CHAPTER IV

THE APPROXIMATE DENSITY OF STATES

As discussed in previous chapter, in order to calculate the average propagator
(2.20), we shall approximate the propagator with the help of the constructed trial
action (3.12). The approximation which we will use is the first order cumulant
expansion (Kubo, 1962). Let us first introduce a path integral average with respect to

the trial action S,[x(7 }} by

ID(x(*t ) o cxp[ Solx(z )]]

° I D(x(z )) exp[ S,Ix(t )]}

. (4.1)

where 0 denotes a2 function to be averaged function. Accordingly, the average

propagator can be rewritten as

K(xz,x,,r,o ID(x('r)) exp[ (S So)+;S:|

= Ky(x,, )3t 0)<exp —(5~5, )> 4.2)

]

where X, is the trial propagator, (3.23), The equation (4.2) for the average propagator

still is and exact expression but it still cannot be solved. The cumulant expansion,
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(cxp[a]) cxp[(a)+ (( ) (a)z)—-—(( ) 3(a2>(a)+2(a)3)+---], (4.3)

to first order allows us the approximate propagator,

K (x,.x,;300) = K,(x,,x,5¢, 0) cxp[h (5 ~8,) ] : 4.4)

where the index 1 denotes the first order approximation. Since the kinetic energy

terms of both actions are identical, then the exponent (f -8, ) , can be replaced by

(S_ f e sg) o» Where the prime symbol means excluding the kinetic energy term. That is,

Ki(x,.x,50.0) = Ky(x,,x,:1.0) cxp[-%—(§'—S;>n]. (4.5)

Since the trial propagator K, has been already carried out, the remaining work is to

evaluate (§°), and (sg)o.
By substituting § from (2.21), the path integral average of S’ is expressed as
(59, =-nVt+ —jdr_[ do W(x(r)~ x(a))) (4.6)

where W(x{(t)-x{(c)) is given by (2.22) and (2.23) for Gaussian and screened
Coulomb potentials, respectively. To find the average of the autocorrelation function,

we shall use its Fourier integral. The Fourier transforms of the Gaussian and screened

Coulomb autocorrelation functions are given below respectively;




W(x(z)-x(0)) = [ = Gy W) explk-(x(7 ) ~x(0))],

where W(k) is the Fourier transform of the autocorrelation function.

1
W(k) = u* exp[-—zlsz],

and
Z'%'  (4n)’
wik)= 7 -
€, (k*+0?)
Inserting (4.7) into (4.6),

(3" Y ﬁ—nVr+—nJ-er.doI W(k)(exp[ik (X(T)—X(O'))]) .

2hn

——nw+~—-j'drj'doj( o s W(k) explik-A ~k’8 %],

where

and

A ={x(t)=x(a )},

= %[%((X(T )- x(cr))2>0 —{x(7)- x(a));) :
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4.7

4.8)

4.9)

4.10)

(4.11)

(4.12)

(4.13)
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The last equation (4.11) is the cumulant expansion of (4.10) by using the reason that

only the first two cumulant functions are non-zero because Sy is quadratic. For a

Gaussian case, putting (4.8) into (4.11) and applying the Gaussian integration formula

(3.8) for each Cartesian component of k-integration, we get
- I P A% A
S} =-nVt+—(4n)*nu? [dr da[s +—) expl ————=|.  (4.14)
(5 | 2h ! ! 4 4(5 +1;.)
In the case of the screened Coulomb potential, the extra transformation,
a

7= [dx x expl-ax], 4.15)
0

is employed. The expression like (4.14) is obtained, except the extra integration,

2
nZ*®

84 1 ! - :21 _ A _ )
802 !dt_!do_!dyy (5 +y) cxp[ —-——4(5 +y) 4] y:|.

S
(§)= nV:+2n2JE
(4.16)

Note that we have interchanged the order of integrations in (4.16) and carried out in

the manner as the Gaussian case.

Now, consider the average of the trial action, we have

cosa(ttr—|r-al)
sinta ¢ '

(S2), = —%mj drjda <|x(r )—1r|:(cr)|2)0 4.17)

Because of the symmetry under interchanging between 7 and o of Sy . above

equation can be written as
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(85, = —i—m_:[df:[dc ((xtx )-x(a))’)°»°°sws(ii;£_ d 4.18)

Here, the approximate propagator can be obtained by (4.5), (4.14) or (4.16), and
(4.18), however, the terms such as A, B , and ((x(r)—x(c))2>oa.rc not solved

explicitly yet. These terms will be determined in next section.
DETAILED CALCULATIONS

Let us begin with calculating A , B , and ((X(T )-x(a))z)o. We can see that

all these terms consists of at most two average types, namely (x(r)), and

{x(t )-x(a))o. The method used to obtain these two average govern with the so-called

generating functional (Feynman and Hibbs, 1965). If the action S is Gaussian then the
action §7 =S+I f(t)x(tr)dr s also Gaussian. As discussed in chapter I, the

path integrals of these actions can be written in the form (3.10) so that

(cxp[j dr f (’r)x(‘:)]) = exp[-;;!(sc{ -$, )] , (4.19)

where ( ) denotes the path integral average with respect to S. Differentiating both

sides of (4.19) with respect to f and set f =0, we have

L
8f(c) |

(xlz))= (4.20)
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If we continue differentiating (4.19) and set S =0, the successive moments will come

out, for example,

R 878 58! 85§
(+le)x(a)) = [ 57 )81) 5] 5f(:)] *.21)

In our problem, the action § should be the trial action Sy, 50 that the action §7 is the

forced trial action S .

Using the forced classical trial action S;, from (3.23), the first and second

functional derivatives can be obtained:

6 Sl:,d
5 f('r)

p cosiv(t— 'c)sm,w ur
m  siniw Y

I — 1 -
+xl(£sm,v(r 'r)cos,w+p(t r)] “422)

m siniwr M

and

5%8s A s o 2,u s:nlv(t =1)sind vocosi v(r=0) ;.L(t ~7)o
5t(1)5f(o) ). mv sind v mMy

mty sind v mMt

Y H(— a)( 24 sin3 Wt —0)sin vreosiv(r - a)+u(t 0')1'}]’ .

4.25)

where H is the Heaviside step function. Putting (4.22) and (4.23) into (4.20) and

(4.21), we get
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M costv{t —7)sindvr ur
(x(r))ozx,(m z sintvr 2 +;r

i1 _ 1 -~
+x!(-y~ sini v(r T)COSzVT+F(‘ T)J, (4.24)

m sindwr Mt

and, for 7 >0,

2u sindv(t - 1) sind vocostv(r — o) p(t—r)o
(x('r)-x(a)) H3h( iy sind v mMt J

+(x(1)), + (x(0)), (4.25)

and, for 7 <o,

2

24 sintv(t—o)sindvrcosivit - o) p(t o)t
(x(r)—x(o)) h(m v sini vt mMt )

+(x(1)), -(x(a)),. (4.26)

It can be easily obtained by inserting (4.2_4) into (4.12) that .

_( u singv{t - o)cost vit-(t+0)) u(r-o)
A—(m . siniwt * Mt (xz-xl)- 4.27)

For B and ((x(z' ) —x(o))z)o, we must separately substitute for 7 >0 and 7 <o

cases, (4.25) and (4.26), into the new forms of them:

(( (1)), - 2x(7) - x(0)), +{x*(0)), - (x(2)}; +2(x(x)), - (x(0)), - (x(c))?),

(4.28)
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and
((x(2)- x(cr))’)o = (x*(2)), - 2{x(2)-x(0)), + (x*(0)),. (4.29)
Note that, in (4.28), we have set
(x(z)~xlo))s = (x(r )-x(0)); (4.30)

because of the directional symmetry of the system. Now, we are able to write down 5

and ((x(z)-x(0))")_as

p(sm,vl'r olsintv(t -z - crl) (t~|z - o)z -0l

B =ih*
m mvysini vt Mt

], 4.31)

and

(xte)-xto)’), =gin: [vl —aisinit~fe=o)) _(i~lr~ol)e- aIJ

mvsini vt o 2Mr

1 +0C ~0)Y
[:’1‘ siniv(r~ alf:iwv( —(r+0)) +#(TMt°')J (X:-xn)z- (4.32)

It is worth to.note that B has the following property

Blr-cl)=B(-lt-0c)). (4.33)

According to the last two sections, it can be concluded the approximate density

of states defined by (4.5) has a translational symmetry. This means that the formula
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for calculating it is given by (2.33) in which only the diagonal element of the
propagator is governed with. Combining (4.5), (4.14) or (4.16), (4.18), (4.27), (4.31),

and (4.33) with the condition x, =x_, the approximate density of states can be written

as
4 3
1 ¥ m \!(vsintex
AlE)= 21rﬁ;!_dt (27::‘&: ) [msin-}vz]
i —  3ufl t 1
c!(pl:h(E—ﬂV)l‘+2'”1(2\/1‘(.‘.0“’2—1)---2;lz []:I, (4.34)
where

