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CHAPTER 1  

INTRODUCTION 

1.1 GENERAL  

From the past three decades, highly advanced and multi-purposed materials have 
been continuously developed and also well-recognized in various fields including 
engineering and industrial applications. Piezoelectric materials are well-known 
examples of smart materials that have received significant popularity nowadays. Since 
the date of discovery of the piezoelectric effect by Jacques and Pierre Curie in 1880 
and its inverse effect by Gabriel Lippmann in 1881, piezoelectric materials have been 
widely used as parts of many devices such as sensors (e.g., contact microphone, non-
destructive testing devices, etc.), actuators (e.g., lever arm amplification, ultrasonic 
equipment, etc.), and the medical instruments such as hearing aid due to their 
outstanding properties and desirable electro-mechanical coupling effects. Besides 
those positive features, most of piezoelectric materials are found brittle in nature and 
generally possess low tensile strength and fracture toughness. This renders the high 
tendency of the development of damages/flaws within the materials during their 
applications and can finally cause the loss of integrity and reduction of their lifetime 
usage. Understanding of fracture mechanism/behavior of piezoelectric materials is, as 
a result, fundamental and can potentially be useful as an essential basis in the design 
procedure of piezoelectric components and devices. 

Two commonly used approaches, based on either experimental investigations 
or mathematical modeling, have been widely applied to explore the basic fracture 
behavior of piezoelectric solids (e.g., Shindo et al., 2007; Okayasu et al., 2010; Lee et 
al., 2011). While various techniques in the first group have proved to yield results 
reflecting real responses and behavior, cost associated with specimen preparation 
and experimental setup can be significant. Results obtained from experiments 
conducted at any scale are generally dependent on testing parameters and 
environments and the generalization of those results to describe different or 
practical scenarios can be limited. In addition, an experimental design to afford an 
extensive parametric study for the whole range of parameters of interest can lead to 
a large number of specimens required and it, finally, suffers from budget and time 
limitations. As a consequence, theoretical-based simulations via experimentally-
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calibrated mathematical models have become attractive alternatives and been 
broadly used to examine the fracture phenomena in piezoelectric bodies.  

The framework of piezoelectric fracture modeling has been well-established for 
several decades based on the hypothesis of linear piezoelectricity. In such linear 
theory, the stress and electric intensity factor are essential fracture data that not 
only completely describe the near-tip mechanical/electrical fields but also involve in 
the prediction of crack initiation and advances. Determination of both stress and 
electric intensity factors via either analytical or numerical techniques has been 
successfully established within the context of two- and three-dimensional crack 
models. Besides those intensity factors, the first non-singular term in such expansion, 
commonly known as the generalized T-stress, has recently gained significant 
attention from many researchers. It has been reviewed by various researchers that 
the T-stress term plays a vital role in the calculation of the plastic-zone size and 
shape, the stress tri-axiality ahead of the crack front, and the propagation direction of 
cracks in elastic media (e.g., Larsson and Carlsson, 1973; Cotterell and Rice, 1980 ). 
Ignorance of such parameter in the modeling can lead to inaccurate results or 
potentially mislead the response prediction. For cracks in piezoelectric media, the 
study by Zhu and Yang (1999) and Viola et al. (2008) also revealed the importance of 
the generalized T-stress in the prediction of crack kinking and the near-tip stress and 
electric induction field. These past evidences should indicate the necessity to 
integrate the generalized T-stresses in the mathematical models to enhance the 
response prediction of piezoelectric crack bodies.   

Analogous to the determination of electric displacement and stress intensity 
factors, the generalized T-stress cannot be directly obtained from the asymptotic 
analysis of the near-tip field but it still requires solving a complete boundary value 
problem. Due to the complexity posed by the material anisotropy, singularity near 
the surface of discontinuities, and general body configurations and prescribed 
conditions, robust and efficient solution procedures are obligatory to perform the 
comprehensive analysis for associated fields and other related quantities. Boundary-
integral-equation-based approaches are well-known computational procedures that 
have been proved efficient and robust for stress analysis of crack bodies. Their 
attractive feature results directly from that the key governing equation can be 
formulated only in terms of unknown functions on the domain boundary and 
surfaces of discontinuities. As a direct consequence, the reduction of one spatial 
dimension can be gained in the discretization procedure for constructing numerical 
solutions. In addition, these techniques allow the remote boundary and conditions 
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associated with an infinite body model to be treated in a simple manner; in 
particular, for an infinite body without the body source, the governing integral 
equation contains only unknown functions on the crack surface. These advantages 
render the boundary integral equation techniques popular and well recognized in 
the fracture analysis. The development of such techniques to have the capability to 
extract all essential fracture data along the crack front in an efficient and accurate 
manner is essential and should provide a powerful computational tool serving the 
investigation of cracks in piezoelectric media.    

1.2 BACKGROUND AND REVIEW 

This section mainly presents the summary of previous studies relevant to the current 
investigation in order to illustrate the historical development and the state of the art 
in the field of linear piezoelectric fracture analysis. The first part of this section 
focuses mainly on work towards the fracture analysis to determine the electric 
displacement and stress intensity factors whereas the last part presents previous 
studies focusing on the determination of the generalized T-stress. Although the 
present study does not directly involve the analysis for the intensity factors, results 
of the review in the first part should provide useful background, essential connection 
to the current study, and the breakthrough in this area.   

1.2.1 Analysis for Intensity Factors in Piezoelectric Materials 

In linear piezoelectric fracture mechanics, the electric displacement and stress 
intensity factors are essential parameters in the singular term of the asymptotic near-
tip expansion that completely describes the dominant field along the crack 
boundary. Various approaches based on both analytical-based and numerical 
techniques have been proposed and successfully implemented to determine such 
fracture data for numerous scenarios. Xu and Rajapakse (1999) employed 
Lekhnitskii’s complex potential representation to derive the analytical solution of an 
elliptical void in a two-dimensional, linear piezoelectric infinite medium under 
remote mechanical and electrical loading conditions. In their study, electrically 
impermeable, electrically permeable, and electrically semi-permeable conditions 
were considered and the special case of a crack can readily be obtained by taking 
proper limiting process of the void aspect ratio. Results from their study also 
indicated that under the pure mechanical loading condition, the stress intensity 
factor is independent of the electrical boundary conditions. Huang and Kuang (2003) 
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used an analytical continuation technique to investigate a straight mixed permeable-
impermeable crack contained in a two-dimensional, transversely isotropic, linear, 
piezoelectric whole space. They pointed out that the singularity behavior appears at 
the junction of the impermeable and permeable boundaries. Chen et al. (2000) 
presented the complete solution of the mechanical/electrical field and non-zero 
intensity factors for a penny-shaped crack under uniform remote tension and electric 
displacement loading. They found, in their study, that material properties play no 
role on both electric displacement and stress intensity factors. Chen and Shioya 
(2000) reported the closed form solution of the electric and stress intensity factors 
for a circular crack in a three-dimensional, linear piezoelectric, unbounded domain 
subjected to arbitrary anti-symmetric loadings.  Hou et al. (2001) used a reciprocal 
theorem to derive the exact solution of the intensity factors for a circular crack 
embedded in a transversely isotropic, linear piezoelectric whole space under the 
action of a concentrated force and a concentrated electric charge located and 
oriented arbitrarily on the crack surface. They also concluded that the non-zero 
stress intensity factor of a medium made of a piezoelectric material PZT4-E is higher 
than that of a body made of a pure elastic material PZT4. Later, Chen and Lim (2005) 
utilized the potential theory to derive the analytical solution of both electric 
displacement and stress intensity factors for a circular crack in a transversely 
isotropic, linear piezoelectric, infinite body subjected to a pair of normal 
concentrated loads on the crack face. These fundamental results were then applied 
to derive an explicit integral formula for a crack under arbitrarily distributed normal 
traction and the closed form solution for a crack under uniform pressure. 

Due to the limited capability of analytical techniques to treat more practical 
situations, a variety of boundary element methods has been widely implemented to 
enhance the modeling versatility. A selected set of pertinent studies resulting from 
the extensive review is summarized here to indicate the breakthrough in the area 
(also see extensive review in Rungamornrat and Mear, 2008c;  Phongtinnaboot et al., 
2011). For two-dimensional piezoelectric fracture modeling, following investigations 
have been well-recognized. Pan (1999) developed the single-domain, collocation-
based, boundary element method to calculate both the electric and stress intensity 
factors of cracks in two-dimensional anisotropic finite bodies. In his study, all 
involved fundamental solutions were derived by a standard complex variable 
function approach. Later, Rajapakse and Xu (2001) derived the Green’s function for 
both the line force and electric charge, and then applied such results to implement 
the boundary integral equation method to determine the energy release rate and 
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intensity factors for cracks in two-dimensional piezoelectric infinite media. The 
proposed technique was found to be capable of solving relatively complex crack 
problems (e.g., micro-crack clusters , forked cracks, and branched cracks). Davi and 
Milazzo (2001) developed the multi-domain-based boundary element technique 
using the generalized displacement boundary integral equation to solve cracks in 
two-dimensional piezoelectric finite bodies. The degeneracy of the conventional 
boundary integral equation technique when applied to piezoelectric crack problems 
was clearly demonstrated by Liu and Fan (2001) and the sub-domain technique was 
suggested to overcome such difficulty. Later, Groh and Kuna (2005) implemented a 
direct collocation boundary element scheme along with the domain decomposition 
strategy to solve cracks in bi-material piezo-composites and non-straight cracks. 
Quarter-point elements were utilized to enhance the accuracy of the approximation 
of the near-tip field. 

