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CHAPTER 1 

INTRODUCTION 

 

1.1 Concrete Encased Steel (CES) Structures 

The earliest composite construction consisted of structural steel beams and 

reinforced concrete slabs, with shear connectors in between. The system called the 

composite floor system, first developed for bridge construction, was readily adopted 

to buildings. Its phenomenal success inspired engineers to develop composite building 

systems by combining structural steel and reinforced concrete in a variety of vertical 

building systems. The composite column has gained its popularity mainly for high-

rise building design due to its high rigidity, stiffness, strength, and speed of 

construction. Studies in North America indicate that composite columns are four or 

five time less expensive than a pure steel column. There are three types of composite 

columns mentioned in European code, i.e. concrete encased steel sections, partially 

concrete encased steel sections, and concrete filled steel hollow sections. Particularly, 

the concrete encased steel section has high fire resistance comparing to the partially 

encased section, concrete filled hollow section, and the conventional steel section. 

Composite frame systems which contain both steel and reinforced concrete 

structural elements have been widely chosen for construction solutions and typically 

for high-rise buildings due to their stronger, stiffer, and more ductile frames than 

those provided by conventional pure steel or reinforced concrete structures. However, 

the numerical analysis approach for such composite structures has not yet kept up 

well with their practical applications. Some specifications still refer the engineers to  
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the analysis procedures mentioned in the pure steel specifications with little explicit 

guidance to include all the necessary effects. Many researchers in the past tried to use 

a full 3D FEM to trace the complete responses of such composite structures, although 

it is not practical to model the whole high-rise buildings with such computational 

approach. Some proposed a hybrid modeling which combined numerical approaches 

with the general FEM so as to decrease the computational effort and time. However, 

there is still less simplified numerical approach to analyze and capture the complete 

performance of CES structures with practical application. 

1.2 Motivation   

The present study proposes a simple inelastic fiber element based analysis 

approach (i.e. without complicated, time-consuming FEA) to efficiently map out the 

complete responses of stub and slender CES columns and beam-columns. The 

maximum strength capacity of the columns can be obtained as a by-product. The 

computational time is highly efficient and instantaneous, whilst the full 3D solid 

composite model probably takes much more significant time and might not find the 

converged solution. In essence, the proposed scheme realistically accommodates the 

simultaneous influences of concrete confinement associated with structural steel and 

reinforcement bars, buckling of the reinforcement bars, local buckling of the 

structural steel, and initial geometric imperfection of the composite columns. Once 

the behaviors of the structural elements are well-simulated, the full 3D structural 

modeling and analysis can then be simplified to a simple frame-based analysis. 

Piecewise linear yield hyper-planes are proposed to corporate into the geometrically 

nonlinear analysis to simulate the complete performance of CES structures (i.e. 
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elastic, maximum load capacity, post-peak softening response). Full structural 

response including its softening behavior plays a very important role for the 

optimization of practical structural strengthening. Various common steel bracing 

systems are chosen to enhance the structural performance of CES composite 

structures. The effects of different bracing configurations are investigated and 

compared in terms of load and lateral displacement response for optimal design of 

steel bracing systems.  

1.3 Research Objectives and Scopes 

Main purposes of this study are as briefly described as follows: 

1. Develop a non-linear inelastic analysis approach to investigate the behaviors 

of the CES columns and beam-columns. 

2. Take into account the effects of material nonlinearity, geometric imperfection, 

geometry nonlinearity, conventional concrete confinements and highly 

confinement, local buckling of structural steel, buckling of reinforcement bar, 

and slenderness. 

3. Conduct sensitive parametric analyzes to study various effects on the 

behaviors of CES columns and beam-columns. 

4. Propose the piecewise linear yield hyper-planes for combined stress model to 

capture the post-peak softening of CES columns. 

5. Trace the full spectrum of force and displacement responses of CES structures 

using nonlinear 2
nd

 order analysis (both geometry and material nonlinearity). 

6. Compare the efficiency of different bracing systems on the overall responses 

of CES structures in a sense of structural strengthening. 
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7. Recommend guidelines for analyzing and strengthening CES structures. 

1.4 Research Methodology 

Below are the procedures to achieve the mentioned objectives and scopes: 

1. Develop an efficient numerical method to rapidly converge the solutions of 

nonlinear inelastic analyzes. 

2. Develop a nonlinear inelastic fiber analysis method to map out the complete 

structural responses of the CES columns and beam-columns, i.e. axial load and 

strain response, load and deflection response, axial force-bending moment 

interaction diagram, moment-curvature diagram, and maximum load-carrying 

capacity. 

3. Validate the proposed approach by comparing the analysis results with the 

previous experimental tests and researches. 

4. Use the validated approach to study various effects on the behaviors of CES 

columns and beam-columns. 

5. Propose a novel piecewise linear yield model with an associated softening rule 

and derive the mathematical relationships for the proposed combined stress 

model (viz. post-peak softening of CES columns). 

6. Verify the proposed piecewise linear yield hyper-planes with available 

experimental tests. 

7. Generate necessary responses of CES columns for the analysis of CES 

structures. 

8. Perform nonlinear 2
nd

 order analysis (both geometry and material nonlinearity) 

of CES structures for full spectrum of force and displacement responses. 
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9. Adopt common types of bracing systems to strengthen the overall responses of 

CES structures, and investigate their efficiency on CES structural 

performance. 

10. Draw conclusions and recommend guidelines for analyzing and strengthening 

CES structures. 

1.5 Layout of the Thesis 

The current research presents nonlinear inelastic analyses of concrete encased 

steel structures using the simplified numerical analysis and mathematical 

programming approaches. The thesis is composed of eight chapters with a brief 

contextual introduction and concluding remarks for each corresponding chapter. 

Chapter 1 gives an overview of concrete encased steel structures and whole 

research study. Chapter 2 describes literature reviews of previous experimental 

studies and nonlinear analysis approaches concerning with CES columns, beam-

columns, composite frames, and structural bracing systems.  

Chapter 3 provides a short description of material models used in previous 

researches, and detailed discussion of the constitutive models used in the current 

study. Particularly for concrete materials under compression, three different stress-

strain curves are used simultaneously to account for different levels of concrete 

confinement (i.e. unconfined concrete, partially confined concrete, and highly 

confined concrete). Local buckling of structural steel and buckling of reinforcement 

bars after the crushing of concrete are simulated using their mechanical material 

constitutive laws, respectively. The determination of confinement zones for different 

steel cross-section, i.e. H, I, and cross shapes, has been recommended. Chapter 4 
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presents the nonlinear inelastic analysis of CES sections based on fiber element 

analysis. Assumptions and methods of composite sectional discretization are 

described. And the procedures to determine the strain and curvature relationships as 

well as the stress resultants are provided.  

Chapter 5 presents the detailed step-by-step algorithms for tracing the full 

structural responses, i.e. load and axial strain curves, of CES columns under pure 

axial compression with initial geometric imperfection. An adaptive initial condition 

technique is proposed to corporate with numerical approach to efficiently converge 

the solutions. Relevant experimental tests are summarized and compared to validate 

the proposed numerical approach (i.e. ultimate capacity, load and axial strain 

response). Key parameters such as concrete compressive strength, steel yield stress, 

spacing of lateral ties, and structural steel shapes have been extensively investigated 

and discussed. Chapter 6 extends the numerical approach to simulate the complete 

load and lateral displacement of the beam-columns under eccentric load. Step-by-step 

computational approach is outlined and explained. Relevant experimental results are 

summarized and validated against the analysis results (i.e. ultimate capacity, load and 

lateral displacement curve). Nonlinear interaction diagrams with different slenderness 

effects are also presented. Parametric sensitivity analyses have been performed to 

study the effect of eccentricity ratio, concrete compressive strength, and steel yield 

stress with different effective length ratios. 

Chapter 7 aims to assess the performance of CES structures by tracing the full 

load and displacement response using nonlinear second order analysis (i.e. both 

material and geometric nonlinearity). Piecewise linear yield hyper-planes are 

proposed to activate the softening response of CES structures. Mathematical 



7 

 

 

programming tools, which are used with the proposed yield function, are briefly 

described. The proposed piecewise linear yield function is validated against relevant 

experimental tests. Common steel bracing systems have been used to strengthen the 

performance of existing CES structures with the sense of optimal design. 

Chapter 8 concludes the whole study of the thesis and gives useful 

recommendations on the behavior (i.e. ultimate capacity, ductility, and post-peak 

softening) of CES structures as well as the efficiency of steel bracing systems. 

Potential future studies have been briefly outlined at the end. 

  



 

 

 

CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

The behavior of concrete encased steel composite structures has been an 

interesting topic of research for many years. Many full-scale experimental tests of 

concrete encased steel columns and beam-columns have been carried out since the last 

five decades all around the world. Analysis approaches including numerical methods, 

analytical models, finite element simulations, and design codes have been developed 

to explore the hidden behaviors of CES structures as well as to justify the safety for 

practical design purpose. The responses of such structures are influenced by many 

parameters such as the concrete compressive strength, steel and reinforcement bar 

yield stress, steel configuration, confinements from structural steel and reinforcement 

bars, slenderness ratios, and boundary conditions (supports and loadings). Although 

experimental studies can be carried out to investigate the behavior of CES columns 

and beam-columns, they are very expensive and time consuming to test for all 

variations of key parameters. Experiments should be used for validation of analysis 

approaches, not to derive the theory (Liang 2009). Therefore, the nonlinear inelastic 

analysis of CES columns and beam-columns play important roles to compensate the 

drawbacks of expensive, controlled conditions, and limited numbers of experimental 

tests. 

This chapter reviews some key experimental studies and nonlinear analysis 

approaches of CES columns, beam-columns, and composite frames. Structural steel 
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bracing systems and their effects on the structural performance are also briefly 

reviewed. 

2.2 Concrete Encased Steel Columns and Beam-Columns 

2.2.1 Experimental Studies 

Various experimental tests were carried out to investigate the behavior and to 

approximate the maximum strength capacity of the concrete encased steel composite 

columns. Abundant experimental studies investigate the influences of various physical 

and material parameters (i.e. steel cross-sectional shape, steel and concrete strength, 

slenderness ratio, steel-to-concrete ratio and loading condition) on the intrinsic 

behaviors of the concrete encased steel composite columns. 

