposed method of selecting pivot from 

median-of-three, median-of-five, median-of-nine, and median-of-seventeen. This method of 

selecting pivot depended on numbers of elements in the data set.  

In 2006, Edmondson [23] proposed “M Pivot Sort”. It used several pivots instead of a 

single pivot and if sub-groups had elements less than 15, then it applied insertion sort 

instead of M Pivot sort. 
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In 2007, Jidol and colleagues [24] proposed method of developing quicksort by 

applied “Successive Difference” principle as to check the sequence whether the sequence 

was sorted. This “Successive Difference” principle was capable of applying with ordinary sort 

and reversed sort. 

In 2007, Aminu Mohammed and Mohammed Othman [4] proposed method of 

selecting pivot by applying “Random Index for minimizing the execution time” principle. 

In 2009, Kim and Park [12] proposed “collect-center”. It improved the ‘split-end’ 

partitioning in case of many equal elements by moving the pivot to the middle sub-array. It 

reduced the numbers of recursive calls. The running time was better than “Split-end” 

partitioning. 

In 2010, Rungpiphop and Sinapiromsaran [13] proposed adjacent pivot quicksort 

(APQsort) which improved the performance of quicksort for data with repeated elements by 

reducing the number of recursive calls. APQsort utilized additional elements called “pivot 

predecessor” or “pivot successor” combined with the split-end partition.  
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Chapter III 

DESIGN AND METHODOLOGY 

 

This research proposes quicksort by using predecessor and successor pivot. It 

improves quicksort in case of repeat elements. This algorithm decreases the number of 

recursive calls by using the element in front of the pivot called “predecessor (PD)” and the 

element behind the pivot called “successor (SC)”. This chapter describes CC5sort by using 

predecessor and successor pivot, instead of using Split-end partition, it uses collect-center-

partition. 

 

3.1 Collect-center partition using predecessor and successor pivot 

The concept of CC5sort is similar to APQsort but CC5sort using collect-center 

partition; which it moves the element that equals to the pivot to the middle instead of 

swapping it to the left or right sub-array. Because of its complexity, it uses more comparisons 

and swaps. It selects the pivot by using median-of-five in order to avoid equal value of the 

predecessor pivot and successor pivot. Due to the repeat elements, CC5sort outperforms 

APQsort and CCsort. CC5sort chooses the partition from CC5sort PD partition, CC5sort SC 

partition and collect-center partition. It determines the pseudo-predecessor pivot (p-PD) and 

pseudo-successor pivot (p-SC) according to the following cases; 

1) First case: If the pivot equals to pseudo-predecessor pivot and pseudo-

successor pivot, then it uses collect-center partition. 

2) Second case: If the difference of pivot and pseudo-predecessor pivot is less than 

the difference of pivot and pseudo-successor pivot, then  

a.  if the pivot equals to pseudo-predecessor pivot, then it uses CC5sort SC 

partition: 

b.  otherwise, it uses CC5sort PD partition. 

3) Third case: If the difference of pivot and pseudo-successor pivot is less than the 

difference of pivot and pseudo-predecessor pivot, then 

a.  if the pivot equals to pseudo-successor pivot, then it uses CC5sort PD 

partition; 
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b.  otherwise, it uses CC5sort SC partition. 

 

The CC5sort PD partition and CC5sort SC partition are shown below. 

 

The CC5sort PD partition  

1) For each element that is less than the pivot, it moves that element to the left sub-

array and if it is greater than or equal to pseudo-predecessor pivot then it is defined as a new 

pseudo-predecessor pivot and moves to the leftmost position. 

2) For each element that is greater than the pivot, it moves that element to the right 

sub-array. If the elements that equals to the pivot it moves to middle by collect-center 

partition process.  

After finished the partition, the value of pseudo-predecessor pivot will equal to 

predecessor pivot. It moves the elements that equal to pivot and predecessor pivot to the 

correct position as show in Fig. 3.1. In case of predecessor pivot position nearly to pivot 

position, all elements in the left sub-array are sorted and no recursive call is needed.  

 

 

Fig. 3.1 CC5sort with predecessor pivot partition  

 

The CC5sort SC partition 

1) For each element that is less than pivot, it moves that element to the left sub-array. 

If the elements that equals to the pivot it moves to middle by collect-center partition process. 

