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CHAPTER 1 CHAPTER I 

INTRODUCTION 

1.1 Background and Significance of the Problem 
Wireless sensor networks (WSNs) are a group of wireless nodes that are 

connected together to form a network. These nodes are equipped with sensors for 
sensing the surrounding environmental properties, such as temperature, pressure, 
humidity, light intensity, acceleration, etc. The main constrains of wireless sensor 
networks are limited computing capability, limited energy, and low communication 
bandwidth. To make measured data from those sensors applicable, we often need to 
know the location. 

Localization is the task of identifying the location of an object. There are wide 
range of applications based on localization, such as automated wireless sensor network 
deployment, asset tracking, traffic management, surveillance system, location-aware 
advertising and geographical routing algorithms. An example of well-known localization 
system is Global Positioning System (GPS). Using GPS in WSNs suffers from high cost, 
power consumption, and incapability for indoor environment. 

Let see some situations that benefit from the localization algorithm. One 
application for WSNs is environmental monitoring. Thousands of sensor nodes are 
randomly deployed from the plane in a large area, i.e. a forest. It would be a pleasure to 
know all these node locations automatically, since using the manpower to manually 
locate each sensor node location would be impractical in this case. To overcome the 
problem, one can equip a few sensor nodes with GPS and the rest of the sensor node 
locations can be found with the localization algorithm. Another application is indoor 
location tracking. Some nodes are deployed at fixed known locations all over the area of 
interest. Other nodes are carried by people or attached to the objects. These nodes are 
moving around and we can find their locations by running the localization algorithm 
iteratively. 
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Fig. 1.1 Categorization of localization algorithms. 

There are two main categories of localization algorithms; range-based 
localization and range-free localization. The categorization is illustrated in Fig. 1.1. In 
range-based localization, we need to measure the distance between two nodes. The 
internode distance can be estimated from Received Signal Strength Indicator (RSSI), 
Time of Arrival (ToA), Time Difference of Arrival (TDoA), or Angle of Arrival (AoA). These 
properties can be measured by several signal types, e.g. radio frequency signal, 
infrared signal, ultrasound signal, light signal, and ultra-wideband signal. RSSI provides 
a low cost implementation, but it often suffers from measurement noise. Thus it provides 
low accuracy. ToA and TDoA require precise time synchronization between wireless 
nodes. AoA requires additional hardware to perform signal’s direction detection. The 
estimated distances can then be used to estimate location by localization algorithms, 
such as multilateration [1], particle filter [2], Kalman filter [3], and maximum likelihood 
[4]. In range-free localization, the distance information is not required. The location is 
directly approximated from the measured quantity. It is often based on the connectivity 
information, e.g. hop count. The examples of range-free localization are DV-Hop [5] and 
APIT [6]. For a review of different techniques for localization in WSNs, please see [7], 
[8].  

Support Vector Machines (SVMs) [9] are among the best off-the-shelf machine 
learning algorithms and have been used in various field of applications, i.e. handwritten 
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recognition, speaker verification, object detection, bioinformatics, image retrieval, 
webpage categorization, financial time series prediction and remote sensing data 
analysis. SVMs can also be applied to the localization problem and provide better 
accuracy when compared to other localization algorithm [10], [11]. The first work that 
makes use of SVMs for the localization problem in wireless network is perhaps [11]. By 
measuring RSSI in wireless LANs, SVMs can be used to classify node location at room 
level accuracy or performing regression for exact node location. SVMs are then applied 
to the localization problem in WSNs [12]. The work in [12] uses RSSI from reference 
nodes as a data input. The algorithm divides the localization area into multiple 
classification regions that cover the whole sensor network area. The classification 
regions take the shape of circle. To enable fine-grained localization, the center of 
multiple regions, in which the target node is predicted to be contained, are averaged 
together. Nodes in the border area can receive less RSSI information, causing these 
nodes predicted location to bias toward the center of localization area. Expanded region 
area coverage is proposed in [13] to avoid the problem of border effect. The SVMs can 
also be extended to three-dimensional localization problem [14]. The localization 
classification area can be divided in a hierarchical manner for efficiency [10]. LSVM is 
proposed and it considers the use of hop count information. Some works [15], [16], [17] 
also try to tackle the SVM localization problem of mobile node. Combine Sensor 
Scheduling with SVM localization to perform tracking is considered in [15]. The 
threshold of RSSI variation [16] is used to determine whether the node has moved or 
not. In this way, the unnecessary recomputation of static node location can be avoided. 
In [17], the dual layer particle filter is proposed. The first layer uses SVM to estimate the 
coarse location, then the second layer uses particle filter to estimate accurate location 
from coarse location in the first step. For robustness to the large data set, [18] use 
ensemble support vector regression by dividing the whole network into several 
subnetworks. Different formulation of regression for SVM localization are used  in several 
works, e.g. LS-SVR for mapping RSSI of acoustic signal to location [19],  -SVR for 
mapping RSSI of WLANs [11], and [20] compares  -SVR, LS-SVR, and complex-valued 
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 -SVR. ToA and TDoA information can also be used in SVM localization, as shown in 
[21], [22]. 

Advantages of SVMs-based localization are as follows: (1) It is range-free 
localization. We can easily get hop count or RSSI and let SVMs directly learn mapping 
function from these data sources to the location. There is no need to find distances 
between nodes. No extra hardware is required. (2) Comparing to other range-free 
localization method, SVMs-based method has good performance. 

In this thesis, we try to improve the accuracy of SVMs-based localization system. 
We propose a framework for utilizing multiple data sources. We rely on only connectivity 
data, i.e. hop count. By varying transmission power of wireless node, we can generate 
multiple hop count data sources. The proposed method can be applied to both 
classification and regression formulation of SVMs. We additionally discuss on the topic 
of selecting optimal communication ranges to minimize the localization error. The 
simulation study is also performed extensively by varying some network parameters 
such as reference node density, communication range, coverage hole, reference node 
location error, and communication model noise. The simulation result demonstrates the 
advantage of using multiple data sources instead of using single data source. 

1.2 Research Objectives 

1.2.1 Propose a localization algorithm in WSNs based-on SVMs in both 
classification case and regression case. 

1.2.2 Improve localization accuracy by utilizing hop count data from multiple 
transmission power. 

1.2.3 Study the performance of the proposed localization algorithm by simulation. 

1.3 Research Scope 



    5 
 

1.3.1 Design the localization algorithm in WSNs. 

1.3.1.1 WSNs contain reference nodes and target nodes. 

1.3.1.2 All nodes can function as a router. 

1.3.1.3 All node locations are assumed to be static. 

1.3.1.4 The localization area is assumed to be a 2-dimensional square area. 

1.3.1.5 The localization algorithm is based on SVMs, both classification case 
and regression case. 

1.3.1.6 The SVMs training process is centralized. 

1.3.1.7 Use hop count information as features to train SVMs. 

1.3.1.8 The transmission power of nodes can be adjusted to vary the 
communication range. 

1.3.1.9 Hop count information is based on shortest path routing. 

1.3.2 Simulation study of the proposed localization algorithm. 

1.3.2.1 The simulation study is performed in MATLAB. 

1.3.2.2 Compare the localization error of classification case and regression 
case. 

1.3.2.3 Study the choice of kernel functions; linear kernel and RBF kernel. 

1.3.2.4 Study the effect of reference node density. 

1.3.2.5 Study the effect of coverage hole problem. 

1.3.2.6 Study the effect of transmission power variation. 

1.3.2.7 Study the effect of noise on reference node location error. 
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1.3.2.8 Study the effect of noise on communication range. 