The committee of Structural Stability Research Council (SSRC Fourth Quarter 

1979) issued a report regarding the recommended design rules and discussion of the 

behavior of the composite column along with experimental tests. The council 

recognized that the composite steel-concrete compression members exhibited the 

behavior almost the same as steel columns if the strength and stiffness of the plain 

steel alone were several times greater than those of the structural concrete. And if the 

strength and stiffness of the structural concrete alone were significantly greater than 

those of the structural steel, the composite steel-concrete compression members 

would behave more or less the same as the normal reinforced concrete compression 

members. However, in order that the steel-concrete columns are considered as the 

composite steel-concrete columns, the quantity of the structural steel must comprise at 

least 4 percent of the total composite column cross section. 
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The strength and load-deflection behaviors of biaxially loaded steel reinforced 

concrete columns were studied experimentally and theoretically by Morino et al. 

(1984). Forty column specimens were tested by grouping into four main groups 

according to the slenderness ratio computed for the gross section of the concrete 

column, and varied the angles of rotation of the eccentricity. It was concluded that the 

maximum capacity of short columns was controlled by the crushing of concrete 

material, and the load-deflection curve exhibited a very sharp peak. Unlike for the 

case of slender columns, the maximum load carrying capacity is obtained when the 

stiffness of the columns becomes zero. The behavior of the concrete encased steel 

composite columns with different stiffnesses in both directions subjected to the 

biaxially eccentric compression is the same as those subjected to the uniaxial bending 

in the final state. This behavior occurs because only the deflection about the weak 

axis keeps increasing in the large deflection range, while the deflection about the 

strong axis stops increasing and in some cases even decreases due to the P-Delta 

effect. 

Sixteen physical experimental tests of composite steel-concrete beam-columns 

were carried out by Mirza et al. (1996). Three series of specimens with different 

bonding conditions of steel rib connectors welded to the flanges were loaded to 

failure. The first series were employed with steel ribs having holes of 27 mm in 

diameter spaced at 50 mm center-to-center, and bonding was allowed between ribs 

and concrete. The second series were made with the same steel ribs but without holes, 

and bonding condition was still allowed. The last series of specimens were chosen 

exactly the same as the first series except that no bonding between the steel ribs and 

the surrounding concrete was allowed. The unbonding conditions were achieved by 
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covering the holes with wooden disks and the steel rib surfaces were covered by 

smooth plastic tape coated with a layer of oil. Three main objectives of this 

experimental study were to investigate the behavior and ultimate strength of CES 

beam-columns whose second-order effects are significant, to examine the effects of 

different bonding conditions between the steel rib connectors and concrete, and to 

validate the ACI 318-95, Eurocode 4, and proposed nonlinear numerical simulation 

using finite element software ABAQUS. The observations from these physical tests 

concluded that the bonding conditions at the surface contacts between the steel ribs 

and concrete had a small effect on the ultimate strength of CES beam-columns. The 

design codes, both and AIC 318-95 and Eurocode 4, safely predict the ultimate 

capacity of such composite beam-columns. Also, the main assumption used in ACI 

318-95 that the maximum compressive strain at the extreme fiber of value 0.003 was 

valid for such type of CES beam-columns. 

 Chen and Yeh (1996), and Tsai et al. (1996) performed three series of tests for 

concrete encased steel composite stub columns of 1.2m height having three shapes of 

structural steel section, i.e. I-, H-, and Cross-shaped sections. The tests from Chen and 

Yeh (1996) consisted of square concrete sections encasing three specimens of H-150 

x 150 x 7 x 10, three specimens of Cross (Two H)-150 x 90 x 5 x 8, and four 

specimens of I-150 x 75 x 5 x 7. And the tests from Tsai et al. (1996) were conducted 

for square concrete sections encasing four specimens of Cross (Two H)- 150 x 90 x 5 

x 8, and six specimens of Cross (Two H)- 160 x 50 x 3.2 x 4.5. Both ultimate strength 

and behavior of axially loaded CES stub columns were investigated. 

Another set of full-scale column tests was conducted by Al-Shahari et al. 

(2003) to investigate the behavior of eccentric lightweight aggregate concrete encased 
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steel composite columns and to verify the application validity of such concrete type in 

composite structure. Two codes of design practice were used to check the adequacy of 

their design application – AISC-LRFD and BS 5400. Sixteen full-scaled composite 

columns were pin ended and subjected to uniaxial bending about their major axis. In 

his study, the column height varied from two to three meters with equal end 

eccentricities of the applied load at both ends. It is observed from the testing that the 

failure mode of all the composite columns was the crushing of concrete on the 

compressive side with some cracking on the tensile side of the column. The damage 

of concrete can be noticed at the loading stage of more than 95% of the failure load in 

all tests. It is found that the effect of steel ratio on the capacity of the concrete encased 

steel composite column was very significant, where the increase of steel ratio of only 

2% would result the increase of load carrying capacity about 40% to 47%. However, 

the effect of steel ratio did not introduce any significant effect on the lateral deflection 

of the columns whenever the steel ratio was in the range from 4% to 6%. It is 

observed that the lateral deflection was very small at the low loading stage, and 

started to increase significantly the applied load from 20% to 30% of the failure load. 

And the effect of the column length on the load capacity was very small by comparing 

between the columns of 2m and 3m in the experiments. It was concluded from the 

experimental study that the application of the lightweight concrete in the concrete 

encased steel composite columns increases the load carrying capacity of the steel 

sections significantly, but at the same time decreases its ductility also. Furthermore, it 

induced less lateral deflection than those from the normal concrete composite 

columns.  
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Eight full-scale slender high-strength concrete encased steel composite 

columns were tested under axial load with and without eccentricity by Zhao et al. 

(2005). The strength of concrete was selected in the range between 43.3 MPa to 67 

MPa. Six specimens were axially loaded while two specimens were loaded with 

eccentricities of 30mm and 40mm. The tests were set up mainly based on two 

motivations. Firstly, the increase of high-strength concrete used in high-rise building 

made the current design trend lean toward more slender column designs. Therefore, 

the real performance of slender high-strength CES columns posted a major concern 

for practical design engineers. Secondly, most previous tests were mainly carried out 

for stub CES columns of low and normal strength concrete under axial load only. 

Only a few experimental studies had full-scale test of slender CES columns of high-

strength concrete with eccentric loading while the complete behavior of such CES 

columns have not been fully understood yet. For specimen subjected to axial load, it 

was observed that all columns failed due to the crushing of concrete cover at the 

column mid-height, and no sign of tensile cracks or concrete spalling were observed 

before reaching the ultimate load. For specimens loaded with eccentricity, the tensile 

cracks were noticed when applied loading reached 90% of the maximum capacity. 

Similarly, the beam-columns failed due to the spalling of concrete at the column mid-

height. 

The extensive experimental test summary and reviews of steel-concrete 

composite structures can be found in the works of Shanmugam and Lakshmi (2001), 

Weng and Yen (2002), and Kim (2005). These experimental tests extensively covered 

various steel cross-sectional shapes, steel and concrete strengths, slenderness ratios, 
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steel-to-concrete ratio, and loading conditions of the concrete encased steel composite 

columns and beam-columns. 

2.2.2 Nonlinear Analysis Approaches 

Taking advantages of the available experimental data, many numerical models 

have been developed, i.e. Kato (1996), El-Tawil and Deierlein (1999), Wang (1999), 

Zhao et al. (2005), Chen and Lin (2006), Weng et al. (2007). Some of them took into 

account the concrete confinement given by reinforcement bars, yet many of them still 

neglected the confinement associated with structural steel leading to underestimation 

of the maximum load carrying capacity of the columns (Li et al. 2003). Recently, the 

high confinement was accounted in the fiber analysis program (CSRAP-Flex) by 

Zhou and Attard (2013) to predict the nonlinear behavior of damaged concrete 

encased steel girders. However, the constitutive model for confined concrete used in 

the analysis was from reinforcement bars only. Chen and Lin (2006) proposed an 

analysis approach to approximate the maximum strength and behavior of the concrete 

encased steel composite columns that incorporate the effects of concrete confinement 

from both conventional reinforcement bars and structural steel. However, such 

approach only considers the behavior of the axially-loaded stub columns, which 

eliminate the vital influences from member slenderness and bending moment. Three 

different levels of the concrete confinement (namely unconfined, partially confined 

and highly confined) are illustrated in Figure 2.1. 
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Figure 2.1: Unconfined, partially confined, highly confined concrete for encased H-

shaped, I-shaped, and Cross-shaped steel composite sections. 

 

Fiber element approach was implemented to investigate the behavior of stocky 

and slender concrete encased composite columns under the combined axial and 

flexural forces, i.e. El-Tawil et al. (1995), El-Tawil and Deierlein (1999), Chen et al. 

(2001), Spacone and El-Tawil (2004), and Weng et al. (2007). However, none of 

these studies have yet incorporated the high confinement of concrete encasing the 

structural steel member. Ellobody and Young (2011) adopted a commercial software, 

called ABAQUS, to simulate the response of concrete encased steel composite 

columns using the sophisticated 3D solid elements. Still, the model discretized the 

concrete into the three different (viz. unconfined, partially confined, and highly 

confined concrete) confinement areas. Such a full 3D FEM is generally very 

expensive, time-consuming, and error-prone during the modeling process. Thus, 

Unconfined concrete 

Partially confined  

concrete 

Highly confined 

concrete 
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Wang et al. (2013) recently proposed a steel-concrete composite fiber beam-column 

model to simplify the modeling procedures compared to the tradition 3D FEM. Yet, a 

user-defined material subprogram UMAT in ABAQUS was still needed. 

2.3 Steel–Concrete Composite Frames 

Many nonlinear analysis approaches have been developed to fully capture the 

complete response of steel-concrete composite frames. Elnashai and Broderick (1996) 

used the nonlinear dynamic analysis to investigate the seismic response of moment-

resisting composite frames and discussed the adjustments that should be made to 

improve the design code. It was concluded that the Eurocode 8 for the composite 

frames was excessively conservative and recommendations should be suggested. The 

program ADAPTIC was used to perform a series of nonlinear dynamic analyses with 

different ground motions. Thermou et al. (2004) discussed the seismic design and 

performance of the European design codes, i.e. Eurocode 4 (Design of Composite 

Steel and Concrete Structures), and Eurocode 8 (Design of Structures for Earthquake 

Resistance). The inelastic static pushover analysis was used to trace the full response 

of the composite frames. Two groups of frames were designed, a composite slab for 

the first group and a solid concrete slab for the second group. The finite element 

program INDYAS was used for the nonlinear inelastic analysis phase where the top 

displacement versus the base shear responses were plotted. Several clauses in the 

Eurocode 4 were suggested for improvement or even correction, and more 

importantly, the clauses related to the lateral-torsional buckling check criteria for 

composite beams. Similarly, Elghazouli et al. (2008) employed a simplified nonlinear 

static loading approaches to examine the seismic performance of composite steel-
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concrete moment-resisting frames. The nonlinear finite element program ADAPTIC, 

which accounted for material and geometric nonlinearities, was utilized in accordance 

with the provisions of the European seismic code, Eurocode 8.   