2) For each element that is greater than the pivot, it moves that element to the right 

sub-array and if it is less than or equal to pseudo-successor pivot then it is defined as a new 

pseudo-successor pivot and moves to the rightmost position. 

 

After finished the partition, the value of pseudo-successor pivot will equal to 

successor pivot. It moves the elements equal to pivot and successor pivot to the correct 

position as shown in Fig 3.2. In case of successor pivot position nearly pivot position, all 

elements in the right sub-array are sorted and no recursive call is needed. 
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Fig. 3.2 CC5sort with successor pivot partition  

 

After finishing partition, both processes generate three sub-arrays; left sub-array, 

sorted sub-array and right sub-array but characteristics of sub-arrays after are shown in table 

3.1. 

 

Table 3.1. Collect-center partition characteristics 

  

From the previous paragraph, it can be translated into the pseudo code as following. 

 

Function CC5sort (A[ ], left, right) 

 IF size of list A ≤ M THEN  

  Call InsertionSort (A, left, right); 

 ELSE 

  Select pivot with Median of three; 

  IF (pivot – p-PD == p-SC – pivot) THEN 

   {ind_L, ind_R} = Split-end partition(A, left, right); 

  ELSE IF (pivot – p-PD ≤ p-SC – pivot) THEN  

   IF (pivot – p-PD ≠ 0) THEN 

    {ind_L, ind_R} = PD partition(A, left, right); 

   ELSE 

    {ind_L, ind_R} = SC partition(A, left, right); 

   ENDIF 

  ElSE 

Sub-array PD partition SC partition Collect-center partition 

The left sub-array  element  < PD  element  <  pivot   element  <  pivot  

The middle sub-array 
 element  = PD and 

element  =  pivot  

 element  =  pivot  

and element  = SC 

 element  =  pivot  

The right sub-array  element  >  pivot   element  > SC  element  >  pivot  
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   IF (p-SC – pivot ≠ 0) THEN 

    {ind_L, ind_R} = SC partition(A, left, right); 

   ELSE 

    {ind_L, ind_R} = PD partition(A, left, right); 

   ENDIF 

  ENDIF 

 

  Recursively call CC5sort(A, left, ind_L);  

  Recursively call CC5sort(A, ind_R, right); 

 ENDIF 

End CC5sort 

 

Function PD partition (A[ ], left, right) 

Set values of i, j, bound left (indL), bound right (indR), pivot and predecessor pivot (PD); 

  

 LOOP 

  WHILE (A[i] < pivot AND i ≤ j) DO 

   IF (A[i] ≥ PD) THEN 

    IF (A[i] == PD) THEN  

     Swap A[i] and A[indL]; 

     indL =  indL + 1; 

    ELSE  

     Update value of PD and Swap A[i] and A[indL]; 

     indL = indL + 1; 

    ENDIF 

   ENDIF 

   i = i + 1; 

  ENDWHILE 

  WHILE (A[j] > pivot AND i ≤ j) DO 

    Swap A[j] and A[indR]; 

    indR = indR – 1; 

  ENDWHILE 

  IF (i ≥ j) THEN  
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   Exit LOOP; 

  Swap A[i] and A[j]; 

 ENDLOOP 

 

 Return index of PD and pivot; 

End PD partition 

 

Procedure SC partition (A[ ], left, right) 

Set values of i, j, bound left (indL), bound right (indR), pivot and successor pivot (SC); 

 

 LOOP 

  WHILE (A[i] <= pivot AND i ≤ j) DO 

    Swap A[i] and A[indL]; 

    indL = indL + 1; 

  ENDWHILE 

  WHILE (A[j] > pivot AND i ≤ j) DO 

   IF (A[j] <= SC) THEN 

    IF (A[j] == SC) THEN  

     Swap A[j] and A[indR]; 

     indR = indR – 1; 

    ELSE 

     Update value of SC and Swap A[j] and A[indR]; 

     indR = indR – 1; 

    ENDIF 

   ENDIF 

   j = j – 1; 

  ENDWHILE 

  IF (i ≥ j) THEN  

   Exit LOOP; 

  Swap A[i] and A[j]; 

 ENDLOOP 

 

 Return index of pivot and SC; 

End SC partition 
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 Consider the list of elements; 1, 6, 3, 8, 8, 4, 9, 6, 6. The collect-center partition performs 

step-by-step as follow.   

