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CHAPTER I

INTRODUCTION
1.1 Introduction

The emergence of grid technologies provides efficient resource sharing and prob-
lem solving environments in worldwide collaborations. The power of grid computing
can overcome the complex problems which were difficult to solve using conventional
technologies. The main idea of grid is to allow resource owners to share their resources
to other users with individual access right.

The data grid, the grid technology that enhances high performance data manage-
ment features, initiated in order to deal with the grid-enabled data intensive computing
such as High Energy Physics, Climate Simulations, and Bioinformatical Engineering.
Typically, the data grid systems have to manipulate large-scale data ranging from gi-
gabytes to petabytes. There are several projects that deploy data grid infrastructure to
solve specific problem for example, GriPhyn[1] and PPDG[2] for physics experiment,
Information Power Grid[3] for aerospace computation, and EuDataGrid[4] for High
Energy Physics. In addition, open data grid middlewares are initiated in order to facil-
itate grid infrastructures and services to users such as Storage Resource Broker[5] and
Globus Toolkits[6].

The high volume of data and users which are dispersed throughout the world
makes data management in grid environments complex and nontrivial. Moreover,
high latency network and large data sets produced by applications in the data grid
environment can put heavy burden on network resources and cause applications to spend
longer times to finish. The emerging contributions mostly involve data replication for
the grid environment such as replica creation, placement or elimination. But in some
certain situations, data replication may not be effective. One of such scenarios is the
system having inadequate disk spaces to store the entire replica on each computing node
which makes replication less feasible, especially huge data replication. Furthermore,
replication for large file consumes disk spaces on the destination node, even if that
such node uses only a few records of such data.

Data caching is one of the techniques that can improve the efficiency of data
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usages in the distributed environment by storing popular data on the places closed
to the clients. It is quite obvious that caching can reduce the bandwidth usages
and minimize access latencies[7]. Although there are many studying of caching in
grid environment, the study focused mostly on replacement policy[8, 9, 10]. Thus,
the behaviors and the effects of data caching in grid environment is still relatively
unknown.

In order to utilize effective caching mechanisms that can be use in real data grid
environment, the study of caching behavior in data grid have to be performed and
validated. This thesis aims to study the behavior of caching in data grid, especially
in block-based caching approach which can outperform the other approaches in theirs
space utilization ability. The study bases on grid simulations which used Grid Data-
farm’s data accessing characteristics as a data grid model. The result from this study
can be used as a baseline for implementing feasible data grid caching in the future.

1.2 Objective

The main objective this work is to evaluate data caching in the data grid including
its behavior and performance characteristics. In addition, our study emphasizes on space
utilization in grid caching mechanisms. This will provide us insight on the effectiveness
of cache space usage, especially when we use the block-based caching scheme.

1.3 Scope of this Work

1. This work proposes the framework for block-based data cache model for data
grid environment.

2. The basic assumptions describe in Chapter 4 will be appled throughout this work.

3. The Simulation will be performed using Network Simulator (NS-2).

1.4 Research Process

1. Study background theories in the field of grid computing, data grid, data repli-
cation, data caching, and conventional web caching.

2. Perform literature survey in the relevant fields.

3. Design and develop the simulation framework for the experiments.



3

4. Conduct experiments to evaluate the performance.

5. Validate and summarize the simulation results.

6. Write Thesis.

1.5 Benefits

1. Provide framework to implement block-based data caching.

2. Evaluate the performance of block-based data caching.

1.6 Organization of the Thesis

In the next chapter, the background theory and related work included in this
thesis are described. The concepts regarding conventional and block-based data cache
are represented in Chapter 3. Chapter 4 demonstrates the detailed implementation of
the block-based data cache and simulation framework for performance evaluation. The
experiments are explained in Chapter 5. Finally, we provide the conclusion and the
future works in Chapter 6.

1.7 Paper Publication

Our works related to this thesis have been published twice as followed:

1. The Performance Evaluation of Block-Based Data Caching in Data Grid En-
vironment, The 9th Annual National Symposium on Computational Science and
Engineering, Bangkok, Thailand, 23-25 March 2005.

2. Block-based Grid Caching in Grid Datafarm, The 8th Internation Conference
on Advanced Communication Technology, Phoenix Park, Korea, 20-22 February,
2006.
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BACKGROUND THEORY AND RELATED WORK
2.1 Background Theory

2.1.1 Grid Computing

Grid computing[11] is one of the emerging technologies in this decade. It is a
system which for a large-scale resource sharing, and high-performance application. It
was originally proposed for the advanced science and engineering efforts.

At present, the Grid concept is applied for the challenge concerning coordinated
resource sharing and problem solving in dynamic, multi-institutional virtual organi-
zations. There are two interesting words in these emphasized phases. First, the term
‘resource sharing’, which includes only the data exchange in most conventional dis-
tributed system, covers diverse resources involving direct access to computer, software,
sensor, and many more. Next, the term ‘virtual organizations’ is a set of individual
or organizational units that define contracts of sharing for one another. Such rules
are strictly controlled and have clearly definitions about permission to producers and
consumers; for instance, the rule shows that who can share resources and the limitation
of sharing in those resources.

Organization A

Organization B

Organization C

Group A

Group B

Local Area Network (LAN)
Local Area Network (LAN)

Local Area Network (LAN)

Figure 2.1: Example of VO scenario

The example of two virtual organizations is shown in figure 2.1. There are 3 actual
organizations which are located in different places in the world and there are 2 projects
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forming 2 VOs, the astronomy research (as black circles) and the climate simulation
(as dotted circles) atop of the resources in these organizations. From the figure,
organizations can participate in each VO by sharing some resources. Furthermore, they
can join more than one VO like Organization B.

According to the Grid problem and VOs’ concept, the Grid architecture is estab-
lished in order to fulfill aforementioned requirement. It is architecture providing basic
mechanisms for users to service sharing relationships. Its structure can be divided into
5 main layers.

1. Fabric: This layer provides the resources to which shared access is mediated by
Grid: for example, computational resources, storage system, network resources,
etc. It can also be cluster computer, network file system too.

2. Connectivity: This layer defines core communication and authentication protocols
for grid transaction. It should be contained basic requirement such as transport,
routing and naming. This requirement will be integrated with security standards
for VOs, for instance, single sign on, delegation and user-based trust relationships

3. Resource: This layer defines protocols for secure transaction on individual re-
sources such as negotiation and monitoring. The protocols in this layer have to
be limited in a small and focused set.

4. Collective: This layer makes interactions across collections of resources.

5. Application: This layer consists of user applications in grid environment.

There are many contributions to the grid protocol around the world. Globus Toolkit is
one of the most dominant contributions which is a fundamental enabling technology for
the ‘Grid’, letting people share computing power, databases, and other tools securely
online across corporate, institutional, and geographic boundaries without sacrificing
local autonomy[6]. It is consisted of software making grid easy to manipulate such as
resource management, security and many more.

Due to attractive concepts and requirements for next-generation computation, sev-
eral grid projects are initiated worldwide; for example, Information Power Grid which
focused about aerospace computation, Virtual Laboratory applied grid for drug design,
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Fusion Grid initiated magnetic fusion experiment and so on[12]. In Thailand, Thailand
E-Science Project is established in order to make computing environment for interde-
pendent researches across organizations[13]. Every project will finally make worldwide
collaborative researches and progress into next-generation large-scale computation.