1.3.2.9 Comparing different levels of data sources integration; early level and 
intermediate level. 

1.3.2.10 Choosing the optimal communication ranges by evaluating mutual 
information criterion. 

1.4 Expected Benefits of Research 

1.4.1 Understand how to apply SVMs to the problem of localization in wireless 
sensor networks. 

1.4.2 Improve the localization accuracy of SVMs-based localization algorithm. 

1.4.3 Understand the performance of the proposed localization algorithm. 

1.5 Thesis Organization 
The remaining of this thesis is organized as follows: Chapter II presents a brief 

review of SVMs. We take a look at both classification and regression formulations of 
SVMs; SVC and SVR. Chapter III explains how to apply SVMs to the localization 
problem. Chapter IV shows how to utilize multiple communication ranges in localization. 
We also use mutual information as criteria to select optimal communication ranges. In 
chapter V, we analyze the performance of our proposed localization method from 
simulation study. Chapter VI is the conclusion and some suggestions for future work. 

 

 

 



 
 

CHAPTER 2 CHAPTER II 

BACKGROUND KNOWLEDGE 

2.1 Machine Learning 
Machine learning is a process of discovering useful information or knowledge 

from the given data source. The machine learning process consists of several steps as 
illustrated in Fig. 2.1. The process begins by collecting all the data. This data can be 
divided into two data sets, the training data and the testing data. Both two data sets are 
passed through pre-processing, e.g. filtering noise, removing irrelevant data, 
normalizing, and scaling data. The training data is then applied to suitable choice of 
learning algorithms to construct the model that represents some knowledge on the data. 
The testing data can be applied to the model to get desired output. The post-processing 
may be used to filter out non-useful discovered knowledge. Depending on the particular 
learning task, not all of the steps above are required. 

 
Fig. 2.1 Machine learning process data flow. 

We can categorize the learning task into three categories; supervised learning, 
unsupervised learning, and semi-supervised learning. Supervised learning learns from 
labeled data, e.g. SVMs, k-nearest neighbor (k-NN), Neural Network, AdaBoost, and 
Decision Tree. Unsupervised learning learns from unlabeled data, e.g. k-means, k-
medoids, mean shift, and Expectation-Maximization (EM) algorithm. Semi-supervised 
learning learns from both the labeled data and unlabeled data, e.g. TSVM, and one-
class SVM. 
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2.2 Statistical Learning Theory 
Suppose there are   data pairs        , which are drawn independently from the 

identical unknown joint distribution function       , where    denotes the     data point 
and    denotes the corresponding label of   . The first   data pairs,            
            , are assumed to be training data. The rest of data pairs,               

            , are assumed to be testing data. The training data pairs         are 
given. The testing data points    are given, but the testing data labels    are unknown. 
We want to learn the function parameter   of the decision function         that predicts 
the label    from its data point   . In a classification problem, the predicted label is a 
discrete set of classes, e.g.           . In a regression problem, the predicted label 
is a continuous real value, e.g.      . 

The expected risk, which we ultimately want to minimize, is defined as 

                         (2.1) 

The empirical risk is the mean error of the training data set 
 

                        

 

   

  (2.2) 

Classical learning methods use empirical risk minimization (ERM) principle. By 
minimizing     , one hopes to minimize   as well. However, the consistency may not 
hold [23]. The learned function may overfit the training data set, so that it may not 
generalize well to the whole data distribution. 

If the function   is too complex, the overfitting will occur. If the function   is 
overly simplified, the underfittting will occur. We must somehow control the capacity of 
the function  . Since the distribution        is unknown, we cannot evaluate (2.1) 
directly. Instead, structural risk minimization (SRM) principle [23] minimizes both      
and capacity term  . The expected risk   is bounded as shown in Fig. 2.2.  
                    (2.3) 
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The parameter   controls the tradeoff between minimizing      and minimizing  . The 
capacity term   could be quite difficult to find, but can be estimated from growth 
function, VC dimension, or fat shattering dimension. 

 
Fig. 2.2 The bound of testing error as the sum of training error and capacity term. 

2.3 Maximum Margin Hyperplane 
Let us begin with the simple separable binary classification problem in 2D space, 

    
 , shown in Fig. 2.3. The circle and rectangle represent different data classes. 

Let’s assume that circle class and rectangle class have label    equal to 1 and -1, 
respectively. 

 
Fig. 2.3 Classification problem with different choices of separating hyperplane in 2D space. 

We can draw a line to completely separate these two data classes. For a more 
general case when the dimension of    is more than 2D, this line becomes a hyperplane. 
The decision function is defined as a hyperplane 
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                    (2.4) 

Given that 
 

         
               
              

  (2.5) 

The loss function for this binary classification is defined as 
                           

                   
                    

  (2.6) 

There are many choices for the hyperplane that can perfectly separate the data points. 
Which hyperplane is the optimum? 

 
Fig. 2.4 Classification problem with maximum margin hyperplane in 2D space. 

The optimum hyperplane must generalize well to be able to classify unseen 
testing data points correctly. We choose the maximum margin hyperplane. Fig. 2.4 
illustrates the concept of maximum margin hyperplane. Assume that the data points can 
be completely separable by the separating hyperplane           . The data points 
closest to the separating hyperplane satisfy             . Let     be the norm of  . 
The perpendicular distance from the origin to the hyperplane is  

   
. The margin, the 

perpendicular distance of the closest points to the separating hyperplane, is defined as 
 

   
. 

From geometry interpretation, minimizing     is equivalent to maximizing the 
margin. Without loss of generality, we consider minimizing  

 
     instead of    . We 

get the following constrained optimization problem. 
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Minimize 
 

 
      (2.7) 

subject to                        (2.8) 

The constraint functions are derived from the loss function itself, i.e. no misclassification 
for all training data points. Refer to (2.3), this means that the empirical error term 
        is zero, while minimizing the margin     is analogous to minimizing capacity 
term     . 