It uses median-of-five to select the pivot from the list. It chooses five elements from; 

1) The first element: the first array that is the element with value 1.  

2) The second element: It selects from element in between the first and the middle 

array (┌(first+last)/4┐) that is the element with value 3. 

3) The third element: It selects from the middle array ((first+last)/2) that is the 

element with value 8. 

4) The fourth element: It selects from element in between the middle and the last 

array (┌3*(first+last)/4┐) that is the element with value 9. 

5) The fifth element: It selects from the last array that is the element with value 6.  

Then it sorts five elements and selects the pseudo-predecessor pivot, pseudo-

successor pivot and pivot. It assigns the pivot equal to the element with value 6, pseudo-

predecessor pivot equal to the element with value 1 and pseudo-successor pivot equal to the 

element with value 9. It finds that the difference of pseudo-successor pivot and the pivot is 

greater than the difference of pseudo-predecessor pivot and the pivot. So, it uses SC 

partition, the pivot is on the middle of array, pseudo-successor pivot is on the right array. Let i 

and ipL be indices point to the first position, j and ipR be indices point to the second to the 

last position. 

 

It compares elements at index i and the pivot by moving index i to the right, so it 

checks an element against the pivot (pivot value =6), it finds the element at 1st position with 

value 1 less than the pivot, then it swaps the element at 1th position and the element at index 

point to ipL and moves index ipL to the right one position. It compares elements at index i 

and the pivot by moving index i to the right again and finds the element at 3th position with 
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value 3, then it swaps the elements at 3th position and the element at index point to ipL and 

moves index ipL to the right. Index i stop at 4th position with value 8. 

 

It compares the elements at index j and the pivot by moving index j to the left position 

until it finds the elements not equal to the pivot (pivot value =6) and finds the elements 

greater than or equal to pseudo-successor pivot, it finds the element 7th position with value 8 

which is greater than the pivot, then it compares element at 7th position and pseudo-

successor pivot. It finds that the pseudo-successor pivot is greater than the element at 7th 

position, then it swaps elements at 7th position and index ipR, and then moves indices ipR 

and p-SC to the left position. It compares the elements at index j and the pivot by moving 

index j to the left position again and finds the element at 6th position with value 4 is greater 

than the pivot, index j stops at this index. 

 

Then, it swaps an elements at index i and index j.  

 

Then, it compares elements at index i and the pivot, it checks an elements against 6, 

it finds the element at 4th position with value 4 is less than the pivot then it swaps the element 

at 4th position and index ipL and moves index ipL to the right. Index i stops at 6th position with 

value 8. 

 

 It compares an elements at index j and the pivot by moving index j to the left until it 

finds the elements not equal to the pivot (pivot value = 6) and finds the elements are greater 

than or equal to pseudo-successor pivot. It finds the element 6th position with value 8 is 
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greater than the pivot. Then, it compares elements at index j and index p-SC, Index j is equal 

to index p-SC. Then, it swaps elements between index j and index ipR, it moves ipR to left 

one index, next it checks the element against the pivot to the right. Index j stops at 5th 

position with value 6. It stops SC partition because index i is greater than index j.      

 

After finishing SC partition, the process generates three sub-arrays; left sub-array 

which elements are less than the pivot, the middle sub-array which elements are equal to the 

pivot and the predecessor pivot and the right sub-array which elements are greater than the 

successor pivot. Then it partitions the remaining element similar to the concept above until it 

can not partition, CC5sort will stop. The result is the element that sorted from the minimum to 

maximum. 

 



Chapter IV 

Experiment and Result 

 

From previous chapter, we explained CC5sort. This chapter, we describe our 

experiments and analyze our results on the effectiveness of our algorithm comparing to 

other sorting algorithms.     

4.1 The experiments 

4.1.1 Tools  

All sorting algorithms were implemented with C#.net from Microsoft Visual C# 2010. 

We run experiments on Intel® CPU Core™ 2 DUO 2.2 GHz and 3GB of RAM under 

Microsoft window XP system. 

4.1.2 The dataset 

Our experiments run on string type data and integer type data. 

String type has 4 data sets. All data sets contain 9 characters per string except the 

fourth data set has 5 characters per string.  

1) Data set 1 uses uniform random distribution.  It contains three different sizes (1000, 

5000 and 10000 elements). Each size consists of 10 data files.  

