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CHAPTER I 
INTRODUCTION 

Lung cancer is known as the major cause of death cancer worldwide due to 
its high mortality rate [1]. Once a tumor is found in the patient’s lung via radiography 
or other medical imaging, it tends to develop further to become a cancer which is 
quite too late to handle. However, if a patient can obtain a preliminary lung 
screening, this process can reduce the rate of mortality by 80% [2] because most of 
small tumors are identified as an infection or scar tissues, but not as cancer [3].  

In order to diagnose lung cancer, a bronchoscopy with transbronchial lung 
biopsy (TBLB) is recommended due to its efficiency. The bronchoscopy is the process 
in which the doctor inserts a bronchoscope (a tube-liked instrument) into the 
patient’s nose or mouth in order to explore his/her internal airways as shown in 
Figure 1. After that, a real-time video for capturing the interior of bronchus obtained 
via bronchoscopy is recorded. Figure 2 represents a sample image capturing during 
bronchoscopy. After the bronchoscope reaches the lesion, a forceps is introduced via 
bronchoscope to collect a sample tissue of the lesion. This process is known as 
biopsy. Then, the sample will be forwarded to examine under histopathology to 
diagnose and summarize the underlying properties of lesion whether it is a cancer 
cell. 

 

 
Figure 1 Bronchoscopy 

(http://www.webmd.com/lung/bronchoscopy) 

 

http://www.webmd.com/lung/bronchoscopy


 

 

2 

 
Figure 2 Realtime image of internal bronchus obtained during bronchoscopy 

(http://openi.nlm.nih.gov/detailedresult.php?img=3427811_kjae-63-165-g003&req=4) 
 

Before landing at the lesion, not only computed tomography (CT) scan is 
required to pre-identify lesion location within the lung, but also fluoroscopy is 
involved to actively locate advanced bronchoscope during operation. However, the 
recent study has found that a bronchoscopy that is guided by endobronchial 
ultrasound (EBUS) could possibly assist the doctor and generate the diagnosis yield 
of 60-80% [4-6], which is higher than assisting by conventional CT [4] or fluoroscopy, 
which can expose patients to harmful radiation [5, 7]. In general, EBUS is a device 
inserted via bronchoscope to visualize internal texture in real time by propagating 
ultrasonic waves through bronchioles and receiving reflected echoes to form a 
texture video. Figure 3 shows an example of an EBUS image.  

 

 
Figure 3 Sample of an EBUS image 

Apart from the benefits of EBUS visualization, the characteristics of an EBUS 
image also have correlation with the histopathology of the lesions [8, 9]. Therefore, 
this discovery can possibly be a breakthrough to innovate a computer-aided 

http://openi.nlm.nih.gov/detailedresult.php?img=3427811_kjae-63-165-g003&req=4
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diagnosis system and thus, lower the amount of biopsy, provide less human-
dependency system and lower the examination time for diagnosing further 
pulmonary lesions.  

 
1.1 Objectives 

To automatically classify pulmonary lesion whether it is benign or malignant 
based on homogeneity and other extracted features of EBUS image. 

 
1.2 Scopes of the Work 

In this study, the classification system is constrained as follows: 
1. Compatible with an endobronchial ultrasonogram video input of MPEG-1 

file format such as .mpg captured at 25 fps with a dimension of 576 x 720 
pixels or 288 x 352 pixels. 

2. Assume that the captured video of EBUS started to record when the 
bronchoscope reaches the lesion. 

3. The size of the lesion must be larger than blood vessels. 

1.3 Problem Formulation 

Although there are lots of studies about EBUS characteristics and 
histopathology relationships, none of them has provided an automatic diagnostic 
tool, which relies on EBUS characteristics. The expert bronchoscopists only observes 
and categorizes EBUS characteristics according to their experiences and then figure 
out the underlying relationship of histopathology and EBUS features. Thus, the 
purpose of this study is to construct a human-free diagnostic tool of lung cancer 
based on extracted features of an EBUS image.  

However, there is a plenty of features to be extracted, including echoic 
features that have relationship with histopathology result and statistical features that 
are used to distinguish cancer cells in several studies [10, 11]. Our research question 
is to figure out which features of an EBUS image of pulmonary lesion are applicable 
to adapt to an automatic lung cancer diagnostic system.  
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1.4 Expected Outcomes 

1. The proposed classification method can distinguish between benign and 
malignant lesions with acceptable accuracy. 

2. The proposed method can help reduce the bronchoscopist-dependency 
on judging the characteristics of pulmonary lesion by automatically 
analyzing the endobronchial ultrasonogram. 

3. The proposed method can assist the pathologists on verifying the results. 
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CHAPTER II 
LITERATURE REVIEW AND FUNDAMENTAL KNOWLEDGE 

In this chapter, literature review about the background of the study is 
provided in section 2.1, in order to demonstrate problem development and 
hypothesis construction of this study whereas in section 2.2, relevant techniques are 
discussed straightforwardly.  

 
2.1 Literature Review 

 Numerous researches discovered the relationship between radiographic 
features and histopathology results of pulmonary nodule. Nodule size, location, 
growth rate, irregular margin, thickness of cavity wall, and presence of air 
bronchogram, are sample features extracted from radiographs to undergo pulmonary 
lesion classification [12-14]. 