We can solve this constrained optimization problem by using Lagrange 
multipliers      and Lagrangian 
 

   
 

 
                        

 

   

 (2.9) 

This is the primal problem, but we can form a dual problem according to the following 
KKT conditions 
  

  
      (2.10) 

  

  
     (2.11) 

The conditions above lead us to 

         

 

   

 (2.12) 

          

 

   

 (2.13) 

By substituting (2.12) and (2.13) into (2.9), we get the dual form of the quadratic 
programming problem  

Maximize        
 

 
                 

 

   

 

   

 

 

   

 (2.14) 

subject to               (2.15) 

      

 

   

   (2.16) 
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We can obtain the decision function that can be express in term of    and         instead 
of       . By substituting (2.13) into the original decision function (2.4), the decision 
function becomes 
 

                       

 

   

  (2.17) 

For any     , the corresponding data input    is called support vector. These support 
vectors are used in the calculation of the decision function, while those non-support 
vectors        do not involve in the calculation. After the training phase, we only need 
to store these support vectors and their associated coefficients for the training phase. 
Also, removing non-support vectors from the training data does not affect the resultant 
optimal hyperplane. Please note that, for the dual form problem, all input data   only 
appear in the terms of dot products        . This observation will let us apply the kernel 
trick to the problem. 

2.4 Kernel Function 
An example of how mapping data to a higher dimensionality can help 

classification is shown in Fig. 2.5. In this example, the problem is not linearly separable 
in the original input data space. We map the space of         into the polynomial space 
of degree 2,                     , via the mapping function    . The figure on the 
right side shows that the problem becomes linearly separable in the space of 
     

      
  . 

 
Fig. 2.5 Mapping from original data space into a new feature space that is linearly separable. 
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The kernel function is defined as 
                       (2.18) 

where     is the inner product operator such that            . 
The function      maps data   in input data space   into some feature space 

 . By using kernel, one doesn’t need to compute      explicitly. For the kernel function 
to be applicable, it must satisfy Mercer’s Theorem. The kernel matrix has to be positive 
semi-definite. 

Intuitively, kernel measures the similarity between a pair of data points,   and   . 
We can apply the kernel trick to maximum separating hyperplane problem by replacing 
       with the kernel function        . This kernel trick can be applied to other learning 
algorithms as well, such as Kernel Principle Component Analysis (KPCA), and Kernel 
Fisher Discriminant (KFD). 

There are many choices of kernel function. Here are some of the basic kernel 
functions found in most literature. 
 Linear kernel : 

                (2.19) 

This linear kernel is equivalent to learning in the original input data space  . No mapping 
is performed. 
     degree polynomial kernel : 

                     (2.20) 

The parameter   is the order of polynomials.  
 Radial basis function (RBF) kernel : 

 
             

       

 
  (2.21) 

The RFB kernel is sometimes referred to as Gaussian kernel. The parameter   controls 
the width of the kernel function. 
 Sigmoid kernel : 



    14 
 

                         (2.22) 

Using the sigmoid kernel in SVMs is equivalent to two-layer neural network learning. 
Note that, this kernel doesn’t satisfy the condition of Mercer’s theorem. 

There are also types of kernel for specific applications, such as string kernel, 
locality improvement kernel, and graph kernel. 

The valid kernel function         must have some feature mapping space  . 
According to Mercer’s theorem, It is a necessary and sufficient condition that the kernel 
matrix   is symmetry positive semi-definite (PSD) for the valid kernel function.  

A kernel matrix   on the set of   input data    is defined as 
 

   
                 

   
                 

  (2.23) 

This kernel matrix   is PSD if 
                        (2.24) 

Note that, weighted linear combination of PSD kernel matrices is also PSD. 

2.5 Support Vector Machines 
In this section, we explain different formulations of SVMs in both classification and 

regression problem. The derivation here is primary based on [9]. 

2.5.1 Support Vector Classification 

 
Fig. 2.6 Classification problem with soft margin hyperplane in 2D space. 
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In real problem, we cannot always find a hyperplane that can completely 
separate two data classes. From Fig. 2.6, those misclassified data points have some 
margin error. This means that constraint functions (2.8) cannot be satisfied at those data 
points. Thus, we need to introduce slack variable    to relax the constraint functions. 
The loss function for this soft margin classification is defined as 
                                   

  
                                         

                               
   

(2.25) 

We can formulate constrained optimization for  -Support Vector Classification ( -SVC) 
as follows 

Minimize 
 

 
         

 

   

 (2.26) 

subject to                            (2.27) 

              (2.28) 

Refer to (2.3), minimizing the slack variable    is analogous to minimize empirical error 
term        , while minimizing the margin     is analogous to minimizing capacity 
term     . The parameter   is equivalent to the term   which controls tradeoff between 
minimizing capacity and empirical error. 

We arrive at the dual form of optimization problem 

maximize        
 

 
                  

 

   

 

   

 

   

 (2.29) 

subject to         (2.30) 

      

 

   

   (2.31) 

Decision Function of SVC is 

 

                        

 

   

  (2.32) 
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2.5.2 Support Vector Regression 
SVMs are not only limited to the classification problem, they can also be used for 

regression problem. The regression function is defined as 
              (2.33) 

Here we introduce the  -insensitive loss function defined as 

                                           (2.34) 

As shown in Fig. 2.7, this loss function ignores any errors of size less than  . 

 
Fig. 2.7  -insensitive loss function. 

Those data points, which have more error than  , will introduce slack error. Now, 
we need two slack variables,    and   

 , for two cases of            and          

 , respectively.  
We can formulate constrained optimization for  -Support Vector Regression ( -

SVR) as follows 

minimize 
 

 
             

  

 

   

 (2.35) 

subject to                             (2.36) 

                   
           (2.37) 

      
            (2.38) 

We arrive at the dual form of optimization problem 

Maximize     
 

 
     

        
             

 

   

 

   

 (2.39) 
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subject to        
     (2.40) 

     
     

 

   

   (2.41) 

The decision function of SVR is 
 

         
             

 

   

   (2.42) 

2.6 Error Bound 

2.6.1 Leave-one-out Error 
The leave-one-out error is an almost unbiased estimate of the expected test 

error. We define leave-one-out error as 

        
    

 

 
                         (2.43) 

The term “almost” is from the fact that leave-one-error is the expected test error for the 
sample size of     instead of  . 

While leave-one-out error is a good estimator of the probability of test error, the 
direct computation of leave-one-out error is very computationally intensive. We need to 
select one sample data as testing data and the rest of sample data as training data. We 
repeated this process until all sample data get used as test data. It requires   times of 
training. In case of SVMs, it is possible to speed up the computation of leave-one-out 
error. For example, we only need to test leave-one-out error for support vectors, since 
removing non support vector does not change the decision function. Alternatively, we 
can find the bound for leave-one-out error effectively. We can derive this bound from 
span. 

2.6.2 Span Bound for Classification 
For any support vector   , we define the set    as a constrained linear 

combinations of the other support vectors           . 
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(2.44) 

We then define span    of the support vector    as the minimum distance between    
and the set    

   
     

    
      

 
 (2.45) 

The leave-one-out error is bounded as 

        
    

 

 
     

   

  
  (2.46) 

where   is a smallest diameter of sphere containing all training data points and   is the 
margin. 