2) Data set 2 uses random data that is nearly sorted. This data set consists of 10000 

elements with five un-sorted ratios, 0, 0.01, 0.03, 0.1 and 0.3. Each size consists of 

10 data files. The un-sorted ratio can be calculated from the number of un-sorted 

elements divided by the number of all elements. 

3) Data set 3 uses random data that nearly reverse sorted. This data set consists of 10 

elements and five reverse sorted ratio, 0, 0.01, 0.03, 0.1 and 0.3. Each ratio consists 

of 10 data files.  
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4) Data set 4 uses random data that have many repeated elements. This data set 

consists of 10000 elements. It has 5 characters per string and four distinct ratios, 

0.0032, 0.0243, 0.1024 and 0.3125. Each ratio consists of 10 data files. The distinct 

ratios can be calculated from the number of probability per position of string.  

 

Integer type has 3 data sets as below;  

1) Data set 1 uses uniform random distribution. It generates a range of numbers 

between 100 and 200 and consists of 10000 elements per file.  

2) Data set 2 uses random data that nearly sorted. This data consists of 10000 

elements and un-sorted ratio is 0.3.  

3)  Data set 3 uses random data that nearly reverse sorting. This data consists of 

10000 elements and reverse sorting ratio is 0.3.  

Each data set contains 10 data files. 

  

4.2 Results 

The process of CC5sort uses predecessor or successor pivot combine with collect-

center partitioning can reduce the times of recursive calls by selects pivot by using median-

of-five. We report the average time of 10 experiments per data set by using the command 

called stopWatch.Start() and stopWatch.End(); in Microsoft Visual C# 2010. The sorting 

algorithms used to compare with our concept are CCsort and APQsort. 

 

4.2.1 Results for strings 

The results from the data set 1 show that CCsort is the fastest while APQsort is faster 

than CC5sort on average as see in Fig. 4.1 due to the number of small repeated elements. 

This is because CCsort does not determine SC and PD. Also, APQsort does not perform 

collect-center partition. Therefore, both processes take more time to find the elements equal 

to the pivot, real PD and SC see in Fig 4.1. CCsort uses more swaps, comparisons and 
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recursive calls than APQsort and CC5sort. Therefore, CCsort places only pivot to the correct 

position. 

 

Fig. 4.1 Time complexity for random sort data 

Table 4.1 Show 3 processes for random data set of string 

Size Method Compare Swap Recursive 

  Ccsort 54,976 60,684 904 

1000 APQsort 14,723 2,320 131 

  CC5sort 23,925 8,257 133 

  Ccsort 362,783 406,329 4,550 

5000 APQsort 96,791 14,331 655 

  CC5sort 158,349 54,984 672 

  Ccsort 828,496 927,106 9,133 

10000 APQsort 212,525 31,066 1,310 

  CC5sort 346,298 121,124 1,343 

 

The results from data set 2 can be concluded into two points. 
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1) For data with un-sorted ratio equal to zero, APQsort is the fastest while CCsort is 

faster than CC5sort on average which can be seen in Fig. 4.2 because APQsort can 

detect the sorted sub-array for every partition. 

2) For data with un-sorted ratios nearly to zero (0.01, 0.03, 0.1 and 0.3), CCsort is the 

fastest among the others because APQsort and CC5sort need to find the difference 

of pseudo-successor pivot and the pivot and the difference of pseudo-predecessor 

pivot and the pivot. However CCsort does not require this computation. Although our 

method has a slow running time but the number of swaps, comparisons and 

recursive calls are less than CCsort. The number of recursive calls of CC5sort is less 

than APQsort and CCsort above 50% because the pivot position is near the middle 

of the data as shown in Table.4.2 and Fig.4.2.    

 

Fig. 4.2 Time complexity for nearly sort data 
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Table 4.2 the number of 3 processes for nearly sort data 

Unsorted 
Ratio 

Method Compare Swap Recursive 

  Ccsort 555,682 538,802 5,621 
0 APQsort 25,221 9,991 9 
  CC5sort 299,294 75,326 1,022 
  Ccsort 745,315 785,680 8,647 

0.01 APQsort 901,297 357,913 3,018 
  CC5sort 312,241 95,488 1,285 
  Ccsort 784,842 836,890 7,942 

0.03 APQsort 382,476 26,180 2,508 
  CC5sort 314,446 100,624 1,289 
  Ccsort 811,806 878,068 8,570 

0.1 APQsort 272,259 26,773 1,641 
  CC5sort 322,327 107,105 1,309 
  Ccsort 703,252 786,508 9,166 

0.3 APQsort 212,608 28,591 1,361 
  CC5sort 336,331 113,298 1,328 

 

The results from data set 3 can be concluded into two points. This data set is not 

related from data set type 2.  

