CHAPTER 1III

A VARIATIONAL METHOD

OVERVIEW

In general, a lot of path integrals cannot be integrated out and this problem is
one in this case. Then an approximation method is needed inevitably. The most widely
used methods in path integral formalism are perturbation and variational methods.

Since this problem is not a perturbative-type problem, we shall choose a variational

method,

The concept of this method is that the appropriate trial action with
parameter(s) can be adjusted such that the required path integral can be obtained with
- high accuracy. There are two criteria that tell the chosen trial action suitable or not.
First, the path integral of this action should be carried out easily and exactly. Second,

the physical meaning of the “real” and trial action must be likely.

Of course, the last step of this method is to adjust the parameter(s). In doing
this, it must have a rule or principle which enable us to find out the appropriate value
of parameter(s). This is known as a variational principle. The discussion about the

principle could not be considered yet in this chapter.

In this chaptcf, we shall construct a trial action from the model proposed first

by Samathiyakanit (1974), which is similar to that of Feynman used in the polaron
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problem. Then the path integrals will be performed within the first cumulant
approximation by using the constructed trial action in next chapter. Two variational

principles will be considered in chapter V.
CONSTRUCTING A TRIAL ACTION

First, we shall model a system which is called a .“two-particle” system. Here
after, as we regard this system, it will mean a system of an electron and a fictitious
particle ‘where the mutual interaction is proportional to a distance between them
squared, as well as the position of the fictitious particle at the beginning and end time

are coincident.

The Lagrangian of this system can be written as
b, | CET 1 2
Ly =i’ (e} = My (z) +xcix(r) - y(o) 3.1

where the electron of mass m is at position x(7), the fictitious particle of mass M is

at position y(t), and « is the force constant. Then the two-particle propagator is

K, (xz X Yos Yook !0) = _[ D (X(T))J. D (y('r))exp[— % S, [x('r), Y(f)]] ’ (3.2)

I
where 8,[x(t),y(r)] is the two-particle action, §, = J Ldrt.
0

We now tumn to regard of a mode! for constructing a trial action. In this model,
we suppose that the propagator of the trial action is proportional to the summation

over all the fictitious particie’s positions of the two-particle propagator.
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That is,
Ky(x,,%,31,0) = _[ D(x(‘t))cxp[— % ﬂ[x(1')]]

= A_[dyoKo (x;.%, +Yo,¥oi1.0), (3.3)

where §,,K, are the trial action and its propagator, respectively, and A is the
proportional constant. By substituting the two-particle propagator from (3.2) in (3.3)

and interchanging the order of integration between x(t)and ¥o, We get

exp[":; Ss [X(f)]] = A dyofD(y(r))exp[% S,[x(1), y(r)]]. (3.4)

Reconsider the two-particle Lagrangian (3.1). Expand the interaction term, we

have
L =3mC @+ R @4 MO s M (@ (e, 6

Since the exponential of the first two terms can be moved out from both y, and y(z)-
integrations in (3.4) then the path summation of y(t) can be performed easily. The

relation (3.4) becomes
i Mo Yt Titf1 1.
expli;; S, [x(r)]:l = A(m) exp ;!(me (r) +-2- Mx (1.')) dt

Jay, exp[;';SE:“'“(yo,r)], (3.6)
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where

S5 M yot)=-

. Yo , 1 1
2y? = —alt—
i t[ Yosin' o Mo ') 2mtcoszw(t 27)

1 4 [
+ W!d‘:‘! do x*x(t)-x(o)sinw(t - o) sin ax:r] , 3.7
is the classical action of a “forced” harmonic oscillator between (yo,t) and (yo,O),
K
2
and @ I,

The y,-integration is a Gaussian type in three dimensions so it can be

integrated by using the well-known formula,

- 2
Iexp[— ax?® +bx) dx = E exp[z—a] ' (3.8)

The result is

%
f d.vocxp[h SBe(y, )] (ﬂ%ﬁ&‘] exp[—--_[ dcjdax(r) x(o)

><cosa)(,t =lr~ 01)] (39)

smzwt

Substituting (3.9) into (3.6), we have
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cxp[-:; 30 [x(z )]] = A(Zi sin-;-a) r)-l exp[%_j:dr (%mx’ (1)

—lm}j‘daIx(‘r)—x(cr]2 cosal} |z - of) 3.1
8 1 sintawt -(3.10)

Therefore, if

1 3
A=(2isin5a)rJ - (3.11)

then

S,[x(z)}= ;fdr [—;—mi:’ (r)~ %middx(f )-x(o )‘2 cosms(il;ﬁ = GDJ -. (3.12)

It is advantageous to consider work adding due to a force acting on the electron
into the two-particle Lagrangian,

_H‘ =-;—mi’(r)+%n’(f)+f(r)-x(f)+-—21-My’(r)+%xy’(r)+xx(*r)-ﬂf),

(3.13)

which is called a forced two-particle Lagrangian. Since the added term does not
depend on the fictitious particle’s coordinates, it is easy to verify that the trial action
obtained using this Lagrangian is different from our trial action only the time integral

of the forced term. In notations,
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S5 [x(7)])= 8, [x(7)])+ jdr f(r)-x(r), (3.14)

Where S; is the forced trial action resulting from the contributions of the forced two-

particle systems. From a hint of this equation, we can conversely find the trial action

by setting £ = 0 in the expression of the forced one.

THE TRIAL PROPAGATOR

In order to calculate the propagator of the trial system which is represented by
the trial action (3.12), we shéll follow the standard method. The method begins with
expanding all possible paths around the classical one. This makes us enable to
separate the path integral into two parts: one is the classical contribution and the other
is the fluctuation or quantum contribution called the prefactor or multiplicative factor.
In certain systems, the prefactor depends only on the flight time. Hence, such a
propagator can be written as

K(x,,x,:1.0)= F(r)cxp[% Sc,(x,,x,;r,O)] ’ (3.15)

where S, is the classical action, F the prefactor.

Since the trial action is derived from the two-particle propagator, (3.3).
Finding the classical trial action through the classical two-particle action is also

possible. The transformation is then given by using (3.3) and (3.15),
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Fo(‘)exP[So.a (xz Xy ;t,O)] = A_[d)'on(t)exp[';Isz.d(xz X, JoJo;rvO)] » (3.16)

where the index 0 and 2 are referred as belonging to the trial and two-particle systems.

Based on the last section note, if we change the classical action and prefactor
of a two-particle system to those of its corresponding forced system, each trial term

will be replaced by the corresponding forced trial term. That s,

K (xz 23 ;I,O) =F, (r)cxP[';;'S;.d (xz 1 X, ;tao)]

i
= AJ‘dyoF; (r)exp[‘gszf'd(xz X, ,yo,yo;r,O)] . (3.17)

Along this line, we are able to get the wanted trial propagator in alternative way,
beginning at a different point. Because we will have to use the classical forced trial
action, hence, the chosen calculation reduces our task greatly. In other words, rather
than finding both S,, and S, obtainiﬁg only S;, is enough. Therefore the

following consideration will be focused on the classical forced two-particle action and

its prefactor.

As you know, the classical action is the action which its path satisfies the
Hamilton’s principle. On the other hand, the classical trajectory must obey a set of

Lagrangian’s equations,

JdL d{JL
;;-;[5;)-0- G-19)
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It is obviously seen that the equations of motion are a set of coupled equations which
is not easy to solve. Such a problem was attacked by transforming the Lagrangian into

the center of mass coordinate system. The transformations are given by

r?x_y, (3.19&)
T m+M (3.19b)
my=m+M, (3.19¢)
mM
and pmm+M. (3.194)

Now, the Lagrangian (3.13) becomes
1 ., 1l -, H 1 2
Sut (r)+—2—xr (r)+;f('r)-r(r)+5m°R (z)+£(1)-R(z).

In this way, this can be interpreted that there are two non-interacting forced harmonic

f(r)

X
oscillators: one of mass p has frequency (%J and is acted by force £ , but the

other has mass my, no frequency, and is acted by force £(7). With the help of above
interpretation, the classical action then can be obtained easily. The result is

r K

e T asinwvt

2x,
l:(x,2 +X2)cosvt ~ 2%, - X, +-”:2’--de f(7)sinv(r)
]

2 ‘ 2 ' T
+7n%"!dr £(7 )sinv(zr - v)- —F _!dr!daf(f )-£(o )sinv(s - 7)sin va]
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+ m’
2myt

2 mX, | mx,
X, -x,) +—=-|dtf(t)r +—= Jdtf(z )t -1
=)+ [aet(eye + T [ann(e o)

_—mi?i'dridaf(r)-f(a)(t—f)ﬂ ﬂ::" ! drf(z)

4 . a1 4¥, | .1
_2sinvt[4sm Evr(yf, -¥o-(x, +x,))+7n~—3--~‘!d1'f(r)sm-2-wcosv(r—2*r)],
(3.20)-

and

% X%
Fl' = ﬂv ] [ mﬂ J .
2 [2m'hsinw 2wih ) (3.21)

where v? -; Substituting A, S, ,, F; from (3.11), (3.20), and (3.21), respectively,

into (3.17) and performing y,-integration, we have

Ef _( m Jx vsindax ) - (3'22)
* “larint ) \wsindwr '

and

Hv H 2
SIAE [Tcot-'-w + 2_1\7J( ~x,)

siniwvt mt

.+x Idrf( )(pcoszv(r —-7)sind vt #7)

! - _l_ -
+x,-Idrf(1’ (# sind v(r l'r)cos v u r)]
0 m Sll'l vi mt
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.._Idrjdaf(r). f(a)[_mﬁ_;_d_g_—t_f)g

(3.23)

. 2u sin}v{t—1)sintvocosiv{r—1)
mly sinivr '

By setting £ = 0 in the forced trial pfopagator, then it will change to be the trial one.

So, the trial propagator can be written as

X(o o 1\
Ko(xzsxlif,()):( m ] (vsm,axj

2rift) \ wsiniwvr

exp[%{(%cot%w +2Ln5;)(x, - X, ):l H . (3.29)

Remark that this propagator has the translational symmetry.
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