For fully three-dimensional analysis of piezoelectric fracture problems, various 
schemes of boundary integral equation methods have been proposed. Techniques 
based on the use of generalized displacement integral equation along with the sub-
domain strategy have been recognized (e.g., Sanz et al., 2005; Wippler and Kuna, 
2007); however, such methods can experience major difficulty when applied to solve 
multiple cracks and cracks with relatively complex geometry. In addition, partitioning 
the domain into several parts can significantly increase the number of extra 
unknowns along the partitioned surfaces and the treatment of the singularity of the 
unknown generalized traction ahead of the crack front requires special care. Single-
domain boundary element methods have been increasingly developed to enhance 
the modeling capability and remedy the mathematical degeneracy posed by the 
conventional technique. Techniques based on hyper-singular integral formulations 
have been developed to solve cracks in both piezoelectric infinite and finite bodies 
(e.g., Chen, 2003a; Chen, 2003b; Qin and Noda, 2004; Zhao et al., 2004; Qin et al., 
2007). While such computational procedures were implemented successfully, the 
numerical treatments are suffering from the strong requirements posed by the hyper-
singular integrals (see discussion in Chen, 2003a and 2003b; Martin and Rizzo, 1996). 
Alternative boundary element methods based on singularity-reduced integral 
equations have also been proposed in the past two decades to solve cracks in three-
dimensional piezoelectric media. This class of numerical procedures has received 
significant attention from various investigators due to their positive characteristics 
corresponding mainly to the reduction of smoothness requirements from the hyper-
singular methods. Rungamornrat and Mear (2008c) implemented the first completely 
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regularized, symmetric Galerkin boundary element method (SGBEM) to analze cracks 
in three-dimensional, generally anisotropic, linear piezoelectric domains. In their 
formulation, the key governing integral equation was systematically regularized to 
contain only weakly-singular kernels and this renders the use of continuous basis 
functions in the approximation of unknown functions on the crack surface. While 
their technique yielded highly accurate solutions of electric and stress intensity 
factors and was applicable to generally anisotropic materials, cracks of arbitrary 
geometry and general loading conditions, the formulation and implementation is 
principally limited to cracks in an infinite body. Later, Solis et al. (2009) presented a 
singularity-reduced boundary element approach to solve cracks in a finite body. In 
the regularization procedure, they employed the subtraction technique to remove 
the strong and hyper singularities. It worth noting that the validity of their final 
regularized integral equations still needs crack-face data of the type C1, and, 
additionally, their development is carried out only for transversely isotropic 
piezoelectric materials. Recently, Phongtinnaboot et al. (2011) generalized the work 
of Rungamornrat and Mear (2008c) to establish the weakly singular SGBEM for 
piezoelectric fracture analysis of finite bodies. Besides the capability to treat arbitrary 
shaped cracks and a general anisotropic constitutive material model, the key 
difference between their technique and that by Solis et al. (2009) is the smoothness 
requirement of the boundary data; in particular, C0-boundary data is only required for 
the validity of the integrals and in the solution approximation. Although the weakly-
singular SGBEM has been well-developed for three-dimensional crack analysis and 
found robust and computationally efficient, the feature for calculating the 
generalized T-stress is still not available and, therefore, requires further 
development.  

1.2.2 T-Stress in Piezoelectric Materials 

In contrast to linear elastic fracture modeling, investigations related to the 
development of solution technique to determine the generalized T-stress is found 
relatively few. This should be due mainly to that the integration of such fracture data 
in the prediction of responses of cracked bodies is quite new and the complexity 
posed, in addition, by the anisotropic and fully coupled feature of the material 
constitutive law. Existing relevant studies resulting from an extensive literature survey 
can be summarized below. Zhu and Yang (1999) used the concept of the continuous 
dislocations and electric dipoles to develop a boundary integral equation scheme to 
examine the role of the generalized T-stress for a straight crack in a two-dimensional, 
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homogeneous, linear piezoelectric, whole space under remote mechanical and 
loading conditions. They pointed out that the generalized T-stress play a crucial role 
on the crack kinking angle. Later, Hao and Biao (2004) applied the superposition 
technique and Plemelj formulation to derive the analytical solution of the 
generalized T-stress for an impermeable straight crack contained in a transversely 
isotropic, linear piezoelectric whole space under remote mixed mechanical/electrical 
loading conditions. From their work, it was revealed that the value of the generalized 
T-stress is highly dependent on both elastic and electric material constants. Zhong 
and Li (2007) applied the Fourier integral transform along with the standard 
procedure for solving dual integral equations to obtain the closed form result of the 
generalized T-stress for a semi-permeable Griffith crack in two-dimensional, 
transversely isotropic, linear piezoelectric solids with magnetic effect. Both the 
remote uniform tension and electrical induction were investigated. They concluded, 
in this study, that the generalized T-stress in this coupling material is significantly 
different from that of the elastic material. Later, Viola et al. (2008) established an 
analytical technique via the transformation of similarity and representations in terms 
of analytic potentials to examine the effect of non-singular terms on the mechanical 
and electrical fields of the Griffith crack in two-dimensional, transversely isotropic, 
piezoelectric infinite media under remote biaxial loading. They revealed that such 
non-singular part, induced by the biaxial loafing, has the strong influence on the 
hoop stress, the elastic and electric displacements, and stress component collinear 
to the crack. In addition, they concluded that ignorance of the non-singular terms 
can mislead the prediction of the direction of crack advances since the influence of 
bi-axiality resulting from the prescribed load is fully neglected. Recently, Liu et al. 
(2012) employed the complex variable function approach to construct the complete 
solution of mechanical/electrical fields of an elliptical void and a crack under 
uniform pressure. Results from their extensive investigation confirmed that the non-
singular term can play a vital role on the behavior of the near-tip stress and electric 
induction. 

From a careful literature search, studies regarding to the development of 
analytical and numerical techniques for calculating the generalized T-stress for the 
three-dimensional case has not been recognized. Lack of such solution methodology 
clearly limits the in-depth investigation of the influence of the generalized T-stress 
within the context of fully three-dimensional models; in particular, various three-
dimensional aspects such as the non-planarity of the crack surface, stress tri-axiality 
ahead of the crack front, and full mode-mixity cannot be explored. This existing gap 
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of knowledge, concerning mainly to the development of general, promising solution 
procedures, encourages the present study.  

1.3 OBJECTIVES  

The key objective of the current investigation is to establish an accurate and efficient 
computational technique capable of computing the generalized T-stress of cracks in 
piezoelectric media 

1.4 SCOPE OF RESEARCH 

The proposed investigation is limited only to (i) a three-dimensional, homogeneous, 
infinite medium, (ii) impermeable cracks, (iii) a body without the body force and body 
electric charge, and (iv) piezoelectric materials governed by linear constitutive law. 

1.5 METHODOLOGY AND PROCEDURE 

Fundamental theories, basic assumptions, key methodology and research procedures 
essential for the current study are indicated below. 

1) Basic field equations are obtained from theory of linear piezoelectricity; 
2) Singularity-reduced integral relations/equations for discontinuities in an 

anisotropic, linear piezoelectric, infinite domain without the remote loading 
is developed using the regularization procedure proposed by Rungamornrat 
and Mear (2008c) ; 

3) The influence of the remote loading conditions is treated by using the 
superposition technique; 

4) A system of integral equations governing both the unknown jump and sum 
of generalized displacements on both surfaces of the crack is formulated 
using the results from 2); 

5) A well-known weakly singular SGBEM is implemented first to solve the 
governing integral equation for the jump of the generalized traction to 
obtain the unknown relative crack-face the generalized displacement. The 
accuracy of the approximation of the near-tip relative crack-face 
generalized displacement is enhanced by using special shape functions 
developed by Rungamornrat and Mear (2008c) ; 

6) The weak-form generalized displacement integral equation is solved along 
with the known information of the relative crack-face displacement using 
standard Galerkin procedure;  
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7) Explicit formula for extracting the generalized T-stress is established in 
terms of the gradient of sum of the generalized displacement along the 
crack front; 

8) An in-house computer code is implemented to verify the formulation and 
the weakly singular SGBEM; and 

9) Extensive numerical experiments are conducted to verify the implemented 
numerical procedure and investigate its computational performance. 