1) For data from un-sorted ratio equal to zero, APQsort is the fastest processing while 

CCsort is faster than CC5sort on average which can be seen in Fig. 4.2 because 

APQsort can detect the sorted sub-array for every partition. 

2) For data from un-sorted ratios nearly to zero (0.01, 0.03, 0.1 and 0.3), CCsort is the 

fastest among the others because APQsort and CC5sort need to find the difference 

of pseudo-successor pivot and the pivot and the difference of pseudo-predecessor 

pivot and the pivot. However CCsort does not require this computation. Although our 

method has a slow running time but the number of swaps, comparisons and 

recursive calls are less than CCsort. The number of recursive calls of CC5sort is less 

than APQsort and CCsort above 50% because the pivot position is near the middle 



 
34 

of the data. The number of comparisons of CC5sort is less than APQsort and CCsort 

because it does not compare the elements that equal to the pivot to the correct 

position after finishing the process like APQsort as shown in Table.4.3 and Fig.4.3.     

 

Fig 4.3 Time complexity for nearly reverse sort data 

Table 4.3 the number of 3 processes for nearly reverse sort data 

Unsorted 
Ratio 

Method Compare Swap Recursive 

  Ccsort 555,682 566,297 5,621 
0 APQsort 39,132 14,994 9 
  CC5sort 310,320 80,569 1,022 
  Ccsort 708,890 765,185 9,250 

0.01 APQsort 944,042 25,915 2,454 
  CC5sort 319,778 104,786 1,289 
  Ccsort 750,569 822,166 8,387 

0.03 APQsort 537,630 28,356 2,436 
  CC5sort 322,873 107,999 1,298 
  Ccsort 783,595 868,878 8,299 

0.1 APQsort 290,014 28,776 1,701 
  CC5sort 330,054 111,247 1,311 
  Ccsort 725082.5 818480.6 9030.7 

0.3 APQsort 944041.5 25914.7 2453.9 
  CC5sort 319777.7 104786.3 1289.3 
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The results from data set 4 can be concluded as following.  

1) For four distinct ratios, 0.0032, 0.0243, 0.1024 and 0.3125, CCsort is the fastest 

process among the others because APQsort and CC5sort need to find the 

difference of pseudo-successor pivot and the pivot and the difference of pseudo-

predecessor pivot and the pivot. However CCsort does not require this computation. 

Although our method has a slow running time but the number of swaps, 

comparisons and recursive calls are less than CCsort. The number of recursive calls 

of CC5sort is less than APQsort and CCsort because the pivot position is near the 

middle of the data as shown in Table.4.4 and Fig.4.4.    

 

Fig 4.4 Time complexity for repeat element data 
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Table 4.4 the number of 3 processes for random data that have many repeat elements 

Unrepeated Method Compare Swap Recursive 
  CCsort 232,011 202,703 171 

0.0032 APQsort 67,788 27,409 23 
  CC5sort 108,361 43,236 17 
  CCsort 385,659 355,320 1,331 

0.0243 APQsort 105,724 31,060 182 
  CC5sort 185,925 76,958 142 
  CCsort 486,160 464,043 3,855 

0.1024 APQsort 142,678 34,917 588 
  CC5sort 247,545 98,877 490 
  CCsort 537,406 530,422 5,578 

0.3125 APQsort 157,264 34,187 796 
  CC5sort 285,099 107,542 886 

 

4.2.2 Results for integer 

From three data sets as shown in Fig.4.5, APQsort has less the number of swaps 

than CCsort and CC5sort because these methods swap all elements not equal to pivot to 

the left or right sub-array for forcing pivots to the middle. 

 

Fig 4.5 Number of swap for integer 

From three data sets as shown in Fig.4.6, APQsort has more number of comparisons 

than CCsort and CC5sort because after the partition is done, it needs to move a group of 
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pivots to the middle, a group of PD elements to the front of pivot and a group of SC 

elements behind pivot.     