2.1.2 The Data Grid

Due to an increasing number of large data sets and more complex research col-
laborations involving many users through the world, the conventional data management
mechanisms become inadequate. Data grid[14], the grid infrastructure extended from
the proclaimed grid concept with additional data management framework, is initiated in
order to address above issues. The data grid architecture is driven from four principles
derived from the requirement which is the operation in wide area, multi-institutional,
heterogeneous environments:

1. Mechanism neutrality. The architecture should encapsulate peculiarities of low-
level resources.

2. Policy neutrality. The design decisions are exposed to the user.

3. Compatibility with grid infrastructure. The data grid is compatible to lower-level
grid mechanism.

4. Uniformity of information infrastructure. The same data model and interface are
used in the underlying grid information infrastructure.

There are two basic services which are essential to data grid architecture. First, the
data access service provides data access interface and abstraction of storage system.
This allows application to have a uniform view of data and process them with the
same mechanism. The latter is the metadata access which is concerned with the
management of data information including publishing and accessing the metadata.
From these underlying services, a number of high-level services are deployed in the
upper layer, such as replica management, replica selection, and so on.

A data grid provides data management environment for distributed organizations.
This imposes four basic requirements including global name space, latency management
techniques, and persistency and uniform access mechanisms for data discovery, access,
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Category Project
Biological Data Grids Federating Brain Data

Bioinformatics
Visible Embryo Project
Virtual Drug Design

Physics & Astronomy Data Grids GriPhyN
PPDG
Nile
China Clipper
Grid Datafarm
Digital Sky Survey
GIOD
ALDAP

Earth Science Data Grids Earth System Grid
AVHRR DL
ESIPS

Miscellaneous Data Grids European Data Grid
NARA
ADEPT
DVC

Software Systems SRB
Globus Data Grid
ADR
DataCutter
Mocha
Internet2 Distributed Storage
Niagara

Table 2.1: Current active projects concerning a data grid.

and movement. At present, there are a lot of activities and researches involving data
grids. Table 2.1 represent examples of the existing data grid project which can be
reviewed at [15].

2.1.3 Grid Datafarm

Grid Datafarm (Gfarm)[16] is one of several middlewares that supports petascale
data intensive applications in a grid across administrative domains. Gfarm facilitates
virtual file system concept in which support for conventional POSIX API and Gfarm
native API in order to drive application into a grid environment. In addition, Gfarm
introduces two main concepts: Gfarm file or Superfile and file-affinity scheduling.
Gfarm file is a group of physical files distributed in several nodes worldwide which
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can be viewed and managed as if it is a single logical file. File-affinity scheduling
is a scheduling method that is adapted from Owner Computes concepts in which
computations are happened in nodes that own data and processed in parallel style.

2.1.3.1 Grid Datafarm Filesystem

Grid Datafarm (Gfarm)[16] is one of several middlewares that supports petascale
data intensive applications in a grid across administrative domains. Gfarm facilitates
virtual file system concept in which support for conventional POSIX API and Gfarm
native API in order to drive application into a grid environment. In addition, Gfarm in-
troduces two main concepts: Gfarm file or Superfile and file-affinity scheduling. Gfarm
file is a group of physical files distributed in several nodes worldwide which can be
viewed and managed as if it is a single logical file. File-affinity scheduling is a schedul-
ing method that is adapted from Owner Computes concept in which computations are
operated in the nodes that own data and processed in parallel style.

Global network

Gfarm Metadata DB
Gfarm Filesystem

Gfarm parallel I/O
gfs_pio_open
gfs_pio_read
gfs_pio_write

Other filesystems

Data B Data A

Process AProcess B

Affinity scheduling of process and disk storage
to maximize disk I/O and network bandwidth

Figure 2.2: Grid Datafarm Architecture

The Gfarm filesystem node provides several utilities for filesystem operations.
Most of them are similar to emerging parallel filesystem’s. Additionally, it can support
for access locality and local file view which are mechanisms for file-affinity scheduling.
The Gfarm filesystem is invoked by Gfarm filesystem daemon (gfsd) which runs on
each filesystem node and facilitates remote file operations, user authentication, file
replication, node status monitoring and control.

The Gfarm metadata server maintains Gfarm metadata in metadata database,
manipulated by Lightweight Directory Access Protocol (LDAP)[17]. The metadata
consists of a mapping from a logical Gfarm filename to physically dispersed filename,
a replica catalog, platform information, file status and file checksum. Metadata is
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updated consistently from Gfarm API according to file operation. However, Gfarm
have metadata validation service that can detect and remove invalid information if there
are invalid metadata which may be happened from unpredictable fault. An example of
Gfarm metadata is depicted in figure 2.3

\# hkondo/hostname, pragma, grid
dn: pathname=hkondo/hostname, dc=pragma, dc=grid
objectClass: GFarmPath
pathname: hkondo/hostname
mode: 0100755
user: hkondo
group: *
atimesec: 1052719539
atimensec: 308766000
mtimesec: 1052719539
mtimensec: 308766000
ctimesec: 1052719539
ctimensec: 308766000
nsections: 0

Figure 2.3: Gfarm Metadata

2.1.3.2 Gfarm File

Gfarm File is a logical file that can be divided into several fragments which are
spread throughout Gfarm filesystem. It is inherited from striping parallel filesystem
with additional feature that each fragment can have variable file size and can store in
any node in the filesystem. Figure 2.4 depicts Gfarm file conceptual view.

Gfarm File Fragment Physical FileGfarm File

Figure 2.4: Gfarm File Concept

In Figure 2.4, Gfarm file can be replicated to make it fault-tolerance, enable low
latency access, and perform load balancing over the grid. Gfarm file replication can
be operated automatically or manually by using Gfarm commands and API.
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The Gfarm API provides two file accessing views, global file view and local
file view. The global file view is a generic file accessing behavior used by every
conventional distributed filesystem. It manipulates logical files as if they are single files.
On the other hand, local file view handles each fragment of logical files independently.
Figure 2.5 depicts 2 file view models.

Gfarm Scheduler

Processor

Storage

Job 1

Job 2

Gfarm File

Gfarm Scheduler

Gfarm File

Local File View Global File view

Figure 2.5: Local file view and affinity scheduling

2.1.3.3 Process Scheduler

The Gfarm process scheduler is a distributed scheduler designed mainly for file-
affinity scheduling. This paradigm schedules Gfarm nodes that have specified Gfarm file
in which Gfarm nodes have the same number as the corresponding Gfarm fragments.
Then, the processors on each node use local file view to operate theirs own file
fragments in parallel. However, if the node that owns file fragment has heavy workload,
the scheduler may schedule to another node and access fragment via replication or
remote access scheme.

2.1.3.4 Authentication

Gfarm provide two authentications in order to execute application or access Gfarm
file on the Grid. Grid Security Infrastructure (GSI)[18] is basically used for mutual
authentication and single sign-on. However, Gfarm requires a lot of authentication from
processes, metadata server, and filesystem nodes that will cause execution overhead.
Therefore, lightweight authentication like share-secret are preferred when there is no
need to use full grid authentication method.
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2.1.4 Web Caching

Caching is a basic approach for performance optimization in several fields of
Computer Science, ranged from L1/L2 cache in cpus to DNS cache and proxy servers.
The concept of caching is to store some data portions in the closer place to clients.
Therefore, clients can retrieve the data faster than that of the origins. In the following
part, we will focus on Caching in the WWW because it is quite similar with our
research topic comparing to the other issues.

In the WWW, the major problem every user has to confront with is the net-
work congestion and server overloading. A lot of people using the internet which is
dramatically increased every year perform an amount of transactions causing the net-
work congestion. Server overloading is caused by several requests from many clients
that overcome the maximum capacity of servers. So servers have long responses, no
response at worst. The improvement of system hardware such as internet backbone
capacity or server performance seems not to be the appropriate solution because it can
not fulfills the demand eventually. Web Caching, introduced in early 90’s, is proposed
to solve that issues by using special servers, especially ‘the proxy server’, to process
clients’ requests by looking up required data in themselves or forwarding them to server
if the desired documents are not available.

