การสร้างแบบจำลองอัตราการเติบโตของรอยร้าวล้า สำหรับเหล็กกล้า A516 เกรด 70 จากสมบัติ ความแข็งแรงล้า

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเครื่องกล ภาควิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2557 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

PREDICTION OF FATIGUE CRACK GROWTH RATE FOR A516 GRADE 70 STEEL USING FATIGUE STRENGTH PROPERTIES

Mr. Charndech Mongkornkaew

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Program in Mechanical Engineering Department of Mechanical Engineering Faculty of Engineering Chulalongkorn University Academic Year 2014 Copyright of Chulalongkorn University

หัวข้อวิทยานิพนธ์	การสร้างแบบจำลองอัตราการเติบโตของรอยร้าวล้า
	สำหรับเหล็กกล้า A516 เกรด 70 จากสมบัติความแข็งแรง
	ล้ำ
โดย	นายชาญเดช มังกรแก้ว
สาขาวิชา	วิศวกรรมเครื่องกล
อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก	ผู้ช่วยศาสตราจารย์ ดร.จิรพงศ์ กสิวิทย์อำนวย

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็นส่วน หนึ่งของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

_____คณบดีคณะวิศวกรรมศาสตร์

(ศาสตราจารย์ ดร.บัณฑิต เอื้ออาภรณ์)

คณะกรรมการสอบวิทยานิพนธ์

_____ประธานกรรมการ

(รองศาสตราจารย์ ดร.ไพโรจน์ สิงหถนัดกิจ)

.....อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก

(ผู้ช่วยศาสตราจารย์ ดร.จิรพงศ์ กสิวิทย์อำนวย)

____กรรมการ

(ผู้ช่วยศาสตราจารย์ ดร.ธัญญารัตน์ สิงหนาท)

.....กรรมการภายนอกมหาวิทยาลัย

(ศาสตราจารย์กิตติคุณ ดร.สุรินทร์ พงศ์ศุภสมิทธิ์)

ชาญเดช มังกรแก้ว : การสร้างแบบจำลองอัตราการเติบโตของรอยร้าวล้า สำหรับเหล็กกล้า A516 เกรด 70 จากสมบัติความแข็งแรงล้า (PREDICTION OF FATIGUE CRACK GROWTH RATE FOR A516 GRADE 70 STEEL USING FATIGUE STRENGTH PROPERTIES) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ผศ. ดร.จิรพงศ์ กสิวิทย์อำนวย, หน้า.

วิทยานิพนธ์นี้สร้างแบบจำลองอัตราการเติบโตของรอยร้าวล้าตามแนวคิดของ Kujawski และEllyin และนำไปทำนายอัตราการเติบโตของรอยร้าวล้าที่อัตราส่วนภาระ 0.1, 0.3 และ 0.5

การสร้างแบบจำลองต้องการข้อมูลความแข็งแรงล้า, อัตราการเติบโตของรอยร้าวล้า และ ความสัมพันธ์ระหว่างความเค้น-ความเครียด ภายใต้ภาระล้า ข้อมูลเหล่านี้ได้จากการทดสอบเองและ จากงานวิจัยอื่น

การทดสอบประกอบด้วย 1) การทดสอบหาสมบัติความแข็งแรงล้าแบบควบคุมภาระ พิสัย ความเค้นที่ใช้คือ 520, 540, 560, 580, 590, 600 MPa และภาระเฉลี่ยเท่ากับศูนย์ และแบบ ควบคุมความเครียด โดยมีพิสัยความเครียดเท่ากับ 0.1%, 0.2%, 0.5%, 0.6% 2) การทดสอบหา อัตราการเติบโตของรอยร้าวล้าที่อัตราส่วนภาระ 0.1, 0.3 และ 0.5

การทวนสอบกับผลการทดสอบพบว่าแบบจำลองสามารถทำนายอัตราการเติบโตของรอย ร้าวล้าของเหล็กกล้า A516 เกรด 70 ได้ใกล้เคียงกับผลการทดสอบ โดยทำนายอัตราการเติบโตได้สูง กว่าผลการทดลอง 1-2 เท่า สำหรับพิสัยตัวประกอบความเข้มของความเค้น ในช่วง 20-50 MPavm

ภาควิชา	วิศวกรรมเครื่องกล	ลายมือชื่อนิสิต
สาขาวิชา	วิศวกรรมเครื่องกล	ลายมือชื่อ อ.ที่ปรึกษาหลัก
ปีการศึกษา	2557	

KEYWORDS:

CHARNDECH MONGKORNKAEW: PREDICTION OF FATIGUE CRACK GROWTH RATE FOR A516 GRADE 70 STEEL USING FATIGUE STRENGTH PROPERTIES. ADVISOR: ASST. PROF. JIRAPONG KASIVITAMNUAY, Ph.D., pp.

This thesis developed a fatigue crack growth rate model based on the concept proposed by Kujawski and Ellyin, and applied the model to predict a fatigue crack growth rate at the load ratio of 0.1, 0.3 and 0.5.

The model required fatigue strength data, the fatigue cracks growth rate data and the cyclic stress-strain relation. These data were obtained from our experiments and from literature.

The experiments are 1) fatigue test under load control with stress range of 520, 540, 560, 580, 590, 600 MPa and zero mean load, and the strain control under strain range of 0.1%, 0.2%, 0.5%, 0.6%. 2) fatigue cracks growth rate test with a load ratio of 0.1, 0.3, and 0.5.

Validation of the model with the experimental data found that, the model can accurately predict the fatigue crack growth rate of A516 grade 70 carbon steel. The predicted growth rate was 1-2 times higher than the experimentally determined growth rate for stress intensity factor within the range of 20-50 MPa/m.

Department:	Mechanical Engineering	Student's Signature
Field of Study:	Mechanical Engineering	Advisor's Signature
Academic Year:	2014	

กิตติกรรมประกาศ

ผู้วิจัยขอกราบขอบพระคุณ ผู้ช่วยศาสตราจารย์ ดร.จิรพงศ์ กสิวิทย์อำนวย อาจารย์ที่ ปรึกษาวิทยานิพนธ์ ที่ให้โอกาสสำคัญในการทำวิทยานิพนธ์ฉบับนี้ รวมถึงการให้ความกรุณา ถ่ายทอดความรู้ คำแนะนำ และประสบการณ์ต่างๆ ที่มีคุณค่ายิ่ง อันเป็นแรงผลักดันให้ผู้วิจัยทำ วิทยานิพนธ์ฉบับนี้สำเร็จลุล่วง

ขอกราบขอบพระคุณ รองศาสตราจารย์ ดร.ไพโรจน์ สิงหถนัดกิจ ที่ให้เกียรติเป็น ประธานกรรมการสอบวิทยานิพนธ์ รวมถึงผู้ช่วยศาสตราจารย์ ดร.ธัญญารัตน์ สิงหนาท และ ศาสตราจารย์กิตติคุณ ดร.สุรินทร์ พงศ์ศุภสมิทธิ์ ที่ให้เกียรติเป็นกรรมการสอบวิทยานิพนธ์ครั้งนี้ รวมทั้งอาจารย์ทุกท่านที่สละเวลาให้คำแนะนำ คำปรึกษา และถ่ายทอดความรู้ตลอดระยะเวลาใน การทำวิทยานิพนธ์นี้จนมีความสมบูรณ์มากขึ้น

ขอขอบคุณ บริษัท แมกซ์สตีล จำกัด, คุณสุรพล จรพงศ์ บริษัท พาราวินเซอร์ จำกัด, ห้างหุ้นส่วนจำกัด เอ็กซ์เซลทูล, คุณ ศิรสิทธิ์ ศิลาวัชรพล บริษัท ไทก้า เอ็นจิเนียริ่ง จำกัด ที่คอย ให้ความช่วยเหลือและให้คำปรึกษาด้วยดีมาโดยตลอด

ท้ายสุดนี้ผู้วิจัยขอกราบขอบพระคุณ พ.ท.สยาม มังกรแก้ว (บิดา), นางกัลยา มังกรแก้ว (มารดา) และนางสาวเกศสุดา มังกรแก้ว (พี่สาว) ที่คอยให้กำลังใจและสนับสนุนการศึกษาของ ผู้วิจัยในทุกด้านมาโดยตลอดจนสำเร็จการศึกษา คุณค่าและประโยชน์ที่เกิดจากวิทยานิพนธ์ฉบับนี้ ทั้งหมด ผู้วิจัยขอมอบแด่บิดามารดาและครอบครัว ครูอาจารย์ ตลอดจนผู้มีพระคุณทุกท่านที่ เกี่ยวข้องและสนับสนุนการศึกษาของผู้วิจัยมาโดยตลอดจนสำเร็จการศึกษา

2	
สารบญ	

	หน้า
บทคัดย่อภาษาไทย	۰.۹
บทคัดย่อภาษาอังกฤษ	จ
กิตติกรรมประกาศ	ฉ
สารบัญ	જ
สารบัญตาราง	ญ
สารบัญรูป	ฑ
รายการสัญลักษณ์	୭
บทที่ 1 บทนำ	1
1.1 ที่มาและความสำคัญ	1
1.2 จุดประสงค์ของการวิจัย	5
1.3 วิธีดำเนินการวิจัย	5
1.4 ประโยชน์ที่คาดว่าจะได้รับ	6
บทที่ 2 ความรู้ที่เกี่ยวข้องกับงานวิจัย	7
2.1 ความล้าและคำจำกัดความ	7
2.2 พฤติกรรมการเสียรูปภายใต้ภาระล้า	8
2.2.1 พฤติกรรมชั่วขณะ	9
2.2.2 พฤติกรรมคงที่1	lO
2.3 เส้นโค้งความเค้น-ความเครียดภายใต้ภาระล้า1	l1
2.4 ความสัมพันธ์ความเค้น-ความเครียดภายใต้ภาระล้า1	12
2.4.1 ความสัมพันธ์ Elastic , Perfectly Plastic1	13
2.4.2 ความสัมพันธ์ Elastic, Linear-Hardening1	13
2.4.3 ความสัมพันธ์ Elastic, Power-Hardening1	14

	2.4.4 ความสัมพันธ์ Ramberg-Osgood	15
	2.5 ความสัมพันธ์ความเครียด-อายุความล้า	16
	2.6 ผลของความเค้นเฉลี่ย	18
	2.7 ความเสียหายภายใต้ภาระล้า	20
	2.8 กลศาสตร์การแตกหักกับปัญหาการเติบโตของรอยร้าวล้า	21
	2.9 การสร้างกราฟอัตราการเติบโตของรอยร้าวล้า	22
	2.10 วิธีคำนวณอัตราการเติบโตของรอยร้าวล้า	23
	2.10.1 วิธี Secant	23
	2.10.2 วิธี Incremental polynomial	24
	2.11 ปัจจัยที่มีผลต่อพฤติกรรมการเติบโตของรอยร้าวล้า	24
	2.11.1 ความถี่ภาระ	25
	2.11.2 อัตราส่วนภาระ	25
	2.12 ความเค้น-ความเครียดหน้าปลายรอยร้าว	26
ບ	ทที่ 3 การสร้างแบบจำลองอัตราการเติบโตของรอยร้าวล้า	27
	3.1 ความสัมพันธ์ระหว่างคุณสมบัติความแข็งแรงล้ากับอัตราการเติบโตของรอยร้าว	27
	3.2 แบบจำลองอัตราการเติบโตของรอยร้าวของ Kujawski และ Ellyin	28
	3.3 การสร้างแบบจำลอง	29
	3.4 การทำนายอัตราการเติบโตของรอยร้าวล้า	31
	3.4.1 การหาค่าพารามิเตอร์ที่เกี่ยวข้อง	32
	3.4.2 ขั้นตอนการทำนายอัตราการเติบโตของรอยร้าวล้า	32
ບ	ทที่ 4 การทดสอบ	34
	4.1 วัสดุสำหรับทำชิ้นงานทดสอบ	34
	4.2 ทิศทางการวางตัวของชิ้นงาน	35

หน้า

4.3 การทดสอบหาความแข็งแรงล้า	
4.3.1 การออกแบบชิ้นงาน	
4.3.2 อุปกรณ์การทดสอบ	
4.3.3 หลักการทำงานของระบบทดสอบ	
4.3.4 รูปแบบการทดสอบเพื่อหาความแข็งแรงล้าและการเก็บข้อมูล	
4.3.5 สภาวะทดสอบสำหรับการทดสอบความแข็งแรงล้า	
4.4 การทดสอบหาอัตราการเติบโตของรอยร้าวล้า	
4.4.1 การออกแบบชิ้นงาน	
4.4.2 อุปกรณ์การทดสอบ	
4.4.3 หลักการทำงานของระบบ	
4.4.4 รูปแบบการทดสอบเพื่อหาอัตราการเติบโตของรอยร้าวล้าและเก็บข้อ	ມູລ 42
4.4.4.1 การสร้างรอยร้าวเริ่มต้น	
4.4.4.2 การทดสอบแบบเพิ่ม ∆K	
4.4.4.3 การทดสอบแบบลด ∆K	
4.4.4.4 การเก็บข้อมูลการทดสอบ	
4.4.5 สภาวะทดสอบสำหรับการทดสอบเพื่อหาอัตราการเติบโตของรอยร้าว	เล้า 45
บทที่ 5 ผลการทดสอบ และ ผลการทำนาย	
5.1 ผลการทดสอบ	
5.1.1 ผลการทดสอบหาคุณสมบัติความแข็งแรงล้า	
5.1.1.1 การทดสอบแบบควบคุมความเครียด	
5.1.1.2 การทดสอบแบบควบคุมความเค้น	
5.1.2 ผลการทดสอบเพื่อหาอัตราการเติบโตของรอยร้าวล้า	
5.2 ผลการทำนายอัตราการเติบโตของรอยร้าวล้า	

หน้า

บทที่ 6 อภิปราย	56
6.1 การทดสอบอัตราการเติบโตของรอยร้าวล้า	56
6.1.1 การทดสอบแบบเพิ่ม ∆K	56
6.1.2 การทดสอบแบบลด ∆К	58
6.2 ความสอดคล้องของผลการทดสอบกับงานวิจัยอื่น	60
6.2.1 การทดสอบเพื่อหาความแข็งแรงล้า	60
6.2.2 การทดสอบเพื่อหาอัตราการเติบโตของรอยร้าวล้า	61
6.3 การทำนายอัตราการเติบโตของรอยร้าวล้า	63
6.3.1 การเลือกจุดข้อมูลอัตราการเติบโตของรอยร้าวล้า 1 จุด	63
6.3.2 ผลการทำนายอัตราการเติบโตของรอยร้าวล้า	64
6.4 การประมาณค่าพารามิเตอร์ในแบบจำลอง	65
6.4.1 การประมาณพารามิเตอร์ที่ใช้ในการทำนายอัตราการเติบโตของรอยร้าวล้า	66
6.5 ความไม่สมเหตุสมผลของแบบจำลอง Kujawski และ Ellyin	68
บทที่ 7 สรุปผลการทดสอบและข้อเสนอแนะ	71
7.1 สรุปผลการทดสอบ	71
7.2 ข้อเสนอแนะ	71
7.3 งานวิจัยต่อเนื่อง	72
	73
รายการอ้างอิง	73
ภาคผนวก ก แบบ Drawing ชิ้นงาน	78
ภาคผนวก ข ขั้นตอนการทำชิ้นงาน	86
ข.1 ขั้นตอนการทำชิ้นงานทดสอบคุณสมบัติความแข็งแรงล้า	86
ข.2 ขั้นตอนการทำชิ้นงานทดสอบอัตราการโตของรอยร้าวล้า	

ល្ង

ภาคผนวก ค โปรแกรมสำหรับการทดสอบเพื่อหาความแข็งแรงล้า	87
ภาคผนวก ง โปรแกรมติดตามรอยร้าวสำหรับการทดสอบอัตราการเติบโตของรอยร้าวล้า	90
ภาคผนวก จ ข้อมูลการทดสอบหาคุณสมบัติความแข็งแรงล้า	94
ภาคผนวก ฉ ข้อมูลการทดสอบหาอัตราการเติบโตของรอยร้าวล้า	98
ภาคผนวก ช Code โปรแกรมเพื่อทำนายอัตราการเติบโตของรอยร้าวล้า	123
ประวัติผู้เขียนวิทยานิพนธ์	127

จุฬาลงกรณิมหาวิทยาลัย Chulalongkorn University หน้า

สารบัญตาราง

ตารางที่ 2.1 วิธีทำนายผลของเค้นเฉลี่ยต่อความแข็งแรงล้า	19
ตารางที่ 2.2 ตัวอย่างสมการอัตราเติบโตของรอยร้าวล้า2	22
ตารางที่ 4.1 คุณสมบัติทางกลสำหรับเหล็กกล้า A516 เกรด 70	34
ตารางที่ 4.2 ส่วนผสมทางเคมีสำหรับเหล็กกล้า A516 เกรด 70	34
ตารางที่ 4.3 สภาวะทดสอบสำหรับการทดสอบแบบเพิ่ม ΔK	15
ตารางที่ 4.4 สภาวะทดสอบสำหรับการทดสอบแบบลด ΔK	15
ตารางที่ 5.1 สรุปพารามิเตอร์จากการทดสอบหาสมบัติความแข็งแรงล้า	18
ตารางที่ 5.2 ค่าขีดเริ่มของพิสัยตัวประกอบความเข้มของความเค้น	52
ตารางที่ จ.1 ข้อมูลการทดสอบแบบควบคุมความเครียดจากข้อมูลของ Kujawski กับ Ellyin	94
ตารางที่ จ.2 ข้อมูลการทดสอบแบบควบคุมความเครียดจากการทดสอบเพิ่มเติม	<i></i>
ตารางที่ จ.3 ข้อมูลการทดสอบแบบควบคุมความเค้นจากข้อมูลของ Kujawski กับ Ellyin) 5
ตารางที่ จ.4 ข้อมูลการทดสอบแบบควบคุมความเค้นจากข้อมูลการทดสอบเพิ่มเติม) 5
ตารางที่ จ.5 ข้อมูลการทดสอบแบบควบคุมความเค้นจากข้อมูลการทดสอบเพิ่มเติม (ต่อ)	96
ตารางที่ จ.6 ข้อมูลการคำนวณสำหรับการพล็อตกราฟความเค้น-อายุความล้า	96
ตารางที่ จ.7 ข้อมูลการคำนวณสำหรับการพล็อตกราฟความเครียด-อายุความล้า	97
ตารางที่ ฉ.1 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบเพิ่ม ΔK ที่ R=0.1	98
ตารางที่ ฉ.2 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบลด ΔK ที่ R=0.1)5
ตารางที่ ฉ.3 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบเพิ่ม ΔK ที่ R=0.310)7
ตารางที่ ฉ.4 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบลด ΔK ชิ้นงานที่ 1 ที่ R=0.311	4
ตารางที่ ฉ.5 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบลด ΔK ชิ้นงานที่ 2 ที่ R=0.311	15
ตารางที่ ฉ.6 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบเพิ่ม ΔK ที่ R=0.511	17
ตารางที่ ฉ.7 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบลด ΔK ชิ้นงานที่ 1 ที่ R=0.512	20

ตารางที่ ฉ.8 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบลด ΔK ชิ้นงานที่ 2 ที่ R=0.5...... 122 ตารางที่ ฉ.9 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบลด ΔK ชิ้นงานที่ 3 ที่ R=0.5...... 122

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

สารบัญรูป

รูปที่ 1.1 (ก) พิสัยความเครียดที่เอลิเมนต์ A รับที่ความยาวรอยร้าว a (ข) พิสัยความเครียดที่เอ ลิเมนต์ A รับเมื่อรอยร้าวเติบโต	3
รูปที่ 1.2 (ก) พิสัยความเครียดที่เอลิเมนต์ A รับที่ความยาวรอยร้าว $a\!+\!r_p$ (ข) พิสัยความเครียด ที่เอลิเมนต์ B รับเมื่อปลายรอยร้าวเคลื่อนที่มาประชิด	4
รูปที่ 2.1 สัญลักษณ์ของตัวแปรที่ใช้กำหนดลักษณะแอมพลิจูดภาระล้าคงที่	8
รูปที่ 2.2 (ก) การทดสอบแบบควบคุมความเครียด (ข) cyclic hardening (ค) cyclic softening 1	0
รูปที่ 2.3 วงปิดฮีสเตอริซีส1	0
รูปที่ 2.4 เส้นโค้งความเค้น-ความเครียดจากวิธี companion samples1	1
รูปที่ 2.5 วิธี incremental step1	2
รูปที่ 2.6 วิธี multiple-step test method1	2
รูปที่ 2.7 ความสัมพันธ์ Elastic , Perfectly Plastic1	3
รูปที่ 2.8 ความสัมพันธ์ Elastic, Linear-Hardening1	4
รูปที่ 2.9 ความสัมพันธ์ Elastic, Power-Hardening1	5
รูปที่ 2.10 ความสัมพันธ์ Ramberg-Osgood	6
รูปที่ 2.11 ความสัมพันธ์ระหว่างความเครียดกับอายุความล้าและรูปร่างวงปิดฮีสเตอริซีส1	8
รูปที่ 2.12 ผลของความเค้นเฉลี่ยต่ออายุความล้า1	9
รูปที่ 2.13 กระบวนการเกิดความเสียหายล้า2	0
รูปที่ 2.14 ลักษณะของเส้นโค้ง <i>da/dN-∆K</i> 2	1
รูปที่ 2.15 วิธีคำนวณ ΔK	3
รูปที่ 2.16 แนวโน้มกราฟ da/d N- ΔK ที่อัตราส่วนภาระต่าง ๆ	6
รูปที่ 3.1 ความสัมพันธ์ระหว่างคุณสมบัติความแข็งแรงล้ากับอัตราการเติบโตของรอยร้าวล้า2	7
รูปที่ 3.2 การจำแนกบริเวณเสียรูปที่บริเวณปลายรอยร้าว	8
รูปที่ 3.3 ขั้นตอนการทำนายอัตราการเติบโตของรอยร้าวล้า	3

รูปที่	4.1	แสดงทิศการวางตัวของชิ้นงานทดสอบ	35
รูปที่	4.2	ชิ้นงานทดสอบหาความแข็งแรงล้า	36
รูปที่	4.3	การประกอบชุดทดสอบเพื่อหาความแข็งแรงล้า	36
รูปที่	4.4	ระบบทดสอบเพื่อหาความแข็งแรงล้า	37
รูปที่	4.5	ชิ้นงานทดสอบหาอัตราการเติบโตของรอยร้าวล้า	39
รูปที่	4.6	การประกอบชุดทดสอบเพื่อหาอัตราการเติบโตของรอยร้าวล้า	40
รูปที่	4.7	ระบบทดสอบเพื่อหาอัตราการเติบโตของรอยร้าวล้า	41
รูปที่	4.8	(ก) ขั้นตอนการทดสอบแบบเพิ่ม ΔK (ข) ขั้นตอนการทดสอบแบบลด ΔK	44
รูปที่	5.1	ความเค้น-ความเครียดภายใต้ภาระล้า	46
รูปที่	5.2	ความสัมพันธ์ $\Delta\sigma/2\text{-}2N_{ ext{f}}$	47
รูปที่	5.3	ความสัมพันธ์ $\Delta arepsilon_{ m p}/2 extsf{-}2N_{ m f}$	48
รูปที่	5.4	อัตราการเติบโตของรอยร้าวล้าที่อัตราส่วนภาระเท่ากับ 0.1	49
รูปที่	5.5	อัตราการเติบโตของรอยร้าวล้าที่อัตราส่วนภาระเท่ากับ 0.3	50
รูปที่	5.6	อัตราการเติบโตของรอยร้าวล้าที่อัตราส่วนภาระเท่ากับ 0.5	51
รูปที่	5.7	ผลการทำนายอัตราการเติบโตของรอยร้าวล้า ที่อัตราส่วนภาระ 0.1	53
รูปที่	5.8	ผลการทำนายอัตราการเติบโตของรอยร้าวล้า ที่อัตราส่วนภาระ 0.3	54
รูปที่	5.9	ผลการทำนายอัตราการเติบโตของรอยร้าวล้า ที่อัตราส่วนภาระ 0.5	55
รูปที่	6.1	ความคลาดเคลื่อนของภาระสูงสุดจากการทดสอบแบบเพิ่ม ΔK ที่อัตราส่วนภาระ 0.1	57
รูปที่	6.2	ความคลาดเคลื่อนของภาระสูงสุดจากการทดสอบแบบเพิ่ม ΔK ที่อัตราส่วนภาระ 0.3	57
รูปที่	6.3	ความคลาดเคลื่อนของภาระสูงสุดจากการทดสอบแบบเพิ่ม ΔK ที่อัตราส่วนภาระ 0.5	58
รูปที่	6.4	ความคลาดเคลื่อนของภาระสูงสุดจากการทดสอบแบบลด ΔK ที่อัตราส่วนภาระ 0.1	59
รูปที่	6.5	ความคลาดเคลื่อนของภาระสูงสุดจากการทดสอบแบบลด ΔK ที่อัตราส่วนภาระ 0.3	59
รูปที่	6.6	ความคลาดเคลื่อนของภาระสูงสุดจากการทดสอบแบบลด ΔK ที่อัตราส่วนภาระ 0.5	60

รูปที่ 6.7 ความสัมพันธ์ระหว่างแอมพลิจูดความเครียดกับอายุความล้าจากข้อมูลการทดสอบของ ผู้วิจัยกับข้อมูลการทดสอบของ Kujawski และ Ellyin	.61
รูปที่ 6.8 กราฟ da/dN - ΔK จากข้อมูลการทดสอบของผู้วิจัยกับผลจากการทดสอบของ Wilson ที่อัตราส่วนภาระ 0.1	. 62
รูปที่ 6.9 ค่าพารามิเตอร์ δ^{*} ที่ตำแหน่งต่างๆของจุดข้อมูลอัตราการเติบโตของรอยร้าวล้า	.63
รูปที่ 6.10 ผลของ $\delta^{^*}$ ต่อการทำนายอัตราการเติบโตของรอยร้าวล้า	. 64
รูปที่ 6.11 ผลการทำนายอัตราการเติบโตของรอบร้าวล้ากับข้อมูลอัตราการเติบโตของรอยร้าวล้า ที่อัตราส่วนภาระ 0.1, 03 และ 0.5	. 65
รูปที่ 6.12 การเปรียบเทียบผลการทดสอบกับการประมาณด้วยสมการของ Roessle และ	
Fatemi	. 66
รูปที่ 6.13 ผลการเปรียบเทียบสมการที่ (3.7) กับ สมการที่ (6.4)	. 68
รูปที่ 6.14 ผลการเปรียบเทียบสมการที่ (3.13) กับ สมการที่ (6.6)	. 69
รูปที่ ก.1 Drawing ชิ้นงานทดสอบหาสมบัติความแข็งแรงล้า	. 79
รูปที่ ก.2 Drawing ชิ้นงานแหวนสำหรับลด Backlash	. 80
รูปที่ ก.3 Drawing ชิ้นงาน Grip ยึดชิ้นงานทดสอบหาสมบัติความแข็งแรงล้า	. 81
รูปที่ ก.4 Drawing ชิ้นงาน Compact tension สำหรับการทดสอบเพื่อหาอัตราการเติบโตของ รอยร้าวล้า	. 82
รูปที่ ก.5 Drawing ชิ้นงาน Pin สำหรับยึด ชิ้นงาน Compact tension	. 83
รูปที่ ก.6 Drawing ชิ้นงาน Spacer สำหรับกำหนดตำแหน่งชิ้นงาน Compact tension	. 84
รูปที่ ก.7 Drawing ชิ้นงาน Pin สำหรับยึด Grip สำหรับการทดสอบอัตราการเติบโตของรอยร้าว ล้า	. 85
รูปที่ ค.1 ส่วนต่อประสานกับผู้ใช้ของโปรแกรมสำหรับการทดสอบเพื่อหาความแข็งแรงล้า	. 87
รูปที่ ค.2 ภาพรวมของโปรแกรมเก็บข้อมูลสำหรับการทดสอบเพื่อหาความแข็งแรงล้า	. 88
รูปที่ ง.1 ส่วนต่อประสานกับผู้ใช้ของโปรแกรมติดตามรอยร้าว	. 90
รูปที่ ง.2 ภาพรวมของโปรแกรมติดตามรอยร้าวสำหรับการทดสอบอัตราการเติบโตของรอยร้าว ล้า	.91

รายการสัญลักษณ์

(W-a)	ความยาวของชิ้นงานทดสอบในส่วนที่ยังไม่เกิดรอยร้าว	mm
$2N_f$	reversals to failure	cycle
a	ความยาวรอยร้าว	mm
\overline{a}	ความยาวรอยร้าวเฉลี่ย	mm
a_0	ความยาวรอยร้าวเริ่มต้น	mm
b	fatigue strength exponent	-
В	ความหนาของชิ้นงานทดสอบ	mm
С	fatigue ductility exponent	-
С	ค่าคงที่ปรับลดภาระ	-
da/dN	อัตราการเติบโตของรอยร้าว	mm / cycle
Ε	มอดูลัสความยึดหยุ่น (modulus of elasticity)	MPa
h	ขนาดความกว้างของรอยบาก	mm
K'	cyclic strength coefficient	MPa
K _{max}	ค่าสูงสุดของตัวประกอบความเข้มของความเค้น	$MPa\sqrt{m}$
Ν	จำนวนรอบภาระ	cycle
<i>n</i> '	cyclic strain hardening exponent	-
N_{f}	จำนวนรอบภาระถึงค่าวิกฤติ เป็นหาวิทยาลัย	cycle
N_i	อายุการกำเนิดรอยร้าว (crack initiation life)	cycle
P_a	แอมพลิจูดภาระ (load amplitude)	ตัน
$P_{\rm max}$	ขนาดภาระสูงสุด	ตัน
R	อัตราส่วนภาระ (load ratio)	-
r_c	บริเวณเสียรูปพลาสติกภายใต้ภาระเปลี่ยนแปลง (cyclic plastic	
	zone)	-
r _m	บริเวณเสียรูปพลาสติกขณะรับภาระสูงสุด	-
R_{σ}	อัตราส่วนความเค้นในบริเวณกระบวนการ	-
W	ความกว้างของชิ้นงานทดสอบ	mm
γ	ค่าคงที่ที่หาจากข้อมูลการทดสอบ	-
δ^{*}	ขนาดของบริเวณกระบวนการ (process zone size)	-

ΔK	พิสัยตัวประกอบความเข้มของความเค้น (stress intensity factor	MD a Lui
	range)	MPa√m
ΔK_{th}	พิสัยตัวประกอบความเข้มของความเค้นขีดเริ่ม (threshold stress	
	intensity factor range)	MPa√m
ΔP	พิสัยภาระ (load range)	ตัน
$\Delta \varepsilon$	พิสัยความเครียดรวม (total strain range)	-
$\frac{\Delta\varepsilon}{2}$	แอมพลิจูดความเครียดรวม	-
$\Delta \mathcal{E}_{e}$	พิสัยความเครียดยืดหยุ่น (elastic strain range)	-
$rac{\Deltaarepsilon_e}{2}$	แอมพลิจูดความเครียดยืดหยุ่น	-
$\Delta arepsilon_p$	พิสัยความเครียดพลาสติก (plastic strain range)	-
$\frac{\Delta \varepsilon_p}{2}$	แอมพลิจูดความเครียดพลาสติก	-
ΔK_0	พิสัยตัวประกอบความเข้มของความเค้นเริ่มต้น	$MPa\sqrt{m}$
$\Delta \sigma$	พิสัยความเค้นรวม (total stress range)	MPa
Е	ความเครียด	-
\mathcal{E}_0	ความเครียดครากภายใต้ภาระล้า (cyclic yield strain)	-
$\mathcal{E}_{f}^{'}$	fatigue ductility coefficient	-
P_m	ภาระเฉลี่ย (mean load)	ตัน
$ ho_c$	รัศมีความโค้งรอยร้าว	-
σ	ความเค้น	МРа
$\sigma_{_0}$	ความเค้นคราก	МРа
$\sigma_{\scriptscriptstyle f}^{'}$	fatigue strength coefficient	MPa