 

Fig 4.6 Number of comparisons for integer 

From three data sets as shown in Fig.4.7, CC5sort can reduce the number of 

recursive calls above 50% because it uses median-of-five to select the pivot position closer 

to the middle of the data. 

 

Fig 4.7 Number of recursive for integer 

From three data sets as shown in Fig.4.8, CC5sort has the best time complexity 

because it can decrease the number of recursive calls.    
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Fig 4.8 Time complexity for integer 

 



Chapter V 

CONCLUSIONS 

 

This research has proposed quicksort by using the predecessor and the successor pivot 

with collect-center partitioning called CC5sort. CC5sort improves quicksort in case of repeat 

elements. This algorithm decreases the number of recursive calls by using elements in front of 

pivot, called “predecessor (PD)” and the element behind the Pivot, called “successor (SC)”. It 

reduces the number of comparisons by moving the pivot during the partition process instead of 

swapping pivots to the left or right sub-array.    

 From the experiments, we can conclude the following.  

1) The number of swaps: The number of swaps from CC5sort is greater than APQsort in all 

data types because the data sets contain small repeated elements. The number of 

swaps used by CC5sort is less than CCsort in all data types because CC5sort uses 

predecessor (PD) and successor (SC) pivots for keeping the elements.     

2) The number of comparisons: The number of comparisons from CC5sort is greater than 

CCsort and APQsort in nearly sorted data (unsorted ratio 0.01 and 0.03) and nearly 

reverse sorted data (unsorted ratio 0.01 and 0.03) because CC5sort moves group of 

pivot to the middle and group of PD or SC to the correct position.  

3) The number of recursive calls: The number of recursive calls from CC5sort is less than 

CCsort and APQsort above 50% in all data sets except random data because it uses the 

median-of-five to select the pivot. Therefore, it gets the pivot value close to the median.   

4) The number of time complexity: The number of time complexity from CC5sort is worse 

than CCsort and APQsort in case of string type because CC5sort finds the difference of 

pseudo-successor pivot and the pivot and the difference of pseudo-predecessor pivot 
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and the pivot. Those processes require the conversion of strings to numbers which 

causes CC5sort perform slowly.    
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Appendix 

Sorting Program  

 

Swap Function 

 

protected void Swap(IComparable[] elements, int indexA, int indexB) 

        { 

            IComparable tmp = elements[indexA]; 

            elements[indexA] = elements[indexB]; 

            elements[indexB] = tmp; 

        } 

 

Insertion sort 

 

  protected void InsertSort(IComparable[] array, int left, int right) 

        { 

            int i, j;           

  for (i = left; i <= right; i++) 

            { 

                IComparable value = array[i]; 

                j = i - 1; 

                while ((j >= 0) && (array[j].CompareTo(value) > 0)) 

                { 

                    array[j + 1] = array[j]; 

                    j--; 

                } 

                array[j + 1] = value; 

            } 

        } 
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Adjacent Pivot Quicksort (APQsort) 

 

static void APQSort(IComparable[] elements, int left, int right) 

        { 

           APQSortAction xx = new APQSortAction(); 

    

              if(right - left <= 9)  xx.InsertSort(elements,left,right); 

                                       

             else{ 

             //start if 

                 int mid; 

                  Int64 difL, difR; 

                  string Left_NS, Mid_NS, Right_NS; 

                  pivot new_index = new pivot(); 

              

                 // Median of three 

                 xx.HashMain(elements, ref left, ref right, out Left_NS, out Mid_NS, out 

Right_NS, out mid); 

                  Int64 LeftN = System.Convert.ToInt64(Left_NS); 

                  Int64 MidN = System.Convert.ToInt64(Mid_NS); 

                  Int64 RightN = System.Convert.ToInt64(Right_NS); 

//find diferance between left group and right group 

                difL =  MidN - LeftN; 

                difR = RightN - MidN;  

                if(difR < difL){ 

                     if (difR != 0) new_index = xx.SC_partition(elements, left, mid, right); 

                     else new_index = xx.PD_partition(elements, left, mid, right); 

                     } 

                 else if(difL < difR){ 
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                     if (difL != 0) new_index = xx.PD_partition(elements, left, mid, right); 

                     else new_index = xx.SC_partition(elements, left, mid, right); 

                 }  

                 else{ 

                     if (difL != 0) new_index = xx.PD_partition(elements, left, mid, right); 

                     else new_index = xx.Split_end_partition(elements, left, mid, right);       