Proxy Server

Clients

HTTP Servers

Figure 2.6: Simple Web Caching Architecture

2.1.4.1 Caching Benefits and Drawbacks

Using web caching provides several benefits for users and the internet[7]

1. Reducing bandwidth consumption, decreasing network traffic and then lessening
network congestion.
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2. Reducing network latency because data can be retrieved from the closer proxies
instead of the servers. Moreover, since it can reduce network traffic, data can be
fetched faster even though data is not in the cache.

3. Decreasing the workload of the web server because client can get the data in the
nearby proxies.

4. Increasing availability and robustness of the web server, especially in the case
that the web server is not available.

5. Using the data in the cache for analyzing the behavior of organizations.

However, there are several disadvantages of using web caching as well[7].

1. Client may fetch out-of-date data, if the proxies insufficiently perform data up-
dating.

2. In the case of a cache miss, the access latency may increase.

3. A single proxy cache is a bottleneck and a single point of failure.

4. A proxy cache can degrade the hits on the original server which make fault for
statistic analysis for the providers.

2.1.5 Cache Replacement Policy

Due to limited space, we can not cache everything into proxies without removing
some of them from the storages. But there some issues that influence the caching’s
performance characteristics: will the evicted data be used in the future or do they not
be used anymore. The art of decision on the data to be replaced from the cache storage
is Cache Replacement Policy.

The performance of caching will be varied, which depended on what policies that
we applied to. Different policies can lead to the various performance outcomes on dif-
ferent scenarios, for examples, some policies can outperform the others in minimizing
latency, minimizing bandwidth, increasing space utilization, increasing hit rate. There-
fore, we have to select the suitable policy in order to maximize the overall performance
of the system.
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There are several researches concerning cache replacement policy. We can classify
them into 2 classes, deterministic policies and randomized policies. The deterministic
policies perform cache replacement in predictable styles, for example, the Least Recently
Used (LRU) use a decision primarily based on data’s timestamp; the least used object
will be evicted from the storage. On the other hands, the randomized policy uses
the random algorithms which reduce the overhead used for the decision process, for
example, to select evicted data randomly on the storage. The more detail about cache
replacement algorithm can be found in [19, 20]

2.2 Related Works

2.2.1 File system Cache

Because we applied Grid Datafarm’s access behavior throughout the research,
we have to survey about caching in conventional distributed and parallel filesystem.
The Sprite Network File System[21] use main memory in both servers and clients for
caching file information. Figure 2.7 depicts the Sprite System which data cache can
reduce the traffic in several manners.

Client
Cache

Client
Cache

Server
Cache

Network

Server
Disk

Local
Disk

File
Traffic

File
Traffic

Server
Traffic

Server
Traffic

Disk
Traffic

Disk
Traffic

Figure 2.7: Sprite Network File System

2.2.2 Storage Resource Manager

The other grid-enabled component that have a data caching feature is the Storage
Resource Managers (SRMs)[22, 23]. The SRMs are middleware components that
do support dynamic space allocation and file management. There are 3 main types of
SRMs, a Disk Resource Manager (DRM) which is for shared disks management, a Tape
Resource Manager (TRM) which manipulates robotic tapes, and Hierarchical Resource
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Manager (HRM) that is a combination of both. SRMs provide much functionality for
multi-file request, data caching, and file pinning. The file pinning concept is analogous
to that of file locking in many conventional distributed filesystems. But, instead of
locking active file contents, it locks the active spaces in order to guarantee that data
are absolutely available while file transfers are activating. E. Otoo et al. claimed in [8]
that SRMs had some characteristics similar to either proxy servers’ or reverse proxy
servers’ in the WWW and they compared their differences which is shown in table
2.2. Many contributions concerning SRMs’ caching mechanisms are mostly focused
on cache replacement policies including [8, 9, 10]. Figure 2.8 depicts SRM usage
scenarios[8].

Client

DRM

Disk

HRM

Tape

Disk

Disk

DRM

Figure 2.8: SRM Architecture

Characteristic Property Web Caching Disk Caching in SRMs
File/Object Size Variable size objects of the or-

der of megabytes
Variable size objects of the or-
der of gigabytes

Cache Size In the order of tens to hun-
dreds of gigabyte

In the order of hundreds of gi-
gabyte to ten of terabytes

Source Latency A few milliseconds to seconds In milliseconds to minutes
Object Transfer Time Almost Instantaneous In seconds up to a few minutes
Caching Requirement Optional Mandatory
Batched Requests Typically one request refer-

ences one object but may
have a additional references to
linked objects

May involve thousands of files
in one request

Bundle Constraint Only one object is referenced
per request

May require that multiple files
be accessed simultaneously

Cache Consistency Cognizant of modified docu-
ments

Predominantly Read-Only and
ignores consideration of cache
coherence

Network Bandwidth Re-
quirement

Standard Internet High Speed Gigabit Networks

Table 2.2: Comparison between SRM and Web-Caching
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2.2.3 Simulation Tools

Because data grids are in implemented state, The Performance analysis is mostly
manipulated by simulations. However the previous simulation frameworks are not ade-
quate to our requirement which is mainly for caching evaluation. GridSim[24] provides
facilities to create simulation framework for design and evaluation of scheduling algo-
rithm. However, the data transfer and caching behavior have not supported effectively
yet. OptorSim[25] supports simulation over data grid environment, including Data
Transfer and Replication, but not cover caching. Network Simulator (NS-2) is a dis-
crete event simulator targeted at networking research. NS-2 provides substantial support
for simulation of TCP, routing, and multicast protocols over wired and wireless (local
and satellite) networks[26]. However, it has not supported for data grid simulations
yet. Gridnet is a data grid simulator built on top on NS-2[27]. It provides basic
grid network specifications and application level service including server node, cache
node, client node, grid package. There is some limitations within the simulator, for
example, it provide strict treed-like topology and can perform only simple file transfer
mode. However, it provides basic structures that we can use to extend many features
for perform simulations according to our data grid environments.



CHAPTER III

DATA CACHING MODEL IN GRID DATAFARM
We use Grid Datafarm model[16] as data grid reference model throughout this

work. As Grid Datafarm does not defined cache management model in its architecture,
we define a new caching model that is applicable to Grid Datafarm. This section de-
scribes the design of caching mechanism in Grid Datafarm used as the basic framework
for all experiments throughout this thesis.

3.1 The Data Grid Scenario

We use the Tier-Model issued by MONARC Project[28] as a basis for the overall
scenarios applied in this work. The tier model is illustrated in Figure 3.1.

Asia-Pacific Tier

Japan Tier Thailand Tier

University Tier Organization Tier University Tier

` ` `

Figure 3.1: Data Grid Scenarios

The tier-model consists of several nodes in the virtual organization connecting in
hierarchy topology. The topmost tier acts as a producer, which creates large-scale data
derived from scientific experiment, for example, data collected from the astronomical
Telescope. These data were conveyed to the lower tiers in order to perform data analysis
and measurement. The transportation of these data can be classified in 2 approaches
as follow:

1. Bulk data transfers — replicate all data entity to target nodes. Data processing
takes place after whole data are transferred completely.



17

2. Remote access transfers — read data from the provider nodes in streaming-style.
The providers then send block of data to clients. This method performs well
when clients require just some portions of data and provides flexible data access
mechanisms.