บทที่ 1 บทนำ

1.1 ที่มาและความสำคัญ

ความล้า (fatigue) ของวัสดุ คือกลไกความเสียหายที่เกิดกับวัสดุที่รับภาระ ซึ่งมีขนาด เปลี่ยนแปลงตามเวลา ชิ้นส่วนหรือโครงสร้างทางวิศวกรรมที่เสียหาย 50-90 เปอร์เซ็นต์ มีสาเหตุ จากความล้าหรือมีความล้าเป็นส่วนร่วม [1,2] ดังนั้น การออกแบบเพื่อป้องกันไม่ให้ชิ้นส่วนหรือ โครงสร้างเกิดความเสียหายเนื่องจากความล้าตลอดอายุใช้งานจึงเป็นกิจกรรมที่สำคัญ กรณีตัวอย่าง อุบัติเหตุที่มีสาเหตุมาจากความเสียหายล้า [3] ได้แก่ Aloha flight 243 ในปี 1988 อีพ็อกซีที่ยึดผิว เครื่องบินหลุดล่อนเนื่องจากความล้าส่งผลให้รูของหมุดย้ำเกิดรอยร้าวและฉีกขาด, Concorde G-BOAF ในปี 1989 ที่หางเสือใช้งานไม่ได้เนื่องจากเกิดรอยร้าวล้าและรอยร้าวเติบโตจนกระทั่งหางเสือ แตกหัก และ โบอิง 747-100 ในปี2000 ตรวจพบรอยฉีกขาดจากความล้าที่โครงสร้างส่วนหางและ ส่วนที่ใช้ควบคุมทิศทางหลังจากเครื่องประสบอุบัติเหตุ าลา จากกรณีตัวอย่างจะเห็นได้ว่าหากเกิด ความเสียหายล้าขึ้นภายในอายุใช้งานที่ออกแบบจะนำมาซึ่งการสูญเสียชีวิตและทรัพย์สิน

ความเสียหายล้าในขึ้นส่วนหรือโครงสร้างส่วนใหญ่จะปรากฏในรูปของรอยร้าว (crack) ซึ่ง เติบโตได้หากขึ้นส่วนยังรับภาระเปลี่ยนแปลง สิ่งหนึ่งที่นักออกแบบสนใจ คือการคำนวณจำนวนรอบ ที่รอยร้าวใช้เติบโตจากความยาวเริ่มต้น (หรือความยาวที่ตรวจพบ) ถึงความยาวที่ยอมให้ปรากฏใน ขึ้นส่วนได้ คือ อายุการเติบโตของรอยร้าวล้า (Fatigue Crack Growth Life) โดยการคำนวณอายุ การเติบโตต้องการข้อมูลอัตราการเติบโตของรอยร้าวล้า (Fatigue Crack Growth Rate, FCGR) ซึ่ง ได้จากการทดสอบกับขึ้นงานทดสอบรูปร่างมาตรฐานที่มีรอยร้าว (pre-cracked specimen) ตาม ขั้นตอนมาตรฐาน เช่น ASTM E647 [4] อย่างไรก็ดี เนื่องจากข้อมูลความแข็งแรงล้า (fatigue strength) ของวัสดุต่างๆ มีความสมบูรณ์กว่าข้อมูล FCGR และการทดสอบหาความแข็งแรงล้าก็ทำ ได้ง่ายกว่าการทดสอบ FCGR ทำให้นักวิจัยจำนวนมากนับจากอดีตถึงปัจจุบัน [5-21] คิดค้นวิธี ทำนายอัตราการเติบโตของรอยร้าวล้าจากข้อมูลความแข็งแรงล้า

ในปี ค.ศ.1969 Lehr และ Liu [5] ใช้แนวคิดของ McClintock ซึ่งเสนอในปี ค.ศ.1963 ว่า "การเติบโตของรอยร้าวล้า" เปรียบเสมือนการแตกหักอย่างค่อยเป็นค่อยไปของวัสดุขนาดเล็กๆ ที่อยู่ หน้าปลายรอยร้าว และจำนวนรอบที่วัสดุดังกล่าวสามารถรับได้จะเกี่ยวข้องกับ "ความแข็งแรงล้าของ วัสดุ" จากแนวความคิดนี้ Lehr และ Liu สามารถสร้างสมการอัตราการเติบโตของรอยร้าวล้าที่มีค่า คงตัวในสมการเป็นฟังก์ชันของสมบัติความล้ารอบต่ำ (low cycle fatigue property) และสมบัติ การเสียรูปภายใต้ภาระเปลี่ยนแปลง (cyclic deformation properties) เขาเปรียบเทียบผลการ ทำนาย FCGR กับผลการทดสอบ FCGR ของวัสดุอะลูมิเนียมผสม 2024-T4 และ 7075-T6 เหล็กกล้าไร้สนิม AM350 และเหล็กกล้า 18Ni พบว่าสมการสามารถทำนาย FCGR ได้แม่นยำใน ระดับที่ยอมรับได้ นักวิจัยอีกหลายท่าน ได้แก่ Majumdar และคณะ [6], Birol [7], Duran และ คณะ [8] และ Castro และคณะ [9] เป็นต้น ปรับปรุงแนวคิดของ Lehr และ Liu ในส่วนปลีกย่อย ได้แก่ สมการที่ใช้คำนวณความเค้น-ความเครียดบริเวณปลายรอยร้าว สมการที่ใช้แสดงความแข็งแรง ล้า (ความสัมพันธ์ระหว่างพารามิเตอร์ความล้ากับอายุความล้า) และประยุกต์กับโลหะชนิดอื่นๆ เป็น ต้น นักวิจัยทุกท่านรายงานว่า ผลการทำนาย FCGR สอดคล้องกับผลการทดสอบ

้อย่างไรก็ดี แนวคิดพื้นฐานของ Lehr และ Liu และนักวิจัยท่านอื่นๆ ที่พิจารณาการสะสม ้ความเสียหายของเอลิเมนต์ที่ขอบของบริเวณเสียรูปพลาสติก (plastic zone) หรือ เอลิเมนต์ A ในรูป ที่ 1.1(ก) นั้นมีความไม่สมเหตุสมผล ซึ่งอธิบายได้ดังนี้ Lehr และ Liu สมมุติให้พิสัยตัวประกอบความ เข้มของความเค้น (stress intensity factor range, ΔK) มีค่าคงที่ในบริเวณเสียรูปพลาสติกแต่ข้อ สมมุตินี้จะสมเหตุสมผลหากรอยร้าวมีความยาว *a* มากพอสมควรเพราะอัตราส่วนระหว่างขนาดของ บริเวณเสียรูปพลาสติก r_p กับความยาวรอยร้าว a มีค่าน้อย ข้อสมมุตินี้ส่งผลสืบเนื่องคือ 1) รอย ร้าวมีอัตราการเติบโตคงที่ภายในช่วง $a+r_p$ และ 2) สนามความเครียดบริเวณปลายรอยร้าวไม่ ขึ้นกับตำแหน่งปลายรอยร้าว กล่าวคือกราฟการกระจายความเครียดจะไม่เปลี่ยนรูปร่าง แต่มีจุด ้กำเนิดของแกนอยู่ที่ตำแหน่งปัจจุบันของปลายรอยร้าว ดูรูปที่ 1.1(ข) ประกอบ Lehr และ Liu ้กำหนดให้รอยร้าวเติบโตเป็นระยะทางสั้นๆ ในแต่ละรอบที่ภาระกระทำ ปลายรอยร้าวจึงเข้าใกล้เอลิ เมนต์ A มากขึ้นเรื่อยๆ และเอลิเมนต์ A รับพิสัยความเครียดเพิ่มขึ้นในแต่ละรอบภาระ เขากำหนดให้ เอลิเมนต์ A เสียหายเมื่อสะสมความเสียหายล้าถึงระดับวิกฤติ ซึ่งเทียบเท่ากับรอยร้าวเติบโตผ่านเอลิ เมนต์ A พอดี (หรือรอยร้าวมีความยาวใหม่เท่ากับ $a+r_p$) อัตราการเติบโตของรอยร้าวล้า da/dNขณะที่รอยร้าวยาว a จึงเท่ากับ r_p หารจำนวนรอบภาระที่ทำให้เอลิเมนต์ A เสียหาย ΔN หรือ $da/dN pprox r_p/\Delta N$ เนื่องจาก ΔK คงที่ในช่วง a ถึง $a+r_p$ แอมพลิจูดความเครียดที่เอลิเมนต์ A ้รับขณะที่ปลายรอยร้าวเคลื่อนที่มาประชิด รูปที่ 1.2(ก) จะเท่ากับที่เอลิเมนต์ B รูปที่ 1.2(ข) ซึ่งอยู่ติด ้กับปลายรอยร้าวรับ แต่แนวคิดของ Lehr และ Liu สมมุติให้รอยร้าวเติบโตทุกๆ รอบภาระ ดังนั้นเอลิ เมนต์ B จึงเสียหายหลังจากรับภาระไป 1 รอบ ซึ่งต่างจากเอลิเมนต์ A ที่มีความเสียหายสะสมอยู่แล้ว แต่ยังสามารถรับแอมพลิจูดความเครียดขนาดเดียวกันได้อีกหนึ่งรอบจึงเสียหาย ข้อสมมุติเริ่มแรกที่ใช้ สร้างแบบจำลองจึงขัดแย้งกับผลลัพธ์ตอนท้าย

³

(ก)

รูปที่ 1.2 (ก) พิสัยความเครียดที่เอลิเมนต์ A รับที่ความยาวรอยร้าว $a+r_p$ (ข) พิสัยความเครียดที่เอลิ เมนต์ B รับเมื่อปลายรอยร้าวเคลื่อนที่มาประชิด

แนวคิดอื่นสำหรับสร้างแบบจำลอง FCGR คือการพิจารณาความเสียหายของเอลิเมนต์ที่ ประชิดปลายรอยร้าวได้แก่แบบจำลองของ Kujawski และ Ellyin [10, 11] เขากำหนดให้การเติบโต ของรอยร้าวล้า คือ ความเสียหายของเอลิเมนต์ขนาด δ^* ที่อยู่ประชิดกับปลายรอยร้าว ถ้าเอลิเมนต์ ้นี้รับภาระได้ ΔN รอบก่อนเสียหาย อัตราการเติบโตของรอยร้าวล้าขณะนั้นจะเท่ากับ $da/dN pprox \delta^*/\Delta N$ แบบจำลองคำนวณความเค้นและความเครียดบริเวณปลายรอยร้าวจากผลเฉลย ของ Hutchinson-Rice-Rosengren, HRR และคำนวณ ΔN จากความสัมพันธ์ระหว่างผลคุณของ พิสัยความเค้นและพิสัยความเครียดพลาสติก $\left(\Delta\sigma\!\Deltaarepsilon_{_p}
ight)$ กับอายุความล้า ส่วนการระบุค่า δ^* ใช้วิธี ปรับค่าจนกระทั่ง FCGR ที่ทำนายได้ ใกล้เคียงกับ FCGR จากการทดสอบและถือว่า δ^* เป็นสมบัติ ของวัสดุ แต่วิธีการนี้ FCGR ได้ไม่แม่นยำ ในบริเวณใกล้ขีดเริ่มต้น (near threshold region) เมื่อ ้อัตราส่วนภาระสูงขึ้น (คำจำกัดความอัตราส่วนภาระกล่าวถึงในหัวข้อ 2.1) โดยแบบจำลองจะทำนาย ได้ต่ำกว่าผลการทดสอบ Motta [12] ให้เหตุผลว่าพฤติกรรมดังกล่าวเกิดจากการละเลยผลของพิสัย ความเครียดยืดหยุ่นต่ออายุความล้า เขาเสนอแบบจำลองใหม่ในรูปของพลังงานความเครียดรวม Li และคณะ [13] ให้ข้อสังเกตว่าแบบจำลองที่กล่าวมาต้องการผลการทดสอบ FCGR (อย่างน้อย 1 จุด) ้สำหรับหาค่า δ^* ที่เหมาะสมที่สุด ขั้นตอนนี้ทำให้แบบจำลองยังไม่ใช่แบบจำลองสำหรับทำนาย FCGR จากข้อมูลความแข็งแรงล้าอย่างแท้จริง Li และคณะ จึงเสนอสมการประมาณค่า δ^* จาก สมบัติความล้ารอบต่ำ และทวนสอบแบบจำลองกับ Spring steel ที่อุณหภูมิ 300 ถึง 500 องศา เซลเซียสด้วยอัตราส่วนภาระ -1 และทวนสอบกับเหล็กกล้า A533-B1 ที่อุณหภูมิห้องด้วยอัตราส่วน ภาระ 0.1 ถึง 0.8 พบว่าแบบจำลองสามารถทำนาย FCGR ได้แม่นยำ

จุดอ่อนของแบบจำลองข้างต้น [10-13] และแบบจำลองที่ใหม่กว่า [14-20] คือการสมมุติให้ การสะสมความเสียหายล้าเกิดขึ้นกับเอลิเมนต์ที่ประชิดกับปลายรอยร้าวเท่านั้น ดังนั้น เมื่อเอลิเมนต์ ที่ประชิดกับปลายรอยร้าวเสียหาย เอลิเมนต์อันถัดไปจะกลายเป็นเอลิเมนต์ประชิดปลายรอยที่ไม่มี ความเสียหายล้าสะสมอยู่ (Virgin material) ในความเป็นจริง เอลิเมนต์ที่อยู่ถัดจากเอลิเมนต์ที่ ประชิดปลายรอยร้าวก็สะสมความเสียหายเพียงแต่สะสมด้วยอัตราที่ต่ำกว่า ดังนั้น หากพิจารณา ระดับความเสียหายที่สะสมในเอลิเมนต์ใดๆ ซึ่งต่อมาจะกลายเป็นเอลิเมนต์ที่ประชิดปลายรอยร้าว แบบจำลองก็จะมีความสมเหตุสมผลขึ้นโดยแบบจำลองของ Kujawski และ Goswami [21] ได้ คำนึงถึงผลดังกล่าว

จากที่กล่าวมาจะเห็นว่า การสร้างแบบจำลองอัตราการเติบโตของรอยร้าวที่อาศัยสมบัติ ความแข็งแรงล้ายังเป็นงานวิจัยที่ได้รับความนิยม เพราะนอกจากจะเป็นการใช้ข้อมูลความแข็งแรงล้า ให้เกิดประโยชน์มากขึ้น แบบจำลองยังมีศักยภาพในการพัฒนาไปสู่การวิเคราะห์ปัญหาความล้าที่ ซับซ้อน เช่น การเติบโตของรอยร้าวล้าภายใต้ภาระแอมพลิจูดไม่คงที่ [18,20,21] หรือการเติบโตของ รอยร้าวล้าที่ได้รับผลของสภาพแวดล้อม [20] อย่างไรก็ดี จากการสำรวจไม่พบว่ามีการประยุกต์ แบบจำลองประเภทนี้กับเหล็กกล้าคาร์บอน A516 เกรด 70 ซึ่งนิยมใช้ทำภาชนะความดันใน โรงงานผลิตไฟฟ้า และโรงงานปิโตรเคมี เป็นต้น ดังนั้นจึงจำเป็นต้องทวนสอบความเป็นไปได้ของการ ทำนาย FCGR จากข้อมูลความแข็งแรงล้าของโลหะชนิดนี้

1.2 จุดประสงค์ของการวิจัย

- ทดสอบหาความแข็งแรงล้าของเหล็กกล้าคาร์บอน ASTM A516 เกรด 70 ณ อุณหภูมิห้อง โดยมีความเค้นเฉลี่ยเท่ากับศูนย์ เพื่อสร้างข้อมูลพื้นฐานสำหรับนำไปใช้ทำนายอัตราการ เติบโตของรอยร้าวล้า
- ทดสอบหาอัตราการเติบโตของรอยร้าวล้าที่อุณหภูมิห้องของเหล็กกล้าคาร์บอน ASTM A516 เกรด 70
- 3. ประยุกต์แบบจำลองอัตราการเติบโตของรอยร้าวล้าของ Kujawski และ Ellyin เพื่อทำนาย อัตราการเติบโตของรอยร้าวล้าและเปรียบเทียบผลการทำนายกับผลการทดสอบ

1.3 วิธีดำเนินการวิจัย

- 1. สั่งซื้อวัสดุทดสอบและตัดแบ่งเป็นขนาดที่เหมาะสมสำหรับจัดเก็บ
- 2. ออกแบบและสร้างอุปกรณ์จับยึดชิ้นงานทดสอบความล้า
- 3. ออกแบบและสั่งทำชิ้นงานทดสอบ
- 4. ทดสอบความล้าภายใต้แอมพลิจูดภาระคงที่

- วิเคราะห์หาพารามิเตอร์ของแบบจำลองอัตราการเติบโตของรอยร้าวล้า (แบบจำลองของ Kujawski และ Ellyin)
- 6. ทดสอบหาอัตราการเติบโตของรอยร้าวที่อัตราส่วนภาระต่างๆ
- 7. ประยุกต์แบบจำลองของ Kujawski และ Ellyin เพื่อทำนายอัตราการเติบโตของรอยร้าวล้า

1.4 ประโยชน์ที่คาดว่าจะได้รับ

- ข้อมูลความแข็งแรงล้าและข้อมูลอัตราการเติบโตของรอยร้าวล้า ของเหล็กกล้าคาร์บอน ASTM A516 เกรด 70
- ทราบความเหมาะสมที่จะประยุกต์ข้อมูลความแข็งแรงล้าเพื่อสร้างแบบจำลองอัตราการ เติบโตของรอยร้าวล้า สำหรับโลหะชนิดนี้

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

บทที่ 2 ความรู้ที่เกี่ยวข้องกับงานวิจัย

ในบทนี้กล่าวถึงความรู้ที่เกี่ยวข้องกับงานวิจัย แบ่งออกเป็น 12 หัวข้อได้แก่ หัวข้อที่ 2.1 กล่าวถึงความหมายของความล้าและคำจำกัดความของตัวแปรและความสัมพันธ์พื้นฐาน หัวข้อที่ 2.2 กล่าวถึงพฤติกรรมการเสียรูปของวัสดุภายใต้ภาระล้า หัวข้อที่ 2.3 กล่าวถึงการทดสอบเพื่อหาเส้นโค้ง ความเค้น-ความเครียดภายใต้ภาระล้า หัวข้อที่ 2.4 กล่าวถึงความสัมพันธ์ความเค้น-ความเครียด ภายใต้ภาระล้า หัวข้อที่ 2.5 กล่าวถึงความสัมพันธ์ความเครียด-อายุความล้า หัวข้อที่ 2.6 กล่าวถึงผล ของความเค้นเฉลี่ยต่อความแข็งแรงล้าของวัสดุ หัวข้อที่ 2.7 กล่าวถึงกระบวนการสะสมความเสียหาย ภายใต้ภาระล้า หัวข้อที่ 2.8 กล่าวถึงกลศาสตร์การแตกหักกับปัญหาการเติบโตของรอยร้าวล้า หัวข้อ ที่ 2.9 กล่าวถึงการสร้างกราฟอัตราการเติบโตของรอยร้าวล้า หัวข้อที่ 2.10 กล่าวถึงวิธีการคำนวณ อัตราการเติบโตของรอยร้าวล้า หัวข้อที่ 2.11 กล่าวถึงปัจจัยที่มีผลต่อพฤติกรรมการเติบโตของรอย ร้าวล้า และในหัวข้อที่ 2.12 กล่าวถึงความเค้น-ความเครียดหน้าปลายรอยร้าว

2.1 ความล้าและคำจำกัดความ

ความล้า คือ ผลที่เกิดจากการที่ชิ้นส่วนหรือโครงสร้างรับภาระที่มีขนาดเปลี่ยนแปลงตาม เวลา หรือ ภาระล้า (fatigue load) ภาระล้าที่มีแอมพลิจูดคงที่แสดงในรูปที่ 2.1 โดยมีคำจำกัดความ ของตัวแปร และความสัมพันธ์พื้นฐานดังนี้

- 1) ประวัติภาระ (load history) คือ ข้อมูลขนาดภาระที่เวลาใดๆ ในช่วงเวลาที่ระบุ
- 2) พิสัยภาระ (load range) ΔP คือ ผลต่างระหว่างภาระสูงสุดและภาระต่ำสุด

$$\Delta P = P_{\rm max} - P_{\rm min} \tag{2.1}$$

3) อัตราส่วนภาระ (load ratio) R คือ อัตราส่วนของภาระต่ำสุดต่อภาระสูงสุด

$$R = \frac{P_{\min}}{P_{\max}}$$
(2.2)

4) แอมพลิจูดภาระ (load amplitude) P_a คือ ครึ่งหนึ่งของพิสัยภาระ

$$P_a = \frac{P_{\text{max}} - P_{\text{min}}}{2} \tag{2.3}$$

$$=\frac{P_{\max}}{2}(1-R) \tag{2.4}$$

5) ภาระเฉลี่ย (mean load) $P_{\!_m}$ คือ ค่าเฉลี่ยของภาระสูงสุดและภาระต่ำสุด

 P_a

$$P_m = \frac{P_{\max} + P_{\min}}{2} \tag{2.5}$$

$$P_m = \frac{P_{\text{max}}}{2}(1+R)$$
 (2.6)

รูปที่ 2.1 สัญลักษณ์ของตัวแปรที่ใช้กำหนดลักษณะแอมพลิจูดภาระล้าคงที่

การหาความแข็งแรงล้าของวัสดุจะต้องทำการทดสอบซึ่งแบ่งได้ 2 แบบ คือ 1) แบบควบคุม ภาระ หรือแบบควบคุมความเค้น ถ้าพื้นที่หน้าตัดขณะรับภาระล้าเปลี่ยนแปลงน้อย 2) แบบควบคุม ระยะยึดตัวในช่วงความยาวเกจของชิ้นงาน หรือแบบควบคุมความเครียด

การทดสอบทั้ง 2 แบบ เทียบเท่ากันหากความเค้นสูงสุดไม่เกินความเค้นคราก (yield stress) หรืออยู่ในช่วงยืดหยุ่น แต่ถ้าความเค้นสูงสุดเกินความเค้นคราก นิยมทดสอบแบบควบคุมความเครียด ข้อมูลที่ได้จากการทดสอบถ้านำมาพล็อตโดยให้แกนตั้งเป็นพิสัยความเค้นและให้แกนนอน เป็นพิสัยความเครียดก็จะทราบพฤติกรรมการเสียรูปของวัสดุตามที่จะอธิบายในหัวข้อที่ 2.2 แต่ถ้า ทดสอบต่อไปจนกระทั่งชิ้นงานถึงเกณฑ์การแตกหักและพล็อตข้อมูลโดยให้แกนตั้งเป็นพารามิเตอร์ ความล้าและให้แกนนอนเป็นจำนวนรอบภาระจะทราบความแข็งแรงล้าตามที่จะอธิบายในหัวข้อที่ 2.5

2.2 พฤติกรรมการเสียรูปภายใต้ภาระล้า

เมื่อชิ้นส่วนหรือโครงสร้างรับภาระล้าวัสดุจะแสดงพฤติกรรมการเสียรูป โดยปกติในช่วงตั้งแต่ เริ่มทำการทดสอบจนถึงประมาณ 20-40 เปอร์เซ็นต์ของอายุความล้าของวัสดุ [2,22] วัสดุจะแสดง พฤติกรรมชั่วขณะ กล่าวคือแอมพลิจูดความเค้นและแอมพลิจูดความเครียดเปลี่ยนแปลงขณะที่ รับภาระหลังจากนั้นวัสดุจะแสดงพฤติกรรมคงเดิมหรือแอมพลิจูดความเค้นและแอมพลิจูด ความเครียดไม่เปลี่ยนแปลงจนชิ้นงานเริ่มมีรอยร้าวเกิดขึ้น ดังนั้น เราจึงนิยามให้พฤติกรรมที่ ตำแหน่งประมาณ 50 เปอร์เซ็นต์ของอายุความล้าเป็นพฤติกรรมการเสียรูปของวัสดุตลอดการ รับภาระล้า [2,22] ส่วนเกณฑ์ในการระบุอายุความล้ารวมของวัสดุ หรือ อายุความล้าของวัสดุเมื่อถึง เกณฑ์ที่ถือว่าวัสดุเกิดความเสียหายขึ้นเนื่องจากภาระล้ามีอยู่ด้วยกันหลายเกณฑ์ เช่น 1) ชิ้นงาน ทดสอบแยกออกเป็น 2 ส่วน 2) รอยร้าวล้ามีความยาวถึงค่าที่กำหนด และ 3) ภาระทดสอบสูงสุด ลดลง 5-50 เปอร์เซ็นต์จากภาระทดสอบสูงสุดในขณะที่วัสดุแสดงพฤติกรรมคงที่ [22]

2.2.1 พฤติกรรมชั่วขณะ

พฤติกรรมชั่วขณะของวัสดุพบเมื่อทดสอบแบบควบคุมแอมพลิจูดความเครียด ตามรูปที่ 2(ก) มีได้ 2 แบบ ขึ้นกับชนิดของวัสดุที่ใช้ทดสอบ [2,22] คือ cyclic hardening พิสัยความเค้นเพิ่มขึ้นใน แต่ละรอบ และ cyclic softening พิสัยความเค้นลดลงในแต่ละรอบ ตามรูปที่ 2.2 (ข) และ (ค) ตามลำดับ

(ก)

(ข)

รูปที่ 2.2 (ก) การทดสอบแบบควบคุมความเครียด (ข) cyclic hardening (ค) cyclic softening

2.2.2 พฤติกรรมคงที่

เมื่อจำนวนรอบภาระมากพอพฤติกรรมของวัสดุจะคงเดิม ส่งผลให้แอมพลิจูดความเค้นและ แอมพลิจูดความเครียดไม่เปลี่ยนแปลง ในช่วง loading ความสัมพันธ์ของความเค้น-ความเครียดจะมี ลักษณะเป็นเส้นโค้งคว่่า ช่วง Unloading มีลักษณะเป็นเส้นโค้งหงาย เส้นโค้งทั้ง 2 ช่วงจะบรรจบ เป็นวงปิด เรียกว่า วงปิดฮีสเตอริซีส (hysteresis loop) ตามรูปที่ 2.3

รูปที่ 2.3 วงปิดฮีสเตอริซีส

การวิเคราะห์อายุความล้าจะใช้วงปิดฮีสเตอริซีสนี้แทนพฤติกรรมเสียรูปตลอดประวัติการ รับภาระของขึ้นงาน พารามิเตอร์สำคัญที่ปรากฏในวงปิด ได้แก่ พิสัยความเค้นรวม (total stress range, $\Delta\sigma$) ซึ่งเท่ากับความสูงของวงปิด, พิสัยความเครียดรวม (total strain range, $\Delta\varepsilon$) ซึ่ง เท่ากับความกว้างของวงปิด

พิสัยความเครียดรวม คือ ผลรวมของพิสัยความเครียดพลาสติก (plastic strain range, $\Delta arepsilon_{_p}$) และพิสัยความเครียดยืดหยุ่น (elastic strain range, $\Delta arepsilon_{_e}$) ตามสมการ

$$\Delta \varepsilon = \Delta \varepsilon_e + \Delta \varepsilon_p \tag{2.7}$$

ความชั้นในส่วนที่เป็นเส้นตรงของช่วง loading หรือ unloading มีค่าเท่ากับ มอดูลัสความ ยึดหยุ่น (modulus of elasticity, E) และพื้นที่ภายในวงปิดคือพลังงานความเครียดที่ทำให้เกิดการ เสียรูปพลาสติก (plastic strain energy, ΔW_{p}) ในวัสดุต่อหนึ่งหน่วยปริมาตรและต่อหนึ่งรอบ

2.3 เส้นโค้งความเค้น-ความเครียดภายใต้ภาระล้า

การทดสอบเพื่อหาเส้นโค้งความเค้น-ความเครียดภายใต้ภาระล้า (Cyclic stress strain curve) ทำได้หลายวิธี เช่น companion samples, incremental step และ multiple-step test method [2,22]

วิธี companion samples ใช้ชิ้นงานทดสอบหลายชิ้น แต่ละชิ้นจะทดสอบที่พิสัย ความเครียดต่างกันจนได้วงปิดฮีสเตอริซีส จากนั้นนำวงปิดฮีสเตอริซีสจากชิ้นงานทดสอบแต่ละชิ้นมา พล็อตบนแกนเดียวกันโดยกำหนดให้จุดกลางของแต่ละวงปิดซ้อนกันจากนั้นเชื่อมจุดยอดของวงปิด ฮีสเตอริซีสคงที่เข้าด้วยกันจะได้เส้นโค้งความเค้น-ความเครียดภายใต้ภาระล้าตามรูปที่ 2.4

รูปที่ 2.4 เส้นโค้งความเค้น-ความเครียดจากวิธี companion samples

วิธี incremental step ใช้ชิ้นงานทดสอบเพียงชิ้นเดียวรับพิสัยความเครียดคงที่ เป็นช่วง จนกระทั่งชิ้นงานทดสอบแสดงพฤติกรรมคงที่จากนั้นเพิ่มขนาดพิสัยความเครียดตามรูปที่ 2.5 และนำ วงปิดฮีสเตอริซีสของแต่ละช่วงมาเขียนบนแกนเดียวกันเหมือนวิธี companion samples แล้วเชื่อม จุดยอดของวงปิดฮีสเตอริซีสคงที่เข้าด้วยกันได้เป็นเส้นเส้นโค้งความเค้น-ความเครียดภายใต้ภาระล้า

รูปที่ 2.5 วิธี incremental step

วิธี multiple-step test method ใช้ชิ้นงานทดสอบเพียงชิ้นเดียวรับพิสัยความเครียดเป็น ช่วงเหมือนวิธี incremental step แต่ทว่าพิสัยความเครียดในแต่ละช่วงจะค่อยๆเพิ่มขึ้นและลดลง ตามรูปที่ 2.6 เมื่อจำนวนช่วงมากพอ วงปิดฮีสเตอริซีสของแต่ละพิสัยความเครียดจะคงที่จากนั้นนำ วงปิดฮีสเตอริซีสในแต่ะพิสัยความเครียดมาซ้อนกัน จากนั้นเชื่อมจุดยอดของวงปิดฮีสเตอริซีสคงที่เข้า ด้วยกันได้เป็นเส้นเส้นโค้งความเค้น-ความเครียดภายใต้ภาระล้า

รูปที่ 2.6 วิธี multiple-step test method

เส้นโค้งความเค้น-ความเครียดภายใต้ภาระล้าที่ได้จากวิธีการทดสอบในแต่ละแบบที่กล่าว มาแล้วข้างต้นจะแตกต่างกันเล็กน้อย [2]

2.4 ความสัมพันธ์ความเค้น-ความเครียดภายใต้ภาระล้า

จากหัวข้อที่ 2.3 ทำให้เราทราบว่าพฤติกรรมการเสียรูปของวัสดุจะมีลักษณะเป็นเส้นโค้งบน กราฟความเค้น-ความเครียด ซึ่งเส้นโค้งนี้สามารถแทนด้วยสมการความสัมพันธ์แบบต่างๆ ได้ดังนี้ [23] เป็นความสัมพันธ์ที่ใช้การประมาณค่าเส้นโค้งความเค้น-ความเครียดในช่วงการเสียรูปแบบ ยืดหยุ่นโดยใช้เส้นตรงที่มีความชันเท่ากับค่าโมดูลัสยืดหยุ่น, *E* และมีความสัมพันธ์แบบระนาบ เส้นตรงหลังจากความเค้นครากตามสมการ

$$\sigma = E\varepsilon \qquad (\sigma \le \sigma_0)$$

$$\sigma = \sigma_0 \qquad (\varepsilon \ge \frac{\sigma_0}{E})$$
(2.8)

$$\varepsilon = \varepsilon_e + \varepsilon_p = \frac{\sigma}{E} + \varepsilon_p \qquad (2.9)$$

- โดย σ คือ ความเค้น (MPa)
 - arepsilon คือ ความเครียด
 - $\sigma_{_0}$ คือ ความเค้นคราก (MPa)
 - $arepsilon_p$ คือ แอมพลิจูดความเครียดพลาสติก

ความสัมพันธ์ Elastic , Perfectly Plastic แสดงได้ตามรูปที่ 2.7

รูปที่ 2.7 ความสัมพันธ์ Elastic , Perfectly Plastic

2.4.2 ความสัมพันธ์ Elastic, Linear-Hardening

เป็นความสัมพันธ์ที่ใช้การประมาณค่าเส้นโค้งความเค้น-ความเครียดในช่วงการเสียรูปแบบ ยืดหยุ่นและการเสียรูปแบบถาวรด้วยเส้นตรง โดยในช่วงการเสียรูปแบบยืดหยุ่นใช้เส้นตรงที่มีความ- ชั้นเท่ากับค่าโมดุลัสยึดหยุ่น, E และช่วงการเสียรูปแบบถาวรใช้เส้นตรงที่มีความชั้นเท่ากับ δE ตามสมการ

$$\sigma = E\varepsilon \qquad (\sigma \le \sigma_0) \qquad (2.10)$$

$$\varepsilon = \frac{\sigma_0}{E} + \frac{(\sigma - \sigma_0)}{\delta E} \qquad (\sigma \ge \sigma_0) \qquad (2.11)$$

ความสัมพันธ์ Elastic, Linear-Hardening แสดงได้ตามรูปที่ 2.8

รูปที่ 2.8 ความสัมพันธ์ Elastic, Linear-Hardening

2.4.3 ความสัมพันธ์ Elastic, Power-Hardening

ความสัมพันธ์นี้สมมุติให้ช่วงหลังจากความเค้นคราก ความสัมพันธ์ของความเค้น-ความเครียด อยู่ในรูปแบบฟังก์ชันกำลังตามสมการ

$$\sigma = E\varepsilon \qquad (\sigma \le \sigma_0) \qquad (2.12)$$

$$\sigma = K' \varepsilon^{n'} \qquad (\sigma \ge \sigma_0) \tag{2.13}$$

โดย K' คือ cyclic strength coefficient

n' คือ cyclic strain hardening exponent

โดยความเค้นครากจากความสัมพันธ์ Elastic, Power-Hardening เท่ากับ

$$\sigma_0 = E\left(\frac{K'}{E}\right)^{\frac{1}{(1-n')}} \tag{2.14}$$

ความสัมพันธ์ Elastic, Power-Hardening แสดงได้ตามรูปที่ 2.9

2.4.4 ความสัมพันธ์ Ramberg-Osgood

ความสัมพันธ์ Ramberg-Osgood ได้พิจารณาความสัมพันธ์ระหว่างความเค้นกับ ความเครียดพลาสติกภายใต้ภาระล้าพบว่ามีความสัมพันธ์ในรูปของฟังก์ชันกำลังได้เป็น

$$\sigma = K' (\varepsilon_p)^{n'}$$
(2.15)

ดังนั้น Ramberg-Osgood [2] จึงเสนอสมการความสัมพันธ์ความเค้น-ความเครียดภายใต้ ภาระล้า โดยเริ่มจากความสัมพันธ์ตามสมการที่ (2.7) ในเทอมของแอมพลิจูดความเครียด จากนั้น คำนวณแอมพลิจูดความเครียดยืดหยุ่น *ɛ*, ด้วยกฎของฮุค [24] และคำนวณแอมพลิจูดความเครียด พลาสติก *ɛ*, จากสมการที่ (2.15) จะได้

$$\varepsilon = \frac{\sigma}{E} + \left(\frac{\sigma}{K'}\right)^{\frac{1}{n'}}$$
(2.16)

ถ้านิยามว่าความเค้นครากคือความเค้นที่แอมพลิจูดความเครียดพลาสติกเท่ากับ 0.002 แล้ว จะหาความเค้นครากจากความสัมพันธ์ของ Ramberg-Osgood ได้จากสมการ

$$\sigma_0 = K' \left(\frac{0.2}{100}\right)^{n'} \tag{2.17}$$

ความสัมพันธ์ Ramberg-Osgood แสดงได้ตามรูปที่ 2.10

2.5 ความสัมพันธ์ความเครียด-อายุความล้า

ในปี 1910 Basquin พบว่าแอมพลิจูดความเค้นกับอายุความล้ามีความสัมพันธ์แบบเชิงเส้น บนสเกล log-log และสามารถเขียนในรูปฟังก์ชันกำลังได้ตามสมการ [22]

$$\frac{\Delta\sigma}{2} = \sigma'_f \left(2N_f\right)^b \tag{2.18}$$

โดย

 $rac{\Delta\sigma}{2}$ คือ แอมพลิจูดความเค้น

 $2N_f$ คือ reversals to failure

 $\sigma_{\scriptscriptstyle f}^{'}$ คือ fatigue strength coefficient

คือ fatigue strength exponent b

้สมการที่ (2.18) สามารถเขียนให้อยู่ในรูปของแอมพลิจูดความเครียดยืดหยุ่นได้ดังนี้

$$\frac{\Delta \varepsilon_e}{2} = \frac{\sigma'_f}{E} \left(2N_f\right)^b \tag{2.19}$$

 $rac{\Delta arepsilon_e}{2}$ คือ แอมพลิจูดความเครียดยืดหยุ่น โดย

ในปี 1950 Coffin และ Manson พบว่าแอมพลิจูดความเครียดพลาสติกกับอายุความล้ามี ความสัมพันธ์แบบเชิงเส้นบนสเกล log-log และสามารถเขียนในรูปฟังก์ชันกำลังได้ตามสมการ

$$\frac{\Delta \varepsilon_p}{2} = \varepsilon'_f \left(2N_f\right)^c \tag{2.20}$$

โดย $\frac{\Delta \varepsilon_p}{2}$ คือ แอมพลิจูดความเครียดพลาสติก

 $ec{arepsilon_f}$ คือ fatigue ductility coefficient

c คือ fatigue ductility exponent

จากสมการที่ (2.7) หากเขียนในเทอมของแอมพลิจูดความเครียดจะได้

$$\frac{\Delta\varepsilon}{2} = \frac{\Delta\varepsilon_e}{2} + \frac{\Delta\varepsilon_p}{2}$$
(2.21)

แทนสมการที่ (2.19) และ (2.20) จะได้ความสัมพันธ์ระหว่างแอมพลิจูดความเครียด, $\Delta \varepsilon/2$ และ reversal to failure, $2N_f$ ดังสมการต่อไปนี้

$$\frac{\Delta\varepsilon}{2} = \frac{\sigma'_f}{E} \left(2N_f \right)^b + \varepsilon'_f \left(2N_f \right)^c \tag{2.22}$$

ถ้าพล็อตสมการที่ (2.22) โดยให้ $2N_f$ เป็นแกนนอน และ $\Delta \varepsilon/2$ เป็นแกนตั้ง จุดตัดของ กราฟความเครียดยืดหยุ่นกับความเครียดพลาสติก คือ transition fatigue life $(2N_f)$ ซึ่งใช้แบ่ง ปัญหาความล้าออกเป็น 2 ส่วน คือ ความล้ารอบต่ำ (Low-cycle-fatigue; LCF) วงปิดฮีสเตอริซีสใน ส่วนนี้จะกว้างขึ้นเนื่องจากผลของความเครียดพลาสติก และความล้ารอบสูง (High-cycle-fatigue; HCF) วงปิดฮีสเตอริซีสในส่วนนี้จะแคบลงหรือไม่มีเพราะความเครียดพลาสติกมีน้อยหรือไม่มี ตามรูป ที่ 2.11

รูปที่ 2.11 ความสัมพันธ์ระหว่างความเครียดกับอายุความล้าและรูปร่างวงปิดฮีสเตอริซีส

จากที่กล่าวมาแล้วในข้างต้นสมการที่ (2.22) เราได้กำหนดให้แอมพลิจูดความเครียดเป็น พารามิเตอร์ความล้า แต่ก็มีผู้คิดค้นพารามิเตอร์ความล้าอื่น เช่น พิสัยความเค้น($\Delta \sigma$), พลังงาน ความเครียดพลาสติก (ΔW_p) หรือ พลังงานความเครียดรวม (ΔW_p) เป็นต้น เพื่อรวมจุดข้อมูลมี ความกระจัดกระจาย (scatter) เนื่องจากทดสอบภายใต้สภาวะทดสอบที่ต่างกัน เช่น ความเค้นเฉลี่ย ต่างกัน เป็นต้น ให้มาอยู่บนกราฟเส้นเดียวกัน

2.6 ผลของความเค้นเฉลี่ย

จุฬาลงกรณ์มหาวิทยาลัย

ความสัมพันธ์ระหว่างพารามิเตอร์ความล้าและอายุความล้า ส่วนใหญ่ได้จากการทดสอบที่ ความเค้นเฉลี่ยเท่ากับศูนย์ แต่ในความเป็นจริงชิ้นงานต่างๆ จะรับภาระซึ่งทำให้เกิดความเค้นเฉลี่ยไม่ เท่ากับศูนย์ ดังนั้นจึงต้องปรับแก้ความสัมพันธ์ระหว่างพารามิเตอร์ความล้ากับอายุความล้ากรณีที่ค่า ความเค้นเฉลี่ยไม่เท่ากับศูนย์ จากรูปที่ 2.12 แสดงให้เห็นว่าความเค้นเฉลี่ยมีผลอย่างมากในช่วง HCF แต่มีผลน้อยในช่วง LCF ถ้าความเค้นเฉลี่ยน้อยกว่าศูนย์หรือเป็นความเค้นเฉลี่ยด้านกด (compressive mean stress) ความแข็งแรงล้าของวัสดุจะเพิ่มขึ้นเมื่อเทียบกับกรณีที่ความเค้นเฉลี่ย เป็นศูนย์ แต่ถ้าความเค้นเฉลี่ยมากกว่าศูนย์หรือความเค้นเฉลี่ยด้านดึง (tensile mean stress) อายุ ความแข็งแรงล้าของวัสดุจะลดลงเมื่อเทียบกับกรณีที่ความเค้นเฉลี่ยเป็นศูนย์ โดยมีผู้เสนอวิธีทำนาย ผลของเค้นเฉลี่ยต่อความแข็งแรงล้าไว้หลายวิธี ตามตารางที่ 2.1

Reversals to failure (Log scale) รูปที่ 2.12 ผลของความเค้นเฉลี่ยต่ออายุความล้า

a		<u>aa</u> 0	ົ	a I	4	ิย
ตารางท	21	วสทานายผลง	ของเคนเอ	າປະເທດ	กความแข	เงแรงลา
	<u></u> +		00 101 1000	010110		1000 101 1

วิธี	รูปสมการหลังการปรับแก้	
Morrow [25]	$\frac{\Delta \varepsilon}{2} = \frac{\sigma'_{f}}{E} \left(1 - \frac{\sigma_{m}}{\sigma'_{f}}\right) \left(2N_{f}\right)^{b} + \varepsilon'_{f} \left(1 - \frac{\sigma_{m}}{\sigma'_{f}}\right)^{c'_{b}} \left(2N_{f}\right)^{c}$	(2.23)
Modified morrow	$\Delta \varepsilon = \sigma'_f (1 \sigma_m) (2N)^b + c' (2N)^c$	(0.04)
[2, 11, 20-22, 26]	$\frac{1}{2} = \frac{1}{E} \left(\frac{1}{\sigma'_f} \right)^{(2IV_f) + \varepsilon_f(2IV_f)}$	(2.24)
Smith, Watson,		
Topper (SWT)	$\frac{\Delta \varepsilon}{2} = \left(\frac{1-R}{2}\right)^{2} \left \frac{\sigma'_{f}}{F} \left(2N_{f}\right)^{b} + \varepsilon'_{f} \left(2N_{f}\right)^{c}\right $	(2.25)
[2,11,20-22,26]		
Walker [25, 27]	$\frac{\Delta\varepsilon}{2} = \frac{\sigma'_f}{E} \left(\frac{1-R}{2}\right)^{(1-\gamma)} \left(2N_f\right)^b + \varepsilon'_f \left(\frac{1-R}{2}\right)^{c(1-\gamma)/b} \left(2N_f\right)^c$	(2.26)
พลังงานความเครียด		
พลาสติก	$\Delta W_{p} = \Delta \sigma \Delta \varepsilon_{p} = 4 \left(\sigma'_{f} - \sigma_{m} \right) \varepsilon'_{f} \left(2N_{f} \right)^{b+c}$	(2.27)
[10-11,21]		
พลังงานความเครียด	$\Delta W = A \frac{(1-n')}{\sigma} \sigma' s' (2N)^{b+c}$	(2.28)
รวม [12]	$\Delta m_{t} = \frac{1}{(1+n')} O_{f} O_{f} O_{f} (2N_{f})$	(Z.Z0)

โดย *R*

 $R = \frac{\sigma_{\min}}{\sigma_{\max}}$

γ คือ ค่าคงที่ที่หาจากข้อมูลการทดสอบ

Dowling และคณะ [25] พบว่าวิธีของ Morrow ทำนายอายุความล้าได้แม่นยำสำหรับ steel แต่ไม่ควรใช้กับ Aluminium Alloy วิธีของ SWT ให้ผลการทำนายอายุที่ดีเป็นวิธีที่นิยมใช้โดยทั่วไป และวิธีของ Walker ให้ผลการทำนายอายุความล้าที่แม่นยำที่สุดทั้งในกรณีที่ steel หรือ Aluminium Alloy

2.7 ความเสียหายภายใต้ภาระล้า

ภาระล้าทำให้ชิ้นส่วนหรือโครงสร้างเสียหายได้โดยการสะสมความเสียหายไปทีละน้อยในการ รับภาระแต่ละรอบ ความเสียหายที่เกิดขึ้นเรียกว่าความเสียหายล้า (fatigue damage) โดยความ เสียหายล้าที่เกิดกับชิ้นส่วนหรือโครงสร้างมักปรากฏเป็นรอยร้าวและเกิดขึ้นได้แม้ว่าชิ้นส่วนหรือ โครงสร้างจะรับแอมพลิจูดความเค้นน้อยกว่า ultimate tensile strength โดยทั่วไปกระบวนการ สะสมความเสียหายล้าของวัตถุ แบ่งได้ 2 ช่วง ตามรูปที่ 2.13

รูปที่ 2.13 กระบวนการเกิดความเสียหายล้า

- 1) ช่วงกำเนิดรอยร้าว (crack initiation period) นับตั้งแต่วัตถุไม่มีรอยร้าวจนถึงวัตถุมีรอยร้าวขนาด ที่ตรวจพบได้ปรากฏขึ้น ขนาดรอยร้าวนี้เรียกว่า ขนาดรอยร้าวเริ่มต้น (crack initiation size, a_i) จำนวนรอบภาระในช่วงนี้ เรียกว่า อายุการกำเนิดรอยร้าว (crack initiation life, N_i)
- 2) ช่วงรอยร้าวเติบโต (crack propagation period) นับตั้งแต่รอยร้าวเติบโตจากขนาดรอยร้าว กำเนิดจนถึงวัตถุแตกหักโดยสมบูรณ์

้ชิ้นส่วนหรือโครงสร้างอาจเกิดการแตกหักเสียหายได้เมื่ออยู่ภายใต้ภาระล้าและรอยร้าว ้สามารถเติบโตได้ ดังนั้นต้องทราบอัตราการเติบโตของร้อยร้าวเพื่อการประเมินอายการใช้งานคงเหลือ ของชิ้นส่วนหรือโครงสร้างภายใต้ภาระล้าก่อนแตกหัก ตามที่จะอธิบายในหัวข้อถัดไป

2.8 กลศาสตร์การแตกหักกับปัญหาการเติบโตของรอยร้าวล้า

กลศาสตร์การแตกหักมีบทบาทอยู่ที่การคำนวณอายุการเติบโตของรอยร้าวล้าจากสหสัมพันธ์ ระหว่างอัตราการเติบโตของรอยร้าวล้ากับพิสัยของพารามิเตอร์หน้าปลายรอยร้าวล้า ความสัมพันธ์นี้ ได้จากการทดสอบกับชิ้นงานทดสอบในสภาวะทดสอบที่จำลองมาอย่างเหมาะสมจากสภาวะใช้งาน ของโครงสร้าง [28] โดยพารามิเตอร์หน้าปลายรอยร้าวที่นิยมใช้เพื่ออธิบายการเสียรูปที่เกิดขึ้นที่ บริเวณใกล้ปลายรอยร้าวกับปัญหาการเติบโตของรอยร้าวล้า คือ พิสัยตัวประกอบความเข้มของความ เค้น (stress intensity factor range), ΔK เนื่องจาก ΔK เป็นพารามิเตอร์เฉพาะที่ สามารถ เชื่อมโยงวัตถุสองชนิดที่มีขนาด รูปร่าง และการรับภาระที่ต่างกันได้ โดยทั่วไปผลจากการทดสอบ อัตราการเติบโตของรอยร้าวนิยมพล็อตโดยกำหนดให้อัตราการเติบโตของรอยร้าวล้า (da/dN) เป็น แกนตั้ง และพิสัยตัวประกอบความเข้มของความเค้น, ΔK เป็นแกนนอน ตามรูปที่ 2.14 ซึ่งแบ่งได้ 3 บริเวณ ดังนี้

- บริเวณที่ 1 หรือ บริเวณใกล้ขีดเริ่ม (near threshold regime) มีพารามิเตอร์สำคัญคือ พิสัยตัว ประกอบความเข้มของความเค้นขีดเริ่ม (threshold stress intensity factor range) $\Delta K_{\iota h}$ ซึ่ง หมายถึงค่าสูงสุดของ ΔK ที่ไม่ทำให้รอยร้าวเติบโต (เป็นที่ยอมรับกันว่า รอยร้าวที่มีอัตราการ เติบโตต่ำกว่า 10⁻⁷ มม.ต่อรอบ [4] เป็นรอยร้าวที่ไม่เติบโตอีกต่อไป)
- บริเวณที่ 2 เป็นบริเวณที่กราฟมีแนวโน้มเป็นเส้นตรงบนสเกล log-log
- บริเวณที่ 3 เป็นบริเวณที่กราฟความสัมพันธ์แบบโค้งหงายบนสเกล log-log

รูปที่ 2.14 ลักษณะของเส้นโค้ง da/dN- ΔK

โดยพฤติกรรมการเติบโตของรอยร้าวล้าจะขึ้นกับโครงสร้างจุลภาคและอัตราส่วนภาระ แต่ แทบจะไม่ขึ้นกับสภาพแวดล้อม เพื่อความสะดวกในการใช้งานข้อมูล $da/dN - \Delta K$ ในช่วงที่สนใจ จึงถูกแทนด้วยสมการคณิตศาสตร์โดยรูปสมการขึ้นกับบริเวณที่สมการสามารถใช้งานได้และขึ้นกับตัว แปรที่มีผลต่อ *da/dN* เช่น อัตราส่วนภาระ,ค่าความต้านทานการแตกหัก เป็นต้น ตามตารางที่ 2.2 โดยค่าคงตัวในแต่ละสมการหาได้จากการวิเคราะห์การถดถอยแบบกำลังสองน้อยที่สุดของข้อมูล *da/dN* – ΔK

r		r
ผู้เสนอ	รูปสมการ	บริเวณใช้งาน
Paris	$\frac{da}{dN} = C\left(\Delta K\right)^m$	2
Klesnil-Lukas	$\frac{da}{dN} = C\left(\Delta K^m - \Delta K_{th}^m\right)$	1,2
Foreman	$\frac{da}{dN} = \frac{1}{\left[\left(1-R\right)K_c - \Delta K\right]} C\left(\Delta K\right)^m$	2,3
Saxena	$\frac{1}{da/dN} = \frac{A_1}{\Delta K^{n_1}} + \frac{1}{C} \left[\frac{1}{\Delta K^{n_2}} - \frac{1}{\left[(1-R) K_c \right]^{n_2}} \right]$	1,2,3

a		ຢ່	ູ	9 5	ົ	ົ
<u>ເສງ</u> ຮງ.99/	22	ຫຼາ <u>ຄ</u> ຍາ.92	สแการลตร	≺വതം ∣തര	ເລ. <u>າ</u> ຮລຍເຮ	າງລາ
	Z.Z	AL 9 O U M	14/11/14/07/	9 1671 U 671 U	019009	1991

โดย C, m, A_1 , n_1 , n_2 คือ ค่าคงที่ที่ขึ้นกับวัสดุและสิ่งแวดล้อม

*K*______คือ ความต้านทานการแตกหัก

สมการดังกล่าวข้างต้นในตารางที่ 2.3 แม้ว่าจะมีรูปสมการต่างกันแต่วิธีคำนวณอายุการ เติบโตของรอยร้าวไม่แตกต่างกัน

ลงกรณ์มหาวิทยาลัย

2.9 การสร้างกราฟอัตราการเติบโตของรอยร้าวล้า

วิธีสร้างกราฟ $da/dN - \Delta K$ มี 2 ขั้นตอน คือการคำนวณ ΔK และการคำนวณ da/dN[28]

การคำนวณ ΔK ทำได้ 2 วิธี ตามรูปที่ 2.15 โดย วิธีแรกตามรูปที่ 2.15(ก) แทนค่าภาระ สูงสุด, P_{\max} และต่ำสุด, P_{\min} ในผลเฉลย K ในสมการที่ (2.29) ของชิ้นงานทดสอบเพื่อหา K_{\max} และ K_{\min} ตามลำดับ จากนั้นหา ΔK จากผลต่างของ K_{\max} และ K_{\min} ส่วนวิธีที่สองตามรูปที่ 2.15(ข) แทนพิสัยภาระ ΔP ลงในผลเฉลย K ในสมการที่ (2.29) จะได้ ΔK สำหรับชิ้นงาน CT ที่มีสัดส่วนมิติตามมาตรฐานตามรูปที่ 4.5 จะคำนวณ ΔK ได้ตามสมการ

$$\Delta K = \frac{\Delta P}{B\sqrt{W}} \frac{(2+\alpha)}{(1-\alpha)^{3/2}} \left(0.886 + 4.64\alpha - 13.32\alpha^2 + 14.72\alpha^3 - 5.6\alpha^4 \right)$$
(2.29)

โดย lpha=a/W และ ผลเฉลยแม่นยำสำหรับ $lpha\geq 0.2$

- *a* คือ ความยาวรอยร้าว
- **B** คือ ความหนาของชิ้นงานทดสอบ
- W คือ ความกว้างของชิ้นงานทดสอบ

รูปที่ 2.15 วิธีคำนวณ ΔK

ในการคำนวณ da/dN ต้องการข้อมูลจากการทดสอบอัตราการเติบโตของรอยร้าวล้า คือ ข้อมูลความยาวรอยร้าว a ที่จำนวนรอบภาระ N ต่างๆ โดยข้อมูลเหล่านี้มีลักษณะเป็นดีสครีต (discrete) จึงต้องคำนวณ da/dN ด้วยวิธีเชิงตัวเลข ตามที่จะอธิบายต่อไป

2.10 วิธีคำนวณอัตราการเติบโตของรอยร้าวล้า

GHULALONGKORN UNIVERSITY

วิธีการคำนวณอัตราการเติบโตของรอยร้าวมีหลายวิธีแต่ที่มาตรฐานได้แนะนำไว้มี 2 วิธี คือ วิธีการ Secant และวิธี Incremental polynomial ดังนี้ [4,28]

2.10.1 วิธี Secant

วิธีนี้คำนวณอัตราการเติบโตของรอยร้าวจากความชั้นของส่วนของเส้นตรงระหว่างจุดข้อมูล ความยาวรอยร้าวปัจจุบัน, *a_i* ถึงจุดข้อมูลความยาวรอยร้าวถัดไป, *a_{i+1}* บนกราฟความสัมพันธ์ ระหว่างความยาวรอยร้าวกับรอบการรับภาระ อัตราการเติบโตที่คำนวณจึงเป็นอัตราการเติบโตเฉลี่ย ที่เกิดขึ้นในขณะที่รอยร้าวเติบโตจากความยาว *a_i* ไปยังความยาว *a_{i+1}* ตามสมการ

$$\left(\frac{da}{dN}\right)_{\bar{a}} = \frac{\left(a_{i+1} - a_{i}\right)}{\left(N_{i+1} - N_{i}\right)}$$
(2.30)

ໂທຍ $\overline{a} = \frac{a_{i+1} - a_i}{2}$ $\Delta P = \frac{\Delta P_{i+1} - \Delta P_i}{2}$

โดย

เมื่อแทนความยาวรอยร้าวเฉลี่ย, \bar{a} และ ΔP ในผลเฉลย K ในสมการที่ (2.29) ก็จะสามารถ คำนวณค่า ΔK ได้

2.10.2 วิธี Incremental polynomial

วิธีนี้คำนวณอัตราการเติบโตของรอยร้าวจากอนุพันธ์ของโพลิโนเมียลดีกรีสองที่แทนจุดข้อมูล ความยาวรอยร้าวที่อยู่ติดกัน (2*n*+1) จุด โดย *n* คืออันดับของการประมาณ วิทยานิพนธ์นี้ใช้ค่า *n*=3 ดังนั้นจะใช้จุดข้อมูล 7 จุดที่อยู่ติดกันในการคำนวณอัตราการเติบโตของรอยร้าว จาก ความสัมพันธ์ของข้อมูลลำดับที่ *i* ตามสมการ

$$\hat{a}_{i} = b_{0} + b_{1} \left(\frac{N_{i} - C_{1}}{C_{2}} \right) + b_{2} \left(\frac{N_{i} - C_{1}}{C_{2}} \right)^{2}$$

$$C_{1} = \frac{1}{2} \left(N_{i-n} + N_{i+n} \right)$$

$$C_{2} = \frac{1}{2} \left(N_{i-n} - N_{i+n} \right)$$
(2.31)

และ b_0 , b_1 และ b_2 คือ สัมประสิทธิ์จากการวิเคราะห์กำลังสองน้อยสุดที่อัตราการเติบโตของรอย ร้าวตำแหน่งใดๆหาจากอนุพันธ์ของสมการที่ (2.32) ดังนี้

$$\left(\frac{da}{dN}\right)_{\hat{a}_{i}} = \frac{b_{1}}{C_{2}} + 2b_{2}\frac{\left(N_{i} - C_{1}\right)}{\left(C_{2}\right)^{2}}$$
(2.32)

แทนความยาวรอยร้าวที่ตำแหน่งกลางของจุดข้อมูลความยาวรอยร้าว 7 จุด และ ΔP ในผลเฉลย K ในสมการที่ (2.29) ก็จะสามารถคำนวณค่า ΔK ได้

2.11 ปัจจัยที่มีผลต่อพฤติกรรมการเติบโตของรอยร้าวล้า

พฤติกรรมการเติบโตของรอยร้าวล้าขึ้นกับชนิดวัสดุ, โครงสร้างจุลภาค, กรรมวิธีทางความ ร้อน, ความหนา, สภาพแวดล้อม, อุณหภูมิ, ความถี่ภาระ, อัตราส่วนภาระ ฯลฯ การศึกษาพฤติกรรม การเติบโตของรอยร้าวล้าจึงต้องทดสอบในสภาวะที่คล้ายกับสภาวะใช้งานจริงของชิ้นส่วนหรือ โครงสร้างที่ต้องการศึกษามากที่สุด เพื่อจะได้ทราบอายุการเติบโตของรอยร้าวล้าที่ถูกต้องแต่สำหรับ การศึกษาพฤติกรรมการเติบโตของรอยร้าวล้าภายใต้แอมพลิจูดภาระล้าคงที่ ตัวแปรเชิงกลที่สำคัญที่ มีผลต่อพฤติกรรมการเติบโตของรอยร้าวล้า ได้แก่ ความถี่ภาระ และอัตราส่วนภาระ ผลของตัวแปร ทั้งสองสรุปได้ดังนี้

2.11.1 ความถี่ภาระ

ผลกระทบของความถี่ของภาระที่ใช้ในการทดสอบต่ออัตราการเติบโตของรอยร้าวล้ามี แนวโน้มที่ไม่แน่นอนขึ้นกับชนิดของวัสดุ ดังนั้นในการทดสอบควรใช้ความถี่ภาระเดียวกันหรือควรมี การตรวจสอบผลกระทบจากความถี่ภาระต่อชนิดของวัสดุที่ใช้ในการทำชิ้นงานทดสอบของผู้ทดสอบ เพื่อความมั่นใจในการเลือกสภาวะทดสอบและลดผลที่เกิดจากความถี่ภาระ [29-31]

2.11.2 อัตราส่วนภาระ

สำหรับกลศาสตร์การแตกหักยืดหยุ่นเชิงเส้น (Linear Elastic Fracture Mechanics, LEFM) ความเค้นบริเวณปลายรอยร้าวและผลเฉลย *K* จะเป็นฟังก์ชันเชิงเส้นของภาระที่กระทำ ดังนั้นอัตราส่วนภาระตามสมการที่ (2.2) สามารถเขียนในรูปของ อัตราส่วนความเค้น (stress ratio) และอัตราส่วนตัวประกอบความเข้มของความเค้น (stress intensity factor ratio) ได้ดังนี้

$$R = \frac{P_{\min}}{P_{\max}} = \frac{\sigma_{\min}}{\sigma_{\max}} = \frac{K_{\min}}{K_{\max}}$$
(2.33)

เนื่องจาก da/dN ขึ้นอยู่กับ ΔK และ R ดังนั้นถ้าทราบอัตราส่วนภาระที่กระทำกับ ขึ้นส่วนหรือโครงสร้างแล้ว การทดสอบหา da/dN ด้วยชิ้นงานทดสอบก็จะทำที่อัตราส่วนภาระ เดียวกัน แต่ไม่ได้ใช้ขนาดภาระสูงสุดและต่ำสุดเท่ากับที่โครงสร้างรับ ดังนั้นผู้ทดสอบสามารถกำหนด ขนาดภาระทดสอบให้เหมาะสมกับขนาดและชนิดชิ้นงานทดสอบ และขนาดของเครื่องทดสอบ ได้ อย่างอิสระ โดยทั่วไปพฤติกรรมการเติบโตของรอยร้าวที่ R ต่าง ๆ มีแนวโน้มดังรูปที่ 2.16 นั่นคือ เมื่อ R เพิ่มขึ้น ΔK_h จะมีค่าลดลง (สำหรับเหล็กกล้าบางชนิด ΔK_h ไม่ขึ้นกับ R เมื่อ R น้อย กว่าศูนย์) และ da/dN ที่ ΔK เดียวกันจะมีค่าเพิ่มขึ้น นอกจากนี้กราฟ $da/dN - \Delta K$ ในช่วงที่ สอง ที่ $da/dN - \Delta K$ ต่างๆ จะมีความชันใกล้เคียงกัน [28]

2.12 ความเค้น-ความเครียดหน้าปลายรอยร้าว

McClintock สมมุติให้พฤติกรรมการเสียรูปภายใต้ภาระล้าแทนด้วยความสัมพันธ์ Elastic, Power-Hardening [10-12] ตามสมการที่ (2.10) และ (2.13) ความเค้นสูงสุดและความเครียดสูงสุด หน้าปลายรอยร้าวในทิศตั้งฉากกับระนาบรอยร้าวเป็นไปตามสมการ

$$\sigma_{\max} = \sigma_0 \left[\frac{K_{\max}^2}{(1+n)\pi\sigma_0^2 x} \right]^{\frac{n}{1+n}}$$

$$\varepsilon_{\max} = \varepsilon_0 \left[\frac{K_{\max}^2}{(1+n)\pi\sigma_0^2 x} \right]^{\frac{1}{1+n}}$$
(2.34)

และพิสัยความเค้นและพิสัยความเครียดที่ได้จากการประยุกต์วิธีการของ Rice เป็นไปตามสมการ

$$\Delta \sigma = 2\sigma_0 \left[\frac{\Delta K^2}{4(1+n)\pi\sigma_0^2 x} \right]^{\frac{n}{1+n}}$$

$$\Delta \varepsilon = \varepsilon_0 \left[\frac{\Delta K^2}{4(1+n)\pi\sigma_0^2 x} \right]^{\frac{1}{1+n}}$$
(2.35)

บทที่ 3 การสร้างแบบจำลองอัตราการเติบโตของรอยร้าวล้า

ในบทนี้กล่าวถึงการสร้างแบบจำลองอัตราการเติบโตของรอยร้าวล้า โดยหัวข้อที่ 3.1 กล่าวถึงความสัมพันธ์ระหว่างคุณสมบัติความแข็งแรงล้ากับอัตราการเติบโตของรอยร้าว หัวข้อที่ 3.2 กล่าวถึงแบบจำลองอัตราการเติบโตของรอยร้าวของ Kujawski และ Ellyin ส่วนหัวข้อที่ 3.3 กล่าวถึง การสร้างแบบจำลอง และในหัวข้อที่ 3.4 กล่าวถึงการทำนายอัตราการเติบโตของรอยร้าวล้า

3.1 ความสัมพันธ์ระหว่างคุณสมบัติความแข็งแรงล้ากับอัตราการเติบโตของรอยร้าว

การสร้างความสัมพันธ์ระหว่างคุณสมบัติความแข็งแรงล้ากับอัตราการเติบโตของรอยร้าวนั้น เราจะสมมุติให้หน้าปลายรอยร้าวของชิ้นงานเสมือนกับมีเอลิเมนต์เล็กๆ เรียงตัวกันตลอดเส้นทางที่ รอยร้าวเติบโต เมื่อชิ้นงานรับภาระล้า เอลิเมนต์เล็กๆ ดังกล่าวจะเปรียบได้กับชิ้นงานทดสอบความ ล้าที่รับภาระล้าแบบเดียวกันตามรูปที่ 3.1 ดังนั้นความเสียหายของชิ้นงานทดสอบจึงหมายถึงรอย ร้าวเติบโตจากเอลิเมนต์ที่ประชิดรอยร้าวไปยังเอลิเมนต์ถัดไป

รูปที่ 3.1 ความสัมพันธ์ระหว่างคุณสมบัติความแข็งแรงล้ากับอัตราการเติบโตของรอยร้าวล้า

ที่กล่าวมาข้างต้นคือความเชื่อมโยงระหว่างสมบัติความแข็งแรงล้ากับการอัตราการเติบโตของ รอยร้าวล้า จากแนวคิดนี้ Kujawski และ Ellyin ได้เสนอแบบจำลองเพื่อทำนายอัตราการเติบโตของ รอยร้าวขึ้นซึ่งจะอธิบายในหัวข้อต่อไป

3.2 แบบจำลองอัตราการเติบโตของรอยร้าวของ Kujawski และ Ellyin

แบบจำลองทางคณิตศาสตร์ในหัวข้อนี้ได้อ้างอิงวิธีการพิสูจน์จากงานวิจัยของ Kujawski และ Ellyin [23] งานวิจัยดังกล่าวแบ่งบริเวณเสียรูปที่ปลายรอยร้าวเป็น 3 บริเวณ บริเวณแรกเรียกว่า บริเวณกระบวนการ (process zone) บริเวณถัดมาเป็นบริเวณเสียรูปพลาสติกภายใต้ภาระ เปลี่ยนแปลง (cyclic plastic zone) สำหรับวัสดุที่มีพฤติกรรมเสียรูปแบบพลาสติกสมบูรณ์ บริเวณ ถัดมาเป็นบริเวณเสียรูปพลาสติกขณะรับภาระสูงสุด ขนาดของบริเวณทั้งสามวัดจากปลายรอยร้าว แทนด้วยสัญลักษณ์ δ^* , r_c และ r_m ตามลำดับ ตามรูปที่ 3.2 การสะสมความเสียหายล้าถูกสมมุติให้ เกิดขึ้นในบริเวณกระบวนการเนื่องจากความเครียดในบริเวณนี้มีค่ามาก

แบบจำลองสมมุติว่าเมื่อจำนวนรอบภาระถึงค่าวิกฤติ $(N_{_f})$ แล้ว รอยร้าวล้าจะเติบโตเป็น ระยะทางเท่ากับขนาดของบริเวณกระบวนการ (δ^*) ดังนั้นอัตราการเติบโตของรอยร้าว คือ

3.3 การสร้างแบบจำลอง

Kujawski และ Ellyin [10,11] ได้ใช้ความสัมพันธ์แบบ Elastic, Power-Hardening เพื่อ อธิบายพฤติกรรมความเค้น-ความเครียดหน้าปลายรอยร้าว ตามสมการที่ (2.10) และ (2.13)

$$\sigma = E\varepsilon \qquad \varepsilon \leq \varepsilon_0, \sigma \leq \sigma_0$$

$$\sigma = \sigma_0 \left(\frac{\varepsilon}{\varepsilon_0}\right)^n \qquad \varepsilon \geq \varepsilon_0, \sigma \geq \sigma_0 \qquad (3.2)$$

โดย ε_0 คือ ความเครียดครากภายใต้ภาระล้า (cyclic yield strain)

จากนั้นกำหนดให้พิสัยความเค้นและพิสัยความเครียดที่ทำให้รอยร้าวเติบโตภายในบริเวณ กระบวนการ เป็นไปตามสมการที่ (2.35) ดังนี้

$$\Delta \sigma = 2\sigma_0 \left[\frac{\Delta K^2}{4(1+n')\pi \sigma_0^2 x} \right]^{\frac{n'}{1+n'}}$$
(3.3)

$$\Delta \varepsilon = 2\varepsilon_0 \left[\frac{\Delta K^2}{4(1+n')\pi \sigma_0^2 x} \right]^{\frac{1}{1+n'}}$$
(3.4)

Kujawski และ Ellyin เลือกใช้ $\Delta \sigma \Delta \varepsilon$ ที่ตำแหน่งห่างจากปลายรอยร้าวเป็นระยะ $x = \delta^*$ เป็นพารามิเตอร์แสดงความรุนแรงในบริเวณกระบวนการ Kujawski และ Ellyin ตั้งสมมุติฐานว่า ภายในบริเวณนี้พิสัยความเครียดพลาสติกจะมีขนาดใหญ่กว่าพิสัยความเครียดยืดหยุ่นมากจึง ประมาณได้ว่า $\Delta \varepsilon \approx \Delta \varepsilon_p$

โดย ∆*σ*∆*ɛ*, หาได้จากผลคูณระหว่างพิสัยความเค้นสมการที่ (3.3) และพิสัยความเครียด สมการที่ (3.4) ภายใต้ภาระล้า ดังนี้

$$\Delta \sigma \Delta \varepsilon_p = \frac{\Delta K^2}{(1+n')\pi E \delta^*}$$
(3.5)

แต่เนื่องจากปลายรอยร้าวจริงมีรัศมีความโค้งอยู่ค่าหนึ่ง ซึ่ง Kujawski และ Ellyin กำหนดให้เป็นพารามิเตอร์ ho_c ดังนั้นระยะที่รอยร้าวเติบโตผ่าน เอลิเมนต์ขนาด δ^* จึงแทนด้วยด้วย $\delta^* +
ho_c$ ทำให้สมการที่ (3.5) จะเขียนได้เป็น

$$\Delta \sigma \Delta \varepsilon_{p} = \frac{\Delta K^{2}}{(1+n')\pi E(\delta^{*}+\rho_{c})}$$
(3.6)

Kujawski และ Ellyin พบว่าอายุความล้าของชิ้นงานที่ไม่มีรอยร้าว N_f มีสหสัมพันธ์กับ $\Delta\sigma\!\Delta\varepsilon_r$ ตามสมการที่ (2.27) ดังนี้

$$\Delta \sigma \Delta \varepsilon_{p} = 4 \left(\sigma'_{f} - \sigma_{m} \right) \varepsilon'_{f} \left(2N_{f} \right)^{b+c}$$
(3.7)

แทนสมการที่ (3.6) ในสมการที่ (3.7) แล้วจัดรูปจะได้

$$\delta^* + \rho_c = \frac{\Delta K^2}{4(1+n')(\sigma'_f - \sigma_m)\varepsilon'_f \pi E} (2N_f)^{-(b+c)}$$
(3.8)

หาค่า N_f จากสมการที่ (3.8) ร่วมกับใช้นิยามอัตราการเติบโตของรอยร้าวล้าในสมการที่ (3.1) และ จัดรูปสมการจะได้

$$\frac{\delta^*}{N_f} \approx \frac{da}{dN} = \frac{\Delta K^2}{4(1+n')(\sigma'_f - \sigma_m)\varepsilon'_f \pi E} \frac{(2N_f)^{-(b+c)}}{N_f} - \frac{\rho_c}{N_f}$$
(3.9)

ค่าคงที่ ho_c หาได้จากเงื่อนไข da/dN เท่ากับศูนย์ ที่ $\Delta K = \Delta K_{_{th}}$ ดังนั้น

$$0 = \frac{\Delta K_{th}^2}{4(1+n')(\sigma'_f - \sigma_m)\varepsilon'_f \pi E} \frac{(2N_f)^{-(b+c)}}{N_f} - \frac{\rho_c}{N_f}$$
(3.10)

หา $ho_{\!\scriptscriptstyle c}$ จะได้

$$\rho_{c} = \frac{\Delta K_{th}^{2}}{4(1+n')(\sigma'_{f} - \sigma_{m})\varepsilon'_{f} \pi E} (2N_{f})^{-(b+c)}$$
(3.11)

แทนสมการที่ (3.11) ในสมการที่ (3.9) และจัดรูปสมการเพื่อหาขนาดของบริเวณกระบวนการ ดังนี้

$$\delta^* = \frac{\Delta K^2 - \Delta K_{th}^2}{4(1+n')(\sigma'_f - \sigma_m)\varepsilon'_f \pi E} (2N_f)^{-(b+c)}$$
(3.12)

จัดรูปสมการที่ (3.12) ร่วมกับนิยามอัตราการเติบโตของรอยร้าวล้าในสมการที่ (3.1) จะได้

$$\frac{\delta^*}{N_f} \approx \frac{da}{dN} = 2\delta^* \left[\frac{\Delta K^2 - \Delta K_{th}^2}{4(1+n')(\sigma'_f - \sigma_m)\varepsilon'_f \pi E\delta^*} \right]^{\frac{1}{-(b+c)}}$$
(3.13)

ความเค้นเฉลี่ย $\sigma_{\scriptscriptstyle m}$ ในบริเวณกระบวนการ คำนวณจาก

$$\sigma_m = \frac{1 + R_\sigma}{2} \sigma_{\max} \tag{3.14}$$

โดย R_{σ} คือ อัตราส่วนความเค้นในบริเวณกระบวนการ

ความเค้นสูงสุดคำนวณจาก

$$\sigma_{\max} = \sigma_0 \left[\frac{\left(\Delta K / (1 - R) \right)^2}{(1 + n') \pi \sigma_0^2 \delta^*} \right]^{\frac{n'}{1 + n'}}$$
(3.15)

และอัตราส่วนความเค้นในบริเวณกระบวนการ คำนวณจาก

$$R_{\sigma} = \begin{cases} R & : \delta^* > r_m \\ \overline{R}_{\sigma} + \frac{\log(\delta^*/r_c)}{\log(r_m/r_c)} (R - \overline{R}_{\sigma}) & : r_c \le \delta^* \le r_m \\ \overline{R}_{\sigma} - \frac{r_c - \delta^*}{r_c} (1 + \overline{R}_{\sigma}) & : \delta^* < r_c \end{cases}$$
(3.16)

$$\widetilde{R}_{\sigma} = 1 - 2 \left(\frac{\left(1 - R\right)^2}{4} \right)^{\frac{n'}{1 + n'}}$$
(3.17)

$$r_{m} = \frac{1}{(1+n')\pi} \left(\frac{(\Delta K/(1-R))}{\sigma_{0}} \right)^{2}$$
(3.18)

$$r_c = \frac{1}{4(1+n')\pi} \left(\frac{\Delta K}{\sigma_0}\right)^2$$
(3.19)

3.4 การทำนายอัตราการเติบโตของรอยร้าวล้า

การทำนายอัตราการเติบโตของรอยร้าวล้าด้วยแบบจำลองของ Kujawski และ Ellyin ทำได้ โดยหาพารามิเตอร์ที่เกี่ยวข้องตามที่จะอธิบายในหัวข้อที่ 3.4.1 จากนั้นนำพารามิเตอร์ที่ได้ทำตาม ขั้นตอนหัวข้อที่ 3.4.2 การทำนายอัตราการเติบโตของรอยร้าวล้าด้วยสมการที่ (3.13) ต้องการค่าคงที่ 10 ตัว คือ $\sigma_0, E, n', \sigma'_f, b, \varepsilon'_f, c, \Delta K_{th}, \sigma_m, \delta^*$ กับจุดข้อมูลจากการทดสอบเพื่อหาอัตราการ เติบโตของรอยร้าวล้า 1 จุด คือ $\Delta K, da/dN$ โดยแบ่งเป็นค่าคงที่จากผลการทดสอบหาสมบัติ ความล้า 7 ตัวได้แก่ $\sigma_0, E, n', \sigma'_f, b, \varepsilon'_f, c$ พารามิเตอร์ที่ได้จากการทดสอบหาอัตราการ เติบโตของรอยร้าวล้า 1 ตัว คือ ΔK_{th} พารามิเตอร์ที่ได้จากวิธีเชิงตัวเลข 2 ตัว คือ σ_m, δ^* และ พารามิเตอร์ที่ได้จากการเลือกจุดข้อมูลการทดสอบ 1 จุด ได้แก่ $\Delta K, da/dN$ โดยมีรายละเอียด ดังนี้

- $\sigma_{\scriptscriptstyle 0}$ หาจากสมการที่ (2.14)

- E หาจากความชั้นของกราฟความเค้น-ความเครียดภายใต้ภาระล้าในช่วงยืดหยุ่น

 n' หาจากความสัมพันธ์ระหว่างแอมพลิจูดความเค้นจริงกับแอมพลิจูดความเครียดพลาสติกจริง โดยกำหนดให้แอมพลิจูดความเค้นจริงเป็นแกนตั้งและแอมพลิจูดความเครียดพลาสติกจริงเป็นแกน นอนและใช้ความสัมพันธ์ตามสมการที่ (2.13)

- σ'_f , b หาจากความสัมพันธ์ระหว่าง $2N_f$ (แกนตั้ง) กับ $\Delta\sigma/2$ (แกนนอน) และใช้ ความสัมพันธ์ตามสมการที่ (2.18)

- ε'_f , c หาจากกราฟความสัมพันธ์ระหว่าง $2N_f$ (แกนตั้ง) กับ $\Delta \varepsilon_p/2$ (แกนนอน) และใช้ ความสัมพันธ์ตามสมการที่ (2.20)

ΔK_{th} คือ ข้อมูลจากการทดสอบแบบลด ΔK จนกระทั่งรอยร้าวหยุดเติบโต โดยนิยามของ ΔK_{th}
 อธิบายไว้ในหัวข้อที่ 2.8 และการทดสอบเพื่อหาอัตราการเติบโตของรอยร้าวล้าแบบลด ΔK จะ
 อธิบายต่อไปในหัวข้อที่ 4.4.4.3

 ΔK, da/dN คือจุดข้อมูล 1 จุดจากผลการทดสอบอัตราการเติบโตของรอยร้าวล้าสำหรับหา ขนาดของบริเวณกระบวนการ, δ^{*} ΔK ยังเป็นตัวแปรอิสระที่ผู้วิจัยต้องกำหนดค่าที่เหมาะสมเพื่อ ทำนายอัตราการเติบของรอยร้าวล้าตามสมการที่ (3.13)

- $\sigma_{\!_m}$ เป็นพารามิเตอร์ที่คำนวณด้วยวิธีเชิงเลขจากสมการที่ (3.13-3.19)

3.4.2 ขั้นตอนการทำนายอัตราการเติบโตของรอยร้าวล้า

เมื่อทราบพารามิเตอร์ของบริเวณกระบวนการ δ^{*} จากนั้นคำนวณด้วยสมการที่ (3.15) (3.14) และ (3.13) ตามลำดับและกำหนดค่า Δ*K* ที่เหมาะสม เพื่อทำนายค่าอัตราการเติบโตของ รอยร้าวล้า โดยขั้นตอนการทำนายอัตราการเติบโตของรอยร้าวล้าสรุปได้ตามรูปที่ 3.3

รูปที่ 3.3 ขั้นตอนการทำนายอัตราการเติบโตของรอยร้าวล้า

บทที่ 4 การทดสอบ

ในบทนี้กล่าวถึงการเตรียมการทดสอบและอุปกรณ์การทดสอบ โดยหัวข้อที่ 4.1 กล่าวถึงวัสดุ สำหรับทำชิ้นงานทดสอบ ในหัวข้อที่ 4.2 กล่าวถึงทิศทางการวางตัวของชิ้นงาน ส่วนในหัวข้อที่ 4.3 กล่าวถึงการทดสอบหาคุณสมบัติความแข็งแรงล้า และในหัวข้อที่ 4.4 กล่าวถึงทดสอบหาอัตราการ เติบโตของรอยร้าวล้า

4.1 วัสดุสำหรับทำชิ้นงานทดสอบ

วัสดุสำหรับทำชิ้นงานทดสอบในวิทยานิพนธ์นี้คือเหล็กกล้า ASTM A516 เกรด 70 เป็น เหล็กกล้าคาร์บอนทนแรงดันสูง (high pressure carbon steel) ผ่านกระบวนการอบคืนตัว (normalized) ด้วยอุณหภูมิ 891 องศาเซลเซียส เป็นเวลา 22 นาที ผลิตจากประเทศเกาหลี มี คุณสมบัติทางกล และ ส่วนผสมทางเคมี ตามตารางที่ 4.1 และ 4.2 ตามลำดับ

ตารางที่ 4.1 คุณสมบัติทางกลสำหรับเหล็กกล้า A516 เกรด 70

	Yield strength	Tensile strength	Hardness	Elongation
แหล่งขอมู่ล	(MPa)	(MPa)	(HB)	(%)
ตัวแทนจำหน่าย	365	534	164.3	28
การทดสอบ		UNIVERSITY	148.0	-

a		1	a 0	ູ	ಷ	v			
ตารางท	42	สวบผสบทาง	แคบสาข	เหราแ	หลกก	าลา	A516	เกรด	70
	1.2	01 0 00 0 0 0 0 0 1 1	1011010111	1000		101 1	/ (0 1 0	011071	10

แหล่งข้อมูล	С	Mn	Р	S	Si
ตัวแทน จำหน่าย	0.28	0.79-1.3	0.035	0.035	0.13-0.45
Pof [31]	0.25	1.11	0.018	0.022	0.25
NEI.[JI]	0.24	1.13	0.022	0.021	0.25
การทดสอบ	0.20	1.13	0.006	0.004	0.38

4.2 ทิศทางการวางตัวของชิ้นงาน

จากรูปที่ 4.1 ชิ้นงานหมายเลข 1 เป็นลักษณะชิ้นงานเพื่อใช้ในการทดสอบหาคุณสมบัติ ความแข็งแรงล้า โดยชิ้นงานในงานวิทยานิพนธ์นี้วางตัวตามทิศทางการรีดแผ่นโลหะหรือชิ้นงาน วางตัวตามแนวยาว (L) ชิ้นงานหมายเลข 2 เป็นลักษณะชิ้นงานเพื่อใช้ในการทดสอบเพื่อหาอัตราการ เติบโตของรอยร้าวล้า โดยชิ้นงานวางตัวแบบ L-T หมายถึง ระนาบของรอยร้าวตั้งฉากกับทิศทาง ตามยาว (L) และรอยร้าวเติบโตในทิศตามขวาง (T) ซึ่งจะทำให้ทิศทางการเติบโตของรอยร้าวของ ชิ้นงานหมายเลข 2 และระนาบการแตกหักของชิ้นงานหมายเลข 1 เกิดขึ้นในทิศทางเดียวกัน

การทดสอบในวิทยานิพนธ์นี้แบ่งเป็น 2 ส่วนหลัก คือ การทดสอบเพื่อหาคุณสมบัติความ แข็งแรงล้าในหัวข้อที่ 4.3 และการทดสอบเพื่อหาอัตราการเติบโตของรอยร้าวล้าในหัวข้อที่ 4.4

เหาลงกรณ์มหาวิทยาลัย

4.3 การทดสอบหาความแข็งแรงล้า

4.3.1 การออกแบบชิ้นงาน

1) ชิ้นงานทดสอบ

ชิ้นงานที่ใช้ในการทดสอบเป็นชิ้นงานมาตรฐาน ทรงกระบอกผิวเรียบปลายทั้งสองด้านเป็น เกลียวมีอัตราส่วนตามที่มาตรฐาน E606 [32] แนะนำ ตามรูปที่ 4.2 แบบ Drawing ชิ้นงานแสดงใน ภาคผนวก ก.1 และขั้นตอนการทำชิ้นงานแสดงไว้ในภาคผนวก ข.1

2) อุปกรณ์เสริม

แหวนลด Backlash และ grip เป็นอุปกรณ์เสริมถูกออกแบบเพิ่มสำหรับประกอบเพื่อจับยึด ชิ้นงานทดสอบตามรูปที่ 4.3 และติดตั้งเข้ากับเครื่องทดสอบ โดยแบบ Drawing ชิ้นงานแสดงใน ภาคผนวก ก.2 และ ก.3 ตามลำดับ

รูปที่ 4.3 การประกอบชุดทดสอบเพื่อหาความแข็งแรงล้า

4.3.2 อุปกรณ์การทดสอบ

อุปกรณ์สำหรับการทดสอบเชื่อมต่อเป็นระบบทดสอบเพื่อหาคุณสมบัติความล้า มีดังนี้ -คอมพิวเตอร์ ยี่ห้อ HP Compaq dc7900 Intel core 2 ความเร็วประมวลผล(CPU) 2.83 GHz หน่วยความจำสำรอง(RAM) 2 GB

-เครื่องทดสอบ ยี่ห้อ SHIMADZU SERVO CONTROLLER รุ่น 4830 ร่วมกับชุดควบคุม SHIMADZU CONTROLLER MODEL 4890 ขนาด ±10 ตัน -การ์ดอ่านสัญญาณความต่างศักย์จากโหลดเซล ยี่ห้อ National instrument รุ่น 9215 ความ ละเอียด 16 บิต

-อุปกรณ์วัดการเสียตามแนวแกนภายใต้ภาระล้า (Extensometer) ยี่ห้อ Shimadzu dynastrain M995401 Gage Length 12.5 มิลลิเมตร พิสัยการวัด ±1 มม.

4.3.3 หลักการทำงานของระบบทดสอบ

ระบบการทดสอบตามรูปที่ 4.4 การทำงานเริ่มจากการที่ผู้ทดสอบป้อนระยะเสียรูปที่ทำให้ เกิดพิสัยความเครียดและความเครียดเฉลี่ย หรือภาระที่ทำให้เกิดพิสัยความเค้นและความเค้นเฉลี่ยให้ ชุดควบคุม จากนั้นชุดควบคุมจะขยายสัญญาณแรงดันไฟฟ้าส่งไปยังเซอร์โววาล์ว ซึ่งทำหน้าควบคุม อัตราการไหลของน้ำมันที่เข้ากระบอกสูบ ขณะเดียวกัน load cell, อุปกรณ์วัดการเสียรูป และ LVDT (linear variable differential transformer) จะส่งข้อมูล ภาระ, ระยะการเสียรูป และระยะ เคลื่อนที่ของ actuator ซึ่งต่อกับ LVDT ตามลำดับ กลับมาที่ชุดควบคุมจากนั้นแปลงสัญญาณผ่าน อุปกรณ์ NI DAQ ร่วมกับ โปรแกรม labview ที่พัฒนาสำหรับเก็บข้อมูลระหว่างการทดสอบ

รูปที่ 4.4 ระบบทดสอบเพื่อหาความแข็งแรงล้า

4.3.4 รูปแบบการทดสอบเพื่อหาความแข็งแรงล้าและการเก็บข้อมูล

การทดสอบเพื่อหาสมบัติความแข็งแรงล้าโดยทั่วไปทำได้ 2 แบบ คือ 1) การทดสอบแบบ ควบคุมภาระที่กระทำกับชิ้นงานทดสอบให้คงที่ ถ้าหากชิ้นงานทดสอบมีพื้นที่หน้าตัดเปลี่ยนแปลง น้อยมากเมื่อรับภาระทดสอบ การทดสอบแบบนี้จะเทียบเท่ากับการทดสอบแบบควบคุมความเค้น และ 2) การทดสอบแบบควบคุมระยะยืดของชิ้นงานให้คงที่หรือแบบควบคุมความเครียด เป็นที่ ทราบกันดีว่าผู้ทดสอบสามารถเลือกควบคุมการทดสอบได้แบบใดแบบหนึ่งเท่านั้นในการทดสอบแต่ ละครั้ง ทั้งนี้การเลือกควบคุมการทดสอบรูปแบบไหนขึ้นกับเงื่อนไขและผลจากการทดสอบที่ต้องการ เช่น ทดสอบแบบควบคุมความเค้นโดยใช้ความเค้นทดสอบสูงสุดมากกว่าความเค้นครากของวัสดุเพื่อ ศึกษาพฤติกรรม ratcheting [23] เป็นต้น แต่ในวิทยานิพนธ์ฉบับไม่ต้องการให้วัสดุเกิดปรากฏการณ์ ratcheting จึงกำหนดให้การทดสอบแบบควบคุมความเค้นใช้ความเค้นสูงสุดน้อยกว่าความเค้นคราก นอกเหนือจากนี้ใช้การทดสอบแบบควบคุมความเครียด

การทดสอบแบบควบคุมภาระนิยมกำหนดแอมพลิจูดภาระและภาระเฉลี่ย และการทดสอบ แบบควบคุมความเครียดนิยมกำหนดแอมพลิจูดระยะเสียรูปและระยะเสียรูปเฉลี่ยโดยวัดระยะการ เสียรูปของชิ้นงานด้วยอุปกรณ์วัดการเสียรูป (Extensometer) ในระหว่างการทดสอบ การทดสอบทั้ง สองแบบผู้ทดสอบต้องเก็บข้อมูลภาระทดสอบและจำนวนรอบการรับภาระสำหรับการทดสอบแบบ ควบคุมภาระและเก็บข้อมูลระยะการเสียรูปเพิ่มเติมสำหรับการทดสอบแบบควบคุมความเครียดเป็น ระยะๆ จนชิ้นงานถึงเกณฑ์การแตกหัก โดยการทดสอบเพื่อหาสมบัติความแข็งแรงล้าในวิทยานิพนธ์นี้ ใช้โปรแกรมเก็บข้อมูลที่พัฒนาขึ้นในการเก็บข้อมูลระหว่างทำการทดสอบ รายละเอียดและวิธีใช้ โปรแกรมแสดงไว้ในภาคผนวก ค

4.3.5 สภาวะทดสอบสำหรับการทดสอบความแข็งแรงล้า

ในวิทยานิพนธ์นี้ใช้ข้อมูลการทดสอบเส้นโค้งความเค้น-ความเครียดภายใต้ภาระล้าและแอม-พลิจูดความเครียดต่อรอบการรับภาระของ Kujawski กับ Ellyin [33, 34] เป็นหลักตามตารางที่ จ.1 และ จ.4 แต่ทดสอบเพิ่มเติมเพื่อทวนสอบว่าข้อมูลของวิทยานิพนธ์นี้สอดคล้องกับข้อมูลในงานวิจัย อื่นหรือไม่ โดยทุกสภาวะทดสอบใช้รูปแบบภาระแบบไซน์ และทดสอบที่อุณหภูมิห้อง (ประมาณ 25 องศาเซลเซียส) โดยการทดสอบแบบควบคุมความเครียดจะทดสอบภายใต้ความถี่ภาระ 0.05 เฮิรตซ์ ด้วยพิสัยความเครียด 0.1%, 0.2%, 0.5% และ 0.6% Gage Length 12.5 มิลลิเมตร และการ ทดสอบแบบควบคุมภาระจะทดสอบภายใต้ความถี่ 5 เฮิรตซ์ ด้วยพิสัยความเค้น 250 MPa, 540 MPa, 560 MPa, 580 MPa, 590 MPa และ 600 MPa ที่ภาระเฉลี่ยเท่ากับศูนย์

4.4 การทดสอบหาอัตราการเติบโตของรอยร้าวล้า

4.4.1 การออกแบบชิ้นงาน

1) ชิ้นงานทดสอบ

ชิ้นงานที่ใช้ในการทดสอบเป็นชิ้นงานขนาดมาตรฐานทรงสี่เหลี่ยมมีรอยบากที่ขอบด้านข้าง มี อัตราส่วนตามที่มาตรฐาน E647 [4] กำหนด ตามรูปที่ 4.5 แบบ Drawing ชิ้นงานแสดงในภาคผนวก ก.4 และขั้นตอนการทำชิ้นงานแสดงไว้ในภาคผนวก ข.2

2) อุปกรณ์เสริม

ชิ้นส่วนอุปกรณ์เสริมได้ออกแบบเพิ่มเพื่อยึดชิ้นงานเข้ากับเครื่องทดสอบ ได้แก่ สลักยึด ชิ้นงานทดสอบอัตราการโตของรอยร้าวล้า (Pin) และ ชิ้นงานกำหนดระยะ (Spacer) โดยชุดทดสอบ ประกอบด้วยชิ้นงานทดสอบและอุปกรณ์เสริม ตามรูปที่ 4.6 โดยแบบ Drawing ชิ้นงานแสดงใน ภาคผนวก ก.5 และ ก.6 ตามลำดับ

รูปที่ 4.6 การประกอบชุดทดสอบเพื่อหาอัตราการเติบโตของรอยร้าวล้า

4.4.2 อุปกรณ์การทดสอบ

ระบบทดสอบเพื่อหาอัตราการเติบโตของรอยร้าวล้า มีอุปกรณ์ที่ใช้ในการควบคุมเหมือนกับ การทดสอบเพื่อหาคุณสมบัติพื้นฐานความล้าของวัสดุในหัวข้อ 4.3.2 ต่างกันที่ซอฟท์แวร์และอุปกรณ์ วัดการเสียรูป โดยอุปกรณ์สำหรับการทดสอบเชื่อมต่อเป็นระบบทดสอบเพื่อหาอัตราการเติบโตของ รอยร้าวล้า มีดังนี้

-คอมพิวเตอร์ ยี่ห้อ HP Compaq DDR core2 ความเร็วประมวลผล(CPU) 1.8GHz หน่วยความจำ สำรอง(RAM) 1 GB

-ซอฟท์แวร์ ยี่ห้อ Labview ver.2012 ทำงานบนระบบปฏิบัติการวินโดวส์ 7 (64 บิต)

-เครื่องทดสอบ ใช้ชุดควบคุม SHIMADZU CONTROLLER MODEL 4826 ร่วมกับ SAGINOMIYA DYNAMIC SERVO (Transducer สำหรับกำหนดพิสัยของโหลดเซล ได้ 4 ค่า คือ ±3, ±6, ±15 และ ±30 ตัน) ในวิทยานิพนธ์นี้ใช้ ±3 ตัน

-อุปกรณ์อ่านสัญญาณจากสเตรนเกจ ยี่ห้อ National instrument รุ่น 9235 ความละเอียด 24 บิต

-การ์ดอ่านสัญญาณความต่างศักย์จากโหลดเซล ยี่ห้อ National instrument รุ่น 6024E ความ ละเอียด 12 บิต ตั้งพิสัยการวัดไว้ที่ ±10 โวลต์ หรือ National instrument รุ่น 9215 ความ ละเอียด 16 บิต ตั้งพิสัยการวัดไว้ที่ ±5 โวลต์ ตามลำดับ

-สเตรนเกจ

สเตรนเกจ ยี่ห้อ Kyowa ความต้านทาน 120 โอห์ม ความยาวเกจ 2 มม. เกจแฟคเตอร์ 2.09 สเตรนเกจ ยี่ห้อ Kyowa ความต้านทาน 120 โอห์ม ความยาวเกจ 5 มม. เกจแฟคเตอร์ 2.11 สเตรนเกจยี่ห้อ TML ความต้านทาน 120 โอห์ม ความยาวเกจ 5 มม. เกจแฟคเตอร์ 2.13

4.4.3 หลักการทำงานของระบบ

หลักการทำงานของเครื่องทดสอบเหมือนกับในหัวข้อ 4.3.3 ต่างกันที่ใช้สเตรนเกจวัด ความเครียดของชิ้นงานด้านที่รอยร้าววิ่งเข้าหา (Backface) จากนั้นแปลงสัญญาณผ่านอุปกรณ์ NI DAQ ร่วมกับซอฟท์แวร์ ตามรูปที่ 4.7

รูปที่ 4.7 ระบบทดสอบเพื่อหาอัตราการเติบโตของรอยร้าวล้า

4.4.4 รูปแบบการทดสอบเพื่อหาอัตราการเติบโตของรอยร้าวล้าและเก็บข้อมูล

ภาพรวมการทดสอบอัตราการเติบโตของรอยร้าวล้าอ้างอิงตามมาตรฐาน E647 [4] เริ่มจาก การสร้างรอยร้าวเริ่มต้นให้กับชิ้นงาน (หัวข้อที่ 4.4.4.1) จากนั้นกำหนดภาระทดสอบ โดยการทดสอบ แบ่งได้ 2 แบบ คือ แบบแอมพลิจูดภาระคงที่ หรือการทดสอบแบบเพิ่ม ΔK (ΔK increasing) (หัวข้อที่ 4.4.4.2) และ แบบลดแอมพลิจูดภาระ หรือการทดสอบแบบลด ΔK (ΔK decreasing) (หัวข้อที่ 4.4.4.3) ในระหว่างการทดสอบให้เก็บข้อมูลความยาวรอยร้าว, จำนวนรอบภาระ และ ภาระทดสอบ เป็นระยะๆ (หัวข้อที่ 4.4.4.4) จนเสร็จการทดสอบ รายละเอียดการทดสอบสรุปได้ดังนี้

4.4.4.1 การสร้างรอยร้าวเริ่มต้น

การทดสอบต้องการให้เกิดรอยร้าวในทิศทางและตำแหน่งที่แน่นอน ชิ้นงานทดสอบจึงต้องมี รอยบาก (notch) โดยปกติแล้วรอยบากจะสร้างจากกรรมวิธีการตัดด้วยลวด (wire cut) หรือ EDM (Electrical Discharge Machining) ปลายรอยบากจึงมีรัศมีความโค้งมากเกินกว่าที่จะใช้แทนรอย ร้าว ดังนั้นผู้ทดสอบต้องสร้างรอยร้าวเริ่มต้นให้มีขนาดตามที่มาตรฐาน E647 กำหนด โดยมาตรฐาน กำหนดให้ขนาดของความยาวรอยร้าวเริ่มต้น (วัดจากปลายรอยบาก) เป็นไปตามสมการที่ (4.1)

	ความยาวรอยร้าวเริ่มต้น $\geq (0.1B,h,1mm)$	(4.1)
โดย	B คือ ขนาดความหนาของชิ้นงานทดสอบ	
	h คือ ขนาดความกว้างของรอยบาก แต่วิทยาลัย	

ขนาดของภาระที่ใช้ในการสร้างรอยร้าวเริ่มต้นจะต้องมากพอที่จะทำให้รอยร้าวเติบโต แต่ ต้องไม่มากเกินไปและรอยร้าวจะต้องเบี่ยงเบนไม่เกิน 10 องศา จากแนวการเติบโตที่กำหนดหรือ ส่งผลต่อพฤติกรรมการเติบโตของรอยร้าวในช่วงการทดสอบจริง

4.4.4.2 การทดสอบแบบเพิ่ม ΔK

การทดสอบนิยมกำหนดภาระเฉลี่ยและแอมพลิจูดภาระให้คงที่ตลอดการทดสอบโดยขนาด ของภาระทดสอบต้องมากกว่าหรือเท่ากับขนาดของภาระที่ใช้สร้างรอยร้าวเริ่มต้น โดยการทดสอบจะ ทดสอบไปจนกระทั่งความยาวรอยร้าวยาวขึ้นจนถึงเกณฑ์มาตรฐานกำหนดตามสมการที่ (4.2)

$$(W-a) \ge \left(\frac{4}{\pi}\right) \left(\frac{K_{\max}}{\sigma_0}\right)^2 \tag{4.2}$$

โดย (W-a) คือ ความยาวของชิ้นงานทดสอบในส่วนที่ยังไม่เกิดรอยร้าว

 K_{max} คือ ค่าสูงสุดของตัวประกอบความเข้มของความเค้น

 $\sigma_{\scriptscriptstyle 0}$ คือ ความเค้นครากภายใต้ภาระล้า

โดยขั้นตอนการทดสอบเพื่อหาอัตราการเติบโตของรอยร้าวล้าแบบเพิ่ม ΔK สรุปได้ตาม รูปที่4.8(ก)

4.4.4.3 การทดสอบแบบลด ΔK

การทดสอบจะกำหนดให้แอมพลิจูดภาระคงที่ในช่วงระยะเวลาหนึ่ง กล่าวคือ เมื่อรอยร้าว เติบโต ผู้ทดสอบจะต้องปรับลดขนาดของแอมพลิจูดภาระที่ใช้ในการทดสอบลงเป็นระยะๆ ตามเกณฑ์ ที่มาตรฐาน E647 กำหนด การคำนวณค่า ΔK ที่เหมาะสมจะใช้สมการ

$$\Delta K = \Delta K_0 \exp\left[C\left(a - a_0\right)\right] \tag{4.2}$$

โดย ΔK_0 คือ พิสัยตัวประกอบความเข้มของความเค้นเริ่มต้นที่ผู้ทดสอบกำหนด

C คือ ค่าคงที่ปรับลดภาระ มาตรฐานแนะนำให้มากกว่าหรือเท่ากับ $-0.08mm^{-1}$ (ใน วิทยานิพนธ์นี้ใช้ $-0.08mm^{-1}$)

a คือ ความยาวรอยร้าววัดจากจุดศูนย์กลางรอยเจาะถึงปลายรอยร้าวตามแนวที่รอยร้าว
 เติบโต

 $a_{_0}$ คือ ความยาวรอยร้าวเริ่มต้น

จากสมการที่ (4.2) จะทราบค่า Δ*K* เป้าหมาย จากนั้นนำไปแทนค่าในผลเฉลย *K* สมการที่ (2.29) ผู้ทดสอบจะทราบค่าพิสัยภาระ, Δ*P* อาศัยสมการที่ (2.1), (2.3) และ (2.5) จะหาค่าแอมพลิจูดภาระ และภาระเฉลี่ยเพื่อใช้ในการกำหนดภาระทดสอบได้ จากนั้นทำซ้ำในกระบวนการเดียวกันนี้ไปเรื่อยๆ เมื่อตรวจพบว่ารอยร้าวเติบโตจากความยาวเดิม จนกระทั่งรอยร้าวหยุดเติบโต

มาตรฐานแนะนำให้การปรับลดภาระในแต่ละช่วงไม่ควรเกิน 10 เปอร์เซ็นต์ของขนาดภาระ สูงสุด, P_{max} ของช่วงก่อนหน้าการปรับลดภาระ

4.4.4.4 การเก็บข้อมูลการทดสอบ

ในระหว่างการทดสอบ ผู้ทดสอบต้องเก็บข้อมูลความยาวรอยร้าว, จำนวนรอบที่ชิ้นงาน ทดสอบรับภาระ และ พิสัยภาระ เป็นระยะๆ จนเสร็จการทดสอบ การเก็บข้อมูลในวิทยานิพนธ์นี้ใช้ โปรแกรมติดตามรอยร้าว [35] และสามารถเก็บข้อมูลได้อัตโนมัติโปรแกรมพัฒนาจากซอฟท์แวร์ Labview โปรแกรมยังสามารถประมวลผลความยาวรอยร้าวในระหว่างทำการทดสอบ โดย รายละเอียดการใช้งานโปรแกรมแสดงไว้ในภาคผนวก ง

ขั้นตอนการทดสอบเพื่อหาอัตราการเติบโตของรอยร้าวล้าแบบลด ΔK สรุปได้ตาม รูปที่4.8

(ข)

การทดสอบทำภายใต้อัตราส่วนภาระ 0.1, 0.3 และ0.5 ทุกสภาวะทดสอบใช้รูปแบบภาระ แบบไซน์ ความถี่ภาระ 10 เฮิรตซ์ และทดสอบที่อุณหภูมิห้อง (ประมาณ 25 องศาเซลเซียส) โดยการ ทดสอบสำหรับสร้างรอยร้าวเริ่มต้นในวิทยานิพนธ์นี้สร้างรอยร้าวเริ่มต้นด้วยแอมพลิจูดภาระ 0.5 ตัน ภาระเฉลี่ย 0.6 ตัน, สภาวะทดสอบสำหรับการทดสอบแบบเพิ่ม ΔK และสภาวะทดสอบสำหรับการ ทดสอบแบบลด ΔK (ทุกสภาวะทดสอบกำหนดให้ค่าคงที่ปรับลดภาระ, C = -0.08 มม⁻¹) แสดงใน ตารางที่ 4.3 และ 4.4 ตามลำดับ

อัตราส่วนภาระ <i>R</i>	แอมพลิจูดภาระ (ตัน)	ภาระเฉลี่ย (ตัน)
0.1	0.50	0.60
0.3	0.39	0.72
0.5	0.30	0.90

ตารางที่ 4.3 สภาวะทดสอบสำหรับการทดสอบแบบเพิ่ม ΔK

ตารางที่ 4.4 สภาวะทดสอบสำหรับการทดสอบแบบลด ΔK

อัตราส่วนภาระ	ΔK เริ่มต้น $\left(\Delta K_{_0} ight)$
R	$MPa\sqrt{m}$
0.1	18.0
0.3	12.5
0.5	11.7

บทที่ 5 ผลการทดสอบ และ ผลการทำนาย

ในบทนี้กล่าวถึงผลการทดสอบ และผลการทำนาย โดยหัวข้อที่ 5.1 กล่าวถึงผลการทดสอบ หาคุณสมบัติความแข็งแรงล้า และผลการทดสอบเพื่อหาอัตราการเติบโตของรอยร้าวล้า และในหัวข้อ ที่ 5.2 ผลการทำนายอัตราการเติบโตของรอยร้าวล้าที่อัตราส่วนภาระ 0.1, 0.3 และ 0.5

5.1 ผลการทดสอบ

5.1.1 ผลการทดสอบหาคุณสมบัติความแข็งแรงล้า

การทดสอบภายใต้สภาวะทดสอบตามที่กล่าวไว้ในหัวข้อที่ 4.3.5 ได้ผลดังนี้

5.1.1.1 การทดสอบแบบควบคุมความเครียด

จากข้อมูลการทดสอบแบบควบคุมความเครียดจากข้อมูลของ Kujawski กับ Ellyin (ตาราง ที่ จ.1) และข้อมูลการทดสอบแบบควบคุมความเครียดของวิทยานิพนธ์ (ตารางที่ จ.2) จะพล็อตกราฟ ความเค้น-ความเครียดภายใต้ภาระล้า ได้ตามรูปที่ 5.1 ค่าคงที่ที่ได้จากการวิเคราะห์คือ *K*'=1391.7*MPa*, *n*'=0.2362

จากข้อมูลการทดสอบแบบควบคุมความเค้นจากข้อมูลของ Kujawski กับ Ellyin (ตารางที่ จ.4) และข้อมูลการทดสอบแบบควบคุมความเค้นของวิทยานิพนธ์นี้ (ตารางที่ จ.5) สามารถนำเสนอ ในรูปกราฟความสัมพันธ์ $\Delta\sigma/2 - 2N_f$ ได้ตามรูปที่ 5.2 ค่าคงที่จากการวิเคราะห์ คือ $\sigma_f' = 855.41MPa$, b = -0.095 และนำเสนอในรูปกราฟความสัมพันธ์ $\Delta\varepsilon_p/2 - 2N_f$ ได้ตามรูป ที่ 5.3 ค่าคงที่ที่ได้จากการวิเคราะห์ คือ $\varepsilon_f' = 0.307MPa$, c = -0.466 โดยข้อมูลเพื่อใช้พล็อต กราฟแสดงในตารางที่ จ.6 และตารางที่ จ.7 ตามลำดับ

รูปที่ 5.3 ความสัมพันธ์ $\Delta \epsilon_{
m p}/2\text{-}2N_{
m f}$

พารามิเตอร์ที่ใช้ทำนายอัตราการเติบโตของรอยร้าวล้าจากการทดสอบเพื่อหาความแข็งแรง ล้าสรุปได้ตามตารางที่ 5.1

ตารางที่ 5.1 สรุปพารามิเตอร์จากการทดสอบหาสมบัติความแข็งแรงล้า

$\sigma_{_0}$ (MPa)	E (GPa) [33]	<i>n</i> '	$\sigma_{_f}$ '(MPa)	b	\mathcal{E}_{f} '	С
320.67	204	0.2362	766.95	-0.0868	0.2567	-0.4822

UNULALUNGKURN UNIVERS

5.1.2 ผลการทดสอบเพื่อหาอัตราการเติบโตของรอยร้าวล้า

การทดสอบภายใต้สภาวะทดสอบตามที่ได้กล่าวไว้ในหัวข้อที่ 4.4.5 ได้ผลการทดสอบที่ อัตราส่วนภาระ 0.1, 0.3 และ 0.5 แสดงในรูปที่ 5.4 ถึง 5.6 ตามลำดับ โดยข้อมูลการทดสอบแสดง ไว้ในภาคผนวก ฉ (ข้อมูลการทดสอบแบบเพิ่ม ΔK ในวิทยานิพนธ์นี้ใช้การคำนวณ ΔK และ da/dN ด้วยวิธี Incremental polynomial ส่วนในการทดสอบแบบลด ΔK คำนวณด้วยวิธี Secant) และ ΔK_{th} ที่อัตราส่วนภาระต่างๆแสดงในตารางที่ 5.2

รูปที่ 5.4 อัตราการเติบโตของรอยร้าวล้าที่อัตราส่วนภาระเท่ากับ 0.1

รูปที่ 5.5 อัตราการเติบโตของรอยร้าวล้าที่อัตราส่วนภาระเท่ากับ 0.3

รูปที่ 5.6 อัตราการเติบโตของรอยร้าวล้าที่อัตราส่วนภาระเท่ากับ 0.5

อัตราส่วนภาระ <i>R</i>	$\Delta K_{{}_{th}}$ เมกะปาสคาล $$ เมตร
0.1	7.51
0.3	7.50
0.5	6.16

ตารางที่ 5.2 ค่าขีดเริ่มของพิสัยตัวประกอบความเข้มของความเค้น

5.2 ผลการทำนายอัตราการเติบโตของรอยร้าวล้า

ผลการทำนายในวิทยานิพนธ์ฉบับนี้เลือกใช้จุดข้อมูลจากอัตราการเติบโตของรอยร้าวล้าที่ อัตราส่วนภาระ 0.3 หนึ่งจุดที่ $\Delta K = 15.409 MPa \sqrt{m}$, $da/dN = 1.552 \times 10^{-5} mm/cycle$ นำไป คำนวณตามขั้นตอนที่ 3.4.2 ได้ค่า $\delta^* = 41.4 \mu m$ จากนั้นทำนายอัตราการเติบโตของรอยร้าวล้าที่ อัตราส่วนภาระ 0.1, 0.3 และ 0.5 เปรียบเทียบกับผลการทดสอบ ตามรูปที่ 5.7 ถึง 5.9 ส่วนข้อมูล ผลการทำนายอัตราการเติบโตของรอยร้าวล้าและ Code โปรแกรมเพื่อทำนายอัตราการเติบโตของ รอยร้าวล้าแสดงไว้ในภาคผนวก ฉ และ ภาคผนวก ช ตามลำดับ

รูปที่ 5.7 ผลการทำนายอัตราการเติบโตของรอยร้าวล้า ที่อัตราส่วนภาระ 0.1

รูปที่ 5.8 ผลการทำนายอัตราการเติบโตของรอยร้าวล้า ที่อัตราส่วนภาระ 0.3

รูปที่ 5.9 ผลการทำนายอัตราการเติบโตของรอยร้าวล้า ที่อัตราส่วนภาระ 0.5

บทที่ 6 อภิปราย

ในบทนี้จะกล่าวถึงการอภิปรายใน 5 หัวข้อหลัก ได้แก่ หัวข้อที่ 6.1 กล่าวถึงการทดสอบ อัตราการเติบโตของรอยร้าวล้า หัวข้อที่ 6.2 กล่าวถึงความสอดคล้องของผลการทดสอบกับงานวิจัย อื่น หัวข้อที่ 6.3 กล่าวถึงผลการทำนายอัตราการเติบโตของรอยร้าวล้า หัวข้อที่ 6.4 กล่าวถึงการ ประมาณค่าพารามิเตอร์ และในหัวข้อที่ 6.5 กล่าวถึงความไม่สมเหตุสมผลของแบบจำลอง Kujawski และ Ellyin

6.1 การทดสอบอัตราการเติบโตของรอยร้าวล้า

คุณภาพของข้อมูลอัตราการเติบโตของรอยร้าวล้าเกี่ยวข้องกับความสามารถในการควบคุม ภาระของเครื่องทดสอบ ซึ่งจะพิจารณาจากกราฟที่พล็อตระหว่างอัตราส่วนภาระกับรอบการรับภาระ และคิดเป็นเปอร์เซ็นต์ความผิดพลาดของอัตราส่วนภาระสูงสุดและต่ำสุดเทียบกับอัตราส่วนภาระที่ ต้องการควบคุมในการทดสอบ และแบ่งการพิจารณาตามรูปแบบการทดสอบคือ การทดสอบแบบ ภาระคงที่ และ การทดสอบแบบลดภาระทดสอบ ดังนี้

rาลงกรณ์มหาวิทยาลั

6.1.1 การทดสอบแบบเพิ่ม $\Delta {
m K}$

พิจารณากราฟความสัมพันธ์ระหว่างความคลาดเคลื่อนของภาระสูงสุดกับรอบการรับภาระที่ อัตราส่วนภาระ 0.1, 0.3 และ 0.5 ตามรูปที่ 6.1 ถึง 6.3 ตามลำดับ

รูปที่ 6.2 ความคลาดเคลื่อนของภาระสูงสุดจากการทดสอบแบบเพิ่ม ΔK ที่อัตราส่วนภาระ 0.3

รูปที่ 6.3 ความคลาดเคลื่อนของภาระสูงสุดจากการทดสอบแบบเพิ่ม ΔK ที่อัตราส่วนภาระ 0.5

จากรูปที่ 6.1 ถึง 6.3 พบว่าในการทดสอบแบบเพิ่ม ∆*K* ที่ทุกอัตราส่วนภาระเครื่องทดสอบ ควบคุมภาระสูงสุดในการทดสอบได้ตามที่มาตรฐานกำหนด โดยมาตรฐานยอมรับความคลาดเคลื่อน ของภาระสูงสุดที่ ±2%

6.1.2 การทดสอบแบบลด $\Delta {
m K}$

พิจารณากราฟความสัมพันธ์ระหว่างความคลาดเคลื่อนของภาระสูงสุดกับรอบการรับภาระที่ อัตราส่วนภาระ 0.1, 0.3 และ 0.5 ตามรูปที่ 6.4 ถึง 6.6 ตามลำดับ เช่นเดียวกับการทดสอบแบบเพิ่ม ΔK

รูปที่ 6.5 ความคลาดเคลื่อนของภาระสูงสุดจากการทดสอบแบบลด ΔK ที่อัตราส่วนภาระ 0.3

รูปที่ 6.6 ความคลาดเคลื่อนของภาระสูงสุดจากการทดสอบแบบลด ΔK ที่อัตราส่วนภาระ 0.5

จากกราฟรูปที่ 6.4 ถึง 6.6 ในการทดสอบแบบลด ΔK ที่ทุกอัตราส่วนภาระเครื่องทดสอบ ควบคุมภาระสูงสุดในการทดสอบไม่ได้ตามที่มาตรฐานกำหนดเนื่องจากมาตรฐานยอมรับความ คลาดเคลื่อนของภาระที่ ±2% ส่งผลให้ข้อมูลอัตราการเติบโตของรอยร้าวในช่วงการทดสอบแบบลด ΔK และข้อมูล ΔK_{μ} ในวิทยานิพนธ์นี้มีคุณภาพไม่ดีนัก

6.2 ความสอดคล้องของผลการทดสอบกับงานวิจัยอื่น

การเปรียบเทียบผลการทดสอบในวิทยานิพนธ์นี้กับผลการทดสอบกับงานวิจัยอื่นแบ่ง พิจารณาตามประเภทการทดสอบเป็น การทดสอบเพื่อหาความแข็งแรงล้า และ การทดสอบเพื่อหา อัตราการเติบโตของรอยร้าวล้า ดังนี้

6.2.1 การทดสอบเพื่อหาความแข็งแรงล้า

ผู้วิจัยได้เปรียบเทียบข้อมูลการทดสอบของผู้วิจัยกับข้อมูลการทดสอบของ Kujawski และ Ellyin [34] เพื่อดูความถูกต้องของข้อมูลที่จะนำมาใช้เพื่อหาสมบัติความแข็งแรงล้า ตามรูปที่ 6.7 โดยจุดข้อมูลวงกลมโปร่งเป็นจุดข้อมูลของ Kujawski และ Ellyin ส่วนจุดข้อมูลวงกลมทึบเป็นจุด ข้อมูลที่ผู้วิจัยของวิทยานิพนธ์นี้

ผู้วิจัยกับข้อมูลการทดสอบของ Kujawski และ Ellyin

6.2.2 การทดสอบเพื่อหาอัตราการเติบโตของรอยร้าวล้า

ผู้วิจัยเปรียบเทียบข้อมูลการทดสอบของผู้วิจัยที่อัตราส่วนภาระ 0.1 กับผลจากการทดสอบ ของ Wilson [36] เพื่อดูความถูกต้องของข้อมูลการทดสอบของผู้วิจัยที่ได้ทดสอบขึ้น ได้ผลลัพธ์ตาม รูปที่ 6.8 จุดโปร่งแสดงข้อมูลของวิทยานิพนธ์นี้ ส่วนเส้นตรงแสดงผลจากการทดสอบของ Wilson

> จุฬาสงกรณมหาวทยาลย Chill al ongkorn University

เมื่อเปรียบเทียบผลการทดสอบในวิทยานิพนธ์นี้กับผลการทดสอบของผู้วิจัยอื่นพบว่าผลการ ทดสอบมีความสอดคล้องกัน

6.3 การทำนายอัตราการเติบโตของรอยร้าวล้า

6.3.1 การเลือกจุดข้อมูลอัตราการเติบโตของรอยร้าวล้า 1 จุด

การทำนายอัตราการเติบโตของรอยร้าวล้าด้วยแบบจำลองของ Kujawski และ Ellyin ต้อง ใช้จุดข้อมูลจากการทดสอบอัตราการเติบโตของรอยร้าวล้า 1 จุดเพื่อหาค่าพารามิเตอร์ δ^* โดยการ เลือกจุดข้อมูลที่ตำแหน่งที่ต่างกันจะคำนวณค่า δ^* ได้ต่างกัน แนวโน้มที่พบมีลักษณะดังรูปที่ 6.9 แบ่งแนวโน้มได้เป็น 3 บริเวณ คือ บริเวณที่ 1 ค่า δ^* จะมีค่าเพิ่มขึ้นส่วนบริเวณที่ 2 ค่า δ^* มีค่า ค่อนข้างที่จะคงที่หรือเปลี่ยนแปลงน้อย และบริเวณที่ 3 ค่า δ^* จะมีค่าเพิ่มขึ้น

จากการคำนวณถ้า δ^* เพิ่มมากขึ้นอัตราการเติบโตของรอยร้าวล้ามีค่าน้อยลง (ณ ΔK ค่า เดียวกัน) ตามรูปที่ 6.10

ดังนั้นเพื่อให้แบบจำลองทำนายอัตราการเติบโตของรอยร้าวล้าได้อย่างคงเส้นคงวาตามความ คิดเห็นของผู้วิจัยคิดว่าควรเลือกจุดข้อมูล 1 จุดภายในบริเวณที่ 2 ของกราฟ da / dN – ∆K

6.3.2 ผลการทำนายอัตราการเติบโตของรอยร้าวล้า

จากการเปรียบเทียบผลการทำนายอัตราการเติบโตของรอบร้าวล้ากับข้อมูลอัตราการเติบโต ของรอยร้าวล้าที่อัตราส่วนภาระ 0.1, 03 และ 0.5 ตามที่แสดงไว้ในบทที่ 5 รูปที่ 5.7 ถึง 5.9 แต่เพื่อ ความสะดวกในการอภิปรายจึงนำมาแสดงในภาพรวมอีกครั้งตามรูปที่ 6.11

รูปที่ 6.11 ผลการทำนายอัตราการเติบโตของรอยร้าวล้ากับข้อมูลอัตราการเติบโตของรอยร้าวล้าที่ อัตราส่วนภาระ 0.1, 03 และ 0.5

จากการพิจารณาพบว่าแบบจำลองของ Kujawski และ Ellyin สามารถทำนายอัตราการ เติบโตของรอยร้าวได้ แต่ผลการทำนายอัตราการเติบโตของรอยร้าวล้าในบริเวณใกล้ขีดเริ่มของทุก อัตราส่วนภาระ (ค่า ∆K ต่ำกว่า 20 MPa√m โดยประมาณ) จะต่ำกว่าข้อมูลการทดสอบซึ่งทำให้มี ความเสี่ยงในการนำแบบจำลองไปใช้งาน ส่วนในบริเวณรอยร้าวเติบโตด้วยความสัมพันธ์เชิงเส้น (ช่วง ∆K ประมาณ 20 MPa√m ถึงประมาณ 50 MPa√m) แบบจำลองจะทำนายอัตราการเติบโตของ รอยร้าวล้าภายใต้อัตราส่วนภาระ 0.1, 0.3 และ 0.5 ได้ใกล้เคียงหรือมากกว่าข้อมูลการทดสอบซึ่ง การใช้งานแบบจำลองในช่วงนี้จะสามารถใช้งานได้อย่างปลอดภัย

6.4 การประมาณค่าพารามิเตอร์ในแบบจำลอง

ในหัวข้อนี้จะอภิปรายแบบจำลองของ Kujawski และ Ellyin ที่ผู้วิจัยนำมาใช้ในการทำนาย อัตราการเติบโตของรอยร้าวล้าในกรณีที่ไม่สามารถทดสอบเพื่อหาพารามิเตอร์บางตัวที่ต้องใช้ใน แบบจำลองได้ โดยผู้วิจัยจะนำเสนอวิธีการประมาณพารามิเตอร์ต่างๆเพื่อใช้ทดแทนและอภิปราย ความไม่สมเหตุสมผลของแบบจำลองในบางจุด ดังนี้ 6.4.1 การประมาณพารามิเตอร์ที่ใช้ในการทำนายอัตราการเติบโตของรอยร้าวล้า

- พารามิเตอร์ความแข็งแรงล้า σ'_f , b, ε'_f , c หาได้จากการนำข้อมูลการทดสอบมา พล็อตบนกราฟความสัมพันธ์ระหว่างแอมพลิจูดความเครียดกับอายุความล้าซึ่งถ้าหากไม่สามารถทำ การทดสอบได้ เราสามารถประมาณกราฟความสัมพันธ์ระหว่างแอมพลิจูดความเครียดกับอายุความ ล้าได้ เช่นประมาณจากสมบัติความแข็งของวัสดุ (Hardness) เสนอโดย Roessle และ Fatemi [37] ตามสมการที่ (6.1)

$$\frac{\Delta\varepsilon}{2} = \frac{4.25(HB) + 225}{E} \left(2N_f\right)^{-0.09} + \frac{0.32(HB)^2 - 487(HB) + 191000}{E} \left(2N_f\right)^{-0.56}$$
(6.1)

จากสมการดังกล่าวเมื่อนำข้อมูลความแข็งของวัสดุจากตารางที่ 4.1 มาใช้ประมาณกราฟ ความสัมพันธ์ระหว่างแอมพลิจูดความเครียดกับอายุความล้าจะประมาณได้ตามรูปที่ 6.12 ซึ่งจุด วงกลมคือจุดข้อมูลที่ได้จากการทดสอบ และเส้นโค้งสีดำได้จากการประมาณด้วยสมการที่ (6.1)

จากกราฟจะเห็นได้ว่าสมการที่เสนอโดย Roessle และ Fatemi สามารถประมาณกราฟ ความสัมพันธ์ระหว่างแอมพลิจูดความเครียดกับอายุความล้าสำหรับเหล็กกล้า A516 เกรด 70 ได้ ใกล้เคียงกับผลการทดสอบ การประมาณพารามิเตอร์ความแข็งแรงล้าจากสมการของ Roessle และ Fatemi จะหาค่าพารามิเตอร์ความแข็งแรงล้าได้โดยเทียบระหว่างสมการที่ (2.22) กับสมการที่ (2.61) จะได้

$$\frac{\Delta\varepsilon}{2} = \frac{\sigma'_f}{E} \left(2N_f\right)^b + \varepsilon'_f \left(2N_f\right)^c \tag{2.22}$$

ดังนั้น
$$\sigma'_f = 4.25(HB) + 225$$

 $b = -0.09$
 $\varepsilon'_f = \frac{0.32(HB)^2 - 487(HB) + 191000}{E}$
 $c = -0.56$

พารามิเตอร์ ΔK_{th} เป็นพารามิเตอร์ที่ได้จากการทดสอบเพื่อหาอัตราการเติบโตของรอย
 ร้าวล้าซึ่งการจะได้พารามิเตอร์นี้ต้องใช้เวลาในการทดสอบและความพยายามของผู้ทดสอบอย่างมาก
 ดังนั้นจึงได้มีผู้คิดค้นวิธีในการประมาณพารามิเตอร์นี้ขึ้นมากมาย เช่น สมการที่ (6.2) [13] กับ (6.3)
 สำหรับกรณีที่ไม่มีผลการทดสอบแต่มีค่าสมบัติของวัสดุ และ สมการที่ (6.4) สำหรับกรณีที่มีผล
 การทดสอบ

$$\Delta K_{th} \approx 2\sqrt{\pi l^*} \sigma_0 \qquad R - ratio \dot{\beta} \qquad (6.2)$$
$$\Delta K_{th} = \sigma_0 \left[\frac{2.82\pi d}{(1-\upsilon^2)} \right]^{\frac{1}{2}} \qquad R - ratio \dot{q} \qquad (6.3)$$

โดย l^* คือ ขนาดของ lath width

d คือ ขนาดเกรน

 υ คือ อัตราส่วนปัวซอง

iulalongkorn University

$$\Delta K_{th} = \Delta K_{th(R=0)} \left(1 - R \right)^{(1-\gamma)} \tag{6.4}$$

โดย Δ*K_{th(R=0)}* คือ ค่าพิสัยความเข้มของความเค้นขีดเริ่มจากการทดสอบที่อัตราส่วนภาระ เท่ากับศูนย์

γ คือ ค่าคงที่ที่หาได้จากการข้อมูลทดสอบ

แต่ในวิทยานิพนธ์นี้ไม่ได้ตรวจสอบความแม่นยำของการประมาณค่าเหล่านี้เพราะไม่มีข้อมูล l^{*} , d

6.5 ความไม่สมเหตุสมผลของแบบจำลอง Kujawski และ Ellyin

1) แบบจำลองของ Kujawski และ Ellyin เลือกใช้ $\Delta\sigma\!\Deltaarepsilon_p$ เป็นพารามิเตอร์ความล้าตามที่ ได้กล่าวไว้ก่อนหน้าดังนี้

$$\Delta \sigma \Delta \varepsilon_p = 4 \left(\sigma'_f - \sigma_m \right) \varepsilon'_f \left(2N_f \right)^{b+c}$$
(3.7)

จะเห็นได้ว่าสมการดังกล่าวยังคงใช้พารามิเตอร์ σ'_f , b, \mathcal{E}'_f , c ซึ่งเป็นพารามิเตอร์ที่ได้ จากการนำข้อมูลความแข็งแรงล้าในรูปแอมพลิจูดความเครียดกับอายุความล้าซึ่งเป็นการใช้แอมพลิ-จูดความเครียดเป็นพารามิเตอร์ความล้า ทำให้เกิดการขัดแย้งกัน ดังนั้นถ้าต้องการเลือกใช้ $\Delta\sigma\Delta\mathcal{E}_p$ เป็นพารามิเตอร์ความล้าควรนำข้อมูลการทดสอบมาพล็อตบนกราฟความสัมพันธ์ระหว่าง $\Delta\sigma\Delta\mathcal{E}_p$ กับอายุความล้าและแทนจุดข้อมูลบนกราฟความสัมพันธ์ด้วยสมการกำลังตามสมการ

$$\Delta \sigma \Delta \varepsilon_p = Z \left(2N_f \right)^{\alpha} \tag{6.4}$$

โดย Z, lpha คือ พารามิเตอร์ที่ได้จากการ fit curve โดยตรง

และเพื่อตรวจสอบว่าสมการที่ (3.7) เท่ากับสมการที่ (6.4) หรือไม่ ผู้วิจัยได้เปรียบเทียบทั้งสองสมการ บนกราฟความสัมพันธ์ $\Delta\sigma\!\Delta\varepsilon_p - 2N_f$ โดยกำหนดให้ $\Delta\sigma\!\Delta\varepsilon_p$ เป็นแกนตั้ง และ $2N_f$ เป็นแกน นอน ตามรูปที่ 6.13 พบว่าให้ค่าต่างกันเล็กน้อย

ดังนั้นถ้าทำนายอัตราการเติบโตของรอยร้าวจากแนวคิดการปรับปรุงสมการสมบัติความแข็งแรงล้าใน รูป ΔσΔε_p กับอายุความล้าที่ fit curve โดยตรงจะทำให้แบบจำลองเปลี่ยนไปเล็กน้อยจากสมการที่ (3.13) เป็นสมการที่ (6.5) ตามลำดับ

$$\frac{da}{dN} = 2\delta^* \left[\frac{\Delta K^2 - \Delta K_{th}^2}{4(1+n')(\sigma'_f - \sigma_m)\varepsilon'_f \pi E\delta^*} \right]^{\frac{1}{-(b+c)}}$$
(3.13)

$$\frac{da}{dN} = 2\delta^* \left[\frac{\Delta K^2 - \Delta K_{th}^2}{Z(1+n')\pi E\delta^*} \right]^{\frac{1}{-\alpha}}$$
(6.5)

และส่งผลให้ทำนายอัตราการเติบโตของรอยร้าวต่างไปเล็กน้อย จากการตรวจสอบพบว่าทุกอัตราส่วน ภาระที่ ∆*K* น้อยกว่า 22 MPa√m แบบจำลองตามสมการที่ (6.5) ทำนายได้น้อยกว่าแบบจำลองตาม สมการที่ (3.13) แต่ที่ ∆*K* มากกว่า 22 MPa√m แบบจำลองตามสมการที่ (6.5) ทำนายได้มากกว่า ตามรูปที่ 6.14

2) การทำนายอัตราการเติบโตของรอยร้าวล้าใช้พารามิเตอร์ σ'_f , b, ε'_f , c เพื่อหา ค่าพารามิเตอร์ δ^* และ σ_m ที่เป็นพารามิเตอร์ที่เกี่ยวข้องกับเอลิเมนต์เล็กๆที่เรียงตัวกันตลอด ทิศทางที่รอยร้าวเติบโต แต่พารามิเตอร์ σ'_f , b, ε'_f , c จากงานวิจัยของ Kujawski และ Ellyin หรืองานวิจัยอื่นที่พัฒนาแบบจำลองจากแบบจำลองของ Kujawski และ Ellyin [10-13] รวมทั้งใน วิทยานิพนธ์นี้ หาได้จากข้อมูลการทดสอบที่ทดสอบด้วยชิ้นงานหน้าตัดใหญ่ที่หยุดการทดสอบเมื่อ ตรวจจับรอยร้าวได้ในหลักหน่วยมิลลิเมตรแต่ถ้าสังเกตขนาดของ δ^* ที่คำนวณได้จะอยู่ในหลักหน่วย ของไมโครเมตร ดังนั้นเพื่อให้ถูกต้องตามแนวคิดในการสร้างแบบจำลองของ Kujawski และ Ellyin ที่ สมมุติว่าการรอยร้าวเติบโตเปรียบเสมือนการที่เอลิเมนต์ที่มีขนาดเท่ากับ δ^* แตกหัก พารามิเตอร์ σ'_f , b, ε'_f , c ควรได้จากข้อมูลการทดสอบที่ทดสอบด้วยชิ้นงานที่ตรวจจับความยาวรอยร้าวได้ ที่ความยาวรอยร้าวเท่ากับขนาดของ δ^* ค่าพารามิเตอร์จากการทดสอบถึงจะสัมพันธ์กับความหมาย ทางกายภาพตามที่แบบจำลองของ Kujawski และ Ellyin ได้ให้คำจำกัดความไว้

บทที่ 7 สรุปผลการทดสอบและข้อเสนอแนะ

ในบทนี้กล่าวถึงการสรุปผลการทดสอบและข้อเสนอแนะ โดยหัวข้อที่ 7.1 กล่าวสรุปผลการ ทดสอบ ส่วนหัวข้อที่ 7.2 เป็นข้อเสนอแนะ และหัวข้อที่ 7.3 กล่าวถึงงานวิจัยต่อเนื่อง

7.1 สรุปผลการทดสอบ

วิทยานิพนธ์ฉบับนี้ทดสอบความแข็งแรงล้ากับเหล็กกล้าคาร์บอน ASTM A516 เกรด 70 ภายใต้ภาระล้าแอมพลิจูดคงที่ ความเค้นเฉลี่ยเท่ากับศูนย์ ที่อุณหภูมิห้อง เพื่อสร้างข้อมูลพื้นฐาน สำหรับหาพารามิเตอร์ในแบบจำลอง และทดสอบอัตราการเติบโตของรอยร้าวล้าด้วยชิ้นงาน C(T) ที่ อัตราส่วนภาระ 0.1, 0.3 และ 0.5 ที่อุณหภูมิห้อง แล้วเลือกใช้ข้อมูลจากการทดสอบอัตราการเติบโต ของรอยร้าวล้าที่อัตราส่วนภาระ 0.3 ร่วมกับพารามิเตอร์ที่ได้จากการทดสอบความแข็งแรงล้าเพื่อ ทำนายอัตราการเติบโตของรอยร้าวที่อัตราส่วนภาระ 0.1, 0.3 และ 0.5 และเปรียบเทียบผลการ ทดสอบ

แบบจำลองของ Kujawski และ Ellyin สามารถทำนายอัตราการเติบโตของรอยร้าวล้า สำหรับเหล็กกล้า A516 เกรด 70 จากสมบัติความแข็งแรงล้าได้ การทำนายในช่วง ΔK_{th} ถึง ΔK น้อยกว่าหรือเท่ากับ 10 MPa vm แบบจำลองจะทำนายได้ต่ำกว่าข้อมูลการทดสอบ และผิดพลาด ค่อนข้างมาก ในช่วง ΔK ประมาณ 10 MPa vm ถึง 20 MPa vm แบบจำลองทำนายได้ต่ำกว่าข้อมูล การทดสอบ 1-2 เท่า และในช่วง ΔK ประมาณ 20 MPa vm ถึง 50 MPa vm แบบจำลองทำนายได้ มากกว่าข้อมูลการทดสอบ 1-2 เท่า ในทุกอัตราส่วนภาระ

ดังนั้นแบบจำลองของ Kujawski และ Ellyin สำหรับวิทยานิพนธ์นี้สามารถใช้งานได้ ปลอดภัยในช่วง Δ*K* 20 MPa√m ถึง 50 MPa√m ส่งผลให้ทำนายอายุการใช้งานได้น้อยกว่าอายุ การใช้งานจริง 1-2 เท่า

7.2 ข้อเสนอแนะ

 ควรหลีกเลี่ยงการทดสอบหาอัตราการเติบโตของรอยร้าวขณะที่มีการเชื่อมไฟฟ้า เนื่องจาก การอาร์คของลวดเชื่อมไฟฟ้าทำให้กระแสไฟในระบบเปลี่ยนแปลงส่งผลให้เครื่องทดสอบไม่ สามารถควบคุมภาระตามที่ผู้ทดสอบกำหนดได้

- เพื่อความชัดเจนในการวัดความยาวรอยร้าวที่ผิวของชิ้นงาน ผู้ทดสอบควรขัดผิวชิ้นงานด้วย กระดาษทรายน้ำ เบอร์ 1000 และ เบอร์ 1500 ตามลำดับ ในทิศทางตั้งฉากกับทิศที่รอยร้าว เติบโตจนกว่าผิวจะเรียบเงา
- ควรติดสเกลบอกระยะที่ชิ้นงานเพื่อจะได้สามารถควบคุมความแตกต่างของรอยร้าวที่ ผิวชิ้นงานให้เป็นไปตามที่มาตรฐานกำหนดโดยไม่ต้องถอดชิ้นงานจากเครื่องทดสอบออกมา วัด
- 4. ต้องติดสเตรนเกจให้ดี เพราะถ้าสเตรนเกจหลุดในขณะทดสอบจะทำให้เสียเวลาทดสอบ
- หมั่นทำความสะอาดคูลลิ่งทาวเวอร์เพื่อลดโอกาสเสี่ยงที่จะเกิดการอุดตันของระบบระบาย ความร้อนของเครื่องทดสอบ
- 6. เบอร์ติดต่อที่แนะนำ
 - 6.1 สั่งซื้อเหล็ก : บริษัทMaxsteel คุณสอดสี 023140348, 0882551873
 - 6.2 สั่งทำชิ้นงาน : บริษัทเอ็กเซล 027586255
 - 6.3 เครื่องทดสอบมีปัญหา : บริษัทพาราวินเซอร์ คุณสุรพล 0839891628, 0814071772
 - 6.4 ระบบคูลลิ่งทาวเวอร์, ปั้ม หรือซ่อมแซมทั่วไป : บริษัทTaiga คุณศิรสิทธิ์ 0813716733, Email: taiga_engineering@yahoo.com

7.3 งานวิจัยต่อเนื่อง

- 1) ทวนสอบแนวคิดของแบบจำลองเพื่อทำนายอัตราการเติบโตของรอยร้าวกับวัสดุชนิดอื่น
- ประยุกต์แบบจำลองเพื่อทำนายอัตราการเติบโตของรอยร้าวล้านี้โดยคำนึงถึงผลจากการสะสม ความเสียหายในแต่ละรอบภาระล้า
- 3) ประยุกต์แบบจำลองเพื่อทำนายอัตราการเติบโตของรอยร้าวล้านี้ภายใต้ภาระทดสอบแบบไม่คงที่
- พัฒนาแบบจำลองอื่นเพื่อทำนายอัตราการเติบโตของรอยร้าวล้าภายใต้กับภาระทดสอบคงที่ใน สภาพแวดล้อมแบบกัดกร่อน
- 5) พัฒนาแบบจำลองอื่นที่สามารถทำนายอัตราการเติบโตของรอยร้าวล้าในกรณีที่ชิ้นงานรับภาระ แบบ mutiaxial

รายการอ้างอิง

- 1. Campbell, F.C., *Elements of metallurgy and engineering alloys*. 2008: ASM International.
- 2. Stephens, R.I., et al., *Metal fatigue in engineering*. 2 ed. 2001: John Wiley & Sons.
- 3. Bureau, A.T.S., How Old Is Too Old? The Impact Of Ageing Aircraft On Aviation Safety. 2007.
- 4. ASTM International Standards, *Standard test method for measurement of fatigue crack growth rate*, in *E647*. 2008, ASTM: West Conshohocken, PA. p. 671-715.
- 5. Lehr, K. and H.W. Liu, *Fatigue crack propagation and strain cycling properties.* International Journal of Fracture Mechanics, 1969. **5**(1): p. 45-55.
- 6. Majumdar, S. and J. Morrow, *Correlation between fatigue crack propagation and low cycle fatigue properties.* ASTM STP, 1974. **559**: p. 159-182.
- 7. Birol, Y., *A low-cycle fatigue approach to fatigue crack propagation.* Journal of Materials Science, 1989. **24**(6): p. 2093-2098.
- Durán, J. and J. Castro, Fatigue crack propagation prediction by cyclic plasticity damage accumulation models. Fatigue & Fracture of Engineering Materials & Structures, 2003. 26(2): p. 137-150.
- 9. de Castro, J.T.P., M.A. Meggiolaro, and A.C.d.O. Miranda, *Fatigue crack growth predictions based on damage accumulation calculations ahead of the crack tip.* Computational Materials Science, 2009. **46**(1): p. 115-123.
- Kujawski, D. and F. Ellyin, *A fatigue crack propagation model*. Engineering Fracture Mechanics, 1984. 20(5): p. 695-704.
- 11. Kujawski, D. and F. Ellyin, *A fatigue crack growth model with load ratio effects.* Engineering fracture mechanics, 1987. **28**(4): p. 367-378.
- 12. De Noronha Motta, C.H., *A fatigue crack growth model with mean stress effects*. 1997.

- 13. Li, D., W. Nam, and C. Lee, *An improvement on prediction of fatigue crack growth from low cycle fatigue properties.* Engineering fracture mechanics, 1998. **60**(4): p. 397-406.
- 14. Pandey, K. and S. Chand, *An energy based fatigue crack growth model.* International journal of fatigue, 2003. **25**(8): p. 771-778.
- Pandey, K. and S. Chand, *Fatigue crack growth model for constant amplitude loading.* Fatigue & Fracture of Engineering Materials & Structures, 2004. 27(6): p. 459-472.
- 16. Noroozi, A., G. Glinka, and S. Lambert, *A two parameter driving force for fatigue crack growth analysis.* International Journal of Fatigue, 2005. **27**(10): p. 1277-1296.
- 17. Noroozi, A., G. Glinka, and S. Lambert, *A study of the stress ratio effects on fatigue crack growth using the unified two-parameter fatigue crack growth driving force.* International Journal of Fatigue, 2007. **29**(9): p. 1616-1633.
- Noroozi, A., G. Glinka, and S. Lambert, Prediction of fatigue crack growth under constant amplitude loading and a single overload based on elastoplastic crack tip stresses and strains. Engineering Fracture Mechanics, 2008.
 75(2): p. 188-206.
- Abdullah, N.N., et al., Assessment of fatigue crack growth data available for materials from Portuguese bridges based on UniGrow model. Procedia Engineering, 2011. 10: p. 971-976.
- 20. Mikheevskiy, S., G. Glinka, and E. Lee, *Fatigue Crack Growth Analysis Under Spectrum Loading in Various Environmental Conditions.* Metallurgical and Materials Transactions A, 2013. **44**(3): p. 1301-1310.
- 21. Kujawski, D. and V. Goswami, *Experimental and Theoretical Analyses of the Load Sequence Effects on Fatigue Crack Growth Resistance*. 2004, DTIC Document.
- 22. Bannantine, J.A., J.J. Comer, and J.L. Handrock, *Fundamentals of Metal Fatigue Analysis*. 1990: Prentice Hall.
- 23. Dowling, N.E., Mechanical behavior of materials : engineering methods for deformation, fracture, and fatigue. 2013.

- 24. Dewolf, J., *Mechanics Of Materials* 3ed. 2002: McGraw-Hill.
- 25. Dowling, N., *Mean stress effects in strain–life fatigue.* Fatigue & Fracture of Engineering Materials & Structures, 2009. **32**(12): p. 1004-1019.
- 26. Ellyin, F., *Fatigue damage, crack growth and life prediction*. 1997: Springer.
- 27. Dowling, N., C. Calhoun, and A. Arcari, *Mean stress effects in stress -life fatigue and the Walker equation.* Fatigue & Fracture of Engineering Materials & Structures, 2009. **32**(3): p. 163-179.
- จรพงศ์ กสิวิทย์อำนวย, กลศาสตร์การแตกหัก. 2553, กรุงเทพมหานคร: สำนักพิมพ์มิสเตอร์ ก๊อปปี้ พับลิชชิ่ง.
- 29. Singh, N., R. Khelawan, and G. Mathur, *Effect of stress ratio and frequency on fatigue crack growth rate of 2618 aluminium alloy silicon carbide metal matrix composite.* Bulletin of Materials Science, 2001. **24**(2): p. 169-171.
- 30. Nishikawa, H., Y. Oda, and H. Noguchi. *Loading-Frequency Effects on Fatigue Crack Growth Behavior of a Low Carbon Steel in Hydrogen Gas Environment.* in *ICF12, Ottawa 2009.* 2013.
- Sansoz, F. and H. Ghonem, Effects of loading frequency on fatigue crack growth mechanisms in α/β Ti microstructure with large colony size. Materials Science and Engineering: A, 2003. 356(1): p. 81-92.
- 32. ASTM International Standard, *Standard practice for strain-controlled fatigue testing*, in *E606*. 2004, ASTM: West Conshohocken, PA. p. 634-649.
- Ellyin, F. and D. Kujawski, *Plastic strain energy in fatigue failure*. Journal of Pressure Vessel Technology, 1984. **106**(4): p. 342-347.
- 34. Ellyin, F., *Effect of tensile-mean-strain on plastic strain energy and cyclic response.* Journal of Engineering Materials and Technology, 1985. **107**(2): p. 119-125.
- ชาญเดช มังกรแก้ว, จิรพงศ์ กสิวิทย์อำนวย, โปรแกรมติดตามรอยร้าวสำหรับการทดสอบ
 อัตราการเติบโตของรอยร้าวล้า, in การประชุมวิชาการเครือข่ายวิศวกรรมเครื่องกลแห่ง
 ประเทศไทยครั้งที่ 28. 2557: ขอนแก่น. p. 341-351.
- 36. Wilson, A.D., *The influence of inclusions on the toughness and fatigue properties of A516-70 steel.* Journal of Engineering Materials and Technology, 1979. **101**(3): p. 265-274.

37. Roessle, M. and A. Fatemi, *Strain-controlled fatigue properties of steels and some simple approximations.* International journal of fatigue, 2000. **22**(6): p. 495-511.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

ภาคผนวก ก แบบ Drawing ชิ้นงาน

เนื้อหาในส่วนนี้นำเสนอแบบชิ้นงานที่ผู้วิจัยได้ออกแบบเพื่อใช้ทำการทดสอบในวิทยานิพนธ์ ฉบับนี้ โดยรูปที่ ก.1 ถึง รูปที่ ก.3 แสดงแบบชิ้นงานสำหรับการทดสอบเพื่อหาสมบัติความแข็งแรงล้า และรูปที่ ก.4 ถึง รูปที่ ก.7 แสดงแบบชิ้นงานสำหรับการทดสอบเพื่อหาอัตราการเติบโตของรอยร้าว ล้า

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

รูปที่ ก.1 Drawing ชิ้นงานทดสอบหาสมบัติความแข็งแรงล้า

รูปที่ ก.2 Drawing ชิ้นงานแหวนสำหรับลด Backlash

รูปที่ ก.3 Drawing ชิ้นงาน Grip ยึดชิ้นงานทดสอบหาสมบัติความแข็งแรงล้า

รูปที่ ก.4 Drawing ชิ้นงาน Compact tension สำหรับการทดสอบเพื่อหาอัตราการเติบโตของรอย

ร้าวล้า

รูปที่ ก.5 Drawing ชิ้นงาน Pin สำหรับยึด ชิ้นงาน Compact tension

รูปที่ ก.6 Drawing ชิ้นงาน Spacer สำหรับกำหนดตำแหน่งชิ้นงาน Compact tension

รูปที่ ก.7 Drawing ชิ้นงาน Pin สำหรับยึด Grip สำหรับการทดสอบอัตราการเติบโตของรอยร้าวล้า

ภาคผนวก ข ขั้นตอนการทำชิ้นงาน

ในบทนี้กล่าวถึงขั้นตอนการทำชิ้นงานทดสอบ หัวข้อที่ ข.1 แสดงขั้นตอนการทำชิ้นงาน ทดสอบคุณสมบัติความแข็งแรงล้า และหัวข้อที่ ข.2 แสดงขั้นตอนการทำชิ้นงานทดสอบอัตราการโต ของรอยร้าวล้า

ข.1 ขั้นตอนการทำชิ้นงานทดสอบคุณสมบัติความแข็งแรงล้า

- 1) ตัดชิ้นงานตามขนาด และทิศทางที่กำหนด ด้วยเครื่อง Hack saw
- 2) นำชิ้นงานมาทำการปาดหัวและท้ายชิ้นงานและเจาะรูยันศูนย์ด้วยเครื่องกลึงทั้ง 2 ด้าน
- จับชิ้นงานยันศูนย์ที่หัวและท้ายชิ้นงานด้วยเครื่องกลึงและกลึงผิวชิ้นงานให้มีเส้นผ่าน ศูนย์กลางเท่ากันตลอดชิ้นงานและลบมุมที่หัวและท้ายชิ้นงาน
- 4) ทำส่วนกลางของชิ้นงานและกลึงเกลียวด้วยเครื่อง CNC
- 5) นำชิ้นงานมาขัดลบคมด้วยเครื่องมอเตอร์ขัดลบคม 2 หัว
- ตรวจสอบชิ้นงานที่ทำเสร็จ

ข.2 ขั้นตอนการทำชิ้นงานทดสอบอัตราการโตของรอยร้าวล้า

- 1) ตัดชิ้นงานตามขนาด และทิศทางที่กำหนด ด้วยเครื่องเลื่อยไฟฟ้า
- นำชิ้นงานมาทำการขึ้นรูปโดยปาดความหนาของชิ้นงานให้เรียบด้วยเครื่อง Milling Machine ทั้ง 2 ด้าน
- ใช้ End milling เก็บบริเวณของชิ้นงานและความฉากของชิ้นงานด้วยเครื่อง Milling Machine
- นำชิ้นงานมาเจียรนัยผิวของชิ้นงานทั้ง 2 ด้านให้เรียบและได้ขนาดตามที่กำหนด ด้วยเครื่อง Grinding Machine
- 5) นำเอาชิ้นงานที่ได้ขนาดแล้วมาทำการกำหนดจุดเพื่อทำการเจาะ และเจาะรูตามระยะที่ กำหนดในแบบ ด้วยเครื่อง Milling Machine และลบคมที่ขอบรูเจาะ
- 6) ทำรอยบากที่ชิ้นงานด้วยเครื่อง Wire cut Machine
- 7) นำชิ้นงานที่ได้ทำรอยบากเรียบร้อยแล้วมาทำการลบคมด้วยกระดาษทรายละเอียด
- 8) ตรวจสอบชิ้นงานที่ทำเสร็จ

ภาคผนวก ค โปรแกรมสำหรับการทดสอบเพื่อหาความแข็งแรงล้า

โปรแกรมสำหรับการทดสอบเพื่อหาความแข็งแรงล้า เป็นโปรแกรมที่วิทยานิพนธ์นี้ใช้เก็บ ข้อมูลในระหว่างการทดสอบโดยโปรแกรมมีส่วนต่อประสานกับผู้ใช้ แสดงในรูปที่ ค.1 และภาพรวม โปรแกรมแสดงในรูปที่ ค.2 ตามลำดับ

Specimen	Display	
Diameter (mm)	Load Stroke Gage length Stress-strain	Sior
4.97	400.0-	
	300.0-	
Test Configuration	200.0-	
Gage length (mm)	100.0- 100.0-	
12.5	-0.0 <u>St</u>	
Waveform frequency (Hz)	-100.0-	
10	-200.0-	
	-300.0-	I 0.0
No. of continuous cycle	Strain	
Sample/cycle	Save data	1
500	🧣 test.lvm 🕒 🖉	Save
		,
TD1 : Load (N)	TD2 : Stroke (mm) TD4 : Gage deform (mm) Stress	(MPa)
118.4	0.0143 0.1403	
Maximum 124	8 0.01745 0.1408	6.43
Minimum 102	5 0.01271 0.1380	5.28
🔁 Initialize L	oad Initialize Stroke	

รูปที่ ค.1 ส่วนต่อประสานกับผู้ใช้ของโปรแกรมสำหรับการทดสอบเพื่อหาความแข็งแรงล้า

รูปที่ ค.2 ภาพรวมของโปรแกรมเก็บข้อมูลสำหรับการทดสอบเพื่อหาความแข็งแรงล้า

โครงสร้างของโปรแกรมแบ่งได้เป็น 2 ส่วนหลักคือ 1) ส่วนตั้งค่าเริ่มต้น 2) ส่วนเก็บสัญญาณ และบันทึก ขั้นตอนการใช้งานแบ่งเป็น 4 ขั้นตอนดังนี้

CHULALONGKORN UNIVERSITY

1) ส่วนตั้งค่าเริ่มต้น

เป็นส่วนที่ให้ผู้ระบุข้อมูลที่จำเป็นในการเริ่มต้นการทำงานของโปรแกรม ได้แก่

1.1) Diameter สำหรับระบุขนาดเส้นผ่านศูนย์กลางของชิ้นงานช่วงขนาน

1.2) Gage length สำหรับกำหนดขนาดระยะ Gage length ซึ่งขึ้นอยู่กับอุปกรณ์วัดระยะเสียรูปที่ใช้ ในขณะทดสอบ ในวิทยานิพนธ์นี้ใช้ 12.5 มิลลิเมตร

1.3) Waveform frequency สำหรับระบุความถี่ของสัญญาณ (ภาระ) ที่ใช้ในการทดสอบ

1.4) No. of continuous cycle สำหรับจำนวนรอบต่อเนื่องที่ผู้ทดสอบต้องการในการบันทึก สัญญาณ

1.5) Same/Cycle สำหรับระบุจำนวนจุดข้อมูลที่ต้องหารให้โปรแกรมบันทึกในแต่ละรอบที่โปแกรม บันทึกสัญญาณ

2) กดคำสั่งเริ่มการทำงานโปรแกรม

ผู้ทดสอบต้องกดปุ่ม 🖾 หรือ Ctrl+R เพื่อเริ่มต้นการทำงานของโปรแกรม

3) ตั้งค่าศูนย์

ผู้ทดสอบต้องกดปุ่ม "Initialize Load" และ "Initialize Stroke"เพื่อทำการตั้งค่าศูนย์ เริ่มต้นของโปรแกรมกับเครื่องทดสอบให้ตรงกัน

4) เก็บสัญญาณและบันทึก

โปรแกรมจะทำการบันทึกข้อมูลตามจำนวนรอบการบันทึกต่อเนื่อง (No. of continuous cycle) ที่ผู้ทดสอบได้ระบุค่าไว้ในขั้นตอนที่ 1) โดยโปรแกรมจะทำการบันทึกเมื่อมีคำสั่งให้โปรแกรม บับทึกข้อมูล (กดปุ่ม "Save") โดยไฟล์ที่บันทึกได้จะถูกตั้งชื่อตามที่ผู้ทดสอบระบุในส่วน Save data นอกจากนี้โปรแกรมยังสามารถแสดงกราฟในส่วน "Display" และข้อมูลเพื่อแสดงสถานะที่ ชิ้นส่วนรับในระหว่างการทดสอบได้

> จุฬาลงกรณ์มหาวิทยาลัย CHULALONGKORN UNIVERSITY

ภาคผนวก ง โปรแกรมติดตามรอยร้าวสำหรับการทดสอบอัตราการเติบโตของรอยร้าวล้า

โปรแกรมติดตามรอยร้าวสำหรับการทดสอบอัตราการเติบโตของรอยร้าวล้า [36] เป็น โปรแกรมคำนวณความยาวรอยร้าวจากคอมพลายแอนซ์ของชิ้นงานทดสอบ ซึ่งนิยามว่าเท่ากับ อัตราส่วนระหว่างความเครียดที่ตำแหน่งกึ่งกลางของผิวชิ้นงานๆ ด้านหลัง (Backface strain gage) ผั่งที่รอยร้าววิ่งเข้าหากับภาระที่กระทำกับชิ้นงานๆ โดยโปรแกรมมีส่วนต่อประสานกับผู้ใช้ แสดงใน รูปที่ ง.1 และภาพรวมโปรแกรมแสดงในรูปที่ ง.2 ตามลำดับ

รูปที่ ง.1 ส่วนต่อประสานกับผู้ใช้ของโปรแกรมติดตามรอยร้าว

รูปที่ ง.2 ภาพรวมของโปรแกรมติดตามรอยร้าวสำหรับการทดสอบอัตราการเติบโตของรอยร้าวล้า

โครงสร้างของโปรแกรมประกอบด้วย 1) ส่วนตั้งค่าเริ่มต้น 2) ส่วนเก็บสัญญาณและบันทึก 3) ส่วนนับรอบภาระ และ 4) ส่วนคำนวณความยาวรอยร้าวจากคอมพลายแอนซ์หรือส่วนประมวลผล โดยมีขั้นตอนการใช้งานแบ่งเป็น 5 ขั้นตอนดังนี้

1) ส่วนตั้งค่าเริ่มต้น

เป็นส่วนที่ให้ผู้ระบุข้อมูลที่จำเป็นในการเริ่มต้นการทำงานของโปรแกรม ได้แก่ 1.1) DAQ devices สำหรับระบุไดร์เวอร์ของอุปกรณ์อ่านสัญญาณจากสเตรนเกจและโหลดเซล 1.2) Transducer สำหรับกำหนดพิสัยของโหลดเซล (ชุดควบคุมๆ รุ่นนี้เลือกได้ 4 ค่า คือ ±3, ±6, ±15 และ ±30 ตัน) 1.3) Test configuration สำหรับระบุความถี่ของสัญญาณ (ภาระ) และกำหนดช่วงข้อมูล (ขอบเขต บนและล่าง) สำหรับคำนวณความยาวรอยร้าว

 Specimen สำหรับระบุชื่อหรือรหัสชิ้นงานฯ ความกว้าง ความหนา และมอดูลัสยืดหยุ่น ประสิทธิผล

 1.5) Cycles สำหรับระบุหมายเลขรอบตอนเริ่มการทดสอบและหมายเลขรอบปัจจุบัน ปุ่ม "Reset" ใช้ปรับหมายเลขรอบปัจจุบันให้เท่ากับหมายเลขรอบเริ่มต้น เนื่องจากโปรแกรมจะเริ่มนับรอบก่อนที่ การทดสอบจะเริ่มต้น

1.6) Autosave สำหรับให้ผู้ทดสอบระบุเงื่อนไขการบันทึกอัตโนมัติ Interval คือจำนวนรอบระหว่าง การบันทึกข้อมูล Last saved และ Next save คือหมายเลขรอบขณะที่บันทึกสัญญาณครั้งล่าสุด และที่จะบันทึกครั้งถัดไป ตามลำดับ การบันทึกแต่ละครั้งจะเก็บสัญญาณ 5 รอบ แต่ว่าการเก็บแต่ ละรอบจะเว้นช่วงสั้น ๆ เพื่อรอให้โปรแกรมบันทึกสัญญาณของรอบที่แล้วเสร็จก่อน ปุ่ม "stop" ใช้ หยุดการทำงานของโปรแกรม

2) กดคำสั่งเริ่มการทำงานโปรแกรม

ผู้ทดสอบต้องกดปุ่ม 🖾 หรือ Ctrl+R เพื่อเริ่มต้นการทำงานของโปรแกรม

3) ตั้งค่าศูนย์

ผู้ทดสอบต้องกดปุ่ม "Initialize data" เพื่อทำการตั้งค่าศูนย์เริ่มต้นของโปรแกรมกับเครื่อง ทดสอบให้ตรงกัน

4) เก็บสัญญาณและบันทึก

โปรแกรมจะทำการบันทึกข้อมูลตามจำนวนรอบการบันทึกซ้ำ (Interval) ที่ผู้ทดสอบได้ระบุ ค่าไว้ในขั้นตอนที่ 1) โดยโปรแกรมจะทำการบันทึกค่าอัตโนมัติไปเรื่อยจนกว่าจะมีคำสั่งให้หยุดการ ทำงานโปรแกรม (กดปุ่ม "STOP") โดยไฟล์ที่บันทึกได้จะถูกตั้งชื่อตามที่ผู้ทดสอบระบุไว้ในช่อง "Code" และต่อท้ายด้วยจำนวนรอบการรับภาระที่บันทึกข้อมูล

5) ประมวลผล

โปรแกรมจะอ่านข้อมูลจากไฟล์จากส่วนที่ 4 โดยผู้ทดสอบเป็นคนระบุไฟล์ที่ต้องการ ประมวลผลในช่อง "Data file" จากนั้นกดปุ่ม "Display" โปรแกรมจะประมวลผลความยาวรอยร้าว , ส่วนเบี่ยงเบนมาตรฐาน และ จำนวนรอบการรับภาระ จากนั้นหากผู้ทดสอบต้องการบันทึกข้อมูลให้ กดที่ปุ่ม "Save" โปรแกรมจะทำการบันทึกข้อมูลจากการประมวลผลของโปรแกรมด้วยชื่อไฟล์ที่ บันทึกได้จะถูกตั้งชื่อตามที่ผู้ทดสอบระบุไว้ในช่อง "Code" ต่อท้ายด้วยคำว่า "Crack"

โดยโปรแกรมติดตามรอยร้าวสำหรับการทดสอบอัตราการเติบโตของรอยร้าวล้าวัดความยาว รอยร้าวได้แม่นยำ 0.88 มิลลิเมตร หรือ 5.2% ของความยาวรอยร้าวเฉลี่ย และมีความละเอียด 0.19 มิลลิเมตร

CHULALONGKORN UNIVERSITY

ภาคผนวก จ ข้อมูลการทดสอบหาคุณสมบัติความแข็งแรงล้า

$\Delta arepsilon / 2$	$\Delta \sigma$ (MPa)	$2N_f$	Reference	Remark
0.00100	384.0	3000000		No fracture
0.00125	426.2	1586740		-
0.00150	478.0	1071840		-
0.00200	504.0	222000		-
0.00300	602.4	36000		-
0.00400	679.4	14600		-
0.00500	709.4	9050	[22]	-
0.00600	774.2	5400	[55]	-
0.00700	780.6	2700		-
0.00800	798.0	2140		-
0.00800	815.6	1800		-
0.01000	896.0	1640	2) 1/77/	-
0.01000	852.0	1260	111 Y	-
0.01200	934.0	1072		-
0.00500	687.0	7400		-
0.00500	692.0	9800	[34]	-
0.00520	718.0	11520		-

ตารางที่ จ.1 ข้อมูลการทดสอบแบบควบคุมความเครียดจากข้อมูลของ Kujawski กับ Ellyin

$\Delta arepsilon$ (เป้าหมาย) %	$\Delta arepsilon$ (วัดได้)	$\Delta\sigma/2$ MPa
0.1	0.0008	162.5
0.2	0.0013	290.8
0.2	0.0026	336.6
0.5	0.0051	350.0
0.5	0.0046	339.0
0.5	0.0050	357.8
0.5	0.0050	360.3
0.6	0.0056	378.6
0.6	0.0055	379.5

ตารางที่ จ.2 ข้อมูลการทดสอบแบบควบคุมความเครียดจากการทดสอบเพิ่มเติม

ตารางที่ จ.3 ข้อมูลการทดสอบแบบควบคุมความเค้นจากข้อมูลของ Kujawski กับ Ellyin

$\Delta\sigma/2$ (MPa)	$\Delta arepsilon_p$ (%)	$\Delta arepsilon_e$ (%)	Δε (%)	$2N_f$	Reference
260.0	0.175	0.255	0.430	100000	
295.0	0.325	0.289	0.614	30320	[22]
295.0	0.294	0.289	0.583	39300	[22]
295.0	0.313	0.289	0.602	26320	

ตารางที่ จ.4 ข้อมูลการทดสอบแบบควบคุมความเค้นจากข้อมูลการทดสอบเพิ่มเติม

$\Delta \sigma$ (เป้าหมาย) MPa	$\Delta \sigma$ (วัดได้) MPa	N_{f}	remark
520.0	529.2	554192	-
540.0	542.8	346898	Invalid
560.0	564.2	132725	-
560.0	551.5	111696	10Hz
580.0	570.3	63626	-
590.0	574.5	36179	-

$\Delta \sigma$ (เป้าหมาย) MPa	$\Delta\sigma$ (วัดได้)	N_f	remark
600.0	581.6	65740	-
648.0	613.3	32126	-
684.0	634.0	11013	-
700.0	656.0	18599	-
730.0	672.6	6916	-

ตารางที่ จ.5 ข้อมูลการทดสอบแบบควบคุมความเค้นจากข้อมูลการทดสอบเพิ่มเติม (ต่อ)

ตารางที่ จ.6 ข้อมูลการคำนวณสำหรับการพล็อตกราฟความเค้น-อายุความล้า

$\Delta\sigma/2$ MPa	$2N_f$	Reference
213.10	1586740	
239.00	1071840	[22]
252.00	222000	[55]
301.20	36000	
260.00	100000	
264.61	1108384	
275.73	223392) TV
282.10	265450	
285.14	127252	ข้อมูลของ
287.27	72358	วิทยานิพนธ์นี้
290.80	131480	
295	30320	
295	39300	
295	26320	

$\Delta \varepsilon_p / 2$	$2N_f$	Reference
0.00233	14600	
0.00410	5400	
0.00509	2700	
0.00604	2140	
0.00600	1800	[33]
0.00791	1260	
0.00780	1640	
0.00971	1072	
0.00326	9050	
0.00332	7400	
0.00330	9800	[34]
0.00344	11520	

ตารางที่ จ.7 ข้อมูลการคำนวณสำหรับการพล็อตกราฟความเครียด-อายุความล้า

ภาคผนวก ฉ ข้อมูลการทดสอบหาอัตราการเติบโตของรอยร้าวล้า

N (cycle)	P_{\max} (N)	$P_{\min} \ (N)$	<i>a</i> (mm)	$\Delta K \\ \left(MPa\sqrt{m} \right)$	<i>da/dN</i> (mm/cycle)	<i>da/dN</i> ทำนาย (mm/cycle)
8171	10731.60	1063.39	11.31	-	-	-
10024	10702.86	1034.65	11.33	1	-	-
12260	10691.37	1034.65	11.38	-	-	-
14060	10685.62	1017.40	11.42	46.01	5.018E-04	9.893E-04
18009	10674.12	1005.91	11.48	44.02	4.526E-04	8.441E-04
22007	10668.37	1005.91	11.56	43.17	4.269E-04	7.870E-04
24045	10662.63	1005.91	11.61	42.81	4.163E-04	7.636E-04
26024	10656.88	1005.91	11.65	41.61	3.872E-04	6.893E-04
28005	10651.13	1005.91	11.69	40.60	3.679E-04	6.309E-04
30009	10702.86	965.67	11.72	39.83	3.522E-04	5.888E-04
32033	10754.60	977.17	11.76	38.70	3.290E-04	5.306E-04
34087	10748.85	982.92	11.82	38.24	3.127E-04	5.081E-04
36345	10737.35	977.17	11.85	37.27	2.974E-04	4.629E-04
38012	10725.86	977.17	11.88	36.63	2.834E-04	4.347E-04
40004	10725.86	977.17	11.93	35.84	2.726E-04	4.016E-04
42011	10760.34	1005.91	11.98	35.70	2.646E-04	3.959E-04
50921	10691.37	1051.89	12.12	34.71	2.554E-04	3.574E-04
54010	10731.60	1034.65	12.19	34.53	2.492E-04	3.507E-04
56008	10725.86	1034.65	12.23	34.45	2.454E-04	3.477E-04
58016	10691.37	1057.64	12.28	33.86	2.380E-04	3.265E-04

ตารางที่ ฉ.1 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบเพิ่ม ΔK ที่ R=0.1

N (cycle)	P_{\max} (N)	P_{\min} (N)	<i>a</i> (mm)	$\Delta K \\ \left(MPa\sqrt{m} \right)$	<i>da/dN</i> (mm/cycle)	<i>da/dN</i> ทำนาย (mm/cycle)
60094	10674.12	1057.64	12.30	33.43	2.336E-04	3.116E-04
62011	10674.12	1057.64	12.36	33.28	2.328E-04	3.065E-04
64016	10886.80	948.43	12.39	32.74	2.210E-04	2.887E-04
65996	10892.55	948.43	12.45	32.49	2.162E-04	2.807E-04
66443	10892.55	942.68	12.47	31.91	2.093E-04	2.627E-04
68119	10904.04	942.68	12.50	31.70	2.017E-04	2.564E-04
70020	10915.54	931.18	12.54	31.21	1.952E-04	2.421E-04
72006	10869.56	919.69	12.59	31.04	1.901E-04	2.373E-04
74049	10881.05	931.18	12.64	30.54	1.851E-04	2.235E-04
76014	10881.05	936.93	12.67	30.42	1.793E-04	2.203E-04
78019	10892.55	931.18	12.73	30.15	1.763E-04	2.131E-04
80041	10881.05	931.18	12.77	29.77	1.713E-04	2.034E-04
82193	10892.55	925.44	12.82	29.34	1.659E-04	1.927E-04
84121	10892.55	936.93	12.85	29.14	1.627E-04	1.879E-04
86022	10886.80	936.93	12.89	29.01	1.574E-04	1.848E-04
87003	10881.05	919.69	12.94	28.86	1.517E-04	1.813E-04
88226	10875.30	936.93	12.96	28.42	1.475E-04	1.712E-04
90009	10886.80	925.44	13.03	28.23	1.439E-04	1.670E-04
92017	10869.56	919.69	13.08	27.89	1.407E-04	1.596E-04
94055	10869.56	919.69	13.14	27.77	1.382E-04	1.571E-04
96015	10863.81	919.69	13.19	27.59	1.384E-04	1.533E-04
98013	10852.31	919.69	13.24	27.22	1.357E-04	1.457E-04
100007	10846.56	919.69	13.28	27.10	1.311E-04	1.433E-04

ตารางที่ ฉ.1 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบเพิ่ม ΔK ที่ R=0.1 (ต่อ)

N (cycle)	P_{\max} (N)	P_{\min} (N)	<i>a</i> (mm)	$\Delta K \\ \left(MPa\sqrt{m} \right)$	<i>da/dN</i> (mm/cycle)	<i>da/dN</i> ทำนาย (mm/cycle)
102012	10846.56	908.19	13.35	26.93	1.281E-04	1.400E-04
104012	10835.07	890.95	13.39	26.81	1.240E-04	1.377E-04
106015	10829.32	913.94	13.46	26.72	1.202E-04	1.360E-04
108009	10823.57	890.95	13.53	26.57	1.155E-04	1.331E-04
110012	10846.56	919.69	13.58	26.20	1.144E-04	1.263E-04
112011	10852.31	913.94	13.64	26.10	1.125E-04	1.245E-04
114085	10846.56	919.69	13.71	25.98	1.104E-04	1.223E-04
116074	10840.82	913.94	13.77	25.75	1.093E-04	1.183E-04
118005	10840.82	919.69	13.83	25.59	1.058E-04	1.155E-04
120011	10835.07	931.18	13.89	25.40	1.029E-04	1.123E-04
122024	10823.57	936.93	13.94	25.39	1.017E-04	1.122E-04
124115	10829.32	925.44	14.02	25.06	9.911E-05	1.067E-04
126008	10829.32	925.44	14.08	24.91	9.834E-05	1.043E-04
128053	10806.33	931.18	14.14	24.78	9.441E-05	1.023E-04
130012	10812.08	919.69	14.22	24.76	9.312E-05	1.020E-04
132008	10806.33	931.18	14.27	24.36	8.715E-05	9.585E-05
134009	10806.33	931.18	14.34	24.19	8.381E-05	9.332E-05
136011	10835.07	954.18	14.42	24.03	8.117E-05	9.099E-05
138007	10835.07	965.67	14.47	23.93	7.936E-05	8.955E-05
140010	10840.82	965.67	14.56	23.55	7.717E-05	8.422E-05
142146	10823.57	971.42	14.64	23.44	7.491E-05	8.272E-05
144056	10817.82	977.17	14.71	23.42	7.446E-05	8.245E-05
146015	10806.33	977.17	14.79	23.31	7.177E-05	8.098E-05

ตารางที่ ฉ.1 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบเพิ่ม ΔK ที่ R=0.1 (ต่อ)

N (cycle)	P_{\max} (N)	P_{\min} (N)	<i>a</i> (mm)	$\Delta K \\ \left(MPa\sqrt{m} \right)$	<i>da/dN</i> (mm/cycle)	<i>da/dN</i> ทำนาย (mm/cycle)
148011	10812.08	977.17	14.87	23.15	7.034E-05	7.886E-05
150008	10800.58	988.66	14.94	23.05	6.855E-05	7.756E-05
152013	10794.83	988.66	15.00	22.91	6.621E-05	7.576E-05
154012	10783.34	994.41	15.09	22.54	6.456E-05	7.114E-05
156006	10777.59	1000.16	15.15	22.44	6.146E-05	6.992E-05
158008	10777.59	1005.91	15.24	22.34	5.944E-05	6.872E-05
160014	10771.84	1005.91	15.32	22.24	5.689E-05	6.754E-05
162009	10766.09	1005.91	15.39	22.15	5.531E-05	6.648E-05
164008	10760.34	1017.40	15.47	21.85	5.378E-05	6.305E-05
166010	10754.60	1017.40	15.55	21.75	5.158E-05	6.193E-05
168015	10748.85	1011.66	15.63	21.64	5.072E-05	6.072E-05
170009	10748.85	1028.90	15.73	21.56	4.924E-05	5.984E-05
172102	10737.35	1034.65	15.81	21.52	4.762E-05	5.941E-05
174020	10737.35	1034.65	15.90	21.43	4.656E-05	5.844E-05
176013	10731.60	1040.40	15.98	21.36	4.527E-05	5.770E-05
178056	10720.11	1046.14	16.08	21.29	4.483E-05	5.696E-05
180015	10720.11	1051.89	16.18	21.19	4.394E-05	5.592E-05
182085	10702.86	1063.39	16.27	21.14	4.274E-05	5.540E-05
184014	10691.37	1063.39	16.37	21.07	4.195E-05	5.468E-05
186026	10691.37	1063.39	16.47	20.98	4.085E-05	5.377E-05
188012	10679.87	1063.39	16.58	20.92	4.014E-05	5.317E-05
190011	10725.86	1034.65	16.69	20.87	3.942E-05	5.267E-05
192017	10720.11	1034.65	16.79	20.80	3.901E-05	5.198E-05

ตารางที่ ฉ.1 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบเพิ่ม ΔK ที่ R=0.1 (ต่อ)

N (cycle)	P_{\max} (N)	P_{\min} (N)	<i>a</i> (mm)	$\Delta K \\ \left(MPa\sqrt{m} \right)$	<i>da/dN</i> (mm/cycle)	<i>da/dN</i> ทำนาย (mm/cycle)
194485	10702.86	1051.89	16.94	20.72	3.933E-05	5.119E-05
196014	10708.61	1057.64	17.03	20.65	3.842E-05	5.051E-05
198015	10697.12	1063.39	17.15	20.60	3.756E-05	5.003E-05
200006	10748.85	1023.15	17.29	20.54	3.679E-05	4.945E-05
202011	10743.10	1028.90	17.42	20.49	3.669E-05	4.898E-05
204011	10720.11	1034.65	17.56	20.46	3.701E-05	4.870E-05
206010	10720.11	1034.65	17.70	20.37	3.721E-05	4.785E-05
208012	10702.86	1046.14	17.85	20.31	3.878E-05	4.729E-05
208394	10702.86	1051.89	17.88	20.26	3.801E-05	4.683E-05
210096	10685.62	1051.89	18.00	20.22	3.738E-05	4.647E-05
212015	10725.86	1017.40	18.16	20.11	3.645E-05	4.547E-05
214045	10702.86	1034.65	18.33	20.09	3.503E-05	4.529E-05
216011	10691.37	1034.65	18.48	19.99	3.439E-05	4.440E-05
218012	10674.12	1034.65	18.65	19.92	3.336E-05	4.378E-05
220015	10714.36	1005.91	18.82	19.89	3.360E-05	4.352E-05
220306	10702.86	1005.91	18.86	19.78	3.306E-05	4.256E-05
222049	10725.86	1057.64	19.02	19.78	3.259E-05	4.256E-05
222302	10748.85	1040.40	19.05	19.71	3.208E-05	4.196E-05
224012	10760.34	1011.66	19.23	19.60	3.097E-05	4.103E-05
224258	10760.34	1017.40	19.24	19.58	3.087E-05	4.086E-05
226010	10748.85	1028.90	19.43	19.55	3.063E-05	4.061E-05
228012	10720.11	1046.14	19.64	19.50	3.071E-05	4.020E-05
230009	10691.37	1051.89	19.88	19.44	3.060E-05	3.970E-05

ตารางที่ ฉ.1 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบเพิ่ม ΔK ที่ R=0.1 (ต่อ)

N (cycle)	P_{\max} (N)	P_{\min} (N)	<i>a</i> (mm)	$\Delta K \\ \left(MPa\sqrt{m} \right)$	<i>da/dN</i> (mm/cycle)	<i>da/dN</i> ทำนาย (mm/cycle)
231009	10691.37	1057.64	19.98	19.39	3.040E-05	3.929E-05
232011	10674.12	1063.39	20.09	19.30	3.079E-05	3.856E-05
233007	10725.86	1034.65	20.20	19.27	2.991E-05	3.832E-05
234011	10714.36	1034.65	20.33	19.17	2.956E-05	3.752E-05
235012	10702.86	1051.89	20.45	19.15	2.890E-05	3.737E-05
236013	10720.11	1086.38	20.57	19.09	2.843E-05	3.689E-05
237014	10702.86	1080.63	20.71	19.01	2.674E-05	3.627E-05
238012	10691.37	1092.13	20.83	18.97	2.625E-05	3.596E-05
239012	10720.11	1063.39	20.97	18.94	2.667E-05	3.573E-05
240012	10714.36	1069.14	21.11	18.90	2.704E-05	3.543E-05
241005	10691.37	1080.63	21.26	18.84	2.786E-05	3.497E-05
242007	10720.11	1063.39	21.39	18.81	2.987E-05	3.475E-05
243193	10702.86	1063.39	21.55	18.72	2.729E-05	3.408E-05
244059	10748.85	1034.65	21.69	18.70	2.920E-05	3.393E-05
245017	10725.86	1046.14	21.85	18.65	2.734E-05	3.356E-05
246009	10708.61	1063.39	21.99	18.62	2.393E-05	3.334E-05
247016	10691.37	1074.88	22.17	18.61	2.273E-05	3.327E-05
248016	10720.11	1051.89	22.33	18.53	2.169E-05	3.269E-05
249115	10725.86	1034.65	22.52	18.51	2.211E-05	3.254E-05
250041	10720.11	1034.65	22.69	18.42	2.293E-05	3.190E-05
251009	10685.62	1063.39	22.87	18.40	2.312E-05	3.176E-05
252013	10714.36	1034.65	23.05	18.36	2.233E-05	3.147E-05
253012	10679.87	1051.89	23.24	18.35	2.266E-05	3.140E-05

ตารางที่ ฉ.1 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบเพิ่ม ΔK ที่ R=0.1 (ต่อ)

N (cycle)	P_{\max} (N)	P_{\min} (N)	<i>a</i> (mm)	$\Delta K \\ \left(MPa\sqrt{m} \right)$	<i>da/dN</i> (mm/cycle)	<i>da/dN</i> ทำนาย (mm/cycle)
254012	10697.12	1034.65	23.45	18.28	2.400E-05	3.092E-05
255006	10668.38	1051.89	23.64	18.23	2.326E-05	3.057E-05
256007	10702.86	1034.65	23.86	18.20	2.306E-05	3.036E-05
257008	10691.37	1074.88	24.08	18.13	2.353E-05	2.988E-05
258013	10702.86	1057.64	24.30	17.53	2.033E-05	2.599E-05
258440	10691.37	1063.39	24.41	17.51	2.260E-05	2.587E-05
259012	10720.11	1040.40	24.53	17.50	1.934E-05	2.580E-05
260012	10725.86	1034.65	24.79	17.47	2.042E-05	2.562E-05
260384	10714.36	1040.40	24.86	17.46	2.102E-05	2.556E-05
261012	10685.62	1063.39	25.03	17.40	2.001E-05	2.519E-05
262386	10720.11	1034.65	25.38	17.34	1.957E-05	2.483E-05
263008	10674.12	1057.64	25.56	17.33	1.940E-05	2.477E-05
264009	10720.11	1057.64	25.83	17.29	2.072E-05	2.453E-05
265026	10714.36	1063.39	26.12	17.28	2.121E-05	2.447E-05
266053	10737.35	1034.65	26.43	17.26	1.969E-05	2.435E-05
267011	10685.62	1063.39	26.74	17.23	1.895E-05	2.418E-05
268168	10685.62	1040.40	27.13	17.12	1.912E-05	2.353E-05
269083	10714.36	1097.88	27.46	16.93	2.024E-05	2.245E-05
270009	10708.61	1086.38	27.80	16.91	1.975E-05	2.233E-05
271021	10702.86	1092.13	28.22	16.87	2.046E-05	2.211E-05
271305	10714.36	1086.38	28.31	16.83	2.109E-05	2.189E-05
272010	10691.37	1092.13	28.62	16.77	1.943E-05	2.156E-05
273007	10748.85	1057.64	29.09	16.71	1.821E-05	2.123E-05

ตารางที่ ฉ.1 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบเพิ่ม ΔK ที่ R=0.1 (ต่อ)

N (cycle)	P_{\max} (N)	P_{\min} (N)	<i>a</i> (mm)	$\Delta K \\ \left(MPa\sqrt{m} \right)$	<i>da/dN</i> (mm/cycle)	<i>da/dN</i> ทำนาย (mm/cycle)
274009	10662.63	1092.13	29.61	-	-	-
275012	10748.85	1057.64	30.20	-	-	-
275608	10731.60	1005.91	30.64	-	-	-

ตารางที่ ฉ.1 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบเพิ่ม ΔK ที่ R=0.1 (ต่อ)

ตารางที่ ฉ.2 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบลด ΔK ที่ R=0.1

N	$P_{\rm max}$	P_{\min}	a	ΔK	da/dN	<i>da/dN</i> ทำนาย
(cycle)	(N)	(N)	(mm)	(MPa√m)	(mm/cycle)	(mm/cycle)
5070	11662.71	1054.49	11.21	-	-	-
20067	11134.72	917.99	11.54	17.96	2.189E-05	2.874E-05
45065	10453.35	912.74	12.05	17.44	2.057E-05	2.544E-05
65064	9846.24	815.99	12.45	16.81	1.955E-05	2.178E-05
95065	9255.62	753.74	12.96	16.27	1.710E-05	1.893E-05
130070	8768.88	673.12	13.43	15.81	1.347E-05	1.671E-05
175069	8014.39	648.74	13.88	15.10	1.002E-05	1.362E-05
230065	7601.89	580.87	14.36	14.39	8.687E-06	1.093E-05
280066	7201.77	533.62	14.76	14.01	7.968E-06	9.638E-06
350066	6718.41	503.99	15.22	13.48	6.567E-06	8.004E-06
440068	6341.16	440.24	15.72	13.00	5.553E-06	6.682E-06
480067	6100.41	475.49	16.03	12.63	7.731E-06	5.761E-06
560064	5781.29	360.37	16.47	12.34	5.569E-06	5.096E-06
630067	5443.05	399.37	16.83	11.93	5.180E-06	4.238E-06
730067	5156.55	333.37	17.27	11.49	4.385E-06	3.418E-06
810069	5012.55	278.25	17.57	11.34	3.699E-06	3.162E-06

N (avala)	$P_{\rm max}$	P_{\min}	a (mm)	ΔK	da/dN	<i>da/dN</i> ทำนาย
(сусте)	(1)	(1)				(mm/cycle)
930065	4898.93	291.00	18.04	11.30	3.941E-06	3.096E-06
1060064	4429.81	271.50	18.40	10.83	2.722E-06	2.375E-06
1300069	4121.19	253.50	18.88	10.14	2.012E-06	1.505E-06
1540070	3866.20	228.00	19.43	9.74	2.297E-06	1.097E-06
1660066	3787.45	178.12	19.63	9.59	1.647E-06	9.608E-07
1900065	3685.82	205.12	20.05	9.53	1.767E-06	9.091E-07
2260065	3243.33	254.25	20.46	8.89	1.132E-06	4.472E-07
2460069	3219.70	239.62	20.62	8.33	8.010E-07	1.735E-07
2740068	3160.08	224.25	20.77	8.33	5.222E-07	1.735E-07
2900065	3097.46	178.87	20.90	8.30	8.173E-07	1.623E-07
3060067	3010.46	237.37	21.03	8.13	8.588E-07	1.051E-07
3220064	2962.08	183.75	21.18	7.99	8.956E-07	6.630E-08
3380064	2932.83	186.00	21.23	7.99	3.225E-07	6.630E-08
3700067	2900.58	166.87	21.35	7.97	3.792E-07	6.143E-08
3980070	2824.84	207.00	21.44	7.82	3.307E-07	3.035E-08
4580067	2736.71	198.00	21.58	7.59	2.278E-07	2.758E-09
4740064	2740.84	201.75	21.66	7.51	5.119E-07	7.096E-11

ตารางที่ ฉ.2 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบลด ΔK ที่ R=0.1 (ต่อ)

N (cycle)	P_{\max} (N)	P_{\min} (N)	<i>a</i> (mm)	$\Delta K \\ \left(MPa\sqrt{m} \right)$	<i>da/dN</i> (mm/cycle)	<i>da/dN</i> ทำนาย (mm/cycle)
15065	10938.53	3126.94	11.90	-	-	-
20061	10950.03	3138.43	11.96	-	-	-
35060	10955.78	3138.43	12.11	-	-	-
40061	10955.78	3132.69	12.19	42.79	4.655E-04	7.678E-04
45066	10950.03	3132.69	12.24	42.32	4.456E-04	7.379E-04
50060	10950.03	3132.69	12.30	41.30	4.292E-04	6.761E-04
55061	10955.78	3132.69	12.36	40.78	4.074E-04	6.460E-04
60063	10950.03	3126.94	12.42	40.10	3.967E-04	6.081E-04
70063	10978.77	3161.43	12.53	39.17	3.759E-04	5.588E-04
80066	10978.77	3161.43	12.66	38.67	3.637E-04	5.335E-04
85061	10978.77	3161.43	12.70	38.32	3.452E-04	5.163E-04
90068	10978.77	3161.43	12.76	37.69	3.298E-04	4.864E-04
100064	10967.27	3161.43	12.90	37.43	3.131E-04	4.744E-04
110062	10961.53	3161.43	13.01	36.97	3.090E-04	4.536E-04
115065	10955.78	3161.43	13.12	36.42	3.123E-04	4.297E-04
120060	10955.78	3161.43	13.19	35.91	3.047E-04	4.083E-04
125062	10950.03	3161.43	13.26	35.62	3.003E-04	3.965E-04
135063	10950.03	3155.68	13.35	35.16	2.935E-04	3.782E-04
140062	10973.02	3178.67	13.43	35.05	2.694E-04	3.740E-04
150061	10950.03	3184.42	13.58	34.48	2.570E-04	3.524E-04
155063	10950.03	3178.67	13.65	34.04	2.544E-04	3.363E-04
165064	10950.03	3184.42	13.80	34.02	2.543E-04	3.356E-04
170064	10944.28	3184.42	13.86	33.80	2.587E-04	3.278E-04

ตารางที่ ฉ.3 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบเพิ่ม ΔK ที่ R=0.3

N (cycle)	P_{\max} (N)	P_{\min} (N)	<i>a</i> (mm)	$\Delta K \\ \left(MPa\sqrt{m} \right)$	<i>da/dN</i> (mm/cycle)	<i>da/dN</i> ทำนาย (mm/cycle)
180062	10944.28	3190.17	13.99	33.61	2.633E-04	3.211E-04
185065	10938.53	3190.17	14.05	32.83	2.568E-04	2.948E-04
190064	10927.04	3190.17	14.17	32.72	2.254E-04	2.912E-04
195061	10932.79	3190.17	14.26	32.23	2.208E-04	2.756E-04
200062	10921.29	3190.17	14.32	32.17	2.235E-04	2.737E-04
205066	10950.03	3218.91	14.38	32.12	2.211E-04	2.722E-04
215062	10950.03	3218.91	14.54	31.56	2.148E-04	2.552E-04
220065	10950.03	3218.91	14.60	31.41	2.248E-04	2.508E-04
225063	10950.03	3230.40	14.72	31.31	2.279E-04	2.479E-04
230065	10904.04	3190.17	14.83	31.05	2.135E-04	2.405E-04
235061	10898.30	3201.66	14.91	30.20	1.981E-04	2.172E-04
240062	10898.30	3207.41	14.99	30.03	1.859E-04	2.127E-04
250065	10892.55	3207.41	15.15	29.49	1.808E-04	1.990E-04
255065	10921.29	3218.91	15.28	29.40	1.720E-04	1.967E-04
260066	10886.80	3213.16	15.39	29.18	1.674E-04	1.914E-04
265062	10881.05	3213.16	15.48	28.68	1.680E-04	1.795E-04
270065	10875.30	3213.16	15.63	28.18	1.642E-04	1.682E-04
275061	10875.30	3218.91	15.72	28.03	1.613E-04	1.649E-04
280066	10863.81	3230.40	15.80	27.86	1.507E-04	1.613E-04
285066	10892.55	3247.65	15.89	27.72	1.485E-04	1.583E-04
290063	10892.55	3259.14	15.99	27.19	1.414E-04	1.473E-04
295065	10881.05	3253.39	16.15	27.15	1.338E-04	1.465E-04
300060	10869.56	3264.89	16.25	26.96	1.290E-04	1.427E-04

ตารางที่ ฉ.3 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบเพิ่ม ΔK ที่ R=0.3 (ต่อ)

N (cycle)	P_{\max} (N)	P_{\min} (N)	<i>a</i> (mm)	$\Delta K \\ \left(MPa\sqrt{m} \right)$	<i>da/dN</i> (mm/cycle)	<i>da/dN</i> ทำนาย (mm/cycle)
305063	10869.56	3270.64	16.40	26.93	1.281E-04	1.422E-04
310064	10863.81	3276.39	16.49	26.48	1.267E-04	1.335E-04
315066	10863.81	3276.39	16.64	26.03	1.255E-04	1.252E-04
320066	10846.56	3276.39	16.76	25.90	1.230E-04	1.229E-04
325064	10846.56	3276.39	16.85	25.86	1.200E-04	1.222E-04
330064	10835.07	3282.13	16.99	25.68	1.164E-04	1.190E-04
335065	10835.07	3299.38	17.13	25.64	1.122E-04	1.183E-04
340066	10812.08	3299.38	17.29	25.53	1.157E-04	1.164E-04
345065	10817.82	3305.13	17.47	24.96	1.079E-04	1.070E-04
350065	10806.33	3310.87	17.57	24.74	1.043E-04	1.035E-04
355062	10806.33	3316.62	17.73	24.31	9.605E-05	9.683E-05
360063	10840.82	3270.64	17.90	24.07	9.252E-05	9.327E-05
362060	10840.82	3276.39	17.97	24.00	8.735E-05	9.224E-05
364064	10835.07	3276.39	18.04	23.83	8.427E-05	8.979E-05
368067	10835.07	3276.39	18.16	23.39	7.999E-05	8.365E-05
370063	10829.32	3282.13	18.22	23.27	8.197E-05	8.203E-05
372062	10829.32	3282.13	18.30	23.17	7.733E-05	8.069E-05
374066	10829.32	3293.63	18.36	23.07	7.491E-05	7.937E-05
376063	10869.56	3247.65	18.43	22.87	7.250E-05	7.677E-05
378064	10869.56	3247.65	18.51	22.43	6.816E-05	7.127E-05
380063	10892.55	3276.39	18.56	22.33	6.659E-05	7.005E-05
382061	10892.55	3276.39	18.63	22.22	6.401E-05	6.874E-05
384067	10892.55	3276.39	18.74	22.15	6.509E-05	6.791E-05

ตารางที่ ฉ.3 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบเพิ่ม ΔK ที่ R=0.3 (ต่อ)

N (cycle)	P_{\max} (N)	P_{\min} (N)	<i>a</i> (mm)	$\Delta K \\ \left(MPa\sqrt{m} \right)$	<i>da/dN</i> (mm/cycle)	<i>da/dN</i> ทำนาย (mm/cycle)
386065	10886.80	3287.88	18.79	22.03	6.204E-05	6.650E-05
388063	10875.30	3299.38	18.88	21.93	6.241E-05	6.534E-05
390063	10835.07	3270.64	18.97	21.51	6.074E-05	6.064E-05
392063	10823.57	3264.89	19.05	21.42	5.917E-05	5.966E-05
394064	10812.08	3270.64	19.16	21.32	5.495E-05	5.859E-05
396066	10806.33	3276.39	19.21	21.28	5.275E-05	5.816E-05
398065	10806.33	3276.39	19.30	21.17	5.260E-05	5.700E-05
400065	10806.33	3282.13	19.34	21.15	5.123E-05	5.679E-05
402061	10794.83	3293.63	19.43	21.05	5.042E-05	5.575E-05
404066	10812.08	3322.37	19.54	20.94	5.025E-05	5.463E-05
406061	10863.81	3276.39	19.61	20.90	5.057E-05	5.422E-05
408065	10863.81	3276.39	19.73	20.81	4.758E-05	5.331E-05
410064	10858.06	3276.39	19.81	20.42	4.579E-05	4.951E-05
412067	10846.56	3293.63	19.91	20.39	4.747E-05	4.922E-05
414063	10835.07	3305.13	19.99	20.36	4.633E-05	4.894E-05
416063	10892.55	3259.14	20.10	20.29	4.667E-05	4.828E-05
418061	10892.55	3264.89	20.19	20.17	4.722E-05	4.717E-05
420060	10881.05	3270.64	20.27	19.84	4.445E-05	4.420E-05
422060	10875.30	3276.39	20.40	19.75	4.243E-05	4.341E-05
424067	10858.06	3276.39	20.53	19.72	3.846E-05	4.315E-05
426066	10863.81	3293.63	20.57	19.69	3.855E-05	4.289E-05
428061	10835.07	3276.39	20.70	19.60	3.753E-05	4.211E-05
430061	10823.57	3293.63	20.80	19.58	3.936E-05	4.194E-05

ตารางที่ ฉ.3 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบเพิ่ม ΔK ที่ R=0.3 (ต่อ)

N (cycle)	P_{\max} (N)	P_{\min} (N)	<i>a</i> (mm)	$\Delta K \\ \left(MPa\sqrt{m} \right)$	<i>da/dN</i> (mm/cycle)	<i>da/dN</i> ทำนาย (mm/cycle)
432063	10812.08	3293.63	20.92	19.51	4.263E-05	4.135E-05
434064	10806.33	3305.13	21.04	19.44	4.170E-05	4.077E-05
436064	10846.56	3253.39	21.17	19.38	4.257E-05	4.027E-05
438063	10863.81	3282.13	21.28	19.34	4.096E-05	3.994E-05
440062	10863.81	3299.38	21.43	19.34	3.898E-05	3.994E-05
442066	10840.82	3305.13	21.55	19.24	3.728E-05	3.912E-05
444067	10835.07	3305.13	21.65	19.16	3.599E-05	3.847E-05
446065	10812.08	3328.12	21.85	19.13	3.578E-05	3.823E-05
448064	10875.30	3270.64	21.91	19.05	3.419E-05	3.760E-05
450063	10858.06	3270.64	22.11	18.77	3.425E-05	3.543E-05
452063	10840.82	3276.39	22.24	18.73	3.452E-05	3.513E-05
454062	10812.08	3293.63	22.42	18.66	3.331E-05	3.460E-05
456063	10806.33	3305.13	22.56	18.62	3.298E-05	3.430E-05
458064	10835.07	3276.39	22.75	18.51	3.291E-05	3.349E-05
460067	10823.57	3276.39	22.91	18.46	3.255E-05	3.313E-05
462062	10806.33	3299.38	23.05	18.41	3.274E-05	3.277E-05
464065	10777.59	3299.38	23.28	18.05	3.147E-05	3.024E-05
466063	10835.07	3305.13	23.47	17.92	3.050E-05	2.936E-05
468063	10817.82	3310.88	23.68	17.87	3.012E-05	2.903E-05
470063	10858.06	3276.39	23.89	17.70	2.948E-05	2.791E-05
471064	10835.07	3287.88	24.04	17.61	2.833E-05	2.733E-05
472071	10823.57	3299.38	24.12	17.53	2.742E-05	2.682E-05
473064	10812.08	3305.13	24.27	17.44	2.574E-05	2.626E-05

ตารางที่ ฉ.3 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบเพิ่ม ΔK ที่ R=0.3 (ต่อ)