In addition to the frame-based analysis approaches, Wang et al. (2009), Han et 

al. (2011), Li et al. (2011), and Li et al. (2012) tried to investigate the composite 

frames using the full 3D FEM simulation although it is not practical to model the 

whole high-rise buildings with such computational approach.  

 

 

Figure 2.2: A Load and displacement response of composite frame, and beam-

column joint by FEM (Li et al. 2012). 

 

 Wang et al. (2013) proposed a hybrid numerical modeling which combined the 

fiber beam-column model with the general FEM software ―ABAQUS‖ in order to 

decrease the computational effort and time.  There are some applications of the fiber 

element method with plastic hinge ranging from complex to simple approaches to 

analyze the composite frames, such as Iu et al. (2009), Liu et al. (2012), Chiorean 

(2013), and Tenchini et al. (2014). However, there are still less numerical approach to 
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analyze and capture the performance of CES composite frames with practical 

application. 

2.4 Structural Bracing Systems 

Lateral drift due to wind or seismic loadings causes a major concern in the 

design of tall buildings. The provision of adequate lateral stiffness to satisfy the 

serviceability limit states must be carefully considered. There are various structural 

systems to control the lateral drift, one of the most common and efficient solution is to 

provide the structural braces. The common bracing configurations for braced frames 

are shown in Figure 2.3 (Taranath 2011). 

 Kameshki and Saka (2001) presented a genetic algorithm to optimize the 

design of three-bay, fifteen-story steel buildings with different types of bracing 

systems, i.e. X, V, and Z bracings. The design conformed to both serviceability and 

strength criteria from BS 5950 (1990), where lateral torsional buckling was also taken 

into account for beam-columns. Pinned and fixed support conditions were examined. 

It was concluded that the X-bracing produced the lightest frame among the three in 

both support conditions, whereas the Z-bracing produced the heaviest frame. The V- 

and Z-bracings did not provide better lateral stiffness than the X-bracing system for 

such steel frames. 
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Figure 2.3: Bracing configurations (Taranath 2011). 
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 Di Sarno and Elnashai (2009) assessed the seismic performance of steel 

moment-resisting frames retrofitted with different bracing systems. A five-bay, nine-

story steel building was retrofitted with special concentrically braces, buckling-

restrained braces, and mega-braces. Inelastic time-history analyses were employed to 

assess the performance of steel frames under earthquake ground motions. A general 

finite element 2D program DRAIN-2DX was used to carry out the elastic and 

inelastic (static and dynamic) analyses. The results of the nonlinear inelastic analyses 

concluded that the mega-braces was the most cost-effective bracing systems. The 

maximum lateral drift in mega-braces was lower than the special concentrically 

braces between 45% to 55%, and also the total steel weight was 20% lower. 

 Türker and Bayraktar (2011) conducted both experimental and numerical 

investigations of the effects of bracing configuration on steel structures. A two-bay, 

three-story rectangular steel building was constructed with 1/2 scale of a real building 

for experimental tests. Four different types of bracings, i.e. X-type, V-type, Inverted 

V-type, and K-type were applied to the structure for investigations. Finite element 

models were developed using SAP2000 to carry out the modal analyses and compared 

to the experimental test results. The study showed that the numerical results were 

larger than the experimental results in all cases, thus the finite element model needed 

to be adjusted. Among the four bracing configurations, the X-type provided the 

highest stiffness to the steel buildings in both the experimental tests and numerical 

analyses. 

 Tsai (2012) proposed a performance-based design approach for retrofitting 

regular building frames with steel braces against sudden column loss. The design 

approach was developed from the pseudo-static analysis and was validated with 
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incremental dynamic analysis from the general purpose finite element program 

SAP2000. The concept of the retrofit design algorithm was to provide adequate steel 

braces to compensate the sudden loss of column resistance. 

Four full-scale experimental tests of steel frames with y-bracings of different 

geometries and cross-sections were conducted by Majid Zamani et al. (2012). The y-

bracing consisted of three members connected in y-shaped geometry; it was used to 

provide adequate openings to the braced bays. The full-scale specimens were applied 

with quasi-static cyclic loading until yielding and failure occurred. The performance 

of these frames was compared with nonlinear static push-over analyses using software 

program ABAQUS. It was concluded that the performance of the y-bracing and X-

bracing was comparable, and the seismic design of two-bay with y-braced frames 

could be made with the same assumptions of X-braced frames. The buckling 

resistance of y-braced frames could be increased by locating the convergence point 

towards the center. The benefits of using y-bracing system were highly desirable in 

terms of practical viewpoints. 

In addition to the experimental tests of steel bracing systems, more 

experimental studies concerning with seismic performance of buckling restrained 

braced frame systems can be found from the works of Huang et al. (2000), Fahnestock 

et al. (2003), and Mahin et al. (2004). 

  



 

 

 

CHAPTER 3 

CONSTITUTIVE MODELS OF MATERIALS 

3.1 Introduction 

The material constitutive relationship acts as the backbone for the nonlinear 

inelastic analyses. The modeling of concrete including the confinement effects is very 

essential for both strength and ductility of the concrete encased steel composite 

columns. CES composite member consists of concrete, structural steel, and 

reinforcement bars. Sanz Picon (1992) investigated the behavior of composite column 

cross sections under biaxial bending by using the confined concrete model from Kent 

and Park (1971), and steel model of elastic plastic with nonlinear strain hardening. 

Similarly, Mirza and Skrabek (1992) adopted the concrete model from the modified 

Park et al. (1982) with three regions of confinement, and steel model of elastic plastic 

with nonlinear strain hardening to perform the statistical analysis of slender composite 

beam-column strength. For concrete model, confinement from reinforcement bars is 

usually included by using a well-known confinement model from Mander et al. 

(1988). However, the confinement in the model of Mander et al. (1988) considers 

only the influences from the longitudinal and transverse reinforcement bars. When 

this model is applied to the concrete encased steel composite columns, it will 

underestimate the confinement which comes from the structural steel section which is 

known as the highly confinement to the concrete. Li et al. (2003) studied the behavior 

of the steel encased reinforced concrete beam-column under seismic loading without 

considering the confinement effect from the structural steel section. And they 

concluded that one of the reasons why their analysis underestimated the ultimate 
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strength was because they did not include the confinement effect from the structural 

steel section in their analysis. Chen and Lin (2006) predicted the axial load carrying 

capacity and the behavior of the concrete encased steel composite stub column by 

taking into account the confinement effects from both the reinforcement bars and the 

structural steel shapes. They replaced the maximum compressive confined concrete 

by multiplying the maximum compressive unconfined concrete strength with the 

confinement factors – partially confined factor and highly confined factor.  

3.2 Concrete 

3.2.1 Concrete in Compression 

The confinement in CES section comes from many factors. The confinement 

from lateral ties and longitudinal reinforcement bars are known as the partially 

confinement. Figure 3.1 shows the stress-strain relationship of unconfined and 

confined concrete. This effect can be modeled using a widely accepted stress-strain 

curve from Mander et al. (1988) as: 

 

   
   

   

      
                                                                                                                          

       

where    
  is the maximum compressive strength of confined concrete 
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where     is the longitudinal compressive concrete strain;     is the strain 

corresponding to the maximum confined concrete strength;    is the tangent modulus 

of elasticity of the concrete;      is the secant modulus of maximum confined 

concrete strength. 

 

The tangent modulus of elasticity of the concrete is taken from ACI (2011): 

 

       √   
                                                                                                                       

 

And the secant modulus of maximum confined concrete strength which can be 

expressed as: 

 

     
   

 

   
                                                                                                                                    

 

where     
  is the maximum unconfined concrete strength.  

 

The strain at the peak confined concrete stress is given as: 
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where     is the strain corresponding to the unconfined concrete strength; 

 

The maximum compressive strength of confined concrete due to the longitudinal and 

transverse reinforcement is determined by: 
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where the confinements come from the effective lateral confining pressure from the 

transverse reinforcement   
         ; and    is the confinement effectiveness 

coefficient which is expressed as: 
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depending on the effective area confined by the longitudinal reinforcement layout and 

the stirrup spacing.  
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Figure 3.1: Stress-strain curves of unconfined and confined concrete (Mander et al. 

1988). 

 

The maximum compressive strength for the partially confined concrete and the highly 

confined concrete (Chen and Lin 2006) are respectively determined by: 

 

     
       

                                                                                                                                 

     
       

                                                                                                                                

 

where the confinement factors    and    are in the range from 1.09 to 1.5 and 1.1 to 

1.97, respectively, depending on the reinforcement configurations and structural steel 

shapes. Figure 3.2 shows the stress-strain relationship of the unconfined, partially 

confined, and highly confined concrete. 
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Figure 3.2: Stress-strain curves of unconfined, partially confined, and highly 

confined concrete. 

 

Three different stress-strain curves for concrete in compression are defined 

and assigned to three different concrete zones accordingly. For the unconfined 

concrete zone, the stress-strain curve is determined from Equation 3.7 by setting the 

effective lateral confining pressure   
   , which makes the maximum compressive 

strength of confined concrete    
  equal to the maximum unconfined concrete strength 

   
 . The maximum concrete unconfined strength is measured from the standard 

cylinder specimen test, which is taken equal to 0.8 of the standard cube specimen test. 

And the unconfined strain corresponding to the maximum unconfined strength is 

taken as 0.002. For the partially confined zone and the highly confined zone, the 

stress-strain curves are generated using the model from Mander et al. (1988) by 

replacing the maximum compressive strength of confined concrete    
  with the 
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maximum compressive strength for the partially confined concrete      
  and the 

maximum compressive strength for the highly confined concrete      
 . 

3.2.2 Concrete in Tension 

When the slender column exhibits the initial geometry imperfection and 

buckles under axial load, one face of the column is in compression while the opposite 

face is in tension. The concrete uniaxial stress-strain curve for the concrete in tension 

follows the linear elastic path proportionally up to the maximum tensile strength of 

concrete     which is taken as 0.6√    . The softening part of the stress-strain curve 

after the concrete cracking is represented by a linearly degradation down to zero when 

the tensile strain reaches the ultimate tensile strain of concrete      which is taken as 

10 times of the strain corresponding to the maximum tensile strength of concrete. The 

stress-strain relationship for the concrete in tension is shown in Figure 3.3. 

 

 

Figure 3.3: Stress-strain relationship of concrete in tension. 

 

fct 

ɛct ɛctu 

Stress 

Strain 



29 

 

 

3.3 Structural Steel 

3.3.1 Structural Steel in Compression 

Generally, the stress-strain curve for structural steel is assumed to be identical 

when studying the behavior of the composite members under bending moment. 