With this topology, the network requirements are very similar to the client-server
model in its network-bandwidth behavior. The higher tiers have to deal with a lot of
bandwidth consumptions from lower tiers and the large-scale loads from the lower tiers.
Moreover, we assume that the network is not dedicated. Thus, the network bandwidths
have to be shared with the other conventional network application, such as Internet,
P2P, etc.

Based on our assumptions, the tremendous network usage degrades the overall
performance including data transfer for the data grid environment. Caching data into
intermediate node can be one of several promising methodologies that can reduce data
accessing latency and network usages forwarding to the higher tiers.

3.2 Gfarm Data Access Behavior

Throughout this thesis, we use only Gfarm global file view described in Section
2.1.3. Using global file view, Gfarm I/O considers the fragment of physical related files
as one logical file. The data accessing behavior is quite simple similar to a conventional
filesystem with additional features of addressing the physical file. Figure 3.2 depicts
the mechanism when Gfarm client accesses data inside VO which can be described in
the following Steps:

1. The client queries the metadata server for the physical address of data.

2. The metadata server returns the FQDN location of data back to the client.

3. The client can connect to the server, with respect to physical address obtaining
from the metadata server. However, if there are many physical file fragments,
the offset and fragment numbers have to be calculated. Algorithm 1 shows the
details of accessing for file X offset Y.

4. The server sends requested data back to client for processing.

5. If client wants to request additional data from the same data file but in different
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Client Metadata Server Server1 Server2

1. Query for File Location

2. Return Server FQDN

3. Request File Block

4. Return File Block

Query for File Location

Return Server FQDN

Request File Block

Return File Block

Request File Block

Return File Block

5.

6.

Figure 3.2: Gfarm Data Access Mechanisms

blocks, the client has to consider whether those data are resided in the same
fragment as the prior data. If there are, the client can connect to the same server
again in order to fetch additional data.

6. If additional data is not in current file fragment, the client has to locate new
physical address for new fragment and, then, connect to the new server to get
data.

Algorithm 1 Determine Gfarm data access on file X offset Y

1 begin
2 Store fragment number that contain offsets Y in section.
3 set offset =

∑section−1
i=0 fragmentsize(i).

4 Open fragment number section and move file pointer to pointer.
5 Read data into buffer until buffers are filled or end-of-fragment detected.
6 end

3.3 GFarm Caching Model

In order to evaluate the caching behavior in data grid, we assume basic caching
model as described in figure 3.3. In our model, the lower tiers share the intermediate
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Figure 3.3: Gfarm Data Caching Model

cache server in order to obtain data from data server. Cache Server can connect to
any data servers that share grid resources. The mechanisms of data caching can be
described in Figure 3.4.
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Figure 3.4: Gfarm Data Caching Mechanism

1. A client sends a request to a cache server. The request can be either for bulk
data or partial data.

2. A cache server gets request from a client.

3. A cache server tries to locate the requested data from its storage spaces. If the
data exist, the server will send them back to a client. Otherwise, the data request
will be sent to the server own that data.

4. The server return data back to a cache server.
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5. A cache server stores data with respect to its local caching policies. If there is
no enough space, the cache replacement policy will be invoked in order to clear
stale storage spaces.

6. Finally, a cache server returns data to the client.

3.4 Object-based Caching Model

Researches in grid caching always base on a web-based caching model. In this
model, when intermediate cache server receives data request from its client, it will
load the whole data as one big file from the server, store inside its storage spaces,
and finally return the entire data to the client. Thus, cache treats each data file as one
object no matter how large it is. We call this model “Object-Based Caching”, as shown
in Figure 3.5.

File A

Cache Server

File A

File B

File C

File C

File B

Figure 3.5: Object-Based Caching

Object-based caching has been widely used in distributed system, including the
internet. As the data file inside the internet are mostly small, fetching whole data
between the client and server is very trivial and flexible, for example, web browsers
can download multiple objects from the same website concurrently. Moreover, the data
objects are relatively so small, compared to the cache space that there are no need to
perform space pre-allocation.

On the contrary, the data files in grid environment are very large, ranging from
gigabytes to petabytes. Grid caching requires an additional process for allocating spaces
to guarantee that data retrieved from server can be stored in the cache storage, which is
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called file pinning[23]. Therefore, when a cache miss occurs, the performance of the
cache does suffer not only from long data latency for obtaining data, but also limited
available spaces which finally cause cache server in grid environment less effective than
web cache in WWW environment.

In addition, caching the whole data files does not flexible when some portions of
data are being used. This reduces storage utilization; wastes network bandwidth, and
degrades efficiency of the data cache.

3.5 Block-Based Cache Model

To improve the performance of data cache in grid environment, we propose a new
caching model called “Block-Based Caching Model”. Our proposed model handles each
data file in fixed-size blocks. The object-based cache views its data as an individual
object, no matter how large it is. On the contrary, the block-based cache manages each
data file as a set of fixed-size blocks. If the data is too large to fit in one block, it will
be divided into multiple blocks.

Figure 3.6 depicts the concept of our proposed block-based data caching model.
When the cache server receives a request from a client, which can be a request for
either the entire data file or just partial data, it will request data from servers and then
sends data back to the client similar to typical object-based caching server. However,
block-based cache stores data in blocks, instead of the whole file as one unit.
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Figure 3.6: Block-Based Caching

The algorithms of object-based caching and block-based caching are shown in
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Algorithm 2 and 3, respectively.

Algorithm 2 Conventional Cache Manager Mechanisms:

1 begin
2 if The requested data is in cache.
3 then
4 Return data back to the clients.
5 else
6 Forward requests to the appropriate servers and wait for data.
7 if Data can not be filled in cache spaces.
8 then
9 Perform cache replacement policy.

10 fi
11 Store Data in the cache.
12 Return data back to the clients.
13 fi
14 end

Algorithm 3 Block-based Cache Manager Mechanisms:

1 begin
2 if The requested data is in cache.
3 then
4 Return data back to the clients.
5 else
6 Forward requests to the appropriate servers and wait for data.
7 if No block for storing data
8 then
9 Perform cache replacement policy.

10 fi
11 Store Data in blocks.
12 Return data back to the clients.
13 fi
14 end
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We evaluate the performance of both models using simulation. The results of
our experiments are discussed in Chapter 5.



CHAPTER IV

FRAMEWORK IMPLEMENTATION AND
SIMULATION SCENARIOS

This Chapter describes the implementation of simulation framework used in this
thesis. We first discuss our basic assumptions our caching architecture, and our simu-
lation framework.

4.1 Basic Assumptions

Throughout this thesis, we assume the following basic assumptions:

1. Data used in data grid environments are in read-only state.

2. Clients have to connect to only one data proxy in the data grid environment.

3. The basic topology consists of clients, proxies, and servers.

4. Each proxy is stand-alone. If there are multiple data proxies in the environments,
they can not connect to other proxies.

5. Although GFarm servers can be used as computing nodes, this research assumes
that computations always take place at client nodes only.

The first assumption is very important since grid files are often large and most of them
are raw data containing the results of scientific productions or data sensors. Thus, these
files are static. Moreover, this assumption leaves cache coherence as the future work
and simplifies the ongoing model. The second assumption reduces the complexities of
proxy connections. The third and last assumptions describe the topology that we will
use throughout the research, in which there are three types of node and only one proxy
can be in the paths from each client to servers. Our topology becomes more general
than the topology described in [27] which is in tree-structured topology only.

4.2 Block-Based Cache Architecture

In the previous Chapter, the block-based cache paradigm was introduced with the
empirical process flow model. This section will look into the detailed implementation
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of block-based data caching architecture.