Under assumption that the set of support vectors remains the same during 
leave-one-out error procedure, the following equality is true for any support vector    

     
                

   
  (2.47) 

and the leave-one-out error can be computed as 

        
    

 

 
         

   
     

       (2.48) 

where   is a decision function trained on a whole training set and    is a decision 
function trained without   . 

2.6.3 Span Bound for Regression 
For any support vector   , we define the set    as a constrained linear 

combinations of the other support vectors           . 
 

         

 

       

     

 

        

              
    

      (2.49) 

We then define span    of the support vector    as the minimum distance between    
and the set    

   
     

    
      

 
 (2.50) 
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Under assumption that the set of support vectors remains the same during leave-one-
out error procedure, the leave-one-out error is bounded as 

        
           

    
    

 

   

 (2.51) 



 
 

CHAPTER 3 CHAPTER III 

LOCALIZATION USING SUPPORT VECTOR MACHINES 

3.1 Problem definitions for Localization using SVMs 
 In order to apply SVMs to any particular problem, we need to identify what is 
training data set and testing data set. We need to define the format of the data point 
  and the label   . We also need a procedure for acquiring them. For our proposed 
localization method, we learn a mapping function from hop count data to location of the 
sensor node. In this chapter, we describe how to apply SVMs to the problem of 
localization in wireless sensor network. 
 Suppose there is a wireless sensor network that consists of   wireless sensor 
nodes           . These nodes are deployed in 2D space along the x-axis and y-axis. 
Let             be the location of     node. Also assume that the first   node locations are 
known. These first   nodes are called reference nodes. The rest of the nodes are target 
nodes, whose locations are unknown. The perfect disk communication model is 
adopted. This means a particular node can directly communicate with any nodes that 
are in the communication range  . All of the nodes can act as a router, forwarding the 
message in multi-hop fashion. We try to estimate the locations of target nodes. 

3.2 Algorithms Overview 
The proposed localization approach consists of three main stages; data 

collecting stage, training stage, and localization stage. 
(1) Data collecting stage – We gather the training data set and testing data set 

within WSNs. The data set in this case is the hop count information. The hop count data 
is generated from shortest-path routing. First, all reference nodes broadcast their own ID 
to all nodes in the network. The hop count information are collected and sent to the 
concentrator node of the network. This concentrator node is assumed to have high 
processing power. This stage can be repeated with varied transmission power to obtain 
additional hop count information. 
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(2) Training stage – Concentrator node builds the training data set and testing 
data set from the hop count information collected in the previous stage. The training 
data set is used to train the SVMs. Both classification and regression case are 
considered in this research. In classification case, we use binary SVMs with the 
multiclass strategy that adopts the idea of hierarchical classification in LSVM [10]. The 
two coordinates             are trained independently with different SVMs models. 

(3) Localization stage – The testing data set is applied to the trained SVMs in 
order to predict the locations of target nodes. This stage can be done in centralized 
manner (concentrator node compute all the locations of target nodes) or in distributed 
manner (the trained SVM models are sent to the target nodes and let them compute the 
location for themselves). The output becomes predicted node area in case of 
classification and predicted node location in case of regression.  

3.3 Regression Case 
 Because of the simplicity in applying the regression formulation of SVMs to the 
problem of localization, we discuss this case first. Although we stated before that the 
location in x-axis and y-axis have to be applied to the SVMs separately, the process for 
any axis is similar. Without any loss of generality, we discuss for the location along the x-
axis. 
 Let us define        is the hop count between node    and node   . By 
broadcasting of all reference nodes, we can generate hop count between any particular 
node    to all reference nodes, i.e.                            .  

 For the training data, we know hop count matrix between all reference nodes 

  

             
   

             

  (3.1) 

where each row   of this matrix is the data point    of reference node   .  
 We also have location matrix of all reference nodes 

  

    
 

     
  (3.2) 
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where each row   of this matrix is the label    of reference node   . 
 Because we know completely the data point and label of all reference nodes, we 
can use this training data set to train SVMs, in this case SVR. As a result, we get a 
trained SVMs model that mapping the hop count data to the location. 
 For the testing data set, we have hop count matrix between target nodes and 
reference nodes 

  

                 
   

             

  (3.3) 

where each row   of this matrix is the data point    of target node   .  
 We need to find the unknown location matrix of all target nodes 

  

      
 

     
  (3.4) 

where each row   of this matrix is the label    of target node   . 
 By feeding hop count data of each target node to the trained SVMs model, we 
can predict its location along the x-axis. 
 There are two obvious ways to improve the performance of machine learning 
algorithms, in this case SVMs. One way is increasing number of training samples or 
another way is increasing number of features in each data point. For this localization 
procedure, as we increase the number of reference nodes, we simultaneously increase 
number of both training samples and data point features. But these reference nodes are 
costly to deploy, we want to minimize their amount as much as possible. Alternatively, 
we can vary radio transmission power in these wireless nodes to generate multiple hop 
count matrices, hence we can get more data point features. The topic of how to utilize 
multiple transmission power is discussed in chapter IV. 

 For the error bound in regression case, we can simply use span bound 
described in previous chapter II. 
 The error in localization is defined as norm of error in x-axis and y axis 

      
    

  (3.5) 
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3.4 Classification Case 
 Apply classification formulation of SVMs to localization is similar to regression 
case except the format of label   . The label is defined to be an area that particular node 
reside.  Fig. 3.1 show some examples of how can we define the classification area; (a) 
circular shape and (b) rectangle shape. We can simultaneously classify along both x-
axis and y-axis or classify along each axis separately.  

  

(a) Area classification along 2-axis 

  

(b) Area classification along 1-axis 

Fig. 3.1 Shape of classification area. 

 In this thesis, we adopt LSVM method, which divides the classification area in 
decision tree manner illustrated in Fig. 3.2 for three level depths. 

  

Fig. 3.2 Decision tree classification. 

 Let us consider classification along the x-axis. An example of classification 
process is shown in Fig. 3.3. We want to classify the red node. At first level depth in 
decision tree, the area is divided in half and the node is on the right side. At second 
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level depth, the area on the right is further divided in half and the node is on the left side. 
At third level depth, the area on the left is further divided in half and the node is on the 
right side, so this red node is classified to be in the yellow area. For 2D classification, we 
can also do the same process along the y-axis and find the interception of the area from 
both axes. We can simply use the center of the classified area to be the location of the 
node. The depth of decision tree can be increased to get finer resolution of localization. 

 
(a) First level depth. 

 
(b )Second level depth. 

 
(c) Third level depth. 

Fig. 3.3 Example of classification in LSVM. 