                 } 

 

                 if (new_index.left - left <= 9) xx.InsertSort(elements, left, new_index.left); 

                 else APQSort(elements, left, new_index.left); 

 

                 if (right - new_index.right <= 9) xx.InsertSort(elements, new_index.right, right); 

                 else APQSort(elements, new_index.right, right); 

                }          

      }  

 

SC_partition 

pivot SC_partition(IComparable[] elements, int left, int mid, int right) 

        { 

            IComparable pivot, SC; 

            int i, j, k, indL, indR, isc; 

             pivot index = new pivot(); 

              Swap(elements, mid, left); 

             //Set value and pointer of pivot and pivot successor     

             i = left + 1; indL = left + 1; j = right - 1; indR = right - 1; 

             pivot = elements[left]; SC = elements[right]; isc = right; 

            while (i <= j) 

            { 

                while (elements[i].CompareTo(pivot) <= 0 && i<=j) 

                { 
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                    if (elements[i].CompareTo(pivot) == 0) 

                        Swap(elements, i, indL++);   

                    i++; 

                } 

 

                while (elements[j].CompareTo(pivot) > 0 && i <= j) 

                { 

                    // Update pivot successor 

                    if (elements[j].CompareTo(SC)<=0) 

                    { 

                        if (elements[j].CompareTo(SC) == 0) 

                            Swap(elements, j, indR--); 

                        else 

                        { 

                            isc = indR; SC = elements[j]; 

                            Swap(elements, j, indR--); 

                        } 

                    }   

                    j--; 

                } 

                if (i >= j) break; 

                Swap(elements, i, j); 

            }  

            if (indL <= indR) 

            { 

                // Move pivot to the correct position 

                k = left; 

                while (k < indL) 

                { 

                    while (elements[j].CompareTo(pivot) == 0 && j >= k) { j--; if (j < 0) break; } 
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                    if (j <= k) break; 

                    Swap(elements, k++, j--); 

                } 

 

                // Move pivot successor to the correct position 

                if (i != isc) 

                { 

                    for (k = isc; k > indR; k--) 

                        Swap(elements, k, i++); 

                } 

                else i = right; 

                index.left = j; index.right = i; 

            } 

            else 

            { 

                index.left = left; index.right = right; 

            } 

 

            return index; 

        } 

 

 

PD_Partition 

 

pivot PD_partition(IComparable[] elements, int left, int mid, int right) 

        { 

             IComparable   pivot, PD; 

             int i, j, k, indL, indR, ipd; 

             pivot index = new pivot(); 

            Swap(elements, mid, right); 
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            // Set value and pointer of pivot and pivot predecessor 

            i = left + 1; indL = left + 1; j = right - 1; indR = right - 1; 

            pivot = elements[right]; PD = elements[left]; ipd = left; 

            while (i <= j) 

            { 

                while (elements[i].CompareTo(pivot) < 0) 

                { 

                    if (elements[i].CompareTo(PD) > 0) 

                    { 

                        if (elements[i].CompareTo(PD) == 0) 

                           Swap(elements, i, indL++); 

                        else 

                        { 

                            ipd = indL; PD = elements[i]; 

                           Swap(elements, i, indL++); 

                        } 

              }    

                    i++; 

                } 

 

                while (elements[j].CompareTo(pivot) >= 0 && i <=j) 

                { 

                    if (elements[j].CompareTo(pivot) == 0) 

                        Swap(elements, j, indR--);   

                    j--; 

                } 

                  if(i >= j)  break;  

                 Swap(elements, i, j); 

             } 

             j = i - 1; 
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             if(indL <= indR){ 

                 // Move pivot predecessor to the correct position 

                 if(i != indL){ 

                         for(k = ipd; k < indL; k++) 

                             Swap(elements, k, j--); 

                 } 

                 else  j = left; 

       

                 // Move pivot to the correct position 

                     k = right; 

                  while(k > indR){ 

 

                      while (elements[i].CompareTo(pivot) == 0 && i <= k) 

                     { 

                         if (i == elements.Length - 1) break; 

                         i++; 

                     } 

 

                         if(i >= k)  break; 

                         Swap(elements, k--, i++); 

                 } 

                 index.left = j;  index.right = i;    

             } 

             else{ 

                 // case all elements are equal 

                 index.left = left;  index.right = right; 

             }  

             return index; 

         } 
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