4.2.1 Data Access Process of Client Node

For client, Gfarm provides 2 mechanisms to facilitate remote data manipulation.

1. Bulk Data Access — clients load all data file into the compute node. This
approach is presented in Figure 4.1.

2. Streaming Data Access — clients load blocks of data incrementally to the com-
pute node. Figure 4.2 summarizes this approach.
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Figure 4.1: Bulk Data Access Mechanisms

The bulk data access loads all data into the compute node immediately, which
incurs low transfer overhead against the streaming data access. However, this approach
is not suitable if the data processing requires some portions of data files or random
access behaviors are required.

The streaming data access loads parts of data to perform incremental data com-
putation. This approach produces data output incrementally; however, the overheads
from network connection and disk access will be increased, which depend on sizes of
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Figure 4.2: Streaming Data Access Mechanisms

the transfer data blocks. One of many situations that make this approach very effective
is the scenarios that use some portions of data.

In GFarm Application, client nodes get data from server via GFarm API. For
example:

GFS_FILE* gf = 0;

char buffer [4096];

int size = 4096;

int np = 0;
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gfs_pio_open("gfarm://data.dat", GFARM_FILE_RDONLY, gf);

gfs_pio_read(gf, buffer, size, &np);

gfs_pio_close(gf);

In this example, GFarm will locate physical location of the data files from metadata
with respect to the file descriptors and file record numbers. The metadata includes the
detailed information of data files, e.g. physical address of the file fragments and file
fragment numbers. The clients, then, measures the file record numbers related to the
file fragments and forward a request to the GFarm server nodes. The server returns
data corresponded to the requests from client nodes.

4.2.2 Architecture of Proxy Server

Proxy Server

Storage

Cache Manager

Wait Queue

Request 
Queue

Block 
Controller

Request to Server

Request from 

Client

Data to Client

Data from Server

Figure 4.3: Proxy Server Architecture

Figure 4.3 represents the architecture of Grid Proxy Server. Request Queue
receives data requests from clients and schedules them to the cache manager. It controls
the number of operating task in the proxy server by delaying requests in the queue to
assure that the concurrent processes are not exceeding maximum process limit. The
Cache Manager takes care of clients’ request processes; It addresses data location in
Block Controller, communicates with GFarm servers, and sends request suspension to
Wait Queue. Wait Queue receives requests suspension which target on the same data
block as the ongoing task. We have to suspend such request because data files in the
grid environment are heavily large. Repeating the same process again and again will
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cause a lot of burden to the network. Therefore, these requests must be waiting for
the ongoing processes that operate on the same data blocks to be completed. The
Block Controller deal with the manager of each individual data blocks. They have the
metadata of their contents, eg. file name, file offset, file fragment number, and other
value benefited for cache management policy.

4.2.3 The Process of Proxy Server

The Cache Process inside the proxy server can be described as follow.

1. Data Request Establish When clients send data requests to the proxy server, the
data requests will be stored in the request queue. The request queue activates the
requests to the cache manager if the amounts of ongoing process do not exceed
maximum process configured by server. The requests that sent from the request
queue are notified by the cache manager to begin the caching process.

2. Data Query The cache manager tries to locate the data defined in client’s requests:
It looks up the block description via the block controller.

3. Space Reservation If the data are in the cache storage, the cache manager returns
that data to clients. However if the desired data are not available, the cache
server allocates spaces for those data.

4. Data Request to Servers The cache manager sends data request to the servers
hosted data files via GFarm API. The servers get request from the proxy server
as if they get from GFarm Client and return data to the proxy server.

5. Data Store and Return These data are stored in the spaces pre-reserved by cache
manager. and, finally, are sent back to the clients.

4.2.4 The Data Block Pre-Allocation and Pinning

The main issue that makes grid caching to have distinct characteristics against
generic web caching is the size of data file. In web caching, the size of data file is
quite small comparing to the overall workloads which is insignificant in performance
metric, for example, the storage’s read/write time is so short that it does not affect the
cache efficiency.
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However, when data are large, they have to take long times to complete the
operations, e.g. data store, transfer, or eviction. These cause the race condition in the
storage spaces which cause some data unable to be stored completely.
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Figure 4.4: The Storage Preemption

Figure 4.4 demonstrates the storage preemption scenarios. A client requests for
a 1-GB data file. Suppose that a cache server forwards this request to the data source
server due to cache miss. When the connection between the cache server and the data
source server is established, the cache server has to allocate 1 GB spaces which may
need to perform cache replacement policy. Suppose that while data transfer for 1-GB
data request is in progress, another client requests for 100-MB data file. The second
request for 100MB data can fetch data faster than the first one. Thus, the spaces for 1
GB are preempted by 100MB data. This can cause a storage problem.

To solve this problem, 2 additional processes are needed. First, the space pre-
allocation process is needed before sending a request to the data source server which
can assure that there are enough spaces to store the requested data file. The other
process is the Block Pinning which have been introduced in [23]. This process marks
the cache spaces as busy and unavailable to be replaced in cache replacement process.

4.3 The Simulation Framework

In this work, we develop a simulation framework to evaluate the effectiveness of
our grid caching. However, the existing popular grid simulators, including GridSim[29],
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OptorSim[30], ChickSim[31], and GridNet[27], can not fulfill our requirements which
must model many parameters, for example, file access behaviors, topologies, various,
cache manager, and so on. Table 4.1 describes the function of each simulator.

Simulator Grid Cache Topology
EDG Optorsim O X X

GridSim O X X
NS-2 X O O

GridNet/NS2 O O X

Table 4.1: Preexisting Simulator’s Function

Our data grid caching simulator extended from GridNet Simulator and imple-
mented in C++ as a module for Network Simulator (NS-2). The architecture of the
simulator is illustrated in figure 4.5. In figure 4.5, gfarm client, gfarm cache and

Ns Node

Gfarm Client

Storage

File Descriptor

Ns Node

Storage

File Descriptor

Gfarm Server

Ns Node

Block Controller

Storage

File Descriptor

Cache 

Manager

Gfarm Cache

Network Link

Gfarm MetaData

Figure 4.5: The Data Grid Cache Simulator

gfarm server are application agents that provide interfaces for user to manipulate the
grid operation including requesting files and probing servers by using Tcl language.
All three agents have file descriptors in order to control file access status for every
transaction between entities. Gfarm client and server seem identical in logical archi-
tecture. However, the semantics and the functions are absolutely different. The client
performs a role as a compute node which gets data from cache or servers and performs
computations, whereas the server performs similar to a conventional file server like
NFS. Gfarm cache node include cache manager and block controller for caching oper-
ation. Cache Manager deals with cache spaces, while block controller manages block
information, such as filename and file position, in each block number. Several cache
policies are feasible to implement by inheriting cache manager class and implement



31

basic functions.

GFarm Metadata consists of the information about the entities in the grid en-
vironment and serves the information requests from GFarm nodes. The process of
metadata request in metadata server takes short time comparing to data transfer be-
tween GFarm nodes which we can summarize that the metadata access time have no
significant impact on the overall data processing time. Therefore, we do not include the
metadata server in topology and assume that the metadata can be retrieved immediately
after making metadata request.



CHAPTER V

THE EXPERIMENT AND EVALUATION
5.1 Simulation Scenarios

5.1.1 Network Topology and Parameters
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Figure 5.1: Simulation Scenarios

Figure 5.1 represents the topology used in our experiments. It consists of 3
domains; one domain hosts all clients and the other two domains host servers. Grid
cache server is deployed in a client domain, which receives requests from clients and
forwards requests to servers in other domains. The servers maintain data files used
in the scenarios. Trace data is used to generate client requests. Note that clients and
servers have unlimited storage spaces.

In our topology, we assume that the access time between client domain and
the server domain is 150ms, which is derived from the propagation latency measured
between Department of Computer Engineering, Chulalongkorn University and the site
in Japan using BNR SpeedTest[32]. The propagation latency of each domain is set to 10
milliseconds, which is derived from the average latency of LAN inside Chulalongkorn
University. The bandwidth between each node can be classified into 2 types. The
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intra-domain bandwidth, which is the bandwidth of LAN between nodes in the same
domain, is set to 100Mb/s by default. The inter-domain bandwidth, which is the
bandwidth of WAN between nodes in different domain, is set to 10 Mb/s by default.

5.1.2 Data Access Traces

To evaluate the model realistically, we use the real data access trace in our
simulation. The trace data we use is the log of file access activities derived from
Jefferson Lab Asynchronous Storage Manager(JASMine) at Jefferson Lab(JLab). These
workloads involve Neuclear Physics experiments that conduct in JLab[33] as well as
grid experiment in PPDG[2]. We extract the trace data into two trace logs. The first
log consists of 1153 requests with 264GB overall data usages (17MB average file size).
The later consists of 200 requests with 144GB data usages (500MB average file size).
The characteristics of each data trace represent in Figure 5.2.
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5.2 Simulation Results

We perform the experiments in 2 main scenarios. Firstly, we look into the impact
of the inter-networking bandwidth to the performance of the cache model. Next, we
determine the affect of block size to the performance of the cache model.

5.2.1 The Affect of The Inter-networking Bandwidth

In the first scenario, we evaluate the model based on bandwidth between comput-
ing nodes using block-based caching model with 100MB block size. The bandwidth
are configured into 5 different situations shown in table 5.1.

Situation Intra-Bandwidth Inter-Bandwidth
1 10Mb/s 1Mb/s
2 50Mb/s 5Mb/s
3 100Mb/s 10Mb/s
4 500Mb/s 50Mb/s
5 1000Mb/s 100Mb/s

Table 5.1: Bandwidth Defined in Each Situation
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Figure 5.3: Average Latency on Different Bandwidth

Figure 5.3 represents the average latency fro the simulation result, which indicate
the affect of the bandwidth to the data grid performance. This graph indicates that
the smaller cache size, the longer latency to get data. However, when cache size
become larger, the download speed improves gradually until the cache size is larger
that saturated value, 30% in this scenario. This is because when cache size is small, the
amounts of cache blocks to serve every data file become insufficient that leads to high
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probability of being replaced with new objects. Therefore, the overheads for remote
data downloading and block replacement become larger and increase more loads. On
the contrary, the large cache size provides more cache blocks which make high data
availability to be downloaded from cache immediately. But if all data file can be stored
in cache storage completely, the latency cannot be improved even through the cache
size increased, which is called “saturated value”.
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If we normalize the average latencies in Figure5.3 with baseline latencies or
average latencies when no caching in Figure 5.4, we have the results illustrated in
Figure 5.5. The normalized results indicate that the low bandwidth network get more
benefits from caching than high bandwidth network. For example, the 50% cache size
in 10-1 bandwidth can get 3.5 times faster than the baseline, whereas the speed up
ratio of 100-10 is only 1.5 to the baseline.
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Figure 5.7: Byte Hit Rate on Different Bandwidth

Figure 5.6 and 5.7 represent hit rates and byte hit rates in this experiment. The
results show that the smaller cache size, the lower hit rate and lower byte hit rate. The
low hit rate causes cache server to download data from remote site frequently which
incurs more latency overheads inside the data cache. The results from hit rate and byte
hit rate are corresponding to the average latency.

5.2.2 The Effects of Block Size

In this scenario, we use block size as the performance factor. As the intra-domain
bandwidth is commonly 100Mb/s, the inter-domain and intra-domain bandwidths are
set to 10 and 100 Mb/s respectively. We use different cache block size as factor for
scenarios as depicted in Table 5.2.2. In Table 5.2.2, “Baseline” is the situation when
there are no cache server. Therefore, no caching policy applies to this scenario. “Obj”
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Block Type Description
Baseline No Cache
Full Object-Based Cache
Buff25 Block-Based Cache 25MB
Buff50 Block-Based Cache 50MB
Buff100 Block-Based Cache 100MB
Buff200 Block-Based Cache 200MB
Buff400 Block-Based Cache 400MB

Table 5.2: The Block Type in The Scenarios

is the situation using object-based caching model.

The result can be classified into several views. Figure 5.8 presents the average
data accessing latency when we use different cache block sizes from trace no. 1 and
2 respectively. In addition, we compare the results with object-based data cache and
the result when no data cache applied. Among the block-based data cache, the smaller
block size can achieve better access latency against the larger ones. This is because
given the same cache size, the bigger block-size, the smaller number of files the cache
can keep. The smaller number of files a cache can keep, the lower the hit rates. Lower
hit rate means higher cache misses occur. Thus, the average data accessing latency
becomes worse.

When we compare the block-based caching with the object-based caching, how-
ever, there are very different characteristics between these two traces. In trace no.1,
object-based data cache can outperform the block-based cache no matter what size they
are. On the other hand, block-based data cache can overcome the object-based in trace
no.2. This is because of the average data size of the data file using in each scenario.
The first trace consists of many small data files (17MB average), whereas the other
composes of large data files (500MB average). Small data files have 2 main advantages
to object-based data cache.

1. It consumes less storage spaces which make data cache have more space to keep
data file which lead to high hit ratio.

2. Object-based data cache spends lower connection overhead against the block-
based. Figure 5.9 depicts the detailed latency of each data cache policy given the
same byte hit ratio, namely optimal byte hit ratio. This graph shows that small
block size causes more latency than large block size and object-based cache.
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Figure 5.8: Average Latency on Different Block Size

The large data files do not enjoy the first advantage. This allows block-based data
cache to overcome the object-based data cache as the bandwidth saving becomes more
significant than the connection overhead.

Figure 5.10 and 5.11 depict the hit rates in the same scenario using trace no.
1 and 2. It can be stated that the cache hit rate becomes lower when the block size
increases. This impacts the average latency. When hit rate decreases, the cache spends
a lot of time to reload data from the servers. That is one of the main reasons that
degrade the performance of the data cache. In trace no. 1, the object-based data cache
get higher hit rate than the block-based because most data files in trace no.1 have
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small sizes. The smaller objects have more flexibility and “cache friendly” than large
objects. Therefore, the average latency of object-based data cache can outperform the
block-based data cache. In trace no. 2, however, the average sizes of the object are
quite large. These make block-based data cache outperform object-based cache.

Figure 5.12 represents the first-byte latency which is the delay from a client
issues a request until a client receives the first data from the cache server. The lower
the first-byte latency, the sooner the clients can use data. This graph indicates that
the cache with smaller block size have a better latency than biger block size. Having
lower first-byute latency allows grid user to gain the benefits. Moreover, this can be
extended to support additional data download policies. For example, we can select
whether to use entire data download or block-based data download by calculating data
usage threshold. If the data usage is below this value, the block-based policy, otherwise
the entire download policy is used.
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Figure 5.10: Hit Ratio on Different Block Size
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CHAPTER VI

CONCLUSION
6.1 Summary

This work proposes the block-based data caching model for the data grid envi-
ronment. We argue that data cache is one of the essential components for data grid.
We also show that the conventional object-based data cache model do not perform well
in many cases, especially in the environment with large data transaction, or streaming
data access behaviors. Therefore, we propose a new model to fit the characteristics of
data grid environment.