3.4.1 Error Bound for LSVM 
In this section, we derive the error bound for LSVM. First, we consider only along 

x-dimension without any loss for generality. The x-dimension length   is divided into 
equally    sections, where   is the depth of tree in LSVM. Let    be the real class 
index and    be the predicted class index for LSVM.          is defined as average 
distance between class    and   . In the case of uniform node distribution,          

becomes 

                 
 

  
 (3.6) 

The expected error of LSVM becomes 

                            

  

    

  

    

 (3.7) 

Definition of   is expected classification error at each level of decision tree. We can use 
span bound to estimate its value. 
 By using Bayes’ rule, we can rewrite (3.7) as 
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 (3.8) 

The probability density function       is according to the pattern of node deployment. If 
the node is uniformly deployed across the field, we get 

       
 

  
 (3.9) 

Now we need to find the conditional probability density function           . Assume 
that   is equal at all level of decision tree, we get  
              

          (3.10) 

where   is the number of misclassification between class    and   . 
 



 
 

CHAPTER 4 CHAPTER IV  

UTILIZING MULTIPLE TRANSMISSION POWER FOR LOCALIZATION 
In this chapter, we discuss how to generate multiple additional hop count data 

sources and integrate them together to increase localization accuracy. By adjusting 
transmission power, we can inherently change the hop count data. We also discuss on 
the topic of using mutual information to select optimal choice of communication ranges 
to minimize the localization error.  

4.1 Learning with Multiple Data Representation 
 When we consider learning from multiple data sources for kernel learning 
method, there are three choices regarding level of integration [24]; early integration, 
intermediate integration, and late integration. The levels of integration are shown in Fig. 
4.1. For the data source  , let   ,   , and    be the data matrix, label matrix, and kernel 
matrix, respectively. Let    be the kernel matrix that is combined from multiple kernels 
matrices. Let    be the label matrix that is combined from multiple label matrices. 

 
Fig. 4.1 Different level of integration for learning with multiple data sources. 

 



    27 
 

Early integration simply concatenates the data matrices from different data 
sources together. The early integration is probably the easiest to implement, but it is not 
suitable if data sources are heterogeneous, e.g. combining the string data with the 
image data. 

Intermediate integration uses different kernel functions for each data source and 
the resulting kernel matrices are linearly combined into a single kernel matrix. Then, the 
single kernel matrix gets passed to a single classifier. The intermediate integration gives 
the flexibility to select appropriate kernel for each data source, so we can combine 
heterogeneous data sources.  

Late integration uses different classifiers for each data source and then applies 
ensemble learning method to combine the results. Late integration has the same 
flexibility at kernel level and it also gives additional flexibility to select appropriate 
classifier for each kernel matrix. However, it could be quite difficult to find the optimal 
combination choice of different kernels and classifiers. Otherwise, the final result may 
not be good. 

In this research, we consider two levels of integration, i.e. early and intermediate 
level. For the early integration case, we simply concatenate hop count matrices from 
different communication ranges together and use it as a training data matrix for SVMs. 
We will refer to this as “unif method”. For the intermediate integration case, we use 
independent alignment-based method [25]. We will refer to this as “align method”. The 
kernel matrices are linearly combined as 

         

 

   

  (4.1) 

with weight    proportional to the centered alignment of each kernel matrix with the 
training data label. 

             
   (4.2) 

Alignment is a quantity to measure how much two kernels correlate to each other. Good 
kernel matrix   should correlate well to ideal kernel    . The centered alignment of two 
kernel functions is defined as follows 
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 (4.3) 

where    is the centered kernel matrix. Essentially, this centered kernel matrix means 
centering in feature space. The centered kernel function becomes 

       
                                  (4.4) 

However, we do not need to know the mapping function      to find centered kernel 
matrix. For kernel matrix  , we can directly compute the center kernel    for all element 
      in the matrix by  

                
 

 
       

 

   

 
 

 
       

 

   

 
 

  
       

 

     

  (4.5) 

The empirical alignment of two kernel functions on the sample data is defined as 

           
      

   

            
    

   
 (4.6) 

where        is the Frobenius product defined as 

                (4.7) 

In fact, unif method is a special case of intermediate level integration, as it has all weight 
   set to 1 and the same kernel function is used for all data set. 

4.2 Relationship between Transmission Power and Communication Range 
We can generate multiple hop count data sources by adjusting transmission 

power of sensor nodes. This adjustment causes the communication range to be 
changed, so routing path is also changed and we get a new hop count data source. The 
probability density function of each hop count data source is different. Thus, we get new 
information to learn from. 

In wireless radio communication, the received signal power falls off as the 
distance between transmitter node and receiver node increases. We can use a simple 
path-loss propagation model to describe the relationship between the received signal 
power    and the distance    as 
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  (4.8) 

where    is the reference power (dBm) at the reference distance    and   is a path-loss 
exponent. 

Path-loss for indoor environment can be affected by obstruction from walls, 
floors, and objects. We can modify (4.8) to account for the attenuation factor   and 
measurement noise        , which is assumed to be Gaussian noise with mean   and 
variance   . 

               
  
  
            (4.9) 

The value of   and   can be varied by surrounding environment [26]. Typical obstruction 
losses  , depending on the material, can vary from 1.4 dB for cloth to 26 dB for metal. 
Typical path-loss exponent   can vary from 1.6 to 6.5. In real environment, the measured 
RSSI might not follow the path-loss propagation model due to multipath fading and 
shadowing effect, as illustrated in Fig. 4.2. The blue circles represent measured RSSI at 
the given distances. The red line shows fitted curve for path-loss model. The mean of 
RSSI tends to decrease with distance and the variance of RSSI tends to increase with 
distance. At farther distance, the measured RSSI becomes less reliable. 

 
Fig. 4.2 Measured RSSI of wireless signal in an indoor environment. 
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Typically, the transmission power of wireless node can be adjusted by changing 
the according register value in transceiver IC. For example, we consider TI CC2530 
SOC [27]. From its datasheet, the typical receiver sensitivity is –97 dBm and the 
recommended transmission power can be adjusted from 4 dBm down to -28 dBm. At a 
particular indoor environment, we make a measurement with transmission power set to 0 
dBm at several distances. We do a curve fit for the measured RSSI data to the path-loss 
model in (4.8). With reference distance    at 1 m, we get the value of    and  , -30 dBm 
and 3.5, respectively. By rearranging (4.8), we get 

          
        

   
  (4.10) 

We can now predict the communication range   of the corresponding transmission 
power    by using (4.10). The prediction of this example is shown in Fig. 4.3. In this 
case, the communication range can be varied around 12 m to 110 m. 

 
Fig. 4.3 Relationship between communication range and transmission power. 

Note that, apart from the estimated lower and upper bound limit of communication 
range adjustment, the resolution of communication range adjustment is limited. Since we 
can only vary transmission power with a discrete step size, this implies that the 
communication range can be adjusted only in a discrete step size too. 
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4.3 Mutual Information 
From information theory, we can measure the amount of information of a random 

variable by its entropy. The entropy of the discrete random variable   is defined as 

                   

 

 (4.11) 

The conditional entropy of the random variable   given the random variable   is defined 
as 

                         

   

 (4.12) 

We can measure the amount of information that is shared by the random variable   and 
 . We call it the mutual information. The mutual information is defined as 

                                (4.13) 

Intuitively, we can interpret the mutual information as information gain, as it measures 
how much knowing one of the random variables can reduce the uncertainty of another 
random variable. This mutual information can be applied to the problem of feature 
selection [28] in machine learning field by choosing the feature   that give the highest 
mutual information on the output  . 

Note that the variables in the above discussion,   and  , are not restricted to be 
single random variable. They can be jointly distributed random variables, e.g. 
                 . The comma operator denotes the jointly distributed random 
variables. 

4.4 Selection of Optimal Communication Range 
Communication range is one of the important network parameters. Selecting an 

optimal communication range can get involved with many criteria, such as power saving 
optimization and reliability of the connection. For the case of too short communication 
range, we have the problem of not enough coverage, unreliable connectivity, or some 
nodes become unreachable. For the case of too far communication range, the 
transmission power is wasted and the resolution of hop count is lost, i.e. farther or nearer 
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nodes have the same hop count. In this section we choose the optimal combination of 
communication ranges that minimize localization error. 

We adopt mutual information between node locations and hop count data 
sources as a criterion to select the optimal communication ranges. As we use SVM to 
learn node location from hop count information. The simulation setup is similar to 
chapter V. The network setup is 1,000 nodes deployed uniformly across the area of 100 
m x 100 m. At various reference node density (5%, 10%, 15%, 20%, 25%), the 
communication range is varied incrementally from 7 m to 28 m in a step size of 1 m. 
Mutual information for the case of single communication range and double 
communication ranges are shown in Fig. 4.4 and Fig. 4.5, respectively.  

Let’s discuss for the case of single communication range first. As reference 
node density is increased, the optimal communication range becomes larger. Also, the 
value of mutual information is increased with reference node density. The estimated 
optimal communication ranges for reference node density of 5%, 10%, 15%, and 20% 
are 12 m, 18 m, 22 m, and 27 m, respectively. For the case of reference node density 
25%, the optimal communication range is actually greater than 28 m.  

For the case of double communication ranges, the mutual information in this 
case is greater than the single case. Similar to the case of single communication range, 
the mutual information and optimal communication ranges become greater at high 
reference node density. The best combination of double communication range is the 
area around the single optimal communication range. For example, at reference node 
density 5%, the optimal combination is 12 m and 13 m. We also test with the case of 
three communication ranges. The best combination is around 12m, 13m, and 14m. 
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 (a) MI at reference node density 5 %.  (b) MI at reference node density 10 %. 

 (c) MI at reference node density 15 %.  (d) MI at reference node density 20 %. 

 
(e) MI at reference node density 25 %. 

Fig. 4.4 Mutual information between hop count information and location in x-axis at different 
reference node density for the case of single communication range. 
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 (a) MI at reference node density 5 %.  (b) MI at reference node density 10 %. 

 (c) MI at reference node density 15 %.  (d) MI at reference node density 20 %. 

 
(e) MI at reference node density 25 %. 

Fig. 4.5 Mutual information between hop count information and location in x-axis at different 
reference node density for the case of double communication ranges. 
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Fig. 4.6 Comparison of mutual information and mean localization error in case of single 

communication range. 

 
 

 (a) Mutual information.  (b) Mean localization error. 

Fig. 4.7 Comparison of mutual information and mean localization error in case of double 
communication ranges at reference node density 5%. 
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 (a) Mutual information.  (b) Mean localization error. 

Fig. 4.8 Comparison of mutual information and mean localization error in case of triple 
communication ranges at reference node density 5%. 

Now, we want to validate how well mutual information corresponds to the 
localization error. We use unif-SVR localization method with various number of 
communication ranges at reference node density of 5%. The RBF kernel is used. In the 
case of triple communication ranges, we fix the third communication range to 12 m, 
while varying the first and second communication ranges from 7 m to 28 m. The 
comparison between mutual information and mean localization error in the case of 
single, double, and triple communication ranges are shown in Fig. 4.6, Fig. 4.7, and Fig. 
4.8, respectively. 

The result shows that mutual information is consistent with localization mean. 
High mutual information corresponds to low error rate. The highest point of mutual 
information corresponds to the lowest point of mean error. For the case of single 
communication range, Fig. 4.6 the lowest error is at communication range 12 m. For the 
case of double and triple communication ranges, the lowest error is at the area around 
12 m. 

We should be aware that even though the optimal data set is selected, it may not 
be processed in the optimal way by the machine learning algorithm [29]. For example, 
SVR with linear kernel may not have enough model complexity to learn the data set. Fig. 
4.9 shows a comparison between mutual information and mean localization error in the 
case of single communication range. Linear kernel yields a larger localization error when 
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compared to RBF kernel. The point of lowest localization error also does not correspond 
to the optimal mutual information. 

 
Fig. 4.9 Comparison of mutual information and mean localization error in case of single 

communication range. 

We know that increasing number of communication ranges can improve the 
accuracy of localization, but at a cost of increased complexity. The question here is: 
How many communication ranges should we use? 

 
Fig. 4.10 Mean localization error with varied number of communication ranges at reference node 

density 5%. 
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We use unif-SVR method with various number of communication ranges at 
reference node density of 5%. Fig. 4.10 shows optimal mean localization error of 
different combination of communication ranges. Obviously, increasing number of 
communication ranges decreases the localization error, but at diminishing return rate. 
With more than four communication ranges, the improvement becomes negligible. We 
suggest using around two or three communication ranges would be the most cost 
effective. 
 



 
 

CHAPTER 5 CHAPTER V  

SIMULATION STUDY 
In this chapter, we run simulation to verify the performance of the proposed 

SVM-based localization method. Both classification (LSVM) and regression (SVR) 
formulation are considered here. We show how utilizing multiple communication ranges, 
unif and align method, can improve the result when compared to the case of single 
communication range.  We also try to study how various network parameters affect the 
localization accuracy. 

5.1 Simulation Setup 
The network setup in this simulation is 1,000 sensor nodes deployed in an area 

of 100 m x 100 m area. The communication range is set at three different levels (   7 
m, 10 m, and 14 m). The reference node density is set at five different levels; 5%, 10%, 
15%, 20%, and 25% (   50, 100, 150, 200, and 250 nodes). The network deployment is 
considered at three different patterns; uniform network, one coverage hole network, and 
five coverage holes network. Examples of these network patterns are shown in Fig. 5.1. 
The simulation is run in MATLAB. LIBSVM [30] library is used for SVC and SVR 
computation. The kernel function is RBF kernel. For the case of LSVM, the number of 
classes in each dimension is set to 128. The tuning of SVM hyperparameter ( ,  , and  ) 
is done by grid search with 5-fold cross-validation [31]. Each simulation setting is run for 
50 times and the results are averaged together.  

Mean and standard deviation of localization error are shown in the tables for the 
case of uniform network (Table 1), one coverage hole network (Table 2), and five 
coverage holes network (Table 3). 
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(a) Uniform network. (b) One coverage hole network. 

 
(c) Five coverage holes network. 

Fig. 5.1 Node deployment patterns. 

5.2 Effect of Coverage Hole 
In real network, it is not unusual that the sensor nodes are not fully deployed in 

the area, i.e. there may be some coverage holes. This coverage holes affects the hop 
count data of the network, as some routing path must avoid these coverage holes. With 
the occurrence of coverage hole, the localization error is increased. The uniform network 
has the least localization error and one coverage hole network has medium localization 
error. Although five coverage holes network has the most localization error, it still does 
not differ much from the uniform network case. 
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5.3 Effect of Reference Node Density 
At higher reference node density, the localization error is decreased. This is as 

expected, since the number of training samples is directly proportional to the number of 
reference nodes. However, these reference nodes are costly, so we would prefer to 
deploy a minimum number of reference nodes. We notice that the localization error is 
rapidly decreased when the reference node density rises from 5% to 10% and also from 
10% to 15%. The improvement at higher reference node density becomes smaller. The 
most cost effective reference node density is around 10% and 15%.  

5.4 Effect of Communication Range 
With long communication range, the node connectivity becomes greater. When 

the communication range is increased, the localization error is decreased. The only 
exception is when reference node density is 5%, communication range of 10 m gives 
better localization error than 7 m and 14 m. This result corresponds with the mutual 
information criteria result in chapter IV, which shows that the best communication range 
depends on the reference node density. 

5.5 Effectiveness of Proposed Method 
By utilizing data from all three communication ranges together, it gives better 

localization error than using individual communication range. It appears that align 
method mostly has lower localization error than unif method, except at reference node 
density of 5%. This can be possible because the align method needs to approximate the 
kernel align from training data. At low reference node density, the approximation from 
low number of training data may be not accurate enough. Thus, we suggest using unif 
method for low reference node density and align method for high reference node 
density.  

SVR outperforms LSVM in all cases. This is reasonable as the location itself is a 
continuous value. If the fine-grained location is needed, SVR is recommended. LSVM 
may still be useful in coarse-grained localization, such as room level. 
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Table 5.2 
Average localization error (mean/standard deviation) in one coverage hole network 

 

Method 
Reference Node Density 

5% 10% 15% 20% 25% 
LSVM – 7m 5.12/3.02 3.57/2.06 2.98/1.73 2.62/1.51 2.42/1.41 

LSVM – 10m 5.09/2.92 3.56/2.06 2.96/1.71 2.60/1.49 2.33/1.30 
LSVM – 14m 5.13/2.98 3.54/2.01 2.91/1.67 2.58/1.46 2.31/1.29 
LSVM – unif 4.61/2.72 3.15/1.85 2.52/1.45 2.18/1.24 1.97/1.13 
LSVM – align 4.69/2.77 3.07/1.79 2.47/1.42 2.13/1.22 1.92/1.08 

SVR – 7m 2.51/1.76 1.96/1.29 1.70/1.10 1.52/0.97 1.37/0.84 
SVR – 10m 2.48/1.70 1.89/1.22 1.65/1.05 1.47/0.94 1.32/0.84 
SVR – 14m 2.55/1.68 1.85/1.19 1.61/1.02 1.45/0.91 1.31/0.82 
SVR – unif 1.90/1.63 1.43/1.23 1.26/1.09 1.13/0.95 1.01/0.77 

SVR – align 2.34/1.84 1.34/0.98 1.19/0.89 1.07/0.73 0.97/0.64 
 

 

Table 5.1 
Average localization error (mean/standard deviation) in uniform network 

 

Method 
Reference Node Density 

5% 10% 15% 20% 25% 
LSVM – 7m 5.08/3.30 3.35/2.11 2.75/1.72 2.44/1.50 2.25/1.38 

LSVM – 10m 4.97/3.18 3.21/2.02 2.58/1.58 2.28/1.38 2.10/1.24 
LSVM – 14m 5.03/3.20 3.22/1.99 2.58/1.53 2.27/1.33 2.06/1.20 
LSVM – unif 4.58/3.05 2.89/1.88 2.28/1.42 1.97/1.19 1.78/1.05 
LSVM – align 4.65/3.10 2.85/1.82 2.23/1.37 1.92/1.15 1.73/1.01 

SVR – 7m 2.38/1.96 1.82/1.26 1.63/1.08 1.51/0.98 1.42/0.91 
SVR – 10m 2.25/1.86 1.63/1.11 1.43/0.96 1.30/0.85 1.23/0.80 
SVR – 14m 2.34/1.84 1.57/1.10 1.32/0.89 1.20/0.79 1.10/0.73 
SVR – unif 1.68/1.99 1.13/1.03 0.96/0.81 0.87/0.68 0.81/0.64 

SVR – align 1.74/1.84 1.06/0.81 0.92/0.68 0.85/0.62 0.80/0.56 
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5.6 Effect of Reference Node Location Error 
In previous simulation, we assume that the known location of reference node is 

absolutely correct, but in practice there might be some error in the location of reference 
node itself, e.g. error in human placement or GPS location error. In this simulation, we 
model this error by adding some Gaussian noise to the reference node location as  

                      (5.1) 

                      (5.2) 

We run the simulation in uniform network with varying standard deviation of zero mean 
Gaussian noise (   0 and    0 m, 0.5 m, 1 m, 1.5 m, 2 m, and 2.5 m). Mean and 
standard deviation of localization error are shown in Fig. 5.2 and Fig. 5.3, respectively. 

 

 

Table 5.3 
Average localization error (mean/standard deviation) in five coverage holes network 

 

Method 
Reference Node Density 

5% 10% 15% 20% 25% 
LSVM – 7m 5.35/3.31 3.60/2.16 2.97/1.74 2.60/1.49 2.44/1.41 

LSVM – 10m 5.24/3.18 3.50/2.07 2.87/1.68 2.53/1.46 2.38/1.38 
LSVM – 14m 5.23/3.17 3.49/2.06 2.88/1.67 2.50/1.42 2.34/1.29 
LSVM – unif 4.84/3.04 3.14/1.92 2.48/1.43 2.18/1.27 2.02/1.16 
LSVM – align 4.91/3.05 3.08/1.86 2.46/1.44 2.13/1.21 1.98/1.13 

SVR – 7m 2.62/1.84 2.13/1.49 1.83/1.23 1.63/1.06 1.50/0.94 
SVR – 10m 2.50/1.72 1.98/1.34 1.74/1.15 1.54/1.06 1.41/0.91 
SVR – 14m 2.52/1.71 1.93/1.34 1.66/1.13 1.50/0.99 1.39/0.90 
SVR – unif 1.93/1.75 1.51/1.42 1.28/1.13 1.16/1.04 1.02/0.81 

SVR – align 2.15/1.71 1.47/1.18 1.27/0.97 1.15/0.88 1.01/0.70 
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 (a) Mean error at reference node density 5 %.  (b) Mean error at reference node density 10 %. 

(c) Mean error at reference node density 15 %.  (d) Mean error at reference node density 20 %. 

 
(e) Mean error at reference node density 25 %. 

Fig. 5.2 Mean of localization error under the effect of reference node location error at various 
reference node density. 
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 (a) SD error at reference node density 5 %.  (b) SD error at reference node density 10 %. 

 (c) SD error at reference node density 15 %.  (d) SD error at reference node density 20 %. 

 
(e) SD error at reference node density 25 %. 

Fig. 5.3 Standard deviation of localization error under the effect of reference node location error at 
various reference node density. 
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On all reference node density, localization performance is gradually degraded 
as standard deviation is increased. Both unif and align method still have good 
localization performance when compared to individual communication range case. Align 
method is slightly better than unif method. SVR seems to be more robust to the 
reference node location error than LSVM, as the localization error for SVR rises slower 
than LSVM. Note that in machine learning field, this kind of error on reference node 
location is actually noise on the label of training data set. 

5.7 Effect of Noise on Communication Range 
In previous simulation, we assume the unit disk communication model; the 

communication range is constant at all direction. In practice, the wireless signal doesn’t 
follow the unit disk communication model. It can be disturbed by many factors, e.g. 
signal interference, multipath fading effect, shadowing effect, obstruction from object in 
the field, and anisotropic antenna pattern. In this section, we try to investigate the effect 
of the non-ideal communication range. We adopt DOI communication model similar to 
[6]. This model assumes that the communication range is dependent on the angle. DOI 
is defined as maximum variation of communication range per unit degree angle 
variation. Let   be an ideal communication range. The communication range at angle   
is defined as 

     
                                  

                          
  (5.3) 

where      is a uniformly distributed random number from -1 to 1. 
In (5.3), the starting angle is set at 0 degree, but we can randomly select any 

angle to be the starting angle. For any non-integer angle  , the communication range is 
the linear interpolation of the values from two adjacent angles. 
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 (a) Mean error at reference node density 5 %.  (b) Mean error at reference node density 10 %. 

 (c) Mean error at reference node density 15 %.  (d) Mean error at reference node density 20 %. 

 
(e) Mean error at reference node density 25 %. 

Fig. 5.4 Mean of localization error under the effect of DOI model at various reference node density. 
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 (a) SD error at reference node density 5 %.  (b) SD error at reference node density 10 %. 

 (c) SD error at reference node density 15 %.  (d) SD error at reference node density 20 %. 

 
(e) SD error at reference node density 25 %. 

Fig. 5.5 Standard deviation of localization error under the effect of DOI model at various reference 
node density. 

 
 
 

  



    49 
 

(a) DOI = 0.02 (b) DOI = 0.05 

Fig. 5.6 Effect of DOI on communication range pattern. 

The polar plots in Fig. 5.6 illustrate communication range pattern at two different 
DOI level; 0.02 and 0.05. As DOI value grows higher, the communication range pattern 
becomes more irregular. DOI communication model with DOI = 0 is actually equivalent 
to unit disk communication model. Since each node has different communication range, 
the two connected nodes can link by either asymmetric link or symmetric link. 
Asymmetric link is that only one node can reach the other node. Symmetric link is that 
both nodes can reach each other. In this simulation, we use only symmetric link as valid 
link in routing process to generate the hop count information. 

We run the simulation in uniform network with varying DOI value of the 
communication model (DOI = 0, 0.01, 0.02, 0.03, 0.04, and 0.05). Mean and standard 
deviation of localization error are shown in Fig. 5.4 and Fig. 5.5, respectively. 

The localization error increases when DOI value becomes higher. For the case of 
individual communication range, the growing rate of localization error depends on the 
communication range. Short communication range, as 7 m, has slowest growing rate of 
localization error. Localization error rises sharply in case of 14 m communication range.  
Refer to (5.3), level of noise on the communication range pattern depends on the ideal 
communication range. Noise level is greater on longer communication range.  
Localization error of unif and align method increases gracefully with respect to the 
increase in DOI value. Although, unif and align method utilize all three communication 
ranges, the error rises as slow as 7m case. This result shows that both unif and align 
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method can cope well with this problem. Overall, align method still performs slightly 
better than unif method, which is consistence with result in previous section. 

High DOI value can greatly disturb the hop count data. As the communication 
range is noisy, hop count data is also noisy. Basically in the field of machine learning, 
this noisy hop count data is the same problem as noise on the training data point and 
testing data point. 

 
 



 
 

CHAPTER 6 CHAPTER VI 

CONCLUSION AND RECOMMENDATIONS 

6.1 General Conclusion 
To achieve improved accuracy of localization in wireless sensor networks, we 

proposed a framework to utilize multiple transmission power. The localization algorithms 
in this thesis are based on SVMs. We consider both SVC and SVR. We use SVMs to 
learn mapping function from hop count data to the node location.  

The transmission power of wireless transceiver can be easily adjusted, this 
consequently changes the communication range. Different communication ranges result 
in different set of hop count data. By using multiple transmission power, we can 
generate several hop count data. These hop count data can be combined at various 
levels of integration; early integration, intermediate integration, and late integration. In 
this thesis, we consider unif method for early integration and align method for 
intermediate integration.  

Mutual information between hop count data and location can be used as criteria 
for selection of the best combination set of communication ranges. Optimal set of 
communication ranges has the highest mutual information which should correspond to 
the lowest localization error. 

The simulation study shows the performance of our proposed localization 
method. It can work well even in low reference node density or in network with coverage 
holes. SVR method performs better than SVM in all cases. Regarding utilizing multiple 
communication ranges, both unif method and align method can greatly improved the 
localization accuracy when compared with single communication range. They are also 
more robust to the problem of noise on communication range and reference node 
locations. 

6.2 Recommendations 
The framework for learning from multiple data representation can be used more 

extensively than showing in this thesis. Although we only consider using hop count data 
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from multiple transmission power as different data representation, we can also use other 
data sources. For example, we can treat hop count, RSSI, and TDoA as different data 
sources to combine them together and achieve better accuracy localization. For 
intermediate integration, we can consider using other multiple kernel learning methods 
in place of align method. We can also substitute a variety of machine learning method 
choices in place of SVMs, especially the kernel-based machine learning algorithm. The 
localization accuracy also can be further improved by running a post-localized 
refinement algorithm. 
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