However, for composite members subjected to compressive load, the local buckling 

of the structural steel is usually observed. For the concrete encased steel composite 

column, the local buckling of the steel is likely to occur in the flanges after the 

spalling of the partially confined concrete. Thus, it was suggested by Chen and Lin 

(2006) that the stress degradation was assumed to happen after the axial strain of the 

composite column pass the partially confined strain       corresponding to the 

maximum partially confined strength      
 . 

The stress-strain curve for the structural steel in compression is divided into 

four regions as shown in Figure 3.4. The first region was assumed initially to be linear 

elastic with the Young’s modulus of 200GPa. The second region was kept constant up 

to when the axial strain reached the partially confined concrete strain      . The third 

region, which showed the degradation of the stress representing the post-buckling 

behavior, the strength of the structural steel is assumed to drop from the yield strength 

to only 20 percent of its yield strength. And fourth region was defined when the axial 

strain reached 2.5 times of the partially confined strain      , the steel strength became 

constant.  
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Figure 3.4: Stress-strain relationship of structural steel in compression. 

 

3.3.2 Structural Steel in Tension 

The stress-strain relationship for the structural steel in tension was chosen to 

take into account for the effects of strain hardening as well as the strain softening 

which was suggested by Holzer et al. (1975). The stress-strain curve has four distinct 

regions – an elastic region, a perfectly plastic region, a strain hardening region, and a 

strain softening region. The complete curve, as shown in Figure 3.5, can be 

determined from the following equations: 

For elastic region (     ) :  
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where    is the modulus of elasticity of steel;    is the strain of steel;      is the strain 

corresponding to the yield stress of steel. 

For perfectly plastic region (          ) : 

 

                                                                                                                                 

 

where     is the yield stress of steel;     is the strain where the strain hardening begins 

depending on the area of steel. 

For strain hardening and strain softening regions             : 
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   is the maximum stress of steel;    is the strain at the rupture of steel;    is the strain 

corresponding to the maximum stress of steel. 
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Figure 3.5: Stress-strain relationship of structural steel in tension. 

 

3.4 Reinforcement Bar 

3.4.1 Reinforcement Bar in Compression 

The constitutive modeling of the reinforcement bars is assumed similarly to 

the structural steel with four parts. The stress-strain relationship for the reinforcement 

bar under compression is shown in Figure 3.6. Under compressive load, the buckling 

of the longitudinal rebar occurred when the its inelastic strain becomes large. And the 

strength and ductility of the structural members is significantly decreased after the 

buckling of the longitudinal bars (Chen and Lin 2006). For the composite column 

under compression, it is assumed that the reinforcement bars buckled at the time the 

unconfined concrete crushed. Thus, the stress in the rebar degraded when the axial 
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strain reached the unconfined concrete strain     corresponding to the maximum 

compressive unconfined concrete strength    
 . And the post-buckling strength was 

assumed to dropped to 20 percent of its yield strength, and became constant after the 

axial strain reached 2.5 times of the unconfined concrete strain    . 

 

 

Figure 3.6: Stress-strain relationship for reinforcement bar in compression. 

 

3.4.2 Reinforcement Bar in Tension 

When the slender composite column buckles under compression load with 

large lateral displacement at the mid-height, the reinforcement bars in one side could 

buckle and the other in the opposite side are in tension. The complete stress-strain 

relationship of the rebar is adopted using the model suggested by Holzer et al. (1975) 

which could also predict the effects of both the strain hardening and strain softening 

of the reinforcement bar (see Figure 3.5). 
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CHAPTER 4 

NONLINEAR INELASTIC NUMERICAL MODELS OF 

CONCRETE ENCASED STEEL SECTIONS 

 

 

4.1 Introduction 

Nonlinear numerical analysis using fiber element method has gained its 

popularity to depict the response of the composite columns. Fiber element analysis 

method is a powerful analysis method yet easy to be implemented. There are several 

remarkable advantages of using this method as mentioned below: 

1. Materials nonlinear behavior can be easily simulated into the fiber element 

program using the uniaxial stress-strain relationship of the materials where different 

materials can be assigned to different fiber elements, i.e. the concrete confinement 

effects from the reinforcement bar and structural steel, local buckling of the structural 

steel, the strain-hardening and softening of the materials, and so on. 

2. It can generate any shape of cross-section and any number of materials. Since 

a fiber section can be discretized into small fiber regions, any shape of cross-section is 

not limited. 

3. It can be used to model non-prismatic structural elements. In fiber analysis 

program, the length of the fiber is not covered in the algorithm. Thus, along the length 

of the element can be subdivided into many integration points where different fiber 

cross-sections can be assigned accordingly. 
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4. Accurate response with time efficiency. To study the complete behavior or 

determine the ultimate strength of the structural element with complex cross-section 

and nonlinear materials, the fiber element method can capture higher accuracy than 

the frame element model, with much less time consuming than the three-dimension 

finite element model. 

4.2 Concrete Confinement Zones 

According to Shakir-Khalil and Zeghiche (1989) and Mander et al. (1988), the 

effectively partially confined concrete zone was assumed to be in the form of the 

parabolic arches which lie between the longitudinal reinforcements. Similarly, Chen 

and Lin (2006) also assumed that the highly confined concrete zone occurs in the 

form of parabolic arching which lie between the structural steel flanges (see Figure 

2.1). In order to define the confinement area of the composite column as highly 

confined area, the parabolic shape can be simplified into the rectangular shape as 

previously adopted by Mirza and Skrabek (1992), El-Tawil and Deierlein (1999), and 

Ellobody and Young (2011). For H- and I-shaped steel sections, the highly confined 

concrete is measured from the web of the steel section to the mid-width of each 

cantilever flange of the steel. However, for Cross-shaped steel sections, the highly 

confined concrete is proposed herein to be measured from the web of the steel section 

to the end of each cantilever flange of the steel. The proposed defined zone is verified 

through comparing the ultimate load-carrying capacity and the full nonlinear response 

(elastic and inelastic post-peak softening-response) of the CES columns from the 

experimental tests. And the partially confined concrete is defined as the concrete area 

inside the stirrup excluding the highly confined concrete (see Figure 4.1). 
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Figure 4.1: Confinement zones and fiber element discretization of CES sections. 

 

4.3 Fiber Element Method 

4.3.1 Assumptions 

The present fiber analysis method is formulated based on the following 

assumptions: 

1. Plane cross-section remains plane after deformation. 

2. Strain is linearly proportional to the distance from the neutral axis. 
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3. Perfect bond exists between each material – concrete, steel, and reinforcement 

bars.  

4. The effects of creep and shrinkage are neglected. 

5. The confinement distribution of the partially confined and highly confined 

concrete is uniform. 

6. Residual stresses of the structural concrete, steel, and rebar are not considered. 

4.3.2 Discretization of Composite Sections 

The whole composite cross-section is discretized into a suitable number of 

small connected elements using fiber element concept. Each of the fiber elements can 

be assigned with different material properties that constitute the models associated 

with the member length. In essence, the adopted model discretizes the concrete 

encased steel composite section into five different material regions, namely 

unconfined concrete, partially confined concrete, highly confined concrete, structural 

steel and reinforcement bars (see Figure 4.1). The element size adopted typically 

reads the same size as that of the longitudinal reinforcement bar, where the origin of 

the cross-section is at the centroid of the composite section. The fiber coordinates 

        and the area of each fiber are based on the fiber discretization and geometry of 

the composite cross-section with respect to the origin. 

4.4 Strain-Curvature Relationships 

For the composite section under a uniaxial load incorporating both initial 

geometric imperfection and slenderness effects, the fiber strain is taken as a function 

of the curvature     and the neutral axis depth     . The strain      of each fiber i is 

calculated from the multiplication of the curvature     with an orthogonal distance of 
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that fiber element from the neutral axis (    ). Hence, the strain at the extreme top 

fiber      is determined by multiplying the curvature     with the depth of the neutral 

axis. The sign convention used in this work is positive in a compressive strain and 

negative in a tensile strain. 

 

Figure 4.2: Strain-curvature relationship using fiber element model. 

 

In the case of buckling about the  -axis as shown in Figure 4.2, the strain in 

unconfined concrete, partially confined concrete, highly confined concrete, structural 

steel and reinforcement bar can be determined by: 
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The orthogonal distance from the neutral axis to the centroid of each fiber element i 

reads: 

     |       |                                                                                                                         

 

The distance from the neutral axis to each fiber element is: 

     
 

 
                                                                                                                                

where   is a cross-sectional depth. 

 

In the case of buckling about the  -axis, the strain in unconfined concrete, 

partially confined concrete, highly confined concrete, structural steel and 

reinforcement bar is determined by: 

 

   {
                            

                           
                                                                                               

where    is the ordinate of the fiber element  ;      distance of the neutral axis to a 

fiber element  . The orthogonal distance of the neutral axis to the centroid of the fiber 

element i is: 

 

     |       |                                                                                                                       

 

The distance of the neutral axis to each fiber element is: 

     
 

 
                                                                                                                                 

where   is the cross-sectional width. 
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4.5 Stress Resultants 

The fiber element analysis determines the axial force and bending moments 

developed from the stress resultants. The fiber stresses of the composite section are 

calculated from the stress-strain relationship of an individual material, and therefore 

the stress resultants can be determined by integrating the stresses over the 

corresponding areas; which yields the following expressions: 
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where 𝑃 is an axial force;       the two bending moments about the  - and  -axes, 

respectively;                             the stresses at the centroid of the fiber element   

associated with the unconfined concrete, partially confined concrete, highly confined 

concrete, steel and reinforcement bar, respectively;                                  the 
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areas of the fiber element   in the unconfined concrete, partially confined concrete, 

highly confined concrete, steel and reinforcement bar, respectively;               

                                                        the x-y coordinates of the fiber element   

in the unconfined concrete, partially confined concrete, highly confined concrete, 

steel and reinforcement bar, respectively; 𝑛   𝑛   𝑛   𝑛  𝑛  the total number of fiber 

elements consisted in the unconfined concrete, partially confined concrete, highly 

confined concrete, steel and reinforcement bar, respectively. 

  



 

 

 

CHAPTER 5 

CONCRETE ENCASED STEEL COLUMNS UNDER 

AXIAL COMPRESSION 

 

5.1 Introduction 

In this chapter, the simultaneous ultimate load-carrying capacity and full 

structural response (post-peak strain softening) of concrete encased steel columns 

under axial compression are efficiently investigated through a developed numerical 

nonlinear inelastic analysis. Not only the stub columns, where slenderness and 

geometric imperfection are negligible, but also the slender CES columns (H-, I-, 

Cross-encased shaped steel) are numerically analyzed and compared with the relevant 

experimental tests. The present analysis approach carefully accounts for the materials 

nonlinearity, geometric nonlinearity, geometric imperfection, various levels of 

concrete confinement, local buckling of structural steel, and buckling of 

reinforcement bar (viz. after the crushing concrete material occur during simulation). 