'Y . T r2 2
[])= 6,_(-%—-) ‘!dr{do‘ (LT +B ) ; for a Gaussian case,

»-» ¢ t -
[. . ] = ga %Idy exp[—‘ Q? y]j d'tj'da (y +B )1A ; for a screened Coulomb case,
[+] 0 (1]

nu’ 2n nZ’e*

——3, § =——— and B is given by (4.31). When the second
(m?) Q¢

component is derived from directly integrating the trial action term. Based on the

and § =

property (4.33), the double-time integration can be reduced to a single integration as

following,

] ]

Jax[aole (- of)+C)7 = dex(ﬁ x)+c)?. (4.35)

0 0

T196£2F9
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1
In a low-lying energy tail, suppose that v is large and y = ("Hr-n M) is very

small which is called the “full-ground-state” approximation. Hence, we are able to

approximate

sintvxsind v(r ~x)

1

= f 3
sini vt 2i (4.36)
sinlmt"l t 4.37)

29" S M '
i l _3" 8i 3 t (4.38)

sm2w ==8iexpl ~iZv1/, .

1 1 i '

- —vt=l=—vr. 4,39
2vrcot2vr 2v (4.39)

By using (4.36) and keeping the terms up to ¢* only, (4.35) can be integrated (Jeffrey,

- 1995) giving
:1
¢t #_(M1-7) Y
!dr !da(ﬁ (e-of)+c)* = [——2-’;—‘—,—— +C| 7, (4.40)

Applying (4.37), (4.38), (4.39) and (4.40), the expression for the density of states

becomes

p,(E)= ﬁ(%)i(%)sidt (ir)§ cxp[%(E—nV—%E, +%E,(l— ‘r’))t - ﬁ’r’] ,

(4.41)
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where

| Ey(1- 2E,(1~y? ‘
= ‘/iz gacxp[_a(w 4 )]D.;[ : QSE Y )];fm the screened Coulomb case.
NT v /

2 22

R
m and EQ= m are used

In (4.40), the following variables E, =hv, E, =

and D, (z) is the parabolic cylinder function. In addition, the formula (Gradshteyn and

Ryzhik, 1965),

- "v“"l'

Idx X (x+ﬂ) exp[yx] 24 ‘I"(v)y cxp[ﬂ‘u] D, (W ) 4.42)

0

has been used for calculating B in a screened Coulomb case, With the aid of the

 identity,

Idx (ix)” expf— B?x* ~igx] = 2’~/_ﬂ-vlexp[ Sﬁ] [‘“J‘—q"ﬁ], (4.43)

we have

p,(E)= 2J_h J(zzh)g(i')sﬁ?exp[-(Ehnv-%;'z;fa(l—yz))].

<D E-nV-3E,+3E,(1-7)
’ % — m .

@.44)
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Here, the density of states can be written down in the form which is obtained

by Sa-yakanit et al. (1982). For the Gaussian case,

puln:5) = gl L xx))exp[ (n; ”)]D%( b(n;x,x,)}f

EE% b (n;xx 4¢;

& , nV-E E, E,
g1 T, " *TE, ~E,

where & =

When the two dimensionless functions are defined by

. % 3 3
a(n;x,x )=@x—3x +n) J';:[ :) (4.46)

and

)
3 3 24N
b(ﬂ;x,x')=(5x-zx'+n) (l+;‘;) . (4.47)

For the screened Coulomb case,

p(n;2.2)= E &% b (n ,z,z)xP 45

Q' aln;znz) {(nu)]D{b_(ﬂL_,Z')

V-E 2E 2E
Whe[Q%:%i-,TF:nEQ y 2= —-g—andz= g
Q




39

The two dimensionless functions are given by

a(n ;z z')=£z"[3z'l --Ezc"‘zc'2 +11J‘:1 ex =2” D73 (z") (4.49)
34y SJE 2 P 2 -3 Z . K
and
T _ 3 — 2 — _ ,
b(n ;z,z')=2i—ﬁ(3z 2 — ‘z ’+n] cxp[ : ]D_;(z ). (4.50)

In the deep-tail approximation, we can consider this limit by two methods: one
is obtained by fixing the fluctuation strength£&’ and limiting E — = and another is by
keeping E constant and limiting £’ — 0. We shall use the first method relying on the

asymptotic behaviour of the parabolic-cylinder function,

Our two density of states have the same forms with those derived by Halperin and Lax

(1966,1967) and Sa-yakanit (1979). The density of states of both cases are

g ) -b(n;x,x*
P.(n3xx)="praln;xx )exp[—(g—g,*—)] (4.52)
L>L L

and
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_b by A !
p.(n:z.2)= Ef&é’ a(n ;z,z’)exp[-—-(g—gézd]. (4.53)

Note that g and d denote the “full-ground-state” and the “deep-tail” approximations,

respectively.
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