However, none of them has yet developed a classification system based on 
echoic features—features gathered from endobronchial ultrasound (EBUS) image. 
Since EBUS has been found to be novel in lung cancer diagnosis, it has been very 
useful in medical due to its characteristics of human-friendly sound wave unlike 
others’ harmful radiation exposure. In general, ultrasonography is a process which 
ultrasonic waves transmit from a transducer or a probe, travel into an area of 
interest, and echo back to the transducer to form a real-time image of the area as a 
video. Hence, echogenicity or echoic characters of the mass that varies by its density 
and properties leads to difference in image intensity. Ultrasound in lung or 
endobronchial ultrasound (EBUS) was introduced to help visualize internal bronchus 
and its echoic characters were found to have significant relationship with diagnosis 
results from histopathology. Major EBUS features to be considered in lung cancer 
diagnosis are homogeneity, margin continuity, and absence or presence of air 
bronchogram. Figure 4 (a-c) show samples of continuous margin, heterogeneity and 
presence of air bronchogram, respectively [15]. 
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(a) 

 
(b) 

 
(c) 

Figure 4 Samples of EBUS characteristics 
(a) continuous Margin (b) heterogeneity (c) presence of air bronchogram  

According to Kuo et al. [8], continuous margin, heterogeneity and absence of 
air bronchogram are three factors indicated malignancy of the lesions. The positive 
predictive value of any two out of the three factors and the negative predictive value 
of none of any three factors used to indicate lesion malignancy are 89.2% and 
93.7%, respectively. 

Although, two studies agreed that the heterogeneous pattern indicates the 
malignancy [8, 9], continuous margin and absence of air bronchogram arise a conflict. 
Kurimoto et al. suggested that non-continuous margin and air presence refer to 
malignant lesion [9] since cancer cells grow apart from their original cells, thus the 
non-continuous margin must indicate malignancy, whereas well-differentiated 
adenocarcinoma (WD)–one type of a cancer cell, seems to present internal air due to 
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its growth characteristics. This idea differs from the study of Kuo et al. which stated 
that the contrary features represent malignancy [8]. He argued that the cancer cell 
usually grows as solid. Therefore, it will conceal prior air bronchogram and reveal a 
sharp margin as a continuous margin on screen. Moreover, presence of air is mostly 
found, especially in pneumonia–a non-cancer cell, unlike a specific cancer cell as 
WD.  

Thus, the debate is centered on the issue of which echoic features can 
correctly differentiate lesion malignancy and how to computerize those features to 
reduce human-dependency and increase consistency. Since there is still an 
unclarified question among which characteristic of echoic features could be 
integrated in pulmonary lesion classification, solely homogeneity was consensually 
proven as a lung cancer predictor. As a result, our classification system will 
attentively automate and calculate only homogeneity. 

Apart from the aforementioned clinical findings, there is still work to be done 
on automatically generating other possible statistical features to represent lesion 
characteristics since multiple statistical features are found to be useful in cancer 
classification. According to McNitt-Gray et al. [10], gray-level co-occurrence matrix 
with eight levels and nine features were effectively used for feature extraction in 
computed tomography images of solitary pulmonary nodules. Moreover, Garra et al. 
[11] also supported that the use of features extracted form gray-level co-occurrence 
matrix, especially a combination of contrast and correlation, could possibly provide a 
high sensitivity in benign and malignant discriminability of ultrasonographic images in 
breast lesions. Hence, classification accuracy derived from an integration of clinical 
and statistical features could be at maximum. 

Another issue arises prior to EBUS feature extraction; it is how to figure out 
which frame of EBUS video should be select as a patient’s representative. According 
to Kurimoto et al. [9], an average time for EBUS is 8.38 minutes, which results in 
12,570 possible images due to video frame rate of 25-frame per second. However, in 
traditional process of performing EBUS characteristic identification, the doctor judges 
its characteristics based on a single frame, which obtained manually by briefly 
inspecting the whole video. Therefore, to automatically manipulate best frame 
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selection is a part of our goal. Since the best representative frame is considered to 
have the largest lesion region among others, boundary detection is thus essential in 
order to calculate the lesion area to select a representative frame. Additionally, 
defining boundary is similar to defining region of interest in which will be further used 
for homogeneity measurement.   

Various algorithms for detecting boundary have been proposed for ultrasound 
images used in different organs and tissues of human body, especially, in breast and 
prostate [16-18]. However, there is no recent study on detecting lesion boundary 
from EBUS.  Since an EBUS image is captured within a lesion using a mechanical 
radial ultrasound miniature probe, the perspective of lesion is not similar to other 
types of ultrasound images which are mostly coronal views deriving from curvilinear 
ultrasound probes.  

After the best representative frame is selected, and relevant features of both 
clinical features such as homogeneity and other statistic features are extracted, this 
set of features will be fed into a classifier to discover its classification accuracy and 
to be justified together with classifier’s parameters to obtain the maximum accuracy.  

 
2.2 Fundamental Knowledge 

2.2.1 Convert Grayscale into Binary 

Sometimes, only a black and white or a binary image is adequate for a 
specific calculation, unlike a grayscale or an RGB image, which tends to provide 
unnecessary information, difficult to manipulate, and time consuming. A binary image 
can be separated into a group of white pixels which is a group of interest, and a 
group of black pixels, which is a group of off-interest or refer to as background. If an 
image comes in a form of binary, multiple properties could be easily calculated; for 
instance, area, bounding box, centroid, minor axis length, major axis length, etc. 

Converting a grayscale image into a binary image is done by specifying a 
threshold. A standard threshold is a midpoint of an intensity range. Suppose that it is 
an 8-bit image consists of intensities ranging between 0-255, the following 
pseudocode demonstrates the function of grayscale-to-binary conversion. 
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    (   )                         (   )     
      (   )                    

 
where (   ) is any coordinate,  (   ) is a grayscale intensity at (   ), and  (   ) 
is a binary intensity (0 indicates black and 1 indicates white). 
 

2.2.2 Major Axis Length 

 Major axis length is used to determine the size of an object contains in a 
binary image. This length is calculated by drawing an ellipse to perfectly fit a binary 
object (white region) and return the ellipse’s length in pixel as the major axis length. 
Figure 5 illustrates the major axis of an ellipse. 
 

 
Figure 5 Major axis  

which is shown in red line 

 
2.2.3 K-Mean Clustering 

One of the most popular clustering techniques is called k-mean clustering 
which was first proposed by Stuart Lloyd in 1957, but was published in 1982 [19]. 
The concept of k-mean clustering is to first random by select k points and later 
calculate a distance between each given dataset to those k random points whether 
each data point in the dataset belongs to or closet to which k random point. After 
point assignment, the dataset is then separated into k groups. A new centroid of 
each group is calculated based on data points within its group and then substitutes 
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its prior centroid. Next, the process of assigning points to the closet k points or 
centroids and centroid recalculation is repeated again until the centroids are 
constant. Figure 6 represents k-mean clustering steps. 
 

 
   (a)      (b)      (c)      (d) 

Figure 6 K-mean clustering 
(a) initial k random points (k=3, presented in color), 

(b) assign data to closet k random points, 
(c) recalculate centroids of each clusters, and 

(d) iterate until centroids are stable 
 (http://en.wikipedia.org/wiki/K-means_clustering) 

2.2.4 Polar Coordinate System 

 Polar coordinate system is a two-dimensional system referring as (radius, 
theta) coordinate whose center or origin is at the center of a picture. Most of the 
polar coordinate system starts its system at the horizontal line on the right hand side 
and rotates counter clockwise. Thus, theta is an angle between the point and the 
horizontal line that points to the right whereas the radius is the distance from the 
origin to that point. The reference of a polar coordinate system is shown in Figure 7. 
 

http://en.wikipedia.org/wiki/K-means_clustering
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Figure 7 Polar coordinate system 

(http://en.wikibooks.org/wiki/Geometry_for_Elementary_School/Polar_coordinate_system) 

 

2.2.5 Density-Based Spatial Clustering of Applications with Noise 
(DBSCAN) 

Ester, Kriegel, Sander and Xu proposed an idea of data clustering based on 
data density called Density-based spatial clustering of applications with noise or 
DBSCAN [20]. DBSCAN has two major parameters to be considered;   (eps) and 
minPts. Eps represents the distance within a cluster while minPts is the minimum 
number of points to form a cluster. As depicted in Figure 8, when starting DBSCAN at 
any point A and searching for points within   distance, any particular point that can 
be reachable, will be assigned to cluster A. After the search, if the number of points 
in a cluster is less than minPts, this cluster is marked as noise. On the contrary, if 
there are sufficient points in the cluster; i.e. greater than or equal to minPts, this 
forms a cluster. 

 
 
 

http://en.wikibooks.org/wiki/Geometry_for_Elementary_School/Polar_coordinate_system
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Figure 8 DBSCAN  

where A represents a starting point of a cluster that has B and C as density-reachable 
points; thus they formed a cluster, while N is recognized as noise 

(http://en.wikipedia.org/wiki/DBSCAN) 

2.2.6 Second Order Derivatives 

 Second order derivative is used to measure rate of change of data by 
considering three points at a time. Eq.(1) below illustrates second order derivative 
calculation. 

     ( )     (   )     (   )    ( ( )) (1) 

where    represents any pixel, 
 ( )  represents intensity of that pixel, and 
  ( ) is the second order derivative at considering pixel  . 

 If there is a high change on the value at  , the second order derivative return 
extremely high negative value, whereas high positive value of second order 
derivative indicates low change in  . Zero second derivative refers to no change in  , 
    and    . 

 

2.2.7 Cubic Spline Interpolation 

Spline interpolation is an interpolation in piecewise polynomial fashion by 
sectioning predefined data into subsets and interpolating using lower-degree 

http://en.wikipedia.org/wiki/DBSCAN
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polynomial [21]. Therefore, spline interpolation can produce less error comparing to 
piecewise polynomial interpolation due to its lower order. Cubic or third-order spline 
interpolation is unlike third degree of polynomial interpolation that considers the 
whole dataset. It uses polynomial of degree three to interpolate over each interval 
by considering a pair of data to form spline functions and solve for their coefficients 
under an agreement that the functions must pass through the points and their first 
and second order derivatives should correlate with their in-between points.  The 
difference between cubic spline interpolation and interpolating cubic is shown in 
Figure 9. 

 

 
Figure 9 Comparison between cubic spline and interpolating cubic 

(http://www3.nd.edu/~msen/Teaching/NumMeth/BookSlides/Chapter16rev1.ppt) 

2.2.8 Entropy 

Entropy is a textural measurement of randomness of a grayscale image 
calculated by Eq.(2) [22]. 

                 (           (   ) ) (2) 

where    is a column vector of the number of pixels of each gray level 
where its row represents gray levels and the size of   is 
equal to the number of gray levels. 

http://www3.nd.edu/~msen/Teaching/NumMeth/BookSlides/Chapter16rev1.ppt
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2.2.9 Gray-Level Co-Occurrence Matrix (GLCM) 

 One of several useful statistical textural measurements is known as gray-level 
co-occurrence matrix, which is used to measure an occurrence of pixel i in 
accordance with pixel j in a specified direction such as a sample image depicted in 
Figure 10. Suppose that there is an 8-level image as illustrated in Figure 10(a), GLCM 
of size 8x8 is constructed corresponding to image levels as shown in Figure 10(b). A 
value in (i,j) pixel of GLCM indicates the number of occurrence of i related to j in a 
specified direction, in this case, the direction of 1-pixel to the right. As in pixel (1,1) 
(circled in red) in Figure 10(a), the number of occurrence of 1 followed by 1 to the 
right can only be seen once. Therefore, 1 is put in (1,1) of GLCM in Figure 10(b). 
Additionally, the value of (1,2) is equal to 2 because there are two occurrences of 1 
following by 2 to the right.  
 

 
(a)     (b) 

Figure 10 Gray-level co-occurrence matrix (GLCM) 
(a) a considered image (b) its GLCM 

(http://www.mathworks.com/help/images/ref/graycomatrix.html) 

  
Moreover, there are four features that can be extracted from GLCM, which are 

contrast, correlation, energy, and homogeneity. 
 

Contrast: the measurement of contrast of intensity between a pixel and its 
neighbor throughout an image or known as variance and inertia. Zero contrast 

http://www.mathworks.com/help/images/ref/graycomatrix.html
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suggests a constant image. The equation used to calculate contrast is shown in 
Eq.(3). 

 ∑      
  

 
 
 (   ) (3) 

where (   )  represents any value in GLCM, and 
 (   )  is the value at (   ) of GLCM. 
 

Correlation: the measurement of intensity correlation between a pixel and its 
neighbor throughout an image. The range of correlation is between -1 and 1 where 
NaN suggests a constant image. The correlation equation is demonstrated in Eq.(4). 

 ∑
(    )(    ) (   )

    
  

 (4) 

where        are the means of probability matrix GLCM along row wise   
and column wise  , and 

     are the standard deviations of probability matrix GLCM along 
row wise   and column wise  . 

 
Energy: the sum of square of pixels in GLCM or known as measurement of 

uniformity of energy, whose values are between 0 and 1 where one indicates a 
constant image. The energy equation is described in Eq.(5). 

 ∑      
  

 
  (5) 

where      represent row and column of GLCM, respectively. 
 

Homogeneity: the measurement of the distribution of closeness of pixels in 
GLCM to diagonal of GLCM. The homogeneity range is between 0 and 1 where 1 
shows a diagonal GLCM. The formula of homogeneity is illustrated in Eq.(6). 
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 ∑
 (   )

       
  

 (6) 

where (   )  represents any value in GLCM, and 
 (   )  is the value at (   ) of GLCM. 
 

 

2.2.10 Ray Tracing 

Ray tracing in computer graphic is described as a method to generate an 
image by observing the ray passes through a spatial image and rendering effects of 
ray on 3D objects [23]. Additionally, ray tracing can be applied in image processing by 
sampling image intensity on a particular direction of ray and plotting the path on a 2-
dimenesional plane. This plot could be used to identify a pattern of an image, 
especially when additional rays have been integrated in order to scan more sampling 
in more directions.  

 
2.2.11 Zero Crossing 

In mathematics, zero crossing is normally used to recognize a change of a sign 
of a function from negative to positive or vice versa [24]. It is also useful in image 
processing in term of texture analysis by capturing high changes in intensities of 
image texture. Suppose that a function represents intensity values, thus, the more 
the number of crossing through zero line, the more fluctuated of image patterns 
which could probably refer to heterogeneity. 

 
2.2.12 Artificial Neural Networks (ANNs) 

Artificial neural network is a computational model to mimic functions of a 
brain by processing multiple data in non-linear manner and being able to learn by 
adjusting data weights [25]. ANNs structure is an interconnection of nodes or neurons 
based on three major layers--input layer, hidden layer, and output layer—as 
illustrated in Figure 11. It composes of adaptable weights between each node pair of 
different layers and multiple learning algorithms such as back propagation method. 
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The common type of ANNs is three-layered feed forward ANNs with back propagation 
learning algorithms, which starts a process by feeding data into input layer, follows 
by combining random weights with these inputs, forwarding the combination to the 
hidden layer, propagating back the errors to adjust the weights accordingly, and then 
repeating the whole steps again until reaching the output layer with minimum error 
at the highest accuracy. Actually, in machine learning, input data should firstly be 
separated into three groups—training group which is used to construct a network 
model, validation group which helps to verify and stop the model, and test group 
which is used to provide independent dataset for measuring performance—before 
feeding into a network. Therefore, more data sample provided or additional data 
preprocessing could help increasing the accuracy. Additionally, increasing in the 
number of hidden layers not only yields higher accuracy, but also supports more 
complex processing. However, it may cause over fitting problem—a problem occurs 
when high accuracy of training data is achieved but low accuracy presented in test 
data.  

 

 
Figure 11 Configuration of feed-forward artificial neural networks 

(http://www.hindawi.com/journals/aai/2011/686258/fig1/) 
 

2.2.13 Cross Validation 

In classification, data are mostly separated into two disjoint sets of training 
and testing (or probably three sets including validating set to tune the train model) 

http://www.hindawi.com/journals/aai/2011/686258/fig1/
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where training set is used to create a classification model and test set is used to 
obtain a test accuracy of the model. However, to split data into a single training and 
test set known as hold-out method can yield inconsistent accuracy. K-fold cross 
validation is performed to overcome this problem by separating data into non-
overlapped k sets, constructing k experiments, holding kth group of data to be the 
test data and using the rest of data to train the model. There will be k independent 
models used to calculate an average cross validation test accuracy. The model with 
the highest test accuracy will be selected as the representative model. Figure 12 
shows 4-fold cross validation. Therefore, cross validation helps guarantee that data 
are used as both training and test data. Additionally, the common number of fold is 
10.  

 

 
Figure 12 Cross validation 

(http://research.cs.tamu.edu/prism/lectures/iss/iss_l13.pdf) 

 

2.2.14 Confusion Matrix  

Confusion matrix or contingency table is well-known in machine learning [26]. 
It helps to summarize the error and performance of supervised learning by showing 
both correct and incorrect classification. The column of confusion matrix represents 
the expectation or predicted class whereas its row represents the actual data or test 
outcome as shown in Figure 13. There are multiple terms that may be necessary for 
further contents, listed below: 

True positive (TP): The number of correct prediction as true 

http://research.cs.tamu.edu/prism/lectures/iss/iss_l13.pdf
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True negative (TN): The number of correct prediction as false 
False positive (FP): The number of incorrect prediction that first predict as 

false but the actual outcome is true 
False negative (FN): The number of incorrect prediction that first predict as 

true but the actual outcome is false 
Sensitivity: The ability of test to correctly predict which can be calculated by: 

               
  

     
 (7) 

Specificity: The ability of test to correctly exclude the false which is 
determined by: 

               
  

     
 (8) 

Accuracy: The ratio of correct prediction including true positives and true 
negatives obtained during classification which is described 
below:  

            
      

           
 (9) 
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Figure 13 Confusion matrix 

(http://en.wikipedia.org/wiki/Confusion_matrix) 

 

http://en.wikipedia.org/wiki/Confusion_matrix


 

 

21 

CHAPTER III 
METHODOLOGY 

 There are five steps in our purposed methodology as illustrated in Figure 14, 
which are preprocessing, boundary detection, best frame selection, feature 
extraction, and classification. 
 

 
Figure 14 Proposed methodology 

1. Preprocessing 

The input comes in the form of EBUS video, which composes of several 
frames or images. Each frame is required to be converted into grayscale and to crop 
out irrelevant portion such as metadata written on the screen, leaving only an actual 
image to be processed as shown in Figure 15.  
 

1. Preprocessing 

2. Boundary Detection 

3. Best Frame Selection 

4. Feature Extraction 

5. Classification 
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(a)      (b) 

Figure 15 Preprocessing image  
(a) before and (b) after converting to grayscale and cropping 

However, not all images contain lesion texture. There are some blank frames 
with no texture which appears black as shown in Figure 16(a)–or frames with solely 
artifacts as seen with a few white pixels as shown in Figure 16(b).  
 

 
(a) 

 
(b) 

Figure 16 Images to be eliminated 
(a) an image with no texture, (b) an image with artifacts 

Since texture appears as hyperechoic area or lighter area, the elimination of a 
blank frame can be done by converting a grayscale image into a binary image as 
illustrated in Figure 17, and checking further whether these white pixels should be 
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considered as a group of texture or not. Thus, any binary image, whose major axis 
length of white area is less than the threshold, is deleted. 

Additionally, a set of EBUS images may contain duplicated frames. Pixel-by-
pixel absolute difference of intensity of every consecutive frame is measured 
according to Eq.(10).  The differences are then clustered using k-mean clustering into 
a group of high difference to be maintained and a group of low difference to be 
omitted. 

 
Figure 17 Grayscale to binary image 

of the image in Figure 16(b) 

     ( )  ∑ ∑    (   )       (   ) 

 

   

 

   

 (10) 

where    is the ith frame of EBUS video, 
     is a frame prior to ith frame of EBUS video, 

    ( )  is a pixel-by-pixel absolute difference between ith and i-1th 
frame, 

   (   ) is an intensity at (x,y) of ith frame, and 
     are the height and width of EBUS frame. 

 

2. Boundary Detection  

After the preprocessing step, the remaining frames, which may best describe 
the patient lesion type, are obtained. Nonetheless, there is still a plenty of frames to 
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be considered. Actually, only a single EBUS frame is adequate to identify the result 
according to prior studies that required manpower to select the best frame and 
categorize EBUS characteristics. As such, we need to automatically select the best 
representative frame to further undergo feature extraction. The key to select the 
best frame is to firstly perform boundary detection since the best frame may contain 
the largest proportion of lesion, result in the largest area of boundary.  

Moreover, boundary detection is useful to identify a region of interest. While 
operating feature extraction, we should omit the area outside the lesion, which might 
interfere the result of feature calculation. The following steps are introduced in 
performing boundary detection for each EBUS frame. 

 
2.1 360-Degree Iterative Maximum Intensity Detection 

Each pixel of an image is transformed from Cartesian coordinates (x, y) into 
polar coordinates (radius, theta) by firstly assigning the central pixel of an image as 
the origin of the polar system. Then, an image is divided into 360 sectors according 
to the degree of theta. Regarding echogenicity of the boundary, the actual boundary 
tends to have hyperechoic characteristics. Thus, a pixel with maximum intensity of 
each sector is selected as a boundary candidate. If there are two or more pixels 
having the same maximum intensity, the innermost pixel or the pixel with the 
shortest radius is selected. After the candidate pixels of all sectors are obtained, the 
new origin of the polar system is calculated according to these candidates. Next, the 
process of detecting a pixel with maximum intensity of each sector is iterated again 
until the new origin is stable or is the same as the previous origin. The reason behind 
moving polar origin is that not every bronchoscopy can obtain a video with a lesion 
at the center since it depends on the location of the lesion within the lung whether 
a bronchoscope can go within or be adjacent to a lesion. Hence, samples of final 
boundary candidates are illustrated as yellow dots in Figure 18. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 18 360-Degree iterative maximum intensity detection 
(a)-(e) results of 360-degree iterative maximum intensity detection of round  1-5, 

respectively 
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2.2 Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 
Iteration 

After all candidate pixels are acquired, these pixels have to be identified 
whether they are part of a lesion boundary or not by using Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN), as a clustering method to divide 
them into clusters. Assuming that the minimum number of points to form a cluster is 
10; otherwise, they are considered as noise. Each cluster forms a boundary segment. 
By heuristic evaluation, 10 pixels are small enough to separate coordinates into 
consecutive boundary segments, and large enough to consider a high density group 
of coordinates as another segment, but not to recognize them as noise. Then, 
statistical data of individual clusters, including standard deviation of segments’ 
radius, are calculated. DBSCAN is iterated over a cluster that has a standard deviation 
of radius higher than 10. If all clusters have their standard deviation of radius below 
10, they are highly coherent which cannot be subdivided any further. Therefore, this 
process terminates. Figure 19 depicts a sample result of iteration over DBSCAN. 
Different color distinctively labels the clusters. 
 

 
Figure 19 Result after DBSCAN iteration 
where clusters are separated by colors 
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2.3 Elimination by Second Order Derivative and Global Average Intensity 

In order to eliminate clusters that do not belong to a boundary, instead they 
are actually noise with high intensity, second order derivatives of local mean radius 
of each cluster is used and can be calculated according to Eq.(11). If there is any 
cluster whose second order derivative of local mean radius is higher than the mean 
radius among three considering consecutive clusters and also has the local mean 
intensity lower than the global mean intensity, it will be removed. The result after 
performing elimination by second order derivative is shown in Figure 20.  

    ( )   (   )   (   )     ( ) (11) 

where    = 1,2,..nth clusters, 
  is the number of clusters arranged by theta, 
 ( )  is the average radius of xth cluster, 
 (   )   is the average radius of  (x-1)th cluster, 
 (   )   is the average radius of (x+1)th cluster, 
  ( )  is the second order derivative of xth cluster. 

  

 
Figure 20 Result of elimination by second order derivatives and average intensity 
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2.4 Polar Coordinate System Origin Adjustment  

After eliminating noise, the origin of polar system is then relocated back to 
the image center. Therefore, the radius and theta of the remaining polar coordinates 
should be recalculated according to the new origin in order to be consistent across 
all data. 

 
2.5 Cubic Spline Interpolation 

Finally, all of the pixels are reconnected to each other while the missing 
representative pixels are estimated by cubic spline interpolation with theta (x) and 
radius (y) as the input data. Consequently, a spline function is used to estimate the 
unknown radii to match with the given thetas in a specific range of -180 to 180 
degree. The result of this process is demonstrated in Figure 21.  
 

 
Figure 21 Result after spline interpolation 

3. Best Frame Selection  

Since EBUS is recorded in term of video, which are still composed of several 
frames or images after preprocessing, an issue arises during selecting the best frame 
to represent patient’s lesion texture. 
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When performing boundary detection, some parameters are needed to be 
recorded in order to operate the best frame selection such as locations of 
interpolating boundaries and the number of incomplete boundary sectors before 
interpolation. Best frame in this case is selected based on two properties: the largest 
proportion of area of minimum bounding box of boundaries versus the whole image 
area, and the highest ratio between the number of boundary sectors before 
interpolation and 360—a maxima of boundary sectors due to 360-degree boundary 
division. Eq.(12) demonstrates the criteria for best frame selection. 

 

                (
      

           
 

          

   
) (12) 

where            is the number of pixels in the image. 
        is bounding box area, and 
           is the number of boundaries before interpolation. 

 

4. Feature Extraction  

Next, the best frame of each data sample is processed. The image is then 
normalized to the range [0, 255] as depicted in Figure 22. A logical mask is 
constructed according to the detected boundary by filling the area inside the 
boundary with one and filling with zero everywhere else as shown in Figure 23. This 
mask is used to scope the region of interest (ROI) of the image.  
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Figure 22 Result after intensity normalization 

 
Figure 23 Logical mask 

After that, the best frame is overlaid with the mark (shown in Figure 24) and 
cropped according to a minimum bounding box of the mask to eliminate 
uninterested black area, as demonstrate in Figure 25, in order to further extract 
features; for instance, entropy, contrast, correlation, energy, and homogeneity. With 
the help of gray-level co-occurrence matrix (GLCM), it is easy to calculate contrast, 
correlation, energy and homogeneity. By specifying an offset or a distance between 
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the pixel of interest and its four neighbors at four different angles which are 0, 45, 90, 
and 135-degree, can result in four different GLCMs for four features. Furthermore, we 
suggest another feature to measure homogeneity called Adaptive Ray Tracing. This 
method composes of two steps as follows:  

 

 
Figure 24 Best frame overlaid with a mask 

 
Figure 25 After crop the image in Figure 24 

4.1 Adaptive Ray Tracing 

Adaptive ray tracing is constructed by drawing 4-direction lines through the 
center of the image which contains the central black hole or a probe. These lines 
consist of horizontal line (0-degree), vertical line (90-degree), and two diagonal lines 
(45 and 135-degree). The intensities along the line are recorded in an array to be 
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plotted as a graph of array index versus intensity as depicted in Figure 26. As the 
result, four graphs in Figure 27 represent the intensities collected by each illustrated 
line. 

 
Figure 26 4-Direction of ray tracing through an image 

4.2 Crossing Count 

Zero-crossing is a process which counts the number of times in which points 
on each line from ray tracing pass through a horizontal line of zero in order to 
estimate the fluctuation of a line. On the other hand, we develop our own idea by 
setting a crossing level at average intensity as shown in Eq.(13), since the graph that 
we mention about is a record of intensity levels. Crossing count is performed to 
count the number of times that the intensities pass through the crossing level. In 
order to measure the lesion echogenicity and to classify whether it is homogeneous 
or heterogeneous pattern, the smoothness of the graph is needed to be calculated. 
From the assumption that the intensities along the tracing path must be uniform for 
homogeneous pattern, the intensity along the line could show fewer changes than 
heterogeneous pattern. Thereby, the higher number of the crossing count, the more 
chaotic of the graph is inversely proportional to the graph smoothness. An example 
of 4-direction ray tracing and its crossing count are demonstrated in Figure 27.  

                               (13) 
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(a) 

 
(b) 
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(c) 

 
(d) 

Figure 27 4-Direction ray tracing and its crossing line  
where blue line indicates ray tracing, red line indicates its crossing level whereas red 

asterisks represent crossing points (a) 0-degree (b) 90-degree (c) 45-degree  
(d) 135-degree ray tracing 
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Additionally, the number of boundary sectors before interpolation 
(        ) available in the process of best frame selection is also involved in the 
feature list due to its properties that may represent continuous/non-continuous 
margin characteristics. 

Furthermore, continuous/non-continuous margin is naturally defined by the 
number of sweeping angles of the boundary sector before interpolation. Thus, the 
longest consecutive non-interpolated boundary sectors are counted in number to be 
presented as another feature. 

The following table (Table 1) describes 23 features that will be further 
applied for classification. 
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Table 1 Feature list for classification 
No. Feature 
1 Entropy 
2 Contrast at 0-degree 
3 Contrast at 45-degree 
4 Contrast at 90-degree 
5 Contrast at 135-degree 
6 Correlation at 0-degree 
7 Correlation at 45-degree 
8 Correlation at 90-degree 
9 Correlation at 135-degree 
10 Energy at 0-degree 
11 Energy at 45-degree 
12 Energy at 90-degree 
13 Energy at 135-degree 
14 Homogeneity at 0-degree 
15 Homogeneity at 45-degree 
16 Homogeneity at 90-degree 
17 Homogeneity at 135-degree 
18 Ray Tracing and Crossing Count at 0-degree 
19 Ray Tracing and Crossing Count at 45-degree 
20 Ray Tracing and Crossing Count at 90-degree 
21 Ray Tracing and Crossing Count at 135-degree 
22 Number of Boundary Sectors before Interpolation 
23 Number of Longest Consecutive Boundary Sectors before Interpolation 

 
5. Classification 

Data are classified using multiple-layer feed-forward artificial neural networks 
(ANNs) with back-propagation algorithm of 10 hidden layers and 10-fold cross 
validation. Figure 28 illustrates the network model. 
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Figure 28 Network model 
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CHAPTER IV 

EXPERIMENTAL RESULTS 

Input data are video files, which were recorded during endobronchial 
ultrasonography at Phramongkutklao Hospital, Bangkok, Thailand during 2011-2013. 
The data are composed of 31 samples of benign and 65 samples of malignant 
lesions, results in 96 videos in total as illustrated in percent in Figure 29. Additionally, 
the video file format is MPEG-1 with a dimension of 576 x 720 pixels or 288 x 352 
pixels, which was captured at frame rate of 25 frames per second.  

 
Figure 29 Proportion of each lesion type 

The histopathology results of the patients which were confirmed after 
reviewing patient lesions under microscope, are set as the ground truth data for 
evaluating the proposed method. Test accuracy of each fold is illustrated in Table 2, 
which yield an average cross validation test accuracy of 66.67%. The best model, 
which achieved maximum test accuracy at 80%, is the model of third fold.  

 
Table 2 Test accuracy of every fold of 23 features 

ith Fold 
Average 

1 2 3 4 5 6 7 8 9 10 

70 66.67 80 70 60 77.78 55.56 60 66.67 60 66.67 

Benign 
32% 

Malignant 
68% 

Lesion type 
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Figure 30 (a-c) illustrate the confusion matrices of training, test, and all data, 
which are classified by the best model. Mostly in clinical, the term “positive” usually 
refers to a condition of having a disease or having a cancer cell (malignant) in this 
case, whereas the term “negative” refers to a condition of rejecting the disease or 
not having a cancer cell (benign). Therefore, the confusion matrix shown here is a 
table plotted between the target results obtained from the doctors represented in 
columns of malignant (positive) and benign (negative), and the output results 
obtained from the best classification model represented in rows of malignant 
(positive) and benign (negative).  

For 86 training data in Figure 30(a), the best model performed 100% correct 
classification. On the other hand, for the 10 test data shown in Figure 30(b), the 
number of true positive or the number of lesions targeted as malignant and the 
output as malignant is 7 while the number of true negative or the number of lesions 
targeted as benign and the output as benign is 1, result in 80% correct classification. 
For the incorrect classification, the number of false positive or the number of lesions 
targeted as benign and the output as malignant is 0, whereas the number of false 
negative or the number of lesions targeted as malignant and the output as benign is 
2. The test sensitivity, specificity and accuracy are 77.78%, 100% and 80%, 
respectively. 

 

 
(a) 

 
(b) 
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(c) 

Figure 30 Confusion matrices of the best model of 23 features 
with (a) training (b) test (c) all data 

 
For the overall data represented in Figure 30(c), the whole dataset achieves 

percentages of true positive, false positive, true negative and false negative, at 65.6, 
0, 32.3 and 2.1, respectively, resulted in 97.9% accuracy with 96.9% sensitivity and 
100% specificity.  
 The final weights of every feature after weight adjustment in neural networks 
are demonstrated in Table 3 arranged by their ranks in the last column. Weight ranks 
are calculated by the average of the absolute weights in every neural network layer 
of each feature. Entropy, ray tracing and crossing count at 180-degree, homogeneity 
at 45-degree, ray tracing and crossing count at 45-degree, homogeneity at 0-degree, 
correlation at 135-degree, ray tracing and crossing count at 0-degree, correlation at 
180-degree, number of boundary sectors before interpolation, correlation at 45-
degree are the top 10 features among 23 features. 
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Table 3 Weight rank of 23 features 

No. Feature Title Rank 

1 Entropy 1 
19 Ray Count at 180-degree 2 
16 Homogeneity at 45-degree 3 
20 Ray Count at 45-degree 4 
14 Homogeneity at 0-degree 5 
9 Correlation at 135-degree 6 
18 Ray Count at 0-degree 7 
7 Correlation at 180-degree 8 
22 Boundary Sectors before Interpolation 9 
8 Correlation at 45-degree 10 
5 Contrast at 135-degree 11 
4 Contrast at 45-degree 12 
23 Longest Consecutive Boundary Sectors 13 
2 Contrast at 0-degree 14 
21 Ray Count at 135-degree 15 
10 Energy at 0-degree 16 
12 Energy at 45-degree 17 
11 Energy at 180-degree 18 
6 Correlation at 0-degree 19 
17 Homogeneity at 135-degree 20 
3 Contrast at 180-degree 21 
13 Energy at 135-degree 22 
15 Homogeneity at 180-degree 23 
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CHAPTER V 
DISCUSSIONS AND CONCLUSION 

As depicted in Table 3, the proposed features namely ray tracing and crossing 
count at 180-degree, 45-degree, 0-degree and number of boundary sectors before 
interpolation are at 2, 4, 7 and 9th rank, respectively are probably important features 
to differentiate between benign and malignant lesions. After considering weight rank 
table, energies at any direction seem to be at low ranks (16, 17, 18, and 22th) which 
implies that they have less weights or have no effect toward lesion classification. 
Thus, energies were excluded from the feature list, leaving only 19 features, and this 
list then fed to reconstruct a new classifier. The test accuracy results of every fold 
are shown in Table 4. The average cross validation accuracy of 19 features is 
approximately improved by 2%, compared to 23 features.  

 
Table 4 Test accuracy of every fold of 19 features 

ith Fold 
Average 

1 2 3 4 5 6 7 8 9 10 

50 77.78 60 77.78 60 77.78 90 60 77.78 50 68.11 

 
The best model using 19 features is at 7th fold which achieved 100%, 90%, 

99% of training, test, and overall accuracy as presented in Figure 31(a-c), respectively.  
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(a) 

 
(b) 

 
(c) 

Figure 31 Confusion matrices of the best model of 19 features 
with (a) training (b) test (c) all data 

 
Weights of 19 features of the best model are listed in Table 5. Our proposed 

features such as number of boundary sectors before interpolation, ray tracing and 
crossing count at 135-degree, 0-degree, number of longest consecutive boundary 
sectors before interpolation, ray tracing and crossing count at 45-degree and 180-
degree might possibly be the key features to distinguish between benign and 
malignant lesion since they acquire the rank of 1-5 and 7, respectively.  
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Table 5 Weight rank of 19 features 

No. Feature Title Rank 

22 Boundary Sectors before Interpolation 1 
21 Ray Count at 135-degree 2 
18 Ray Count at 0-degree 3 
23 Longest Consecutive Boundary Sectors 4 
20 Ray Count at 45-degree 5 
1 Entropy 6 

19 Ray Count at 180-degree 7 
17 Homogeneity at 135-degree 8 
14 Homogeneity at 0-degree 9 
16 Homogeneity at 45-degree 10 
15 Homogeneity at 180-degree 11 
2 Contrast at 0-degree 12 
9 Correlation at 135-degree 13 
8 Correlation at 45-degree 14 
7 Correlation at 180-degree 15 
6 Correlation at 0-degree 16 
5 Contrast at 135-degree 17 
3 Contrast at 180-degree 18 
4 Contrast at 45-degree 19 

 
The one and only incorrect classified sample in this model is demonstrated in 

Figure 32 which show unclear lesion boundary and high noise disturbance, results in 
wrong boundary detection and incorrect classification.  
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(a) 

 
(b) 

 
(c) 

Figure 32 Sample of incorrect classification 
(a) best frame (b) normalized best frame (c) normalized best frame overlaid by 

detected boundary 
 
As a result, the proposed method of 19 features achieves the average cross 

validation test accuracy at 68.11% which is acceptable due to a novel research in the 
area; however, it may not be applicable and adequately reliable to practically apply 
in the real world without the doctor. Hence, there are some limitations that could be 
overcome to further improve this study which are described as follows: 
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First, one of the limitations that commonly known is the number of samples, 
which in this case, is composed of 96 lesions but might not be sufficient for 
generating accurate classification. The more input provides, the more solid result can 
be achieved. Thus, more data may be required to be collected and retested on this 
methodology to ensure the results.  

For a traditional process, best frame was chosen manually by the doctor 
during the time of bronchoscopy or after which may require a lot of efforts for the 
doctors to review the video. As we select the best frame from our automatic 
approach, there may be some mistake. Hence, an evaluation of best frame selection 
should be separately performed prior to classification process. Besides proportion of 
lesion area and number of captured boundary sectors, intensity such as contrast or 
other conditions may be included in the best frame selection criteria to possibly 
increase the accuracy.  

Additionally, as mentioned before that noise disturbance could affect 
boundary detection and classification. Noise reduction before boundary detection or 
feature calculation may be able to yield correct boundary detection and higher the 
accuracy. 

In the step of boundary detection, there are some special cases of EBUS 
images which cause unexpected boundary detection, such as images with high 
presence of air linear bronchogram, as illustrated in Figure 33(a), and high absence of 
lesion margin as depicted in Figure 33(b). For the high presence of air bronchogram, 
the texture inside lesion is non-uniform and hyperechoic which is difficult to 
distinguish between boundary and air bronchogram, whereas, in high absence of 
lesion margin, more than 50% of lesion boundary disappear, due to an inappropriate 
frame selection. Thus, further study may be required to solve these problems. 
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(a) 

 
(b) 

Figure 33 Sample of EBUS images  
with (a) high presence of air linear bronchogram 

(b) high absence of lesion margin 
 
Moreover, discovering more useful features, deploying some standard feature 

selection and adjusting classifier’s parameters or even testing on different classifiers 
may generate the better accuracy. However, as far as we tried other classifiers with 
default parameters such as decision tree (J48), Naïve Bayes, and SVM, we have found 
that neural networks with 10 hidden layers reveals the best accuracy among others. 

In summary, this paper proposes a promising approach with acceptable 
accuracy to eliminate non-texture images from video, detect lesion boundary from 
EBUS image, select the best representative frame among the whole video, extract 
useful features, and finally classify the lesion according to those features. As a result, 
the proposed method could help assist the doctors in automatically classifying 
pulmonary lesions. 
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