The resultant stresses contributed from each material, i.e. unconfined, partially-

confined, highly-confined concrete, structural steel, and reinforcement bars, under 

incrementally applied loading can be fully captured and traced for a better 

understanding of the CES columns responses. After validating the proposed numerical 

approach, parametric sensitivity analyses are performed to dig into the influences 

from key parameters such as the spacing of lateral ties (effects of confinement level), 

effective length ratio, structural steel yield stress, and concrete compressive strength 

on the performance of CES columns. 
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5.2 Numerical Analysis Approach 

5.2.1 Imperfection and Buckling Modeling of Composite Columns 

The concrete encased steel composite column is modeled as a pin-ended 

column subjected to a concentric axial load with initial geometric imperfection as 

shown in Figure 5.1. It is assumed that the columns buckle in a single curvature and 

the most critical section occurs at the column mid-height. The buckling shape of the 

column can be described by a sine wave equation (Shakir-Khalil and Zeghiche 1989): 

 

           (
  

 
)                                                                                                                  

where   is a lateral displacement at any point along the column length;   the column 

effective length;     the lateral displacement at the column mid-height; and   the 

longitudinal direction of the column. 

 

The column curvature can then be determined from the lateral displacement: 
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The column curvature at the mid-height is taken as 
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The total external bending moment at the column mid-height under the concentrically 

applied axial load with the initial imperfection reads 

 

      𝑃                                                                                                                        

where     is the initial geometric imperfection of the column. 

 

 

Figure 5.1: Concentrically applied force and initial imperfection of a pin-ended 

column. 

 

5.2.2 Müller’s Algorithm  

The numerical method of Müller (1956) requires three initial points to 

iteratively approximate the solutions. The present scheme adopts the three initial 

neutral axis depth values to find in the next iteration the neutral axis depth, which 

satisfies the moment equilibrium of the concrete encased steel composite column with 

the confinement effects. For each incremental step, the external moments associated 
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with the initial geometric imperfection and the lateral displacement at a column mid-

height under an axial load must be in equilibrium with the internal moment at the 

same height. For the given initial values of the neutral axis depth (              ), the 

neutral axis depth value in the next iteration is determined by: 
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where    is Müller’s function of the residual moment at the column mid-height;     

the initial geometric imperfection of the column, i.e. L/2000 (Ellobody and Young 

2011);     the lateral displacement at the column mid-height;     the internal 

bending moment of the composite cross-section;       the coefficients underlying 

Müller’s parabolic equation. 
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At each step, the initial trial of the neutral axis depth values                is 

crucial to obtain the solution convergence. Therefore, the present approach proposes 

the simple yet efficient adaptive technique that can provide the good initial 

approximation. In essence, during the pre-peak structural response the neutral axis 

depth lies within the range between 0 to 2D/3. When the structural response 

establishes strain softening and large lateral deformation at the mid-height, the neutral 

axis is found at D/2. 

Thus, the algorithm adopts the initial neutral axis depth values of dn,1 = D/4, 

dn,2 = D/2 and dn,3 = 2D/3 as when the resulting neutral axis depth is less than 80 

percent of the cross-section mid-depth. On the other hand, these initial values take 

dn,1 = D/4, dn,2 = D/2 and dn,3 = D as when the resulting depth reaches 80 percent of 

the cross-section mid-depth. 

Equation 5.9 yields the two solution roots that correspond to the positive and 

negative signs in the denominator. The Müller’s method selects the solution with the 

root sign that is similar to the sign of B. If only real roots are located, it is important to 

choose the two original points that are closest to the new estimated root. Hence, the 

values of                with the corresponding functions                are 

exchanged accordingly (viz.      is close to     ) using the following algorithms: 
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            |         |  |         |                                         

The Müller’s iterative procedures are repeated until the preset tolerance        

satisfies the convergence condition of |  |      . In this study, the tolerance is set to 

     = 0.0001. 

5.2.3 Computational Procedures for Load and Axial Strain Responses 

The complete nonlinear responses of the concrete encased steel composite 

column under the concentrically applied axial load with the initial geometric 

imperfection can be traced using the proposed inelastic fiber element analysis in the 

lateral displacement (   ) control at a column mid-height. The analysis procedures 

are summarized by the flowchart in Figure 5.2. 

More explicitly, the lateral displacement     is incrementally increased by the 

analysis to simulate the buckling behavior of the column, whilst the corresponding 

curvature     is obtained as a by-product. The strain developed at the centroid of 

each fiber element of the composite column cross-section is calculated from 

Equations 4.1 and 4.4. The stresses associated with the unconfined concrete, partially 

confined concrete, highly confined concrete, structural steel and reinforcement bars 

are determined from the uniaxial stress-strain relationship of the material concerned. 

For each of the lateral displacement increments, the neutral axis depth is adjusted 

using Müller’s method that enforces equilibrium of the moment at the column mid-

height. The analysis procedure is then repeated with the successive increment of the 

mid-height lateral displacement, such that the complete axial force and strain 
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(nonlinear) responses can be computed. Various critical behaviors of the concrete 

encased steel composite column under the full history of the axial force with the 

initial geometric imperfection (e.g. initial stiffness, maximum strength capacity, post-

peak response and ductility) can be identified directly from the resulting axial load 

and strain diagram. 

The step-by-step procedures along with the flowchart, as shown in Figure 5.2, 

of the nonlinear inelastic analysis program of the concrete encased steel composite 

columns under axial load with initial geometric imperfection are summarized below: 

1. Input the dimensions and the initial geometric imperfection of the concrete 

encased steel composite column. 

2. Define the zones of the unconfined concrete, partially confined concrete, 

highly confined concrete. 

3. Impose the stopping criteria by specifying the maximum axial load 𝑃   , the 

limit deflection       , the convergence tolerances        . 

4. Define the material models for the unconfined concrete, partially confined 

concrete, highly confined concrete, structural steel, and reinforcement bar. 

5. Discretize the composite cross-section into fiber elements. 

6. Calculate the area of the fiber elements and the distance from the centroid of 

the composite section to the each fiber element’s center point. 

7. Impose the initial lateral buckling displacement     at the mid-height of the 

column by an increment of     . 

8. Use the Equation 5.3 to determine the mid-height curvature     from the 

imposed lateral buckling displacement     at the mid-height of the column. 
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9. Choose the initial guessing values of the neutral axis depth                as 

   ,    ,       respectively. However, these initial values will be chosen 

using the adaptive technique as explained earlier in the Müller’s numerical 

method. 

10. Using the chosen initial values of the neutral axis depth                to 

compute the fiber strains of each material. 

11. Calculate the fiber stresses of the unconfined concrete, partially confined 

concrete, highly confined concrete, structural steel, and reinforcement bar 

from the uniaxial stress-strain relationships accordingly. 

12. Calculate the internal axial force 𝑃 and the internal bending moment     

carried by the composite column, and the external bending moment       

corresponding to the initial guessing values. 

13. Determine the Müller’s function of the residual moments                at the 

mid-height of the composite column corresponding to the initial values of the 

neutral axis depths               . 

14. Compute the coefficients       and the adjusted neutral axis depth      using 

Müller’s numerical method. 

15. Compute the strains and stresses of the each fiber element corresponding to 

the adjusted neutral axis depth      from the material uniaxial stress-strain 

relationships. 

16. Calculate the internal axial force 𝑃 and the internal bending moment     

carried by the composite column, and the external bending moment       

corresponding to the adjusted neutral axis depth     . 
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17. Calculate the residual moment      of the Müller’s function. 

18. Check the conditions using Equations 5.10-5.11 for the interchanged values of 

               along with the corresponding residual moments               . 

19. Check the convergence condition |  |      . If the convergence condition is 

satisfied, proceed to the next step. Otherwise, repeat from step (14) to (18). 

20. Increase the mid-height lateral buckling displacement,             . 

Repeat from step (8) to (19) until the imposed stopping criteria in step (3) is 

reached. 

21. Generate the load-axial strain  𝑃     response curve. 
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Figure 5.2: Flowchart summarizing the analysis procedures to obtain axial load and 

strain responses of concrete encased steel composite columns. 

 

Input dimensions and initial imperfection  

Define zones – unconfined, partially 

confined, highly confined concrete 

Input stopping criteria 𝑃𝑚𝑎 ,  𝑙 𝑚 𝑡  

Define the material models 

Discretize composite section into fibers 

Calculate area and distance from centroid 

of composite section to fiber  

Impose lateral displacement  𝑚 =   𝑚   

Determine mid-height curvature  𝑚  

Initialize neutral axis depths  𝑛,1 ,  𝑛,2 ,  𝑛,3 

Calculate fiber strains and stresses 

Compute 𝑃,  𝑚 ,   ,𝑚  

Calculate Müller’s functions  𝑚,1 ,  𝑚,2 ,  𝑚,3 

Calculate  ,  ,   and adjust  𝑛,4 

Calculate fiber strains and stresses 

Compute 𝑃,  𝑚 ,   ,𝑚  

Calculate the residual moment  𝑚,4 

Check conditions for interchanged of 

 𝑛,1 ,  𝑛,2 ,  𝑛,3 

Reach 𝑃𝑚𝑎 ,  𝑙 𝑚 𝑡  ? 

Increase  𝑚 =  𝑚 +   𝑚  

Generate  𝑃     curve  

| 𝑚 |   𝑡𝑜𝑙  
𝑁𝑂 

𝑁𝑂 

Record axial load  𝑃  & concrete strain     
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5.3 Validation of the Numerical Approach 

5.3.1 Summary of Relevant Experimental Tests 

The present work employs five experimental studies from Anslijn and Janss 

(1974), Matsui (1979), Chen and Yeh (1996), Tsai et al. (1996) and Zhao et al. 

(2005). The column specimens were pin-ended concrete encased steel composite 

columns under a concentrically applied axial force. Tables 5.1 and 5.2 detail the 

dimensions, material properties, and cross-sectional configurations (i.e. H-, I-, Cross-

encased steel shaped) of all the composite column specimens involved. A total of 

thirty-three full-scale stub and slender CES column specimens are used for validating 

the proposed nonlinear numerical approach. 