N (cycle)	P_{\max} (N)	P_{\min} (N)	<i>a</i> (mm)	$\Delta K \\ \left(MPa\sqrt{m} \right)$	<i>da/dN</i> (mm/cycle)	<i>da/dN</i> ทำนาย (mm/cycle)
474065	10806.33	3316.62	24.34	17.36	2.421E-05	2.577E-05
475066	10783.34	3328.12	24.50	17.29	2.422E-05	2.534E-05
476075	10812.08	3287.88	24.63	17.16	2.400E-05	2.456E-05
477066	10846.56	3259.14	24.77	17.11	2.520E-05	2.426E-05
478063	10829.32	3276.39	24.86	16.99	2.487E-05	2.356E-05
479065	10812.08	3276.39	25.02	16.96	2.386E-05	2.339E-05
480062	10800.58	3299.38	25.11	16.83	2.292E-05	2.264E-05
481060	10823.57	3264.89	25.30	16.77	2.083E-05	2.231E-05
482067	10806.33	3276.39	25.44	16.67	2.082E-05	2.175E-05
483072	10823.57	3328.12	25.61	16.64	2.010E-05	2.159E-05
484063	10806.33	3333.87	25.74	16.58	2.091E-05	2.126E-05
485060	10835.07	3305.13	25.90	16.46	2.193E-05	2.062E-05
486069	10840.82	3287.88	26.12	16.40	2.180E-05	2.030E-05
487061	10835.07	3305.13	26.28	16.37	2.115E-05	2.015E-05
488062	10806.33	3328.12	26.44	16.23	1.919E-05	1.942E-05
489062	10835.07	3293.63	26.58	16.10	1.802E-05	1.877E-05
490060	10806.33	3322.37	26.79	16.05	1.881E-05	1.852E-05
491065	10840.82	3276.39	27.04	16.02	1.840E-05	1.837E-05
492060	10817.82	3287.88	27.23	15.94	1.835E-05	1.798E-05
492563	10806.33	3299.38	27.32	15.86	1.811E-05	1.759E-05
493062	10777.59	3305.13	27.46	15.81	1.709E-05	1.736E-05
493561	10806.33	3276.39	27.60	15.68	1.476E-05	1.675E-05
494071	10794.83	3293.63	27.68	15.63	1.584E-05	1.652E-05

ตารางที่ ฉ.3 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบเพิ่ม ΔK ที่ R=0.3 (ต่อ)

N (cycle)	P_{\max} (N)	P_{\min} (N)	<i>a</i> (mm)	$\Delta K \\ \left(MPa\sqrt{m} \right)$	<i>da/dN</i> (mm/cycle)	<i>da/dN</i> ทำนาย (mm/cycle)
494562	10777.59	3305.13	27.76	15.60	1.619E-05	1.638E-05
495075	10800.58	3287.88	27.90	15.52	1.558E-05	1.601E-05
495566	10777.59	3305.13	28.02	15.45	1.577E-05	1.570E-05
496064	10835.07	3247.65	28.14	15.41	1.552E-05	1.552E-05
496567	10846.56	3282.13	28.26	15.32	1.411E-05	1.513E-05
497062	10812.08	3305.13	28.47	15.28	1.363E-05	1.496E-05
497565	10794.83	3328.12	28.53	15.17	1.440E-05	1.449E-05
498061	10806.33	3305.13	28.66	15.10	1.410E-05	1.419E-05
498561	10835.07	3276.39	28.77	15.04	1.328E-05	1.395E-05
499061	10806.33	3305.13	28.92	14.97	1.303E-05	1.366E-05
499561	10806.33	3293.63	29.08	14.89	1.359E-05	1.334E-05
500064	10777.59	3316.62	29.27	14.84	1.334E-05	1.314E-05
500560	10806.33	3305.13	29.39	14.79	1.334E-05	1.294E-05
501062	10840.82	3305.13	29.53	14.72	1.450E-05	1.267E-05
501564	10840.82	3305.13	29.69	14.64	1.330E-05	1.236E-05
502060	10806.33	3333.87	29.89	14.55	1.233E-05	1.202E-05
502562	10829.32	3305.13	30.01	14.50	1.185E-05	1.183E-05
503064	10806.33	3328.12	30.20	14.47	1.192E-05	1.172E-05
503563	10800.58	3328.12	30.37	14.37	1.153E-05	1.136E-05
504065	10817.82	3293.63	30.58	14.30	1.194E-05	1.110E-05
504565	10806.33	3293.63	30.80	14.24	1.162E-05	1.089E-05
505062	10800.58	3305.13	30.99	14.19	1.216E-05	1.072E-05
505565	10823.57	3276.39	31.20	14.14	1.197E-05	1.054E-05

ตารางที่ ฉ.3 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบเพิ่ม ΔK ที่ R=0.3 (ต่อ)

N (cycle)	P_{\max} (N)	P_{\min} (N)	a (mm)	$\Delta K \\ \left(MPa\sqrt{m} \right)$	<i>da/dN</i> (mm/cycle)	<i>da/dN</i> ทำนาย (mm/cycle)
506065	10789.08	3299.38	31.42	14.12	1.166E-05	1.047E-05
506565	10800.58	3276.39	31.69	-	-	-
507061	10800.58	3276.39	31.92	-	-	-
507564	10806.33	3270.64	32.19	-	-	-

ตารางที่ ฉ.3 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบเพิ่ม ΔK ที่ R=0.3 (ต่อ)

ตารางที่ ฉ.4 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบลด ΔK ชิ้นงานที่ 1 ที่ R=0.3

	5		NN 			da/dN
N	$P_{\rm max}$	P_{\min}	a	ΔK	da/dN	ทำนาย
(cycle)	(N)	(N)	(mm)	(MPa√m)	(mm/cycle)	(mm/cycle)
10065	15950.40	4950.31	11.99	- 1	-	-
25065	13953.18	4174.07	12.44	18.78	3.006E-05	3.550E-05
40069	13138.31	4019.94	12.84	17.47	2.608E-05	2.645E-05
55067	12574.32	3802.82	13.25	16.90	2.728E-05	2.304E-05
60069	12389.45	3781.45	13.39	16.67	2.918E-05	2.175E-05
90066	12000.21	3625.45	14.02	16.63	2.112E-05	2.153E-05
115067	10714.35	3226.08	14.44	15.96	1.666E-05	1.808E-05
140069	10110.23	3076.08	14.89	14.95	1.797E-05	1.358E-05
165064	9626.49	2914.46	15.28	14.46	1.569E-05	1.168E-05
180064	9529.37	2852.96	15.49	14.31	1.381E-05	1.114E-05
210068	9277.37	2789.59	15.85	14.27	1.199E-05	1.100E-05
245068	8638.00	2578.84	16.31	13.89	1.305E-05	9.702E-06
295069	7999.39	2423.22	16.80	13.20	9.946E-06	7.601E-06
345066	7501.77	2276.97	17.25	12.56	8.939E-06	5.925E-06
375067	7146.65	2216.97	17.53	12.03	9.178E-06	4.722E-06

N (cycle)	P_{\max} (N)	P_{\min} (N)	a (mm)	$\Delta K \\ \left(MPa\sqrt{m} \right)$	<i>da/dN</i> (mm/cycle)	<i>da/dN</i> ทำนาย (mm/cycle)
440072	6725.85	1898.54	17.94	11.76	6.322E-06	4.169E-06
510061	6265.36	1834.42	18.43	11.42	7.057E-06	3.530E-06
580066	5913.61	1630.80	18.89	11.02	6.618E-06	2.854E-06
680065	5515.74	1670.17	19.35	10.53	4.517E-06	2.133E-06
800072	5186.50	1540.80	19.83	9.94	4.027E-06	1.413E-06
970069	4881.25	1366.05	20.33	9.75	2.925E-06	1.214E-06
1090067	4595.13	1349.55	20.77	9.44	3.672E-06	9.219E-07
1190066	4467.63	1259.18	21.03	9.18	2.637E-06	7.077E-07

ตารางที่ ฉ.4 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบลด ΔK ชิ้นงานที่ 1 ที่ R=0.3 (ต่อ)

ตารางที่ ฉ.5 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบลด ΔK ชิ้นงานที่ 2 ที่ R=0.3

N (cycle)	P_{\max} (N)	P_{\min} (N)	a (mm)	$\Delta K \\ \left(MPa\sqrt{m} \right)$	<i>da/dN</i> (mm/cycle)	<i>da/dN</i> ทำนาย (mm/cycle)
40066	10730.47	3295.45	11.09	วิทยาลัย	-	-
70069	10409.48	3038.96	11.25	12.62	5.333E-06	6.071E-06
100063	10137.98	3026.96	11.44	12.47	6.479E-06	5.709E-06
120063	9877.74	2939.96	11.65	12.23	1.011E-05	5.157E-06
140069	9611.86	2838.33	11.72	12.03	3.592E-06	4.722E-06
160065	9570.99	2804.21	11.91	11.97	9.497E-06	4.595E-06
200065	9336.62	2743.84	12.08	11.92	4.206E-06	4.492E-06
260064	9084.25	2680.09	12.44	11.77	6.076E-06	4.189E-06
300068	8619.63	2545.84	12.64	11.48	5.031E-06	3.638E-06
320066	8430.26	2500.46	12.72	11.13	4.079E-06	3.032E-06
360063	8350.76	2441.59	12.86	11.04	3.303E-06	2.886E-06

N (cycle)	P_{\max} (N)	P_{\min} (N)	<i>a</i> (mm)	$\Delta K \\ \left(MPa\sqrt{m} \right)$	<i>da/dN</i> (mm/cycle)	<i>da/dN</i> ทำนาย (mm/cycle)
440069	8179.38	2441.22	13.21	11.00	4.442E-06	2.822E-06
500068	7845.64	2302.09	13.43	10.82	3.649E-06	2.546E-06
620070	7628.14	2249.97	13.76	10.63	2.781E-06	2.271E-06
700067	7297.02	2105.97	14.06	10.46	3.711E-06	2.040E-06
740062	7044.28	2041.47	14.26	10.22	4.942E-06	1.735E-06
780066	6864.65	1991.60	14.36	9.98	2.597E-06	1.457E-06
820067	6707.16	1982.97	14.44	9.74	1.869E-06	1.204E-06
940063	6668.53	1960.47	14.66	9.65	1.877E-06	1.115E-06
1060067	6461.16	1906.10	14.89	9.59	1.934E-06	1.058E-06
1240068	6235.79	1847.97	15.28	9.41	2.130E-06	8.957E-07
1300065	5931.67	1842.72	15.35	9.02	1.177E-06	5.897E-07
1480063	5850.67	1794.35	15.48	8.72	7.509E-07	3.962E-07
1600063	5788.42	1743.73	15.68	8.74	1.617E-06	4.080E-07
1660065	5680.42	1667.60	15.75	8.76	1.210E-06	4.200E-07
1780064	5649.30	1634.23	15.85	8.76	8.089E-07	4.200E-07
1960069	5330.55	1598.23	16.02	8.51	9.423E-07	2.824E-07
2080064	5221.80	1537.10	16.08	8.20	4.961E-07	1.470E-07
2320065	5190.30	1516.85	16.28	8.19	8.457E-07	1.433E-07
2440064	5097.30	1456.10	16.45	8.22	1.378E-06	1.545E-07
2500067	4990.43	1389.73	16.49	8.18	6.966E-07	1.396E-07
2680067	4950.68	1357.86	16.69	8.18	1.154E-06	1.396E-07
3100068	4672.43	1483.48	17.07	7.83	9.019E-07	3.818E-08
3940067	4555.44	1325.61	17.20	7.50	1.453E-07	7.967E-11

ตารางที่ ฉ.5 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบลด ΔK ชิ้นงานที่ 2 ที่ R=0.3 (ต่อ)

N (cycle)	P_{\max} (N)	P_{\min} (N)	a (mm)	$\Delta K \\ \left(MPa\sqrt{m} \right)$	<i>da/dN</i> (mm/cycle)	<i>da/dN</i> ทำนาย (mm/cycle)
4480069	4372.81	1217.98	17.36	7.52	3.105E-07	2.696E-10

ตารางที่ ฉ.5 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบลด ΔK ชิ้นงานที่ 2 ที่ R=0.3 (ต่อ)

ตารางที่ ฉ.6 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบเพิ่ม ΔK ที่ R=0.5

N (cycle)	$P_{\rm max}$	P_{\min}	a (mm)	ΔK (MPa \sqrt{m})	da/dN	<i>da/dN</i> ทำนาย
(cycic)	(11)	(11)				(mm/cycle)
24028	11697.28	5776.79	11.32		-	-
78013	11737.51	5788.28	11.51	<u> </u>	-	-
126010	11726.02	5776.79	11.69	<u> </u>	-	-
146040	11720.27	5771.04	11.86	23.15	8.248E-05	8.843E-05
172040	11754.76	5788.28	11.94	22.43	7.220E-05	7.885E-05
208353	11754.76	5805.53	12.12	22.02	6.529E-05	7.374E-05
254071	11674.28	5863.01	12.29	21.70	6.063E-05	6.991E-05
270031	11668.54	5863.01	12.48	21.32	5.408E-05	6.555E-05
334015	11691.53	5863.01	12.63	20.78	5.412E-05	5.969E-05
390399	11835.23	5828.52	12.86	20.61	5.080E-05	5.792E-05
441389	11749.01	5868.76	13.11	20.24	4.967E-05	5.420E-05
460012	11737.51	5868.76	13.28	19.92	4.461E-05	5.111E-05
500007	11737.51	5868.76	13.47	19.78	4.374E-05	4.980E-05
520423	11754.76	5891.75	13.67	19.72	4.624E-05	4.925E-05
540013	11783.50	5920.49	13.81	19.42	3.781E-05	4.654E-05
585561	11697.28	5931.98	14.08	19.06	3.591E-05	4.344E-05
626307	11708.77	5943.48	14.43	18.95	3.510E-05	4.252E-05
641334	11697.28	5949.23	14.64	18.84	3.557E-05	4.161E-05

N (cycle)	P_{\max} (N)	P_{\min} (N)	<i>a</i> (mm)	$\Delta K \\ \left(MPa\sqrt{m} \right)$	<i>da/dN</i> (mm/cycle)	<i>da/dN</i> ทำนาย (mm/cycle)
680015	11772.00	5926.24	14.93	18.23	3.438E-05	3.682E-05
700013	11754.76	5914.74	15.04	17.99	3.345E-05	3.505E-05
720058	11726.02	5920.49	15.38	17.43	3.418E-05	3.113E-05
730559	11720.27	5920.49	15.52	17.31	3.349E-05	3.034E-05
750116	11697.28	5920.49	15.72	17.21	2.791E-05	2.968E-05
760022	11697.28	5920.49	15.87	16.99	2.747E-05	2.828E-05
781012	11754.76	5908.99	16.08	16.93	2.591E-05	2.790E-05
800008	11754.76	5914.74	16.27	16.82	2.446E-05	2.723E-05
820069	11754.76	5914.74	16.56	16.10	2.236E-05	2.306E-05
840151	11754.76	5920.49	16.79	15.91	2.228E-05	2.204E-05
860216	11720.27	5920.49	17.07	15.78	2.225E-05	2.136E-05
870130	11708.77	5931.98	17.30	15.64	2.127E-05	2.064E-05
880009	11726.02	5920.49	17.50	15.45	2.228E-05	1.969E-05
910041	11697.28	5949.23	17.85	15.01	2.115E-05	1.761E-05
920012	11697.28	5954.98	18.05	14.78	1.668E-05	1.658E-05
930146	11754.76	5891.75	18.23	14.50	1.519E-05	1.539E-05
943700	11731.76	5920.49	18.40	14.50	1.618E-05	1.539E-05
960094	11749.01	5897.50	18.63	14.07	1.474E-05	1.367E-05
993721	11691.53	5943.48	19.28	13.94	1.504E-05	1.317E-05
1010010	11737.51	5920.49	19.60	13.83	1.590E-05	1.276E-05
1020012	11708.77	5920.49	19.93	13.62	1.510E-05	1.201E-05
1030021	11731.76	5949.23	20.11	13.52	1.477E-05	1.166E-05
1040131	11726.02	5960.72	20.32	13.40	1.506E-05	1.125E-05

ตารางที่ ฉ.6 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบเพิ่ม ΔK ที่ R=0.5 (ต่อ)

N (cycle)	P_{\max} (N)	P_{\min} (N)	<i>a</i> (mm)	$\Delta K \\ \left(MPa\sqrt{m} \right)$	<i>da/dN</i> (mm/cycle)	<i>da/dN</i> ทำนาย (mm/cycle)
1060015	11691.53	5972.22	20.70	13.26	1.308E-05	1.078E-05
1080032	11731.76	5920.49	21.21	13.06	1.197E-05	1.013E-05
1085014	11726.02	5931.98	21.39	12.94	1.147E-05	9.760E-06
1095016	11714.52	5949.23	21.55	12.65	1.138E-05	8.891E-06
1100009	11726.02	5943.48	21.72	12.56	1.199E-05	8.632E-06
1110012	11685.78	5972.22	22.04	12.48	1.197E-05	8.406E-06
1115017	11680.03	5972.22	22.18	12.40	1.203E-05	8.184E-06
1125089	11703.02	5920.49	22.52	12.26	1.090E-05	7.804E-06
1130010	11697.28	5949.23	22.85	12.20	1.013E-05	7.645E-06
1140012	11760.50	5880.25	23.04	11.82	8.754E-06	6.683E-06
1150039	11726.02	5920.49	23.36	11.72	8.054E-06	6.444E-06
1155009	11708.77	5949.23	23.60	11.54	7.072E-06	6.026E-06
1162013	11697.28	5943.48	23.93	11.51	7.903E-06	5.958E-06
1169010	11720.27	5926.24	24.07	11.46	6.870E-06	5.846E-06
1170009	11720.27	5937.73	24.15	11.35	6.504E-06	5.604E-06
1175012	11697.28	5943.48	24.36	11.24	4.730E-06	5.368E-06
1180025	11668.54	5960.72	24.75	11.23	6.232E-06	5.347E-06
1185196	11697.28	5937.73	24.91	11.16	5.782E-06	5.200E-06
1190083	11680.03	5943.48	25.10	10.77	4.311E-06	4.429E-06
1195012	11708.77	5908.99	25.34	10.69	4.765E-06	4.280E-06
1200011	11674.28	5926.24	25.76	10.64	4.327E-06	4.188E-06
1205060	11697.28	5977.97	26.07	10.62	4.829E-06	4.152E-06
1211033	11668.54	5949.23	26.35	10.54	4.265E-06	4.009E-06

ตารางที่ ฉ.6 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบเพิ่ม ΔK ที่ R=0.5 (ต่อ)

N (cycle)	P_{\max} (N)	P_{\min} (N)	a (mm)	$\Delta K \\ \left(MPa\sqrt{m} \right)$	<i>da/dN</i> (mm/cycle)	<i>da/dN</i> ทำนาย (mm/cycle)
1215091	11691.53	5920.49	26.70	10.54	4.386E-06	4.009E-06
1216970	11668.54	5949.23	26.86	-	-	-
1220016	11697.28	5920.49	27.17	-	-	-
1225015	11697.28	5914.74	27.66	-	-	-

ตารางที่ ฉ.6 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบเพิ่ม ΔK ที่ R=0.5 (ต่อ)

ตารางที่ ฉ.7 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบลด ΔK ชิ้นงานที่ 1 ที่ R=0.5

			NN 			da/dN
N	$P_{\rm max}$	P_{\min}	a	ΔK	da/dN	ทำนาย
(cycle)	(N)	(N)	(mm)	(MPa√m)	(mm/cycle)	(mm/cycle)
20064	13856.43	6977.15	10.73	-	-	-
40063	14332.67	7252.02	10.94	11.67	1.075E-05	6.326E-06
50068	14032.68	6964.03	11.01	11.93	6.602E-06	6.953E-06
60065	13950.55	6892.03	11.07	11.95	6.514E-06	7.003E-06
80064	13768.68	6876.28	11.22	11.87	7.216E-06	6.805E-06
100069	13561.68	6677.53	11.36	11.82	6.959E-06	6.683E-06
120066	13320.56	6585.28	11.49	11.78	6.679E-06	6.587E-06
150067	13024.32	6458.53	11.67	11.60	6.051E-06	6.163E-06
160066	12729.20	6310.41	11.81	11.43	1.360E-05	5.779E-06
180064	12550.32	6151.41	11.94	11.36	6.685E-06	5.625E-06
190066	12321.20	6069.66	11.99	11.27	5.029E-06	5.432E-06
220064	12218.08	5984.54	12.17	11.20	6.129E-06	5.284E-06
240067	11919.58	5862.29	12.25	11.10	3.828E-06	5.077E-06
260066	11810.83	5753.17	12.40	11.01	7.261E-06	4.895E-06
280068	11625.21	5714.54	12.52	10.96	6.211E-06	4.795E-06

N (cycle)	P_{\max} (N)	P_{\min} (N)	<i>a</i> (mm)	ΔK $(MPa\sqrt{m})$	<i>da/dN</i> (mm/cycle)	<i>da/dN</i> ทำนาย
		()				(mm/cycle)
320067	11337.59	5605.42	12.72	10.76	5.096E-06	4.410E-06
340066	11071.72	5466.30	12.84	10.56	5.680E-06	4.044E-06
380066	10905.22	5341.05	13.05	10.50	5.179E-06	3.938E-06
420065	10635.97	5213.55	13.23	10.43	4.629E-06	3.816E-06
440063	10350.60	5105.93	13.32	10.21	4.349E-06	3.448E-06
460068	10267.73	5037.30	13.41	10.07	4.712E-06	3.225E-06
480065	10072.73	5035.05	13.46	9.91	2.275E-06	2.981E-06
500068	10016.86	4991.93	13.54	9.74	4.186E-06	2.733E-06
540066	9920.11	4902.68	13.62	9.77	2.017E-06	2.776E-06
560069	9825.24	4833.31	13.77	9.79	7.167E-06	2.805E-06
580066	9629.11	4776.31	13.84	9.69	3.884E-06	2.663E-06
620063	9552.62	4700.93	13.99	9.61	3.642E-06	2.552E-06
660064	9339.62	4637.18	14.17	9.54	4.439E-06	2.457E-06
720064	9153.62	4491.69	14.34	9.43	2.900E-06	2.312E-06
780066	8918.12	4439.19	14.54	9.30	3.302E-06	2.147E-06
830069	8738.88	4269.69	14.65	9.18	2.333E-06	2.001E-06
880065	8568.63	4244.94	14.80	9.08	2.815E-06	1.883E-06
930068	8438.88	4149.32	14.92	8.95	2.407E-06	1.735E-06
1030069	8268.63	4116.32	15.18	8.86	2.660E-06	1.637E-06

ตารางที่ ฉ.7 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบลด ΔK ชิ้นงานที่ 1 ที่ R=0.5 (ต่อ)

N (cycle)	P_{\max} (N)	P_{\min} (N)	a (mm)	$\Delta K \\ \left(MPa\sqrt{m} \right)$	<i>da/dN</i> (mm/cycle)	<i>da/dN</i> ทำนาย (mm/cycle)
1330069	7848.58	4009.76	15.62	-	-	-
1450068	7496.46	3718.39	15.91	8.30	2.459E-06	1.089E-06
1620065	7248.22	3520.39	16.13	8.29	1.283E-06	1.080E-06
1720063	7019.47	3448.02	16.35	8.15	2.139E-06	9.609E-07
1870069	6843.97	3312.27	16.57	8.02	1.467E-06	8.441E-07
2020063	6657.23	3238.02	16.82	7.94	1.664E-06	7.748E-07
2170067	6393.23	3136.4	17.08	7.73	1.762E-06	6.076E-07
2420067	6230.86	3007.78	17.34	7.60	1.038E-06	5.146E-07
2720064	5926.36	3014.9	17.67	7.31	1.103E-06	3.357E-07

ตารางที่ ฉ.8 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบลด ΔK ชิ้นงานที่ 2 ที่ R=0.5

ตารางที่ ฉ.9 ผลการทดสอบอัตราการเติบโตของรอยร้าวแบบลด ΔK ชิ้นงานที่ 3 ที่ R=0.5

N (cycle)	$P_{ m max}$ (N)	$P_{ m min} \ ig(Nig)$	a (mm)	$\Delta K \\ \left(MPa\sqrt{m} \right)$	<i>da/dN</i> (mm/cycle)	<i>da/dN</i> ทำนาย (mm/cycle)
4020099	5630.92	2784.71	18.01	Iniver <u>s</u> ity	-	-
4220094	5434.05	2763.34	18.22	6.78	1.016E-06	1.066E-07
4620096	5338.42	2608.84	18.64	6.75	1.052E-06	9.736E-08
6220095	4992.3	2529.34	18.96	6.61	2.051E-07	5.948E-08
6620093	4808.93	2372.59	19.30	6.35	8.392E-07	1.266E-08
7820102	4546.81	2348.22	19.91	6.16	5.089E-07	7.003E-11

ภาคผนวก ช Code โปรแกรมเพื่อทำนายอัตราการเติบโตของรอยร้าวล้า

ในวิทยานิพนธ์นี้ใช้โปรแกรม Mathcad เวอร์ชัน 15 เป็นเครื่องมือในการทำนายอัตราการ เติบโตของรอยร้าวล้า โดยมี code ดังนี้

<u>คำนวณหาขนาดของบริเวณกระบวนการ</u> :

$$\begin{split} \tilde{g}(j) &\coloneqq \left| \begin{array}{c} \sigma_{m_0} \leftarrow 0 \text{MPa} \\ \text{for } i \in 0..20 \\ \\ \pi_{i_1} \leftarrow \sigma_{mnew} \\ x_i \leftarrow \left(\frac{\frac{dadN_g}{m}}{2} \right)^{\frac{-(b+c)-1}{(-(b+c)-1)}} \cdot \left[\frac{4 \cdot (1+n) \cdot \left(\sigma_f - \sigma_{m_i} \right) \cdot 6_f \cdot \pi \cdot E \cdot m}{\left[\left(\Delta K_g \right)^2 - \left(\Delta K_{m_i} \right)^2 \right]} \right]^{\frac{1}{-(b+c)-1}} \cdot m \\ \\ \sigma_{max} \leftarrow \sigma_0 \cdot \left[\frac{\left(\frac{\Delta K_g}{(1+n)\pi \cdot \sigma_0^{-2} \cdot x_i} \right)^{\frac{1}{1+n}}}{\left[(1+n)\pi \cdot \sigma_0^{-2} \cdot x_i \right]} \right]^{\frac{1}{1+n}} \\ \\ R_{obar} \leftarrow 1 - 2 \cdot \left[\frac{\left(1 - R_j \right)^2}{4} \right]^{\frac{1}{1+n}} \\ \\ r_c \leftarrow \frac{1}{4 \cdot (1+n)\pi} \cdot \left[\frac{\Delta K_g}{\sigma_0} \right]^2 \\ \\ R_{\sigma} \leftarrow \left[R_j \quad \text{if } x_i > r_m \\ \left[\frac{R_{obar}}{R_{obar} + \frac{\log\left(\frac{x_i}{r_c} \right)}{\log\left(\frac{r_c}{r_c} \right)} \cdot \left(R_j - R_{obar} \right) \right]} \right]^{\text{if } r_c} \leq x_i \leq r_m \\ \\ \\ R_{obar} - \frac{r_c - x_i}{r_c} \cdot (1 + R_{obar}) \quad \text{if } x_i < r_c \\ \\ \\ \sigma_{mnew} \leftarrow \frac{1 + R_{\sigma}}{2} \cdot \sigma_{max} \\ \\ \\ \text{break} \quad \text{if } \left| \frac{\sigma_{mnew} - \sigma_m_i}{\sigma_{mnew}} \right| < 0.00001 \\ \end{array} \right] \end{split}$$

ข้อมูลการทดสอบอัตราการเติบโตของรอยร้าวล้า:

 $Exp_{01} :=$ 1 ป้อนข้อมูลการทดสอบอัตราการเติบโตของรอยร้าวล้าที่ R=0.1 $(da / dN - \Delta K)$ $Exp_{03} :=$ 1 ป้อนข้อมูลการทดสอบอัตราการเติบโตของรอยร้าวล้าที่ R=0.3 $(da / dN - \Delta K)$ $Exp_{05} :=$ 1 ป้อนข้อมูลการทดสอบอัตราการเติบโตของรอยร้าวล้าที่ R=0.5 $(da / dN - \Delta K)$

<u>คำนวณอัตราการเติบโตของรอยร้าวถ้า</u> :

j ≔ ∎ป้อนค่า1,2,หรือ 3 (1 หมายถึง R=0.1, 2 หมายถึง R=0.3, 3 หมายถึง R=0.5)

$$\mathsf{R} := \mathsf{R}_j \qquad \qquad \underbrace{\Delta \mathsf{K}}_{\text{th}_j} := \Delta \mathsf{K}_{\text{th}_j}$$

$$\Delta K := \Delta K_{\text{th}} + 0.1 \cdot \text{MPa} \cdot \sqrt{m}, \Delta K_{\text{th}} + 0.6 \cdot \text{MPa} \cdot \sqrt{m} .. 60 \cdot \text{MPa} \cdot \sqrt{m}$$

$$\sigma_{\max}(\Delta K) := \sigma_0 \cdot \left[\frac{\left(\frac{\Delta K}{1-R}\right)^2}{(1+n) \cdot \pi \cdot \sigma_0^{-2} \cdot \delta(j)} \right]^{\frac{1}{1+n}}$$

$$R_{\sigma_bar} := 1 - 2 \cdot \left(\frac{1-R}{2}\right)^{\frac{2 \cdot n}{1+n}}$$

$$r_c(\Delta K) := \frac{1}{4 \cdot (1+n)\pi} \cdot \left(\frac{\Delta K}{\sigma_0}\right)^2$$

$$r_m(\Delta K) := \frac{1}{(1+n) \cdot \pi} \cdot \left[\frac{\Delta K}{(1-R) \cdot \sigma_0}\right]^2$$

$$\begin{split} \mathsf{R}_{\sigma}(\Delta \mathsf{K}) &:= \quad \mathsf{R} \quad \text{if} \quad \delta(j) > \mathsf{r}_{\mathsf{m}}(\Delta \mathsf{K}) \\ \mathsf{R}_{\sigma_\mathsf{bar}} + \frac{\mathsf{log}\left(\frac{\delta(j)}{\mathsf{r}_{\mathsf{c}}(\Delta \mathsf{K})}\right)}{\mathsf{log}\left(\frac{\mathsf{r}_{\mathsf{m}}(\Delta \mathsf{K})}{\mathsf{r}_{\mathsf{c}}(\Delta \mathsf{K})}\right)} \cdot \left(\mathsf{R} - \mathsf{R}_{\sigma_\mathsf{bar}}\right) \quad \text{if} \quad \mathsf{r}_{\mathsf{c}}(\Delta \mathsf{K}) \le \delta(j) \le \mathsf{r}_{\mathsf{m}}(\Delta \mathsf{K}) \\ \mathsf{R}_{\sigma_\mathsf{bar}} - \frac{\mathsf{r}_{\mathsf{c}}(\Delta \mathsf{K}) - \delta(j)}{\mathsf{r}_{\mathsf{c}}(\Delta \mathsf{K})} \cdot \left(1 + \mathsf{R}_{\sigma_\mathsf{bar}}\right) \quad \text{if} \quad \delta(j) < \mathsf{r}_{\mathsf{c}}(\Delta \mathsf{K}) \end{split}$$

$$\sigma_{m}(\Delta K) := \frac{1 + R_{\sigma}(\Delta K)}{2} \cdot \sigma_{max}(\Delta K)$$

$$\mathsf{dadN}(\Delta \mathsf{K}) := 2 \cdot \delta(j) \cdot \left[\frac{\Delta \mathsf{K}^2 - \left(\Delta \mathsf{K}_{th}\right)^2}{4 \cdot (1 + n) \cdot \left(\sigma_f - \sigma_m(\Delta \mathsf{K})\right) \cdot \epsilon_f \cdot \pi \cdot \mathsf{E} \cdot \delta(j)} \right]^{\frac{-1}{\mathsf{b} + \mathsf{c}}}$$

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University
ประวัติผู้เขียนวิทยานิพนธ์

นาย ซาญเดช มังกรแก้ว เกิดเมื่อวันที่ 27 พฤษภาคม พ.ศ. 2527 ที่จังหวัดสระบุรี สำเร็จการศึกษาปริญญาวิศวกรรมศาสตรบัญฑิต สาขาวิชาวิศวกรรมเครื่องกล ภาควิชา วิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์ มหาวิทยาลัยบูรพา เมื่อปีการศึกษา 2546 และเข้า ศึกษาต่อในระดับบัณฑิตศึกษา หลักสูตรวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชา วิศวกรรมเครื่องกล ภาควิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย เมื่อปีการศึกษา 2554

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University