Our proposed block-based model is derived from the conventional block-based
data cache widely used in the cpu cache and file system. Our model segregates large
data and stores them into multiple fixed-size data blocks. However, the block size must
be large enough to avoid a lot of connection overhead and small enough to gain good
storage space utilization.

We evaluate the performance of our proposed model by conducting simulation
experiments. Our block-based data cache simulation framework is extended from the
existing GridNet[27] Simulator. To make the evaluation become more realistic, the
real data access traces JasMINE, at JLab[8] are used throughout the simulation. We
conduct the experiments on the scenarios with various inter-domain bandwidths and
the results clearly show that the block-based data cache enjoys good performance,
especially in the small bandwidth environment. We also evaluate the performance of
the data cache with different block sizes. The results indicate that different block sizes
can affect the performance of the data grid. In small cache size, small data blocks
can gain benefits from better utilization of the data cache storage. However, having too
small block-size can suffer from connection overhead of either the disk connection, or
network connection.

6.2 The Future Works

As our works have been focused on the basic mechanisms of caching, future works
may introduce additional fine-tuning techniques adapting from conventional cache. For
example, the studies of proper page replacement policies are needed. Data prefetching
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technique can also be applied to our caching model.

In addition, a variation of data block downloading can be performed. For exam-
ple, if we can detect that the data requests want all data files, we can download all of
them and separate them into the blocks later, instead of downloading one data block
at a time.
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APPENDIX A

THE IMPLEMENTATION OF SIMULATION
FRAMEWORK

The data grid component for NS-2 are extended from GridNet Simulator as
described in Chapter 4. In this chapter, the detailed implementations of the data grid
component for NS-2 are represented.

A.1 Data Grid Component Overview

Figure A.1 depicts the Component implemented for data grid environment for
NS-2. The brief description of each component can be described as follow:
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Gfarm File
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File 
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Figure A.1: Simulator Component Overview

1. GFarm Global Component manipulates the system in the initial phrase and
behaves like users who send request information to data grid client. It consists of
many utility functions to store the environment property including file mapping,
agent list, and node connection.

2. GFarm File represents the file object in Grid DataFarm. Extended from original
GridNet File, It consists of filename and many file section. Therefore, the user
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can resolve file using filename instead of file id as in GridNet. Furthermore, the
data file can be divided into many fragments and store in different GFarm Server.

3. GFarm Server behaves as if it is a file storage. Because the evaluations are
deployed for caching evaluation, we set the infinite space for server storage.

4. GFarm Client is triggered by GFarm Global to perform data downloading.

5. GFarm Cache deals with data request from GFarm Client and data connection
from GFarm Server if needs. It is a component which can be flexibly extended
because of the use of OO model.

A.2 GridNet Modification

To accomplish the requirement, new components are implemented. The modifi-
cation of the original framework, GridNet, has to be realized for the good simulation.
There are many reasons to patch GridNet. First, GridNet does not support for large-
scale data handling. The data structure to handle data support only about 2 GB,
whereas, the overall data usages in the scenarios are larger, up to Terabyte. Second, the
protocol inside grid packet object has to be extended for remote data access behavior.
The information such as file pointer, block to read, have to be passed to cache or server
nodes to make data connection. Finally, the topology has to be flexible enough to
establish connection applied to the scenarios.

A.2.1 Grid Packet Protocol

GridNet provides grid protocol header to communicate between nodes. The grid
protocol in the simulator consists of grid protocol command and the data parameter.
The grid protocol command composes of 3 main actions: GRID PROTOCOL WRITE,
GRID PROTOCOL READ, and GRID PROTOCOL PROBE. However, this thesis fo-
cused on read process only. The GRID PROTOCOL READ have 2 states:

1. GRID READ REQUEST sends data request with request information.

2. GRID READ RESPONSE returns response information including data.

During the node connection, the transfer parameters are enclosed together with
grid protocol command. This information indicates what data to be picked up, how
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many block to be transfer and who request them. The transfer parameters are described
as follow:

1. Filename The filename to be requested by clients.

2. File Section No. This specify which file fragment to be requested.

3. File Block No. Address in the file to be requested.

4. Sender The node that make data request.

5. Buffer Read The Amount of Buffer to be read from server.

6. Task ID This is an unique number which maintain the process consistency be-
tweeen nodes.

In data request process, all of parameters are set to send data information to server.
However, when servers perform response process, the data requested from client are
attached with the grid protocol. Figure A.2 represent the connection model between
nodes.

Client

Server

GRID_READ_REQUEST

Filename, Section No, 
Block No.

Sender

Buffer Read

Task ID

GRID_READ_RESPONSE
Filename, Section No, 

Block No.

Sender

Buffer Read

Task ID
Data Block

Figure A.2: Grid Connection Protocol

A.2.2 Data Access Mechanism

Data access inside each node, contrary to the network access, does not have
pre-built latency simulation. Therefore, we have to model them to perceive the better
simulation. Inside this simulation framework, we implemented the trivial process to
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Figure A.3: Access Latency Simulation Process

retrieve disk access latency. Figure A.3 presents the data access delay process, which
is quite straightforward. When data access occurs, the file pointers will be moved by
sizes of buffer. Next, the delay time which is the function of buffer size is calculated.
Because of the limitation on the precision of time event, the delay interval which
is less than 0.000001 have no significant. Therefore, the next process will be done
immediately. However, the next process will be sent to event queue if the delay intervals
are more than 0.000001.

A.3 GFarm Component Implementation

A.3.1 GFarm Client

GFarm Client Component provides functions to make data request and emulate
the data read/write behavior. Most of client event take place from Tcl functions listed
below:

• gfarm-request begins data request.

• set-proxy sets client node whether to connect to cache server.

• sendData establishes data connection.
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To manage sessions for each connection, the descriptor class is implemented to serve
every request states. It stores file access information including filename, current access
position, and fragment number. GFarm client map the request number to the right
descriptor for session consistency.

The process of GFarm client is started when Tcl command "gfarm-request" in-
voked. GFarm client establishes request connection to cache server or data server,
which depends on the client setting. When the connection is established, the GFarm
client waits for request response from servers. After getting response, client updates
file descriptor according to the request number and perform latency emulation. If the
data are not fetched completely, the client resend the request to get the remaining data,
or else the request job is finished.

A.3.2 GFarm Server

In the simulation, GFarm Server Component provides only the data response to
client or cache node. Therefore, it has simple mechanisms to response to the client
requests.

When client or cache nodes send grid read protocol with read request flag, The
GFarm server read the data inside grid packet and opens corresponding file descriptor
to begin data read. After file reading, all of the information including metadata and
raw data are encapsulated into grid packet and return to clients.

A.3.3 GFarm Cache

GFarm Cache is the main component for data grid performance evaluation. Inside
GFarm cache object, there are two components to facilitate cache storage management.
The BlockData hold the data block information; it compose of file information stored
in that blocks and the cost value which is a heuristic value to determine whether that
blocks should be preserved for future use. The BlockData have to be extended in
order to apply for each cache replacement scenario. The Cache Manager deals with the
operation for cache policies. It allows researchers to implement new cache policy by
define new block look up, store data block, and evict block data. The example usages
of these two classes are the LRU Cache Manager and DataBlock which implements
the LRU Cache Policy. Many GFarm cache operation can be invoked and initialized
with Tcl Function. The Tcl methods are listed in Table A.1.
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Function Name Description
set-buffersize set data size for each data block
set-cachesize set storage size for cache server
get-cachesize get storage size
get-buffersize get data block size
sendData establish connection and return data back to clients
sendRequest establish connection and forward request to servers
response start data cache process
set-concurrency set maximum concurrency process
set-waittime set polling time if the process have to be waited by scheduler

Table A.1: Tcl Method inside GFarm Cache

The process of data cache starts when the packet from client arrived. There are
two types of incoming packet: the startup requests which are the requests that reach the
cache server for the first time, which have to be determine availability status, and the
established requests which are the requests that have been determined the status already
and performed data downloading. If the packet is established request, the cache server
brings it to its current download status without any decisions. However, if the packet is
a startup request, the availability status has to be determined. The cache manager looks
up the data blocks to find desired data. If cache hit occurs, the cost value for that data
block has been updated and the data become ready to return to a client. However, if
cache miss occurs, a cache server forwards request to servers and wait for data return.
When data are return completely, the data block updates its cost value and become
ready. The GFarm cache, then, returns data to clients. When clients receive data, it
will send established requests to cache server if the data are not complete which cause
the cache server return the remaining back until the transfers are completed.



APPENDIX B

EXPERIMENTAL RESULT IN DETAIL
B.1 Result on Bandwidth

CacheSize
Bandwidth 10 20 30 40 50 60
10-1 54724.11 38022.41 29335.45 28385.40 28633.25 28382.25
50-5 7626.13 6356.52 4777.48 4271.38 4220.18 4153.40
100-10 7046.83 6024.39 4745.93 4248.84 4198.95 4132.26
500-50 7035.72 6014.89 4738.91 4242.67 4192.82 4126.24
1000-100 7034.68 6014.00 4738.16 4241.99 4192.15 4125.57

Table B.1: Average Latency for Bandwidth

CacheSize
Bandwidth 10 20 30 40 50 60
10-1 26.43 41.23 45.85 46.26 46.26 46.38
50-5 14.61 30.26 40.04 44.72 45.19 46.06
100-10 14.61 30.18 40.04 44.72 45.19 46.06
500-50 14.61 30.18 40.04 44.72 ∗45.19 46.06
1000-100 14.61 30.18 40.04 44.72 45.19 46.06

Table B.2: Hit Rate for Bandwidth

CacheSize
Bandwidth 10 20 30 40 50 60
10-1 37.54 48.85 55.10 55.51 55.51 55.51
50-5 20.02 31.92 47.28 53.69 54.41 55.39
100-10 20.02 31.79 47.28 53.69 54.41 55.39
500-50 20.02 31.79 47.28 53.69 54.41 55.39
1000-100 20.02 31.79 47.28 53.69 54.41 55.39

Table B.3: Byte Hit Rate for Bandwidth
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CacheSize
Bandwidth 10 20 30 40 50 60
10-1 51.81 36.00 27.77 26.87 27.11 26.87
50-5 81.90 68.26 51.31 45.87 45.32 44.60
100-10 96.54 82.53 65.01 58.21 57.52 56.61
500-50 96.87 82.81 65.24 58.41 57.73 56.81
1000-100 96.87 82.81 65.25 58.41 57.73 56.81

Table B.4: Percent of Latency Improvement for Bandwidth

B.2 Result on Buffer Size

B.2.1 Trace Log 1

CacheSize
Buffer Size 10 20 30 40 50 60
full 910.11 726.24 636.57 582.04 582.04 582.04
25 143.62 126.84 113.30 100.36 83.19 83.19
50 259.49 223.84 192.23 166.48 154.36 143.71
100 432.87 374.09 362.23 271.76 266.28 254.85
200 747.21 665.94 631.29 584.53 475.20 453.72
400 1053.21 956.88 876.88 822.97 714.81 687.28

Table B.5: First Byte Latency for Buffer Size

CacheSize
Buffer Size 10 20 30 40 50 60
full 27.80 35.55 38.35 52.57 52.57 52.57
25 24.69 38.92 49.04 50.92 54.65 54.65
50 20.96 35.65 46.35 47.92 49.04 53.98
100 14.61 30.18 40.04 44.72 45.19 46.06
200 11.01 17.49 32.10 36.97 41.01 42.35
400 7.34 10.22 14.99 20.97 27.77 36.15

Table B.6: Hit Rate for Buffer Size
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CacheSize
Buffer Size 10 20 30 40 50 60
full 28.87 49.52 53.43 55.81 55.81 55.81
25 25.42 40.94 52.58 54.67 55.81 55.81
50 21.20 38.43 52.44 54.41 55.51 55.81
100 20.02 31.79 47.28 53.69 54.41 55.39
200 19.67 26.85 36.83 45.99 52.28 54.23
400 18.62 24.18 29.39 38.22 47.25 49.91

Table B.7: Byte Hit Rate for Buffer Size

CacheSize
Buffer Size 10 20 30 40 50 60
baseline 7299.74 7299.74 7299.74 7299.74 7299.74 7299.74
full 6282.53 4588.41 4268.72 4100.95 4100.95 4100.95
25 6578.97 5236.29 4345.30 4190.35 4111.96 4111.94
50 6978.26 5452.03 4349.74 4202.09 4126.96 4105.85
100 7046.83 6024.39 4745.93 4248.84 4198.95 4132.26
200 7065.87 6375.60 5541.71 4832.77 4348.58 4210.55
400 7098.08 6581.84 6107.19 5401.74 4764.78 4563.62

Table B.8: Average Latency for Buffer Size

B.2.2 Trace Log 2

CacheSize
Buffer Size 10 20 30 40 50 60
full 23378.80 15754.24 13098.18 13097.92 13097.64 13097.56
25 456.64 385.44 355.46 355.45 355.45 355.44
50 831.11 688.87 628.97 628.96 628.95 628.95
100 1599.60 1309.27 1174.58 1174.55 1174.54 1174.53
200 3022.29 2503.30 2209.22 2209.18 2209.13 2209.12
400 5347.15 4499.08 3932.82 3932.78 3932.65 3932.61

Table B.9: First Byte Latency for Buffer Size
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CacheSize
Buffer Size 10 20 30 40 50 60
full 7.00 17.00 22.50 22.50 22.50 22.50
25 18.68 40.09 46.18 46.18 46.18 46.18
50 18.38 38.97 45.39 45.39 45.39 45.39
100 17.37 36.40 44.01 44.01 44.01 44.01
200 16.49 32.74 41.34 41.34 41.34 41.34
400 14.54 28.49 38.51 38.51 38.51 38.51

Table B.10: Hit Rate for Buffer Size

CacheSize
Buffer Size 10 20 30 40 50 60
full 16.79 34.52 46.88 46.88 46.88 46.88
25 18.91 40.69 46.88 46.88 46.88 46.88
50 18.87 40.25 46.88 46.88 46.88 46.88
100 18.35 38.75 46.88 46.88 46.88 46.88
200 18.28 37.05 46.88 46.88 46.88 46.88
400 16.75 34.52 46.88 46.88 46.88 46.88

Table B.11: Byte Hit Rate for Buffer Size

CacheSize
Buffer Size 10 20 30 40 50 60
baseline 22814.21 22814.21 22814.21 22814.21 22814.21 22814.21
full 23378.80 15754.24 13098.18 13097.92 13097.64 13097.56
25 19189.32 14478.30 13143.07 13142.70 13142.38 13142.27
50 19166.45 14548.74 13122.01 13121.75 13121.54 13121.43
100 19263.98 14859.81 13112.85 13112.67 13112.47 13112.33
200 19270.79 15219.09 13106.71 13106.37 13106.02 13105.79
400 19596.62 15760.96 13104.63 13104.37 13104.13 13103.93

Table B.12: Average Latency for Buffer Size
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