 

Table 5.1: Dimensions, steel sections, and material strength of CES column 

specimens 

Specimen 

ID 

Dimensions Structural steel sections Material strength References 

B 

(mm) 

D 

(mm) 

kL 

(mm) 
Shape b  d  tw  tf (mm) 

Concrete 

 (MPa) 

Steel  

(MPa) 

Rebar  

(MPa) 

C1 280 280 1200 H 150  150  7  10 29.5** 296 350 

Chen and 

Yeh (1996) 

C2 280 280 1200 H 150  150  7  10 28.1** 296 350 

C3 280 280 1200 H 150  150  7  10 29.8** 296 350 

C4 280 280 1200 I 75  150  5  7 28.1** 303 350 

C5 280 280 1200 I 75  150  5  7 26.4** 303 350 

C6 280 280 1200 I 75  150  5  7 28.1** 303 350 

C7 280 280 1200 I 75  150  5  7 29.8** 303 350 

C8 280 280 1200 Cross 2 (90175  5  8) 29.8** 345 350 

C9 280 280 1200 Cross 2 (90175  5  8) 29.8** 345 350 

C10 280 280 1200 Cross 2 (90175  5  8) 29.5** 345 350 

          

C11 160 160 924 H 100  100  6  8 18.5* 306 376 

Matsui 
(1979) 

C12 160 160 2309 H 100  100  6  8 21.4* 298 376 

C13 160 160 3464 H 100  100  6  8 22.5* 304 376 
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C14 240 240 4280 H 140  140  7  12 38* 285 - 

Anslijn and 
Janss (1974) 

C15 240 240 3486 H 140  140  7  12 33.6* 293 - 

C16 240 240 2490 H 140  140  7  12 37.6* 276 - 

C17 240 240 2488 H 140  140  7  12 33.6* 276 - 

C18 240 240 1288 H 140  140  7  12 33.6* 276 - 

C19 240 240 1253 H 140  140  7  12 35.4* 276 - 

          

C20 160 180 2800 I 68  100  4.5  7.6 59.8* 379 358 

Zhao et al. 

(2005) 

C21 160 180 3500 I 68  100  4.5  7.6 55.7* 379 358 

C22 160 180 3500 I 68  100  4.5  7.6 50.7* 379 358 

C23 160 180 4100 I 68  100  4.5  7.6 67* 379 358 

          

C24 280 280 1200 Cross 2 (90175  5  8) 23.9** 274 453 

Tsai et al. 

(1996) 

C25 280 280 1200 Cross 2 (90175  5  8) 23.5** 274 453 

C26 280 280 1200 Cross 2 (90175  5  8) 21.8** 274 453 

C27 280 280 1200 Cross 2 (90175  5  8) 25.3** 274 453 

C28 280 280 1200 Cross 2 (50  160  3.2  4.5) 26.0** 271 453 

C29 280 280 1200 Cross 2 (50  160  3.2  4.5) 26.3** 271 453 

C30 280 280 1200 Cross 2 (50  160  3.2  4.5) 25.0** 271 453 

C31 280 280 1200 Cross 2 (50  160  3.2  4.5) 26.6** 271 453 

C32 280 280 1200 Cross 2 (50  160  3.2  4.5) 24.6** 271 453 

C33 280 280 1200 Cross 2 (50  160  3.2  4.5) 24.3** 271 453 

*   Concrete cube strength 

** Concrete cylinder strength 
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Figure 5.3: Cross-section configurations of CES columns (a) H-, I-shaped with 

distributed rebar, (b) H-, I-shaped with corner rebar, (c) H-, I-shaped without rebar, 

(d) Cross-shaped with distributed rebar, and (e) Cross-shaped with corner rebar. 
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Table 5.2: Reinforcement bar and structural steel details of CES column specimens 

Specimen 

ID 

Concrete Encased Steel Composite Dimensions Reinforcements 

b1 

(mm) 

b2 

(mm) 

b3 

(mm) 

b4 

(mm) 

d1 

(mm) 

d2 

(mm) 

d3 

(mm) 

d4 

(mm) 

Main bar Stirrup 

Number Ø Spacing Ø 

C1 34 65 150 70.7 34 65 150 70.7 12 15.9 140 8 

C2 34 65 150 70.7 34 65 150 70.7 12 15.9 75 8 

C3 34 65 150 70.7 34 65 150 70.7 12 15.9 35 8 

C4 34 65 75 70.7 34 65 150 70.7 12 15.9 140 8 

C5 34 65 75 70.7 34 65 150 70.7 12 15.9 75 8 

C6 34 65 75 70.7 34 65 150 70.7 12 15.9 140 8 

C7 34 65 75 70.7 34 65 150 70.7 12 15.9 75 8 

C8 34 52.5 90 120 34 52.5 90 120 12 15.9 140 8 

C9 34 52.5 90 120 34 52.5 90 120 12 15.9 75 8 

C10 34 52.5 90 120 34 52.5 90 120 12 15.9 35 8 

             

C11 19 30 100 - 19 30 100 - 4 6 75 4 

C12 19 30 100 - 19 30 100 - 4 6 75 4 

C13 19 30 100 - 19 30 100 - 4 6 75 4 

             

C14 - 50 140 - - 50 140 - - - - - 

C15 - 50 140 - - 50 140 - - - - - 

C16 - 50 140 - - 50 140 - - - - - 

C17 - 50 140 - - 50 140 - - - - - 

C18 - 50 140 - - 50 140 - - - - - 

C19 - 50 140 - - 50 140 - - - - - 

             

C20 15 46 68 - 15 40 100 - 4 12 150 6 

C21 15 46 68 - 15 40 100 - 4 12 150 6 

C22 15 46 68 - 15 40 100 - 4 12 150 6 

C23 15 46 68 - 15 40 100 - 4 12 150 6 

             

C24 34 52.5 90 - 34 52.5 90 - 4 15.9 140 8 

C25 34 52.5 90 - 34 52.5 90 - 4 15.9 100 8 

C26 34 52.5 90 120 34 52.5 90 120 12 15.9 100 8 

C27 34 52.5 90 120 34 52.5 90 120 12 15.9 100 8 

C28 34 60 50 - 34 60 50 - 4 15.9 190 8 

C29 34 60 50 - 34 60 50 - 4 15.9 140 8 

C30 34 60 50 120 34 60 50 120 12 15.9 140 8 

C31 34 60 50 - 34 60 50 - 4 15.9 100 8 

C32 34 60 50 120 34 60 50 120 12 15.9 100 8 

C33 34 60 50 120 34 60 50 120 12 15.9 100 8 
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In the test from Chen and Yeh (1996), the effects of different transversal 

reinforcement bar spacing and structural steel shapes were investigated. Seven stub 

concrete encased steel composite column specimens C1-C10 composing respectively 

of three H-shaped, four I-shaped, three Cross-shaped structural steel sections encased 

with 12 longitudinal reinforcement bars (see Figure 5.3a, d) are employed in this 

study. Furthermore, the cross-section configurations of the composite column 

specimens C11-C13 conducted by Matsui (1979) is represented in Figure 5.3b. 

Anslijn and Janss (1974) conducted a series of the tests on the stub and slender 

concrete encased steel composite column without longitudinal reinforcement bars 

(viz. specimens C14-C19 configured in Figure 5.3c). The recent experimental tests 

were carried out by Zhao et al. (2005) on the slender concrete encased steel composite 

columns under an axial load with/without eccentricity. Only four composite column 

specimens C20-C23 in Figure 5.3b were solely applied by a concentric axial load. Ten 

full-scale concrete encased Cross-shaped steel composite stub columns with 

longitudinal reinforcement bars (see Figure 5.3d, e) were tested by Tsai et al. (1996). 

5.3.2 Comparison between the numerical and experimental results 

This section illustrates comparisons of the responses and the corresponding 

maximum strength of the concrete encased steel composite columns obtained from the 

proposed numerical analysis approach and 33 available experimental results (Anslijn 

and Janss 1974, Matsui 1979, Chen and Yeh 1996, Tsai et al. 1996, Zhao et al. 2005). 

Table 5.3 summarizes the maximum load carrying capacity calculated by the present 

scheme (𝑃    ) and the tests  𝑃     .  
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Table 5.3: Comparisons between the numerical analyses with the test results 

Specimen ID Test Proposed method PProp References 

PTest (kN) PProp (kN) PTest 

C1 4220 4174 0.99 

Chen and Yeh (1996) 

C2 4228 4093 0.97 

C3 4399 4272 0.97 

C4 3788 3497 0.92 

C5 3683 3398 0.92 

C6 3630 3497 0.96 

C7 3893 3644 0.94 

C8 4441 4574 1.03 

C9 4519 4609 1.02 

C10 4527 4618 1.02 

     

C11 996 1025 1.03 

Matsui (1979) C12 974 1013 1.04 

C13 874 857 0.98 

     

C14 2148 2174 1.01 

Anslijn and Janss (1974) 

C15 2344 2261 0.97 

C16 2628 2597 0.99 

C17 2344 2432 1.04 

C18 2550 2544 1.00 

C19 2746 2623 0.96 

     

C20 1457 1566 1.07 

Zhao et al. (2005) 
C21 1270 1265 1.00 

C22 1183 1180 1.00 

C23 1330 1190 0.90 

     

C24 3602 3458 0.96 

Tsai et al. (1996) 

C25 3502 3467 0.99 

C26 3836 3951 1.03 

C27 3854 4201 1.09 

C28 3063 2849 0.93 

C29 3009 2919 0.97 

C30 3696 3474 0.94 

C31 3088 2964 0.96 

C32 3748 3448 0.92 

C33 3744 3444 0.92 

     

Average - - 0.98  

SD - - 0.05  

COV - - 0.05  
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Clearly, good agreements between PProp and PTest have been evidenced, in 

which the average value, the standard deviation (SD) and the coefficient of variation 

(COV) of the PProp  PTest ratio are 0.98, 0.05 and 0.05, respectively. More 

importantly, the proposed analysis approach is able to capture the complete axial load 

and strain responses of the concrete encased steel composite columns under the 

concentrically applied compression force. Again, good agreements between the 

obtained response results and the experiment data are clearly illustrated in Figure 5.4 -

5.6 for the CES specimens C2 (H-shaped steel section), C4 (I-shaped section), and C8 

(Cross-shaped section), respectively.  

 

 

Figure 5.4: Axial load and strain response from the present analysis approach and the 

experiment for H-shaped encased specimen C2. 
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Figure 5.5: Axial load and strain response from the present analysis approach and the 

experiment for I-shaped encased specimen C4. 

 

 

Figure 5.6: Axial load and strain response from the present analysis approach and the 

experiment for Cross-shaped encased specimen C8. 
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constitutive models of various levels of concrete confinement, stability of structural 

steel and reinforcement bars, simultaneously. 