1.6 RESEARCH SIGNIFICANCE 

The main contribution of the current study is to offer an accurate and efficient 
computational tool capable of calculating the generalized T-stress of arbitrary 
shaped cracks in three-dimensional infinite bodies made of fully anisotropic 
piezoelectric materials. The computational tool of this high capability should be 
potentially useful for the modeling of crack propagation supplemented by 
sophisticated growth laws involving the nonsingular term. In addition, this research 
should provide the fundamental basis for the further development of advanced 
numerical techniques applicable to treat more complex and large scale fracture 
problems, e.g. cracks in finite bodies. 



CHAPTER 2  

PROBLEM FORMULATION 

This chapter summarizes the clear description of the boundary value problem, basic 
field equations governing the behavior of linear piezoelectric media, crack-face 
boundary conditions, the standard integral relations for generalized displacements 
and generalized stresses, the regularization of related integral relations/equations, 
and the formulation of the key governing for piezoelectric cracked body. 

2.1 BASIC EQUATIONS FOR LINEAR PIEZOELECTRICITY 

Basic field equations governing all involved field quantities are taken from the theory 
of linear piezoelectricity. For a medium subjected to zero body forces and body 
electric charges, those equations take the following forms 
 

, ,0;      0ij i i iD                     (2.1) 
ε ;       εij ijkm km mij m i ikm km im mE e E D e E                   (2.2) 

, , ,

1
ε ( );        

2
ij i j j i i iu u E                     (2.3) 

 

where ij , ε ij , and iu  are components of the stress tensor, the strain tensor, and 
the displacement vector, respectively; iD , iE  and   represent components of the 
electric induction vector, components of the electric field and the electric potential, 
respectively; ijkmE , mije , and im  denote the elastic moduli, piezoelectric constants, 
and dielectric permittivities of the constituting material, respectively; and the comma 
notation ,( ) i  represents partial derivatives with respect to the reference Cartesian 
coordinate ix  and the standard rules of indicial notations apply throughout (i.e., any 
lower case index takes the values 1, 2, 3, and repeated indices imply the summation 
over their range). By following the notations introduced by Rungamornrat and Mear 
(2008c), the above field equations can be expressed in the following concise form  
 

, 0iJ i                     (2.4) 

,iJ iJKm K mE u                    (2.5) 
 

where any upper case index takes the value 1, 2, 3, 4 and the summation over their 
range is implied for any repeated index; iJ  is termed the generalized stress that 
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combines the stress 
ij  and the electric induction 4i iD  ; Ju  is termed the 

generalized displacement that combines the displacement ju  and the electric 
potential 4u  ; and iJKlE  is termed the generalized moduli that combines the 
elastic moduli ijklE , the piezoelectric constants 4ij l ijlE e  and the dielectric 
permittivities 44i l ilE   . It is remarked that the constitutive relation in terms of the 
generalized displacement gradient (2.5) can be derived by substituting (2.3) into (2.2). 
To be consistent with this concise notation, the generalized surface traction Jt  on 
the smooth surface with the outward unit normal vector n  is defined by J iJ it n . 
Clearly, the generalized traction Jt  consists of the traction j ij it n  and the surface 
electric charge 4 4i i i it n D n  .  

2.2 PROBLEM DESCRIPTION 

 
 
 
 
 
 
 
 

 
 

Figure 2.1 Schematic of isolated crack in piezoelectric infinite medium 

Consider a three-dimensional, infinite body   containing a crack as depicted in 
Figure 2.1. The domain is made of a homogeneous, generally anisotropic, linear 
piezoelectric solid with known material constants. The embedded crack is 
represented mathematically by two coincident, sufficiently smooth surfaces 

cS   and 

cS   with the (outward) unit normal vector denoted by 
n  and 

n , respectively. The 
body is subjected to zero body force and body electric charge fields but subjected 
to the prescribed remote generalized stress 

iJ  . In addition, the impermeable crack-
face condition is considered (i.e., the generalized tractions on both crack surfaces 

cS   
and 

cS  , denoted respectively by 
Jt
  and 

Jt
 , are fully prescribed). It should be 

remarked that while only a single crack is shown schematically in Figure 2.1, the 

n
+ 

n
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development to follow can essentially treat multiple cracks by simply considering 
cS   and 

cS   as the union of all crack surfaces. 

2.3 TREATMENT OF REMOTE CONDITION 

 
 
 
 
 
 
 
 

 
 
 
 
Figure 2.2 Schematics indicating the decomposition of the original problem:  
(a) original problem, (b) sub-problem1, and (c) sub-problem2  

Due to the linearity of the basic field equations, the original problem can be 
separated into two different problems, denoted by sub-problem1 and sub-problem2 
as shown in Figure 2.2. The sub-problem1 is associated with the uncracked infinite 
body subjected only to the remote generalized stress 

iJ   whereas the sub-problem2 
corresponds to an infinite body containing the same crack as the original problem 
but subjected only to the proper generalized tractions 2

Jt
  and 2

Jt
  on the surfaces 

cS   and 
cS  , respectively. From the method of superposition, the crack-face data for 

all three problems can be related by        
 

0 1 2

J J Jt t t                      (2.6) 
0 1 2

J J Jt t t                      (2.7) 
0 1 2

J J Ju u u                      (2.8) 
0 1 2

J J Ju u u                      (2.9) 
 

where the symbols “  ” and “  ” are used to emphasize the jump and sum of 
crack-face quantities and the superscript “0”, “1” and “2” are employed to indicate 
the quantities associated with the original problem, the sub-problem1 and the sub-
problem2, respectively. It is worth noting that the complete mechanical/electrical 
field of the sub-problem1 can be trivially obtained in a closed form; in particular,
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1 0Jt  , 1 2J iJ it n    and 2 0Ju  . However, to obtain the complete solution of the 
original problem, it still remains to solve the non-trivial sub-problem2. The 
formulation and implementation of the numerical technique developed further 
below is, therefore, restricted mainly to the sub-problem2 in which the remote 
mechanical/electrical loading vanishes and the superscript “2” is dropped for 
simplicity. Note in addition that from the relations (2.6) and (2.7), the prescribed 0

Jt  
and 0

Jt  resulting from the impermeable crack-face condition, and the solved 1

Jt

and 1

Jt , the sum and jump of the generalized traction 2

Jt  and 2

Jt  are obviously 
prescribed whereas the sum and jump of the generalized displacement 2

Ju  and 
2

Ju  are unknown a priori.        

2.4 STANDARD INTEGRAL RELATIONS 

By generalizing the Somigliana’s identity to the linear piezoelectricity, the generalized 
displacement at a point x  within an infinite cracked body that is subjected to zero 
generalized body force field (i.e., zero body force and zero body electric charge) and 
remote loading is given by 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

c c

P P

P J J iJ i J

S S

u U t dA S n u dA
 

      x ξ x ξ ξ ξ x ξ ξ ξ           (2.10) 

 

where ( )P

JU ξ x  and ( )P

iJS ξ x  are known fundamental solutions (or Green’s 
functions) of the generalized displacements and stresses. The explicit expressions of   

( )P

JU ξ x  and ( )P

iJS ξ x , for general anisotropic piezoelectric materials, are given 
by (see also the work of Deeg, 1980)   
 

1

2

0

1
( ) ( , ) ( )

8

P

J JPU ds
r



 

  
z r

ξ x z z z               (2.11) 

( )
( )

P
P K
iJ iJKl

l

U
S E



 
 



ξ x
ξ x                (2.12) 

 

where  r ξ x , |r  r | , z  is a unit vector on the plane normal to the position 
vector r , ( , )JP i iJPl lz E zz z , and 1( , )

z z  denotes an inverse of the matrix ( , )z z . It 
should be remarked that the Green’s functions ( )P

JU ξ x  and ( )P

iJS ξ x  are singular 
at a point ξ x  of order (1 / )rO  and 2

(1 / )rO , respectively. The boundary integral 
relation (2.10) allows generalized displacements at an interior point of the domain to 
be obtained once the unknown relative crack-face generalized displacement is 
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known. By taking a proper limit process cS x y , it yields the boundary integral 
equation for the sum of the generalized displacement Pu : 
 

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2
c c

P P

P J J iJ i J

S S

u U t dA S n u dA
 

       y ξ y ξ ξ ξ y ξ ξ ξ          (2.13) 

 

The integral equation (2.13) possesses following features: (i) it involves only the 
known sum of the generalized traction Pt ; (ii) it contains two unknown functions 

Pu  and Pu ; (iii) the first integral involves the weakly singular kernel ( )P

JU ξ y  and 
can be interpreted in the sense of Riemann; and (iv) the second integral involves the 
strongly singular kernel ( )P

iJS ξ y  and must be interpreted in the sense of Cauchy. It 
is evident that only the integral relation (2.13) cannot be sufficiently employed to 
solve both unknowns Pu  and Pu  on the crack surface. It is also worth remarking 
that the integral relation (2.13) cannot differentiate two problems involving the same 
crack subjected to different self-equilibrated, generalized tractions (i.e., 0Jt   for 
both cases).  

To overcome such difficulty, an additional boundary integral equation must 
be established. By substituting the integral relation (2.10) into the constitutive law 
(2.5) and then invoking properties of both Green’s functions ( )P

JU ξ x  and 
( )P

iJS ξ x , it leads to the generalized stress integral relation at any point x  within 
the domain:   
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

c c

K lK

lK lJ J iJ i J

S S

S t dA n u dA
 

        x ξ x ξ ξ ξ x ξ ξ ξ          (2.14) 

 

where the two-point function ( )lK

iJ ξ x  is given by 
 

( )
( )

P
lK iJ
iJ lKPq

q

S
E



 
  



ξ x
ξ x                 (2.15) 

 

It results directly from the singularity behavior of ( )P

iJS ξ x  that the two-point 
function ( )lK

iJ ξ x  is singular at a point ξ x  of order 3
(1/ )rO . The integral 

relation (2.14) can be used to post-process for the generalized stress at any point 
within the body once the unknown Ju  is solved. By multiplying equation (2.14) with 
a unit normal vector 

n at any point cS y  and then evaluating the limit cS x y

, it yields the integral equation of the jump in the generalized traction across the 
crack surface Kt : 
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1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2
c c

K lK

K lJ l J iJ l i J

S S

t S n t dA n n u dA
 

         y ξ y y ξ ξ ξ y y ξ ξ ξ (2.16) 

 

The boundary integral equation (2.16) possesses following features: (i) it contain the 
complete information of the generalized traction Kt  and Jt ; (ii) it contains only 
one unknown function Ju ; (iii) the first integral involves the strongly singular kernel 

( )P

iJS ξ y  and must be interpreted in the sense of Cauchy; and (iv) the second 
integral involves the hyper-singular kernel ( )lK

iJ ξ y  and must be interpreted in the 
sense of Hadamard finite part. It is evident that the integral equation (2.16) can be 
used to determine the jump in the generalized displacement Ju  and, when applied 
along with (2.13), the sum of the generalized displacement Pu  can also be 
obtained. It is crucial to remark that use of the standard boundary integral equations 
(2.13) and (2.16) in the formulation, it is unavoidable to treat both strongly singular 
and hyper-singular integrals in the numerical implementations.   

2.5 REGULARIZED INTEGRAL RELATIONS/EQUATIONS 

To suit the development of weakly singular SGBEM, a set of singularity-reduced, 
boundary integral equations must be established. A systematic regularization 
procedure for the case of linear piezoelectricity was proposed by Rungamornrat and 
Mear (2008c) and Phongtinnaboot et al. (2011) in their study of cracks in piezoelectric 
infinite and finite bodies. Such strategy is utilized in the present investigation and 
certain key components are briefly presented here.   
 In the regularization procedure, the strongly singular kernel ( )P

iJS ξ x  and 
the hyper-singular kernel ( )lK

iJ ξ x  are represented in following form: 
 

( )
( ) ( )

P
P P mJ
iJ iJ ism

s

G
S H 



 
   



ξ x
ξ x ξ x               (2.17) 

( ) ( ) ( )lK tK

iJ iJKl ism lrt mJ

s r

E C  
 

 
      

 
ξ x ξ x ξ x             (2.18) 

 

where ( ) ξ x  is a three-dimensional Dirac-delta function with the center at a point 
x , ism  is an alternating tensor; and functions ( )P

iJH ξ x , ( )P

mJG ξ x  and 
( )tK

mJC ξ x  are given by    
 

 3

1
( )

4

P

iJ JP i iH ξ x
r




   ξ x                (2.19) 
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1

2

0

( ) ( , ) ( )
8

mqa qJKlP

mJ KP a l

E
G z z ds

r







 

  
z r

ξ x z z z               (2.20) 

1

2

0

( ) ( , ) ( )
8

KJPQ
tK mtsl
mJ PQ s l

A
C z z ds

r



 

  
z r

ξ x z z z               (2.21) 

 

in which KJPQ

mtslA  is a moduli-dependent constant defined by 
 

1

4

KJPQ

mtsl aum adt uKPs dJQl dJKu lPQsA E E E E 
 

  
 

              (2.22) 
 

Clearly, the function ( )P

iJH ξ x  is independent of material properties and singular at 
point ξ x  of order 2

(1/ )rO  whereas ( )P

mJG ξ x  and ( )tK

mJC ξ x  are singular at 
point ξ x  of order (1/ )rO . The existence of the representations (2.17) and (2.18) 
and the means for determining the functions ( )P

mJG ξ x  and ( )tK

mJC ξ x  for general 
anisotropy can be found in the investigations of Rungamornrat and Mear (2008a) and 
Rungamornrat and Senjuntichai (2009). 
 To construct the singularity-reduced, boundary integral relations for both 
generalized displacements and generalized stresses, the representations (2.17) and 
(2.18) are employed to aid the integration by parts procedure of the conventional 
integral relations (2.10) and (2.14) via Stokes’ theorem to shift the derivatives from 
the functions ( )P

mJG ξ x  and ( )tK

mJC ξ x  to the crack-face data (see details of the 
development in Rungamornrat and Mear, 2008a). The final results are given by    
 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

            ( ) ( ) ( )

c c

c

P P

P J J iJ i J

S S

P

mJ m J

S

u U t dA H n u dA

G D u dA

 



     

  

 



x ξ x ξ ξ ξ x ξ ξ ξ

ξ x ξ ξ
                   (2.23) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

              ( ) ( ) ( )

c c

c

J tK

lK lrt tK J mJ m J

r S S

J

lK J

S

G t dA C D u dA
x

H t dA

 
 



   
      

   

  

 



x ξ x ξ ξ ξ x ξ ξ

ξ x ξ ξ

       (2.24) 

 

This set of singularity-reduced boundary integral relations offers an alternative to the 
standard integral relations (2.10) and (2.14) for post-processing the generalized 
displacements and stresses at any point within the medium once the unknown Ju  
is determined. 
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 An alternative form of the integral equation for the sum of the generalized 
displacement (2.13) is obtained by first evaluating the proper limit cS x y  of the 
integral relation (2.23), then multiplying the equation by a well-behaved test function 

Pt , and finally integrating the results over the upper surface of the crack. The final 
weakly singular weak-form boundary integral equation takes the following form         
 

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

                                   ( ) ( ) ( ) ( ) ( ) ( )

                                   ( ) ( ) ( )

c c c

c c

P

P P P J J

S S S

P

P iJ i J

S S

P

P mJ m J

t u dA t U t dA dA

t H n u dA dA

t G D u dA

  

 

   

  

  

  

 

y y y y ξ y ξ ξ y

y ξ y ξ ξ ξ y

y ξ y ξ ( ) ( )

c cS S

dA
 

  ξ y

                 (2.25) 

 

Similarly, the alternative form of the integral equation for the jump of the 
generalized traction (2.16) is established by first evaluating the proper limit 

cS x y  of the quantity ( ) ( )lK ln 
x y  via the integral relation (2.24), then 

multiplying the equation by an arbitrary well-behaved test function Ku , and finally 
integrating the results over the surface of the crack and then applying Stokes’ 
theorem to carry out the integration by parts. The final result is given by    
 

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

                                       ( ) ( ) ( ) ( ) ( )

                                       ( ) (

c

tK

K K K mJ m Jt

S S S

J

K tK Jt

S S

J

K iK

S

u t dA v C D u dA dAD

v G t dA dAD

v H

  

 



    

  



  

 



y y y y ξ y ξ ξ y

y ξ y ξ ξ y

y ) ( ) ( ) ( ) ( )i J

S

n t dA dA


  ξ y y ξ ξ y

         (2.26) 

 

It is vital to note that the weak-form boundary integral equations (2.25) and (2.26) are 
fully regularized in that all appearing kernels, ( )P

JU ξ y , ( ) ( )P

iJ iH nξ y ξ , 
( ) ( )J

iK iH nξ y y , ( )P

mJG ξ y  and ( )tK

mJC ξ y , are only weakly singular of order 
(1 / )rO . This pair of weak-form integral equations provides a complete basis for the 

formulation of boundary value problems of cracks in piezoelectric infinite media.   
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CHAPTER 3  

DEVELOPMENT OF WEAKLY SINGULAR SGBEM 

This chapter devotes mainly to the solution methodology, the development of a 
numerical procedure based on the well-known weakly singular symmetric Galerkin 
boundary element method (SGBEM), and the post-process for the generalized T-
stress. Essential components including the discretization, numerical integration and 
evaluation of all involved kernels are also discussed. 

3.1 SOLUTION METHODOLOGY 

A pair of weak-form integral equations, one for the sum of the crack-face generalized 
displacement (2.25) and the other for the relative crack-face generalized traction 
(2.26), provides a complete set of governing equations for determining the crack-face 
data Pu  and Pu . For convenience in further reference, (2.25) and (2.26) are re-
expressed in a more concise form as 
 

       , , , ,     D U G Ht t t tu t u u                                                     (3.1) 
       , ,, ,     C G H Du u u uu t t t                                                     (3.2) 

 

where all involved linear and bilinear integral operators are defined by 
 

 , ( ) ( ) ( ) ( ) ( )

c c

P

P J J

S S

X U Y dA dA
 

  U X Y y ξ y ξ ξ y                                                     (3.3) 

 , ( ) ( ) ( ) ( ) ( )tK

K mJ m Jt

S S

X C D Y dA dAD
 

   C X Y y ξ y ξ ξ y                                           (3.4) 

 , ( ) ( ) ( ) ( ) ( )

c c

P

P mJ m J

S S

X G D Y dA dA
 

  G X Y y ξ y ξ ξ y                                           (3.5) 

 , ( ) ( ) ( ) ( ) ( ) ( )

c c

P

P iJ i J

S S

X H n Y dA dA
 

   H X Y y ξ y ξ ξ ξ y                                           (3.6) 

 
1

, ( ) ( ) ( )
2

c

K K

S

X Y dA


 D X Y y y y                                        (3.7) 

 
 

where X and Y  are any vectors. It is evident from (3.4) and (3.7) that the integral 
operators C  and D  are in a symmetric form, i.e.,    , ,C CX Y Y X  and 

   , ,D DX Y Y X . While the system of equations (3.1) and (3.2) is coupled through 
the relative crack-face generalized displacement Pu , the generalized traction integral 
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equation (3.2) does not contain the sum of the generalized displacement Pu . As a 
result, the jump Pu  is obtained first by solving (3.2) numerically using standard 
weakly singular SGBEM (see also Rungamornrat and Mear, 2008a and 2008b). After 

Pu  is determined, the sum of the generalized displacement Pu  is obtained by 
solving (3.1) numerically using standard Galerkin procedure. Once the crack-face data 
is known, the generalized T-stress can be post-processed from Pu  in the 
neighborhood of the crack front. 

3.2 DISCRETIZATION 

By following standard Galerkin approximation procedure, a pair of boundary integral 
equations (3.1) and (3.2) can be discretized into the following systems of linear 
algebraic equations: 
 

       
 

    
 

T
D U U G H

U
                                                   (3.8) 

   *   
 

        

T
C U G H D

T
                                                         (3.9) 

 

where *,{ , }, , ,C D D G H U  are known coefficient matrices obtained from linear integral 
operators , , , ,C D G H U , respectively; U  and U  are unknown vectors of nodal 
quantities of the jump and sum of crack-face generalized displacements, respectively; 
and T  and T  are known vectors of nodal quantities corresponding to the jump and 
sum of the crack-face generalized traction, respectively. Due to the weak singularity of 
(3.1) and (3.2), all crack-face data including the test functions are approximated by 
continuous, element-based, basis functions following standard finite element 
procedure (e.g., Oden and Carey, 1984; Hughes, 2000; Zienkiewicz and Taylor, 2000). 
In particular, standard isoparametric elements are exploited to approximate the crack-
face data { , , , }J J J Jt t u u     and the test functions { , }K Ku t  for the majority of the 
crack surface except in the local region along the crack boundary where special crack-
tip elements established by Rungamornrat and Mear (2008c) are employed to 
improve the approximation of Ju  and the test function Ku . Shape functions of 
those crack-tip elements are properly enriched by a square-root function to capture 
the right asymptotic behavior of Ju . It is crucial to remark that the matrices C  and 
D  are essentially symmetric due to the symmetric integral form of C  and D  and 
the choice of basis functions used in the approximation, and that the matrix *

D  is not 
identical to D  owing to the application of special crack-tip elements to approximate 
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Ku  in the local region near the crack front. Since both T  and T  are known a priori, 
the unknown vector U  is determined first by solving a symmetric system of linear 
algebraic equations (3.9) and subsequently U  is calculated from a symmetric system 
of linear algebraic equations (3.8). 

3.3 NUMERICAL INTEGRATION SCHEME 

While entries of the matrices D  and *
D  resulting from the single surface integrals 

with well-behavior integrands are accurately calculated by Gaussian quadrature, 
computation of the matrices U  and , ,C G H  clearly requires an extensive numerical 
evaluation of double surface integrals containing the kernels P

JU  and , ,tK P P

mJ mJ iJ iC G H n , 
respectively. Double surface integrals over a pair of elements with regular or well-
behaved integrands are integrated efficiently using standard quadrature. In contrast, 
the double surface integrals with either nearly singular or weakly singular integrands 
resulting from a pair of identical or relatively close discretized elements cannot be 
integrated efficiently by standard quadrature rule (e.g., Xiao, 1998). Inaccurate 
evaluation of such integrals affects directly the quality of final numerical solutions. 
To circumvent such issue, special techniques based principally on suitable variable 
transformations reported in Li and Han (1985), Hayami and Brebbia (1988), Hayami 
(1992), Hayami and Matsumoto (1994) and Xiao (1998) are applied to either remove 
the weak singularity or regularize the rapid variation of integrands. After such 
regularization, standard quadrature rule can be exploited to efficiently integrate the 
resulting double surface integrals. 

3.4 EFFICIENT EVALUATION OF KERNELS 

Since the two-points kernel ( )P

iJH ξ y  is given in terms of elementary functions and 
the unit normal vector to the crack surface ( )in ξ  or ( )in y  can be computed using 
the geometry of discretized elements, the two kernels ( ) ( )P

iJ iH nξ y ξ  and 
( ) ( )J

iK iH nξ y y  can be evaluated directly in an efficient manner. In contrast, the 
two-points kernels ( )P

JU ξ y , ( )P

mJG ξ y  and ( )tK

mJC ξ y  for generally anisotropic, 
piezoelectric materials are given in terms of a closed contour integral for any pair of 
points ( , )ξ y  as shown in (2.11), (2.20) and (2.21). Although the involved line integral 
contains a well-behaved integrand, it is still computational inefficient to directly 
evaluate such integrals for all pairs of ( , )ξ y  resulting from the quadrature rule. In 
the present study, an interpolation-based approximation similar to that utilized by 
Rungamornrat and Mear (2008b, 2008c) is adopted to reduce the computational cost. 
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In particular, the closed contour integrals is evaluated numerically only one time 
using standard quadrature rule at all nodal points and values of all kernels at any 
pair of points ( , )ξ y  can be interpolated from the nodal values using selected 
element shape functions. The accuracy of this interpolation scheme can be 
improved by increasing the number of nodal points and orders of the interpolation 
functions.             

3.5 CALCULATION OF GENERALIZED T-STRESS 

Once the sum of the crack-face generalized displacement at all nodal points ( U ) is 
determined, the generalized T-stress along the boundary of the crack is extracted 
from such information as described below.  

Consider a crack-tip element located along the crack front where cx  denotes 
a nodal point located at the crack boundary, 1 2 3{ ; , , }c x x xx  is a local reference 
Cartesian coordinate system with the origin cx  and 1 2 3{ , , }e e e  denoting the 
corresponding base vectors as shown schematically in Figure 3.1. The generalized T-
stresses contains five independent components denoted by 11T , 13T , 33T , 14T  and 34T   
where the first three components are associated with the elastic T-stresses and the 
last two correspond to the electrical T-stresses. Values of the generalized T-stresses 

11T , 13T , 33T , 14T  and 34T  at the point cx  can be related to the finite part of the strain 
tensor and gradient of the electric potential at the point cx  on the surface of a crack 
via the following constitutive relation 

 

 
 
 
 
 
 
 
 
 
 

Figure 3.1 Schematic of crack-tip element and local coordinate system for calculation 
of generalized T-stress 

iJ iJKl Kl
T E                                                    (3.10) 

 
    

 

 
Crack front 

Crack-tip element 
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where the components 22T , 12T , 23T  and 24T  are known and equal to the prescribed 
generalized traction at a limiting point of the point cx  on the crack surface. The 
components 11 , 13 , 33 , 41  and 43  can be computed directly from the information 
of the sum of the generalized displacement in the neighborhood of the point cx  via 
the following relations 
 

1 1
11

1 1

1 1
lim ( )
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c

u u

x x




 
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x                                                         (3.11) 

3 3
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x x x x



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   
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   
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x                                               (3.13) 

4 4
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1 1

1 1
lim ( )

2 2c
c

u u

x x




 
 

 x x
x                                                        (3.14) 

4 4
43

3 3

1 1
lim ( )

2 2c
c

u u

x x




 
 

 x x
x                                                        (3.15) 

 

The derivatives involved in the expressions (3.11)-(3.15) can readily be computed 
within the crack-tip elements. By using the prescribed information of 22T , 12T , 23T  and 

24T  and the computed components 11 , 13 , 33 , 41  and 43 , the unknown strain 
components 22 , 12 , 23  and 42  and the generalized T-stresses 11T , 13T , 33T , 14T  and 

34T  at the point cx  can be determined from equation (3.10). 
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CHAPTER 4  

NUMERICAL RESULTS AND DISCUSSIONS 

To investigate the computational performance and accuracy of the proposed 
technique, extensive numerical experiments for various boundary value problems are 
conducted. Computed results for certain simple cases (e.g., a circular crack under 
simple electrical/mechanical loads) are benchmarked with available reference 
solutions to validate the formulation of governing integral equations and numerical 
implementations of the weakly singular SGBEM and the post-process for the 
generalized T-stress. Relatively complex problems such as non-planar cracks and 
multiple cracks are also considered to illustrate the capability, versatility, and 
robustness of the developed technique.  

In the numerical study, a series of meshes with different levels of refinement 
are adopted and employed to investigate the convergence of computed numerical 
solutions. In particular, the majority of the crack surface is discretized by standard 6-
nodes and 8-nodes, isoparametric elements whereas region adjacent to the crack 
boundary is discretized by 9-nodes special crack-tip elements. Linear piezoelectric 
materials selected in the analysis is transversely isotropic and all material constants 
are taken to be those of PZT-4 and PZT-5H as shown in Table 4.1. 

 
Table 4.1 Generalized moduli of PZT-4 and PZT-5H (e.g., Li et al., 2013; 
Rungamornrat and Mear, 2008c). The plan of isotropy is taken normal to the x3-axis. 

 PZT-4 PZT-5H 
Elastic constants  

( x 109 Pa) 
1111E  139.00 126.00 
1122E  77.80 55.00 
1133E  74.30 53.00 
3333E  113.00 117.00 
1313E  25.60 35.30 

Piezoelectric constants 
 (C/m2) 

1143E  -6.98 -6.50 
3343E  13.80 23.30 
1341E  13.40 17.00 

Dielectric permittivities  
( x 10-9C/(Vm)) 

1441E  6.00 15.10 

3443E  5.47 13.00 
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4.1 VERIFICATIONS  

Let us consider a penny-shaped (circular) crack of radius a  contained in a linear 
piezoelectric, infinite body with the poling direction along the 3x -axis as shown in 
Figure 4.1. The crack is subjected to uniformly distributed pressure 3 3 0t t     and 
uniform distributed surface elastic charge 4 4 0t t d   . This problem is chosen in the 
verification procedure since the complete mechanical/electrical fields are available 
in a closed form for an impermeable case (e.g., Chen et al., 2000) and these results 
can be used to generate the benchmark solution for the generalized T-stress (see 
Appendix). Three meshes shown in Figure 4.2 are adopted in the analysis.  
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1 (a) Piezoelectric infinite body containing penny-shaped crack and (b) crack 
subjected to uniformly distributed pressure 3 3 0t t     and uniformly distributed 

surface electric charge 4 4 0t t d     

 

 
 

 

Figure 4.2 Three meshes of penny-shaped crack used in numerical study; Mesh-1 
containing 8 elements and 4 crack-tip elements, Mesh-2 containing 32 elements and 
8 crack-tip elements, and Mesh-3 containing 128 elements and 16 crack-tip elements 

Mesh 2 
(32 elements)

Mesh 3 
(128 elements)

Mesh 1 
(8 elements)

Mesh-1 Mesh-2 Mesh-3 

 

 

 

 
  

 

 

poling

(a) (b) 
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4.1.1 Piezoelectric material 

For this particular problem, the generalized T-stress 11T  and 33T  are non-zero and are 
independent of positions along the crack front. The predicted results normalized by 
the analytical solution are shown in Tables 4.2 and 4.3 for both PZT-4 and PZT-5H 
and two loading cases: 6 2

0 1 10 /N m   , 0 0d   and 6 2

0 1 10 /N m   , 
3 2

0 1 10 /d C m  . It can be seen from these results that the computed T-stresses 
are in good agreement with the benchmark solution and, in addition, show weak 
dependence on meshes used. In particular, the errors of predicted solutions for all 
three meshes and two materials are less than 0.6% for the first loading case and less 
than 0.5% for the second loading case.    
 
Table 4.2 Normalized generalized T-stress 11T  for penny-shaped crack contained in 
piezoelectric unbounded medium under two loading cases 
 

 11

11

exact

T

T
 

Mesh 

6 2

0 1 10 /N m    
0 0d   

6 2

0 1 10 /N m    
3 2

0 1 10 /d C m   
PZT-4 PZT-5H PZT-4 PZT-5H 

1 0.9954 0.9943 1.0050 0.9998 
2 0.9968 0.9967 1.0036 1.0006 
3 0.9953 0.9945 1.0019 1.0009 

 

Table 4.3 Normalized generalized T-stress 33T  for penny-shaped crack contained in 
piezoelectric unbounded medium under two loading cases 

 

 33

33

exact

T

T
 

Mesh 

6 2

0 1 10 /N m    
0 0d   

6 2

0 1 10 /N m    
3 2

0 1 10 /d C m   
PZT-4 PZT-5H PZT-4 PZT-5H 

1 0.9954 0.9943 1.0050 0.9998 
2 0.9968 0.9967 1.0036 1.0006 
3 0.9953 0.9945 1.0019 1.0009 
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4.1.2 Isotropic and transversely isotropic material 

As an additional verification, let us consider a special case when the constituting 
material is simply linear elastic and the medium is subjected only to the uniform 
normal traction. For this particular case, the reference solution for the T-stress can 
be obtained from Wang (2004) for the isotropic case and post-processed from the 
stress field presented by Fabrikant (1989) for the transversely isotropic case. In the 
numerical study, the piezoelectric constants are input equal to zero whereas the 
elastic moduli are taken as shown in Table 4.4. The numerical results for non-zero T-
stress components normalized by the analytical solution are reported in Table 4.5. 
Clearly, the good agreement between computed solutions and the benchmark 
solution is observed; for all three meshes, the discrepancy is less than 0.34% and 
0.64% for isotropic and transversely isotropic materials, respectively.   

 
Table 4.4 Elastic constants for isotropic and transversely isotropic materials used in 
the analysis 

 Isotropic  Transversely isotropic 
Elastic constants  

( x 109 Pa)  
1111E  1.35 126.00 
1122E  0.58 55.00 
1133E  0.58 53.00 
3333E  1.35 117.00 
1313E  0.38 35.30 

 
 

Table 4.5 Normalized T-stress 11T  and 33T  of penny-shaped crack embedded in 
isotropic and transversely isotropic, linear elastic, infinite medium under uniform 
normal traction 

 

Mesh 

11

11

exact

T

T
 33

33

exact

T

T
 

Isotropic Transversely 
isotropic 

Isotropic Transversely 
isotropic 

1 0.9966 1.0063 1.0020 1.019 
2 0.9984 1.0025 0.9998 1.0039 
3 0.9966 1.0008 0.9997 1.0038 
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4.2 MORE COMPLEX BOUNDARY VALUE PROBLEMS 

After the proposed technique is verified, various crack problems are investigated. 
Results for representative cases are presented here to demonstrate its capability and 
robustness to treat planar cracks of general geometry, non-flat cracks, and multiple 
cracks. Since boundary value problems considered here are quite complex, analytical 
solution for all cases in this particular section does not exist and, as a result, only the 
convergence test using three different levels of meshes is performed.     

4.2.1 Tunnel crack 

Consider a tunnel crack with a half-length L  and end radius R  contained in a linear 
piezoelectric infinite body as shown in Figure 4.3(a). The crack surface is oriented 
normal the poling direction and the axis of material symmetry. Similar to the 
previous problem, the crack is subjected to uniformly distributed pressure 

3 3 0t t     and uniformly distributed surface electric charge 4 4 0t t d    as 
depicted in Figure 4.3(c). In the numerical study, three meshes adopted as shown in 
Figure 4.4 and two materials (i.e., PZT-4 and PZT-5H) indicated in Table 4.1 are 
considered to examine the convergence behavior of predicted solutions. 
 

 
 
 
 
 
 
 
 
 
 

 

Figure 4.3 (a) Schematic of infinite piezoelectric medium containing tunnel crack in 
1 2x x  plane, (b) geometry of tunnel crack, and (c) tunnel crack subjected to uniform 

presure 3 3 0t t     and uniform electric charge 4 4 0t t d     
 

The same two loading cases as the previous problem are considered. For the 
pure mechanical loading (i.e., 6 2

0 1 10 /N m    and 0 0d  ), the computed non-zero 
generalized T-stress, 11T , 13T  and 33T , obtained from the three meshes reported in 

 

 

 

 
  

 

 

poling

(a) (c) 

 

  

(b) 
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Figures 4.5 and 4.6 for PZT-4 and PZT-5H, respectively. Results for the mixed 
mechanical/electrical loading (i.e., 6 2

0 1 10 /N m    and 3 2

0 1 10 /d C m  ) are 
shown in Figures 4.7 and 4.8 for PZT-4 and PZT-5H, respectively. It is seen, again, that 
the computed generalized T-stresses show good convergence characteristics for all 
cases. In addition, the coarsest mesh with significantly large elements along the crack 
front can yield results comparable to those from the fine mesh. This should be due 
to the discretization of a local region adjacent to the crack front by special crack-tip 
elements to accurately model the near-tip crack-face data. 
 

 
Figure 4.4 Three meshes of tunnel crack used in numerical study; Mesh-1 containing 
32 elements with 16 crack-tip elements, Mesh-2 containing 128 elements with 32 
crack-tip elements, and Mesh-3 containing 512 elements with 64 crack-tip elements 
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Figure 4.5 Normalized non-zero generalized T-stress of tunnel crack in PZT-4 under 
6 2

0 1 10 /N m    and 0 0d    
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Figure 4.6 Normalized non-zero generalized T-stress of tunnel crack in PZT-5H under 
6 2

0 1 10 /N m    and 0 0d   
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Figure 4.7 Normalized non-zero generalized T-stress of tunnel crack in PZT-4 under 
6 2

0 1 10 /N m    and 3 2

0 1 10 /d C m   
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Figure 4.8 Normalized non-zero generalized T-stress of tunnel crack in PZT-5H under 
6 2

0 1 10 /N m    and 3 2

0 1 10 /d C m    

 
 To demonstrate the influence of the ratio /L a  on the distribution of the 
generalized T-stress along boundary of the crack, three values of the half-length 
L a , 5a  and 10a  are considered. Due to the good convergence behavior of the 
numerical solutions indicated above, the level of refinement equivalent to the 
mesh-2 shown in Figure 4.4 for L a  is utilized throughout. The generalized T-stress 

11T  along straight portion of the crack front is illustrated in Figure 4.9 and Figure 4.10 
for the crack under uniformly distributed pressure 3 3 0t t     and uniformly 
distributed surface electric charge 4 4 0t t d   , respectively. The analytical solutions 
for the plane strain case proposed by Hao and Biao (2004) for the straight crack of 
length 2a  under the same loading conditions are also shown in the plots. It can be 
seen from this set of results that as /L a  increases the value of the generalized T-
stress is almost constant along the straight portion of the crack front and tends to 
approach the plane strain solution.    
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Figure 4.9 Normalized 11 0/T   of extended tunnel crack to plane strain problem in 
PZT-4 under 6 2

0 1 10 /N m     
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Figure 4.10 Normalized 11 0/T   of extended tunnel crack to plane strain problem in 
PZT-4 under 6 2
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4.2.2 Spherical cap crack 

To further demonstrate the ability of the current technique to solve non-flat cracks, 
let us consider a representative problem associated with a transversely isotropic, 
linear piezoelectric, infinite body containing a spherical cap crack as depicted in 
Figure 4.11. The surface of a crack is defined by 

1 2 3sin cos , sin sin , cosx a x a x a                                        (4.1) 
 
where 1 2 3( , , )x x x  are coordinates of any point on the crack; a  denotes the spherical 
crack radius;  0,2  ; and  0,   with   denoting the half subtended angle of 
the spherical surface. The medium is subjected to three loading cases: (i) the uniform 
remote tension 33 0    (see Figure 4.12(a)), (ii) the uniform remote biaxial tension 

11 33 0      (see Figure 4.12(b)), and (iii) the uniform remote tension 33 0    and 
uniform remote electric induction 34 0d    (see Figure 4.12(c)). The poling direction 
and the axis material symmetry are coincident with the 3x -axis. In the numerical 
study, the half subtended angle 045   and two materials PZT-4 and PZT-5H are 
chosen and three meshes as shown in Figure 4.13 are adopted.    
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.11 A linear piezoelectric, infinite body containing spherical cap crack  
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Figure 4.12 Spherical cap crack subjected to (a) uniform remote tension 33 0   , (b) 

uniform remote biaxial tension 11 33 0     , and (c) uniform remote tension 

33 0    and uniform remote electric induction 34 0d    

4.2.2.1 Uniform remote tension 

For this particular load case, the non-zero generalized T-stresses 11T , 33T  and 14T  are 
all independent of positions along the crack front due to the axisymmetry. The 
computed numerical results normalized properly by the benchmark solution (taken 
from the results of the Mesh-3) are shown in Tables 4.6-4.8 for 6 2

0 1 10 /N m   . It 
can be seen that the generalized T-stresses obtained from all meshes are in good 
agreement. In particular, the discrepancy between solutions generated by the coarse 
and intermediate meshes and that of the fine mesh is less than 2.0 % and 0.2 % for 

11T , 0.9 % and 0.2 % for 33T , and 2.3 % and 0.4 % for 14T , respectively.  

4.2.2.2 Uniform remote biaxial tension 

For this load case, non-zero generalized T-stresses 11T , 33T , 13T , 14T  and 34T  vary as a 
function of positions along the boundary of the crack. The numerical results for the 
generalized are obtained for 6 2

0 1 10 /N m    and then reported versus the angle 
 in Figures 4.14 and 4.15 for PZT-4 and in Figures 4.16 and 4.17 for PZT-5H. Again, 
the obtained numerical solutions indicate the good convergence behavior. The 
computed generalized T-stresses predicted by the coarsest mesh deviate slightly 
from solutions of the finest mesh whereas the intermediate and finest meshes yield 

(a) (b) (c) 
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nearly identical solutions. As an additional remark, values of the generalized T-stress 
show strong dependent on the material properties; for instance, values of 11T  and 33T  
for PZT-4 are quite different whereas they are almost identical for PZT-5H.     

 

  
 

 
 

Figure 4.13 Meshes of spherical cap crack used in analysis (schematics only show 
projected meshes on the 1 2x x  plane); Mesh-1 containing 16 elements with 8 crack-

tip elements, Mesh-2 containing 32 elements with 8 crack-tip elements, and Mesh-3 
containing 128 elements with 16 crack-tip elements 
 
 
Table 4.6 Normalized generalized T-stress 11T  for spherical cap crack in linear 
piezoelectric infinite body under (i) uniform remote tension 6 2

0 1 10 /N m    and (ii) 

uniform remote tension 6 2

0 1 10 /N m    and uniform remote electric induction 
3 2

0 1 10 /d C m    

 
 11

11

ref

T

T
 

Mesh 
6 2

0 1 10 /N m    
6 2

0 1 10 /N m    
3 2

0 1 10 /d C m   
PZT-4 PZT-5H PZT-4 PZT-5H 

1 0.9803 0.9864 0.9739 0.9791 
2 0.9987 0.9990 0.9937 0.9958 
3 1.0000 1.0000 1.0000 1.0000 

 

Mesh-1 
(16 Elements) 

Mesh-2 
(32 Elements) 

Mesh-3 
(128 Elements) 
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Table 4.7 Normalized generalized T-stress 33T  for spherical cap crack in linear  
piezoelectric infinite body under (i) uniform remote tension 6 2

0 1 10 /N m    and (ii) 

uniform remote tension 6 2

0 1 10 /N m    and uniform remote electric induction 
3 2

0 1 10 /d C m    
 

 33 33/ refT T  

Mesh 
6 2

0 1 10 /N m    
6 2

0 1 10 /N m    
3 2

0 1 10 /d C m   
PZT-4 PZT-5H PZT-4 PZT-5H 

1 0.9919 0.9952 0.9817 0.9924 
2 0.9987 0.9990 0.9971 0.9986 
3 1.0000 1.0000 1.0000 1.0000 

 

Table 4.8 Normalized generalized T-stress 14T  for spherical cap crack in linear 
piezoelectric infinite body under (i) uniform remote tension 6 2

0 1 10 /N m    and (ii) 

uniform remote tension 6 2

0 1 10 /N m    and uniform remote electric induction 
3 2

0 1 10 /d C m   
 

 14 14/ refT T  

Mesh 
6 2

0 1 10 /N m    
6 2

0 1 10 /N m    
3 2

0 1 10 /d C m   
PZT-4 PZT-5H PZT-4 PZT-5H 

1 0.9779 0.9868 0.9755 0.9829 
2 0.9964 0.9981 0.9938 0.9963 
3 1.0000 1.0000 1.0000 1.0000 

 
 

4.2.2.3 Uniform remote tension and surface electric charge 

The final load case is axisymmetric and, as a result, only the generalized T-stresses 
11T , 33T  and 14T  are non-zero and are independent of positions along the crack front. 

The obtained numerical results compared with the reference solution (taken from 
the results of the Mesh-3) are reported in Tables 4.6-4.8 for 6 2

0 1 10 /N m    and 
3 2

0 1 10 /d C m  . Similar to the above two load cases that converged solutions can 
be obtained. In particular, the discrepancy between solutions generated by the 
coarse and intermediate meshes and that of the fine mesh is less than 2.7 % and 0.7 
% for 11T , 1.9 % and 0.3 % for 33T , and 2.6 % and 0.7 % for 14T , respectively.   
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Figure 4.14 Normalized 11 0/T   , 33 0/T   and 13 0/T   for spherical cap crack subjected 
to uniform remote biaxial tension 6 2

0 1 10 /N m   . Results are reported for PZT-4. 
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Figure 4.15 Normalized 14 0/T d  and 34 0/T d  for spherical cap crack subjected to 
uniform remote biaxial tension 6 2

0 1 10 /N m   . Results are reported for PZT-4.  
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Figure 4.16 Normalized 11 0/T  , 33 0/T   and 13 0/T   for spherical cap crack subjected to 
uniform remote biaxial tension 6 2

0 1 10 /N m   . Results are reported for PZT-5H.  
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Figure 4.17 Normalized 14 0/T d  and 34 0/T d  for spherical cap crack subjected to 
uniform remote biaxial tension 6 2

0 1 10 /N m   . Results are reported for PZT-5H. 
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4.2.3 Pair of penny-shaped cracks 

Finally, the ability of the developed technique to treat multiple cracks is explored. A 
representative problem associated with a pair of identical co-planar circular cracks of 
radius a contained in a transversely isotropic, linear piezoelectric infinite body under 
a uniform remote tension 33 0    as indicated in Figure 4.18 is considered. The crack 
fronts of both cracks, termed crack-A and crack-B, are defined by  
 

1 2 3: sin ,   cos ,   0crack A x a x d a x                                                 (4.2) 

1 2 3: sin ,   cos ,   0crack B x a x d a x                              (4.3) 

where  0,2   and 2d  denotes the distance between the centers of the two 
cracks. The crack surface is oriented perpendicular to the poling direction and the 
material symmetry axis (i.e., perpendicular to the 3x -axis). In numerical experiments, 
the distance 1.125d a , two material models PZT-4 and PZT-5H, and 

6 2

0 1 10 /N m    are employed. Three meshes adopted as shown in Figure 4.19 are 
used to investigate the convergence behavior of predicted results.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.18 (a) A pair of identical co-planar circular cracks in transversely isotropic, 
linear piezoelectric, infinite domain and (b) body under uniform remote tension 

33 0    
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Figure 4.19 Three meshes of penny-shaped crack used in numerical study; Mesh-1 
containing 16 elements with 8 crack-tip elements, Mesh-2 containing 64 elements 
with 16 crack-tip elements, and Mesh-3 containing 192 elements with 32 crack-tip 
elements   

Numerical results for the generalized T-stress 11T , 33T  and 13T  for the crack-B 
obtained from the three meshes are properly normalized and reported versus the 
angular position in Figures 4.20-4-22 for PZT-4 and PZT-5H. It is seen again from 
obtained results that solutions predicted by all meshes indicate the good agreement; 
results from the Mesh-3 are very close to those from the Mesh-2 but slightly 
different from those from the Mesh-1.  

To additionally explore the effect of the distance between the two circular 
cracks on the values of generalized T-stresses, various values of d  ranging from 
1.125a  to 1.5a  are considered. Numerical results for the generalized T-stresses 11T , 

33T  and 13T  for the crack-B obtained from the Mesh-3 are properly normalized and 
then reported in Figures 4.23-4-26 for PZT-4 and PZT-5H. The exact solution of an 
isolated penny-shaped crack under the same loading condition is also included in 
the plots. It is evident that the interaction of the two cracks is more significant when 

/d a  is close to 1 and it generally renders the generalized T-stresses non-uniform 
along the crack front. Clearly, more rapid variation of the generalized T-stress in the 
region where the crack fronts of the two cracks are relatively close is observed. 

 

Mesh-1 
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Mesh-2 
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Mesh-3 
(192 Elements) 
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Figure 4.20 Normalized 11T  for Crack-B in a pair of two identical co-planar circular 
cracks in linear piezoelectric infinite body under uniform remote tension

6 2

0 1 10 /N m   . Results are reported for PZT-4 and PZT-5H. 
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Figure 4.21 Normalized 33T  for Crack-B in a pair of two identical co-planar circular 
cracks in linear piezoelectric infinite body under uniform remote tension 

6 2

0 1 10 /N m   . Results are reported for PZT-4 and PZT-5H. 
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Figure 4.22 Normalized 13T  for Crack-B in a pair of two identical co-planar circular 
cracks in linear piezoelectric infinite body under uniform remote tension

6 2

0 1 10 /N m   . Results are reported for PZT-4. 
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Figure 4.23 Normalized 11T  for Crack-B in a pair of two identical co-planar circular 
cracks in linear piezoelectric infinite body under uniform remote tension 

6 2

0 1 10 /N m   . Varies distance between cracks. Results are reported for PZT-4 
and PZT-5H. 
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Figure 4.24 Normalized 33T  for Crack-B in a pair of two identical co-planar circular 
cracks in linear piezoelectric infinite body under uniform remote tension

6 2

0 1 10 /N m   . Varies distance between cracks. Results are reported for PZT-4 
and PZT-5H. 
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Figure 4.25 Normalized 13T  for Crack-B in a pair of two identical co-planar circular 
cracks in linear piezoelectric infinite body under uniform remote tension

6 2

0 1 10 /N m   . Varies distance between cracks. Results are reported for PZT-4. 
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Figure 4.26 Normalized 13T  for Crack-B in a pair of two identical co-planar circular 
cracks in linear piezoelectric infinite body under uniform remote tension 

6 2

0 1 10 /N m   . Varies distance between cracks. Results are reported for PZT-5H.  
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CHAPTER 5  

CONCLUSIONS AND REMARKS 

 
An efficient and accurate numerical procedure based primarily on the weakly singular 
boundary integral equation method has been successfully implemented for 
determining the generalized T-stresses of impermeable cracks in a three-dimensional, 
linear piezoelectric, infinite body. The technique has been established in a general 
context allowing both planar and non-planar cracks under arbitrarily distributed 
applied traction being treated. The completely regularized boundary integral 
equations for both the generalized displacements and generalized tractions have 
been used. This particular pair of boundary integral equations involves only weakly 
singular kernels allowing the interpretation of their values in the sense of Riemann 
and, in addition, requiring only continuous crack-face data for their validity. To solve 
the boundary integral equation for the generalized traction, the weakly singular 
symmetric Galerkin boundary element method (SGBEM) has been implemented to 
compute relative crack-face generalized displacements. To improve the 
computational efficiency, all involved kernels for generally anisotropic materials have 
been evaluated using the interpolation technique to reduce the massive calculations 
associated with the direct evaluation of line integrals. In addition, weakly singular 
integrals and nearly singular integrals resulting directly from the discretization have 
been evaluated numerically using a selected special quadrature scheme. Once all 
unknown functions on the surface of the crack have been solved, the generalized T-
stresses have been post-processed using the information of the gradient of the sum 
of the generalized displacement along the crack front.  
 From an extensive numerical study of various scenarios, the proposed 
technique has been found accurate, efficient, and robust for the analysis of the 
generalized T-stress of cracks in linear piezoelectric infinite bodies. The verification 
procedure via existing benchmark solutions has confirmed both the formulation and 
the implementation of the proposed technique. By using special elements along the 
crack boundary to model the near-tip relative crack-face generalized displacement, 
reasonably accurate results can be obtained using relatively coarse meshes. The 
capability of the proposed technique to model arbitrary shaped cracks (e.g., non-
planar cracks) and multiple cracks should be beneficial, as a computational tool, for 
performing full three-dimensional, piezoelectric fracture analysis.  
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 As a final remark, while the numerical technique has been implemented 
successfully and proved to yield highly accurate results for the generalized T-stress, 
the formulation and implementation are still restricted to impermeable cracks in 
infinite media. Extensions of the present development to treat cracks in a finite body 
and more complex boundary conditions such as semi-permeable and Landis-type 
models should be potentially useful since it enhances the capability of the 
developed technique to solve a larger class of boundary value problems. In addition, 
the current study focused primarily on the development of the computational 
procedure but use of the developed tool to explore the behavior and influence of 
various parameters on the generalized T-stress is still not complete and requires 
further investigation.        
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APPENDIX 
 

By post-processing the complete generalized stress field given by Chen et al. (2000) 
using the series expansion procedure, the generalized T-stress for a penny-shaped 
crack in a transversely isotropic, linear piezoelectric, infinite domain under the 
uniformly distributed normal traction 3 3 0t t     and uniformly distributed surface 
elastic charge 4 4 0t t d    is given explicitly by   
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where all involved parameters are completely defined in Chen et al. (2000).  
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