CHAPTER I

A HEAVILY DOPED SEMICONDUCTOR MODEL |

A MODELLED HAMIL TONIAN

Starting from the “first principle” and the effective mass approximation, the

Hamiltonian of a heavily doped semiconductor can be written as
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where x,x’ are the positions of an electron and of an impurity, respectively, m is the

effective mass of an electron moving in a pure semiconductor, ¢, the dielectric

constant of a pure semiconductor, and Z an atomic number of impurity. Note that, for
simplicity, oﬁly one kind of imburities is doped into a senﬁcondﬁctor randomly. Of‘
course, this Hamiltonian is a reduced form of the full many-body Hamiltonian under
the Born-Oppenheimer approximation. Wolff (1962) tried to work out this problem
within. a lowest-order perturbation theory. It -is found that the- electron-electron
interactions are to screen the electron-impurity interactions. and shift the conduction
band nearly rigid downward. In fact, there is a band tail due to the electron-electron
interactions, but it is small ( Berggren and Sernelius, 1981). Since we are interested in

the band tailing, the one electron- approximation, neglecting the electron-electron



8

interactions, is sufficient for the following discussions. That is, only the randomness

of doping impurities, not the many-body one, shall be studied.

From above discussion, we can say that a heavily doped semiconductor should
be modelled as a system of an electron moving in a large number of impurities. The

one-clectron Hamiltonian can then be written as

H= %mi’ +iv(x-x,’), (2.2)

im]

where N is a number of impurities. This Hamiltonian seems very simple but it
provides us sufficient information. Two types of potentials v(x—x’) seen by an

electron due to an impurity at point x’ are considered; one is the Gaussian potential

given by

vix=x) =ulm1?)™® exp[— I ';f 1 ] 2.3)

and another is the screened Coulomb one,
—X)= ‘_"—_2 u | < |
vix—x")= exp|— Qx ~x||. (2.4)
( £, |x - x’] p[ ] :

When & is a parameter for preserving a dimension of a potential and 7, Q™' are the
Gaussian and Coulomb screening lengths. We shall assume further that the doping

concentration is very large (n — =) and the potential is weak (v — 0) so that nv?is

finite.



A PATH-INTERGRAL FORMALISM

About fifty years ago, Feynman (1948) invented a new formulation for
quantum mechanics called path integrals. This formalism was motivated by the paper
of Dirac (1945) entitled “On The ‘Analogy Between Classical and Quantum
Mechanics”. Rather than beginning witﬁ the Hamiltonian of a system, the i..agrangia.n

is considered instead which allows us not involve to the commutation relations. The
foundation concept is the amplitude, ®[x(z)], of a system moving along any path
equal to the exponential of the phase of that path, where the phase is the ratio of the
action, S[x(7)), along the path and Planck’s constant. In notations

O[x(1)] = exp[if[—x;f—)l]. (2.5)

Then we can define a propagator, which is an amplitude for a system going
from one point to another point during a finite time, as a sum of ¢[x(r)] over all

possible paths. That is,

K(x,x;00)= 1 X0 1@fx(e)], 26

afl possible paths

where K is the propagator. Since the summation over all possible paths is not a
precise mathematical definition, thus a path integral is introduced. For a propagator,

we can write down its expression, using a path integral, as

K(x,.x,;1,0)= [ D(x(r)) exp[% S[x(z )]]. Q.7
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For more about path integrals, Feynman and Hibbs’ book (1965} is the best one which

gives us rather complete knowledge.

Now, we shall turn back to our problem. According to the last model, (2.4), the -

Lagrangian of our system is

1

N 3
L=Emzv‘c2 —Zv(x-x;). 2.8)
f=l

Using a path integral formalism, the propagator can be written as

K(x,,%,;1.0,[x']) = [ D(x(r)) cxp[%jdr [%m:z’ - iv(x—x,’))], 2.9)

=1

where [x’] is a set of positions of impurities. From this propagator, the system
properties obviously depend on a configuration of impurities which is random. But in
pracﬁcc we measure these quantities many times on the identical prepared system. It
should be the average value, instead of the particular one, that will be obtained from
the measurements. Kohn and Luttinger (1957) have shown that in general we can
substitute the specific value of any function by its ensemble average provided that the

impurities are truly independent.

Follow the foregoing ‘discussion, we shall define the average propagator
K (x,,x,;r,O) as the sum over all configurations of the specific propagator
K(x;,x,;r,o; [x']) weighted with the probability P((x’]) that the system having the

configuration [x’]. The average propagator can be expressed mathematically by
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Ki.x10)= Y P(X]) K(x,.x;60; [x]), (2.10)

all configurasions

where K(x2 X380 [x']) is given by (2.9). Suppose that the impurities are completely

random or uniformly distributed, we have
]' ’ r
P([x') d[x')= TN ax(dxl (2.11)

where V is the volume of a semiconductor, Consequently,

ff(xl,xz;r,o)=_[D(x(r))cx;{%_!dr -%m:‘x’]{_[%cx;{—-:; ! drv(x-x) ]} :

(2.12)

Now, consider the term inside the curly braces of (2.12), putting in a new

form, as
I-%x—exp[—-;; _!d'r v(x —x’) ] =1 +_I%[cxp[—-;-{ !dr v(x - x')] - IJ . (2.13)
Applying the identity,
N
| a aN
31_11_1.{1+V} —exp[ v ], (2.14)

and (2.13) into the last term of (2,12), this is reduced to
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{j% exp[——;- _;[dr v(x —x’) ]}N = exp[nf dX{exp[-;i' ! drv(x-x’) ]- IH

(2.15)

N : : :
where n=r s the impurity concentration. Then expanding the exponential

exponent in Taylor series, since - =, v - Oso that nv? is finite, we keep up terms

to the second power of v(x—x’). The average propagator (2.12) becomes
— . ) 1 :
E(x,,x, 11,0)= _[D(x(r))cxp[%(jdt E-m:i:’ - n_[dt_[dx’v(x -x’)
0 0

+%- njdr Ida_[dx’ v(x(7) - x’) (x(o) - x’)]], (2.16)

Note that the assumption we used above allows us completely describe the system by
the first and second moments of the potential. That is , the distribution of a potential is
. the Gaussian or normal distribution. This means that a system of an electron moving
in weak and dense impurities is equivalcnt to moving in the Gaussian random

potential.

We shall define the average potential energy V' and the autocorrelation

function W(x(7) —x(0)) as following;

V=[ax vix-x), 2.17)

and
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W(x(t) - x(0)) = [ dx vix(r) = x) v(x(o) - x) , (2.18)

The autocorrelation function is an important function which tells us the effect of a
potential at one point on a potential at another point. If the potential at any two points
are uncorrelated then we shall call the Gaussian-white-noise random potential. The

autocorrelation function of this potential is given by
W(x(t)-x(0)} =D & (x(z) - x(c)), (2.19)

where D is a constant. By using these two functions, the average propagator can be

written as

K(x;,x,;1,0) = Ip(x(f)) expl:-;;~ §[x(r)]:| , (2.20)

where

= i JE—
Six(z)] = Idr [Em:‘:’ -nV +%n]do-w(x(r)-x(a))]. {221
b 0 0
This trial action is sometimes called “two-time” trial action, It seems that the system
can be viewed as an electron moving in the average potential with a “memory” effect.

For two cases of potentials in which we are interested, the autocorrelation functions

have the forms

W(x(r)-x(c)) = u*(n I’ )"‘ cxp[-—- M} (2.22)
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and

2 exl- olx(z)~x()], (2.23)

W(x(z)-x(0)) = 2’;, 0

for the Gaussian and screened Coulomb cases, respectively. When L is the new

Gaussian screening length, I? =2/°,
D Y T

The density of states p (E) (see Omar, 1975) can be defined by

p (E) dE = a number of states between an energy interval E and E+dE

per unit volume. (2.24)

This definition gives us a qualitative picture of the density of states, but does not
explicitly express the formula for calculation. The usual formula for the density of
states is concerned with the number-of-state function N(E), which provides a number
of states having an energy less than or equal to E,

dN(E)

p(E)= Fagh (2.25)

Another formula which is directly related to the energy eigenvalue E, of the

eigenstate ¢, can be written as

1
p(E) =725(E-— E,), (2.26)
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where § is the Dirac delta function.

In our work, it is easy to use the formula (2.26) since the Dirac delta function
can be expressed in terms of the transformed propagator. With the energy expansion

formula of the propagator (Feynman and Hibbs, 1965; Sakurai, 1985),

Kxig)= Bok)ab)oo-Z2). ez

we have

Tr K(sixit0)= Se p[ 'E’] (2.28)

where Tr denotes the trace. Then taking a Fourier transform of both sides of (2.28),

the result is
iEt

_[d:Ter,,x,,ro) cxp[h] 2nh25(£ E). (229

Note that the identities,
1 g )
= — jax] dx 2.30

§la)=—— j expliax] (2.30)

and

5 [%) =b8(a), 2.31)
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is used in the derivation of (2.29). Now the required relation between the density of

states and the propagator is obtained by comparing (2.26) and (2.29), we have

p(E)=— j dt Tr K(x,,x,:1,0) cxp[ E’] (2.32)

For the heavily doped semiconductor, as already regarded, the propagator in (2.32)
must be the average propagator (2.20) instead. That is, the density of states of our

problem has 2 following form,

117 iEt
p(E) ='—EV_I, dt Tr K(x,,x,;1,0) cxp[ n] (2.33)

From (2.32), it can be concluded that, in general, the density of states depends
on the volume of a system, This dependence will be absent in certain systems. Such a

system has the property
K(XZA’xl;t’0)= K(xz _xl;tro)’ : : : (2.34)
which is the translational symmetry. The density of states (2.32) then becomes

1 % iE
p (E)=-21r_h_'[dt K(xz,x,;t,o) cxp[-'—#]. : (2.35)

For our propagator, we shall find that it satisfies the property (2.34) since we have

averaged it over all configurations.
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