Furthermore, the axial load and strain relationship associated with each of the 

composite material components is displayed in Figure 5.7. For instance, the maximum 

strength capacity of the composite column is approached as when the stresses 

underpinning both structural steel and longitudinal reinforcement bars reach the yield 

stress values. Corresponding to this critical load, the unconfined concrete stress 

deteriorates and undergoes the softening portion. Obviously, the concrete (partial and 

high) confinement effects enhance the overall load carrying capacity of the composite 

column. 

 

 

Figure 5.7: Axial load and strain responses of each composite component of 

specimen C1 obtained by the present analysis approach. 
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5.4 Parametric Sensitivity Analyses 

5.4.1 Description of Parameters 

This section performs the parametric study of some key parameters, namely 

the width-to- effective length (B/kL) ratio, transverse tie (stirrup) spacing, concrete 

strength and structural steel yield stress. In essence, it investigates the influences of 

these parameters on the overall response and maximum strength capacity of the 

concrete encased steel composite columns. Table 5.4 summarizes 54 parametric 

variations of specimen dimensions and material properties of 18 column groups (G1-

G18), where the B/kL ratio is varied within the range of 0.03 and 0.16. 

The specimen groups G1-G9 (previously conducted by Matsui (1979) contain 

the square concrete cross-section of (160160 mm
2
) encasing the H-shaped structural 

steel (b  d  tw  tf = 10010068) with four longitudinal reinforcement bars (a 

diameter of 6 mm) at corners and a transverse tie diameter of 4 mm (see Figure 5.3b). 

The specimen groups G10-G18 (also studied by Zhao et al. (2005)) consist of a 

rectangular concrete cross-section (160180 mm
2
) encasing the I-shaped structural 

steel cross-section (b  d  tw  tf = 681004.57.6) with four longitudinal 

reinforcement bars (a diameter of 12 mm) at corners and a stirrup diameter of 6 mm. 

The column specimen groups G1–G3 and G10–G12 contain the similar 

concrete cube strength    
  , steel yield stress (   ) and reinforcement bar yield stress 

(   ) to those conducted by Matsui (1979) and (Zhao et al. (2005)), respectively. The 

present study varies the parameters, namely the B/kL ratio and transverse tie spacing. 

The specimen groups G4–G6 and G13–G15 (containing the same properties as the 

groups G1-G3 and G10-G12, respectively) vary solely the concrete strength    
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(selected from 20, 40 and 60 MPa). Finally, the groups G7-G9 and G16-G18 consider 

variation of the structural steel yield stress (   ) chosen from 250, 345 and 485 MPa. 

Both stub and slender concrete encased steel composite columns were investigated. 

 

Table 5.4: Parametric variations of specimen dimensions and material properties of 

concrete encased steel composite columns 

Group Parametric 

Columns 

Concrete 

Section 

Steel Section Effective 

Length 

Stirrup 

Spacing 

Concrete Steel Rebar 

B  D (mm2) Shape b  d  tw  tf (mm) kL (mm) (mm)   
  

(MPa) 

    

(MPa) 

    

(MPa) 

G1 PC1 160  160 H 100  100  6  8 1000 35 22.5 304 376 

PC2 160  160 H 100  100  6  8 1000 75 22.5 304 376 

PC3 160  160 H 100  100  6  8 1000 140 22.5 304 376 

          

G2 PC4 160  160 H 100  100  6  8 3500 35 22.5 304 376 

PC5 160  160 H 100  100  6  8 3500 75 22.5 304 376 

PC6 160  160 H 100  100  6  8 3500 140 22.5 304 376 

          

G3 PC7 160  160 H 100  100  6  8 5000 35 22.5 304 376 

PC8 160  160 H 100  100  6  8 5000 75 22.5 304 376 

PC9 160  160 H 100  100  6  8 5000 140 22.5 304 376 

          

G4 PC10 160  160 H 100  100  6  8 1000 140 20 304 376 

PC11 160  160 H 100  100  6  8 1000 140 40 304 376 

PC12 160  160 H 100  100  6  8 1000 140 60 304 376 

          

G5 PC13 160  160 H 100  100  6  8 3500 140 20 304 376 

PC14 160  160 H 100  100  6  8 3500 140 40 304 376 

PC15 160  160 H 100  100  6  8 3500 140 60 304 376 

          
G6 PC16 160  160 H 100  100  6  8 5000 140 20 304 376 

PC17 160  160 H 100  100  6  8 5000 140 40 304 376 

PC18 160  160 H 100  100  6  8 5000 140 60 304 376 

          

G7 PC19 160  160 H 100  100  6  8 1000 140 22.5 250 376 

PC20 160  160 H 100  100  6  8 1000 140 22.5 345 376 

PC21 160  160 H 100  100  6  8 1000 140 22.5 485 376 

          

G8 PC22 160  160 H 100  100  6  8 3500 140 22.5 250 376 

PC23 160  160 H 100  100  6  8 3500 140 22.5 345 376 

PC24 160  160 H 100  100  6  8 3500 140 22.5 485 376 

          
G9 PC25 160  160 H 100  100  6  8 5000 140 22.5 250 376 

PC26 160  160 H 100  100  6  8 5000 140 22.5 345 376 

PC27 160  160 H 100  100  6  8 5000 140 22.5 485 350 

          
G10 PC28 160  180 I 68  100  4.5  7.6 1000 35 55.7 379 358 

PC29 160  180 I 68  100  4.5  7.6 1000 75 55.7 379 358 

PC30 160  180 I 68  100  4.5  7.6 1000 140 55.7 379 358 

          

G11 PC31 160  180 I 68  100  4.5  7.6 3500 35 55.7 379 358 

PC32 160  180 I 68  100  4.5  7.6 3500 75 55.7 379 358 

PC33 160  180 I 68  100  4.5  7.6 3500 140 55.7 379 358 
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G12 PC34 160  180 I 68  100  4.5  7.6 5000 35 55.7 379 358 

PC35 160  180 I 68  100  4.5  7.6 5000 75 55.7 379 358 

PC36 160  180 I 68  100  4.5  7.6 5000 140 55.7 379 358 

          

G13 PC37 160  180 I 68  100  4.5  7.6 1000 150 20 379 358 

PC38 160  180 I 68  100  4.5  7.6 1000 150 40 379 358 

PC39 160  180 I 68  100  4.5  7.6 1000 150 60 379 358 

          
G14 PC40 160  180 I 68  100  4.5  7.6 3500 150 20 379 358 

PC41 160  180 I 68  100  4.5  7.6 3500 150 40 379 358 

PC42 160  180 I 68  100  4.5  7.6 3500 150 60 379 358 

          

G15 PC43 160  180 I 68  100  4.5  7.6 5000 150 20 379 358 

PC44 160  180 I 68  100  4.5  7.6 5000 150 40 379 358 

PC45 160  180 I 68  100  4.5  7.6 5000 150 60 379 358 

          

G16 PC46 160  180 I 68  100  4.5  7.6 1000 150 55.7 250 358 

PC47 160  180 I 68  100  4.5  7.6 1000 150 55.7 345 358 

PC48 160  180 I 68  100  4.5  7.6 1000 150 55.7 485 358 

          
G17 PC49 160  180 I 68  100  4.5  7.6 3500 150 55.7 250 358 

PC50 160  180 I 68  100  4.5  7.6 3500 150 55.7 345 358 

PC51 160  180 I 68  100  4.5  7.6 3500 150 55.7 485 358 

          

G18 PC52 160  180 I 68  100  4.5  7.6 5000 150 55.7 250 358 

PC53 160  180 I 68  100  4.5  7.6 5000 150 55.7 345 358 

PC54 160  180 I 68  100  4.5  7.6 5000 150 55.7 485 358 

 

5.4.2 Results and Discussions 

The influences of transverse tie spacing and the B/kL ratio on the overall 

response of the square concrete encased H-shaped steel columns and the rectangular 

concrete encased I-shaped steel columns are displayed in Figure 5.8a and Figure 5.8b, 

respectively. As also illustrated in Table 5.5, the maximum load carrying capacity of 

the composite column is significantly reduced with decreasing the value of the B/kL 

ratio (i.e. towards the slender column). Increasing the stirrup spacing (weakening the 

concrete confinement) deteriorates the ductility of the stocky columns (i.e. the high 

value of B/kL ratio). Furthermore, the influences of the concrete confinement are less 

significant in the slender columns, of which the failure is governed primarily by the 

flexural buckling (rather than the material failure). 
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Table 5.5: Ultimate strength by the present analysis with parametric variations 

Group Column 

( Square – H ) 

B/kL Ultimate Strength 

(kN) 

Group Column 

( Rectangular – I ) 

B/kL Ultimate Strength 

(kN) 

G1 PC1 0.16 1119 G10 PC28 0.16 1911 
 PC2 0.16 1098  PC29 0.16 1883 

 PC3 0.16 1091  PC30 0.16 1873 

        
G2 PC4 0.05 656.19 G11 PC31 0.05 1221 

 PC5 0.05 647.73  PC32 0.05 1217 

 PC6 0.05 645.56  PC33 0.05 1233 
        

G3 PC7 0.03 396.37 G12 PC34 0.03 738.30 

 PC8 0.03 394.77  PC35 0.03 741.31 
 PC9 0.03 396.39  PC36 0.03 754.27 

        

G4 PC10 0.16 1045 G13 PC37 0.16 1093 
 PC11 0.16 1411  PC38 0.16 1517 

 PC12 0.16 1771  PC39 0.16 1946 

        
G5 PC13 0.05 608.35 G14 PC40 0.05 667.20 

 PC14 0.05 897.94  PC41 0.05 1000 

 PC15 0.05 1181  PC42 0.05 1337 
        

G6 PC16 0.03 372.61 G15 PC43 0.03 426.97 

 PC17 0.03 548.89  PC44 0.03 634.42 
 PC18 0.03 697.72  PC45 0.03 811.38 

        
G7 PC19 0.16 979.43 G16 PC46 0.16 1689 

 PC20 0.16 1176  PC47 0.16 1821 

 PC21 0.16 1395  PC48 0.16 1883 

        

G8 PC22 0.05 636.88 G17 PC49 0.05 1258 

 PC23 0.05 645.56  PC50 0.05 1265 
 PC24 0.05 645.56  PC51 0.05 1265 

        

G9 PC25 0.03 396.39 G18 PC52 0.03 775.86 
 PC26 0.03 396.39  PC53 0.03 775.86 

 PC27 0.03 396.39  PC54 0.03 775.86 

 

     

Figure 5.8: Axial load and strain responses corresponding to variation of stirrup 

spacing and B/kL ratio of (a) square concrete encased H-shaped steel columns, (b) 

rectangular concrete encased I-shaped steel columns. 
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Figures 5.9a-b show the effects of concrete strength and B/kL ratio on the 

overall behavior of the square concrete encased H-shaped columns and the 

rectangular concrete encased I-shaped steel composite columns, respectively. As 

expected, the higher concrete strength yields the stronger load carrying capacity of the 

composite columns but with lower ductility. 

 

    

Figure 5.9: Axial load and strain responses corresponding to variation of concrete 

strength and B/kL ratio of (a) square concrete encased H-shaped steel columns, (b) 

rectangular concrete encased I-shaped steel columns. 

 

Figures 5.10a-b consider the effects of the structural steel yield stress and the 

B/kL ratio for both the square concrete encased H-shaped steel columns and the 

rectangular concrete encased I-shaped steel columns, respectively. In particular, the 

higher structural steel yield stress only enhances the maximum strength capacity of 

the composite stub (stocky) columns (viz. containing the high value of B/kL ratio), but 

does not alter the overall column ductility. 
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Figure 5.10: Axial load and strain responses corresponding to variation of structural 

steel yield stress and B/kL ratio of (a) square concrete encased H-shaped steel 

columns, (b) rectangular concrete encased I-shaped steel columns. 

 

As illustrated in all Figure 5.8 to 5.10, the stub columns consisting of the high 

value of B/kL ratio provide the stronger capacity than the slender columns with the 

low value of B/kL ratio. Therefore, from this parametric study it can be summarized 

that the enhancement of the load carrying capacity of the concrete encased composite 

steel (stub and slender) columns can be achieved by increasing the concrete strength, 

which however deteriorates the ductility. For the stub composite columns, the 

reduction of the stirrup spacing enhances the concrete confinement and thus the 

ductility, whilst the increase of the structural steel yield stress only yields the better 

column strength. 

5.5 Concluding Remarks  

The simple inelastic analysis approach has been presented to efficiently map 

out the complete response of the concrete encased steel composite columns under a 

concentrically applied axial force. The maximum strength capacity of the columns can 
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be obtained as a by-product. What is important is the proposed analysis scheme is 

able to realistically accommodate the influences of various difficult physical and 

material phenomena underpinning the intrinsic behavior of the composite columns as 

strain hardening/softening of structural steel and concrete materials, concrete 

confinement, local buckling of structural steel and reinforcement bars, and initial 

geometric imperfection, simultaneously. Both stub and slender composite columns 

have been investigated. 

The proposed analysis approach suitably discretizes the structural steel, 

reinforcement bars and concrete cross-section taking into account of three different 

(namely unconfined, partially confined, highly confined) confinement regions using 

the fiber element model. Confinement zones have been carefully defined and verified 

through the comparison with experimental results. The iterative Müller’s method has 

been adopted to enforce equilibrium of the composite column, in conjunction with the 

additional adaptive technique proposed to enhance the solution convergence. Good 

agreements between the complete response (and maximum strength) obtained by the 

present analysis scheme and the associated 33 experimental results of the composite 

columns have been evidenced, and thus validate the accuracy of the proposed method. 

The influences of various key parameters (e.g. width-to-effective length ratio, 

transverse tie spacing, concrete strength and structural steel yield stress) on the overall 

behavior and maximum strength of both the square concrete encased H-shaped steel 

columns and the rectangular concrete encased I-shaped steel columns have been 

studied using the proposed analysis procedure. This can be concluded as follows. 

Firstly, though increasing the concrete strength improves the load carrying capacity of 

the composite columns, it unfortunately deteriorates the column ductility. Secondly, 
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the slender columns (i.e. having the smaller value of the width-to-effective length 

ratio) are weaker than the stub columns. Thirdly, the better concrete confinement 

given by the closer stirrup spacing yields the more superior ductility only for the stub 

composite columns. Finally, the higher structural steel yield stress solely strengthens 

the maximum load carrying capacity of the stocky columns. 

  



 

 

 

CHAPTER 6 

CONCRETE ENCASED STEEL COLUMNS UNDER 

COMBINED AXIAL COMPRESSION AND UNIAXIAL 

BENDING 

 

6.1 Introduction 

Columns subjected to combined axial compression and bending are commonly 

known as beam-columns. The important effects in structural design, viz. steel and 

steel-concrete composite, involving stability problem are compulsory to be included 

in structural analysis and design by most specifications. Common indispensible 

criteria in most design codes are to account for second-order effects, geometric 

imperfection, and inelasticity. This chapter presents a nonlinear (viz. material and 

geometry) inelastic analysis of concrete encased steel beam-columns with uniaxial 

bending. The proposed approach accommodates various important influences, i.e. 

levels of concrete confinement, initial geometric imperfection, geometry nonlinearity, 

material nonlinearity, buckling of reinforcement bars and local buckling of structural 

steel, simultaneously. Both the ultimate capacity and the complete nonlinear 

responses of CES beam-columns can be fully simulated. The numerical scheme is 

capable of generating importance outputs such as the nonlinear load and deflection 

response including sophisticated post-peak softening, axial load and inelastic 

shortening response, nonlinear interaction force and bending moment diagram, and 

moment and curvature curve. The predicted ultimate strength as well as complete 

nonlinear axial load and lateral deflection response of CES beam-columns are 
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validated against various experimental results and also compared with previous 

researchers of different approaches. Finally, parametric sensitivity analyzes are 

performed to study various influences of key parameters such as eccentricity ratios, 

effective length ratio, concrete strength and structural steel yield stress on the 

behaviors of CES beam-columns. 

6.2 Geometrically Nonlinear Analysis of CES Beam-Columns 

6.2.1 Eccentric Load and Buckling Modeling of Beam-Columns 

The deflection shape of a pin-ended concrete encased steel composite column 

subjected to eccentric load with initial geometric imperfection (see Figure 6.1) can be 

predicted as part of a sine wave equation (Shakir-Khalil and Zeghiche 1989) as 

expressed below. 

 

           (
  

 
)                                                                                                                  

where   is the lateral displacement at any point along the length of the column,   the 

effective length,     the lateral deflection at the column mid-height,   the longitudinal 

direction of the column. 

 

The column curvature can then be determined from the lateral displacement: 
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)
 

      (
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From which the curvature of the column at the mid-height of the column is  

 

    (
 

 
)
 

                                                                                                                              

 

The total external bending moment at the column mid-height under axial compressive 

load with eccentricity and initial imperfection yields 

 

      𝑃                                                                                                                 

where     is the initial geometric imperfection, and e the eccentricity of applied load.  

 

 

Figure 6.1: Force and deformations in pin-ended beam-column model with initial 

imperfection. 
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6.2.2 Numerical Method for Nonlinear Analysis 

To solve for the neutral axis depth using fiber element analysis, many 

researchers adopted various numerical methods such as bisection method, quasi-

Newton method (Yen 1991), quasi-Newton method within the Regular-Falsi 

numerical scheme (Chen et al. 2001), secant method (Liang 2009, 2011), and Müller’s 

method (Patel et al. 2012). The bisection method has a weakness due to very slow 

convergence rate and hence it is not efficient. The secant method has been 

implemented in the performance-based analysis program to carry out the nonlinear 

analysis of the thin-walled concrete filled steel tube beam-columns. The Müller’s 

method (Müller 1956), which is the generalized approach of the secant method, uses a 

quadratic 3-point instead of using a linear 2-point interpolation as in the secant 

method. The order of convergence of the Müller’s method is approximately 1.84 

while only 1.62 of the secant method. In the present nonlinear analysis scheme, the 

Müller’s numerical method is implemented to solve for the neutral axis depth which 

satisfies the equilibriums. 

The present approach requires three neutral axis depths as initial values for the 

Müller’s method to approximate the next neutral axis depth which satisfies the 

equilibriums. The external moments, resulting from the initial geometric imperfection 

and the lateral displacement at the mid-height of the column under the axial load, 

must be in equilibrium with the internal moment. From a set of the initial neutral axis 

depths (              ), the next neutral axis depth is determined by: 

 

   𝑃                                                                                                            
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where    is the Müller’s function of the residual moment at the column mid-height, 

    the initial geometric imperfection of the column, i.e. L/2000 (Ellobody and 

Young 2011, Ellobody et al. 2011),     the internal bending moment of the 

composite cross-section,       the coefficients of the Müller’s parabolic equation. 

Equation 6.9 yields two roots which correspond to the sign   in the 

denominator. The sign of the square root is taken to be the same as the sign of  . The 

purpose of choosing the sign plus or minus is to obtain the result which produces the 

largest denominator, consequently it gives      which is close to     . Thus, the 

values of                with the corresponding functions                need to be 

exchanged accordingly using Equation 5.10-5.11. The Müller’s iterations are repeated 

until the specified tolerance        satisfies the convergence condition of |  |       

which is set to 0.0001 in this study.  
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The initial guesses                  are important to obtain the solution 

convergence of the numerical analysis. The adaptive technique is implemented to 

provide the efficient initial values of the neutral axis depth. The initial neutral axis 

depths are chosen as      ,    ,        when the neutral axis is less than 80 percent 

of the cross-section mid-depth, and     ,    ,     when the neutral axis reaches 80 

percent of the cross-section mid-depth. 

6.2.3 Computational Procedures for Load and Lateral Deflection Responses 

To obtain the full nonlinear behavior of the concrete encased steel composite 

column under eccentric compressive load with initial geometric imperfection, the 

lateral displacement at the column mid-height is initially imposed in the nonlinear 

inelastic fiber element analysis. As the lateral deflection     at the column mid-height 

is incrementally increased, the curvature     of the column can then be determined. 

Knowing the curvature, strains at the centroid of each fiber element in the composite 

cross-section are calculated from Equations 4.1 and 4.4. Stresses in the unconfined, 

partially confined, highly confined concrete, structural steel, and reinforcement bars 

are determined from the uniaxial stress-strain relationships of each material 

accordingly. For each imposed lateral deflection, the depth of neutral axis is adjusted 

using the Müller’s method to satisfy the moment equilibrium at the column mid-

height. The analysis procedure is then repeated with the successive increment of the 

mid-height lateral deflection to obtain the full axial load and lateral deflection 

nonlinear response. Critical behaviors (e.g. initial stiffness, maximum strength 

capacity, post-peak softening response and ductility) of the concrete encased steel 

composite beam-columns under the full history of the eccentric load with the initial 
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geometric imperfection can be identified directly from the resulting axial load and 

deflection curve.  

The step-by-step procedures and the flowchart (see Figure 6.2) of the 

nonlinear inelastic analysis program of the concrete encased steel composite beam-

columns under eccentric load with initial geometric imperfection are summarized 

below: 

1. Input the dimensions, eccentricity and the initial geometric imperfection of the 

concrete encased steel composite column. 

2. Define the zones of the unconfined concrete, partially confined concrete, 

highly confined concrete. 

3. Impose the stopping criteria by specifying the maximum axial load 𝑃   , the 

limit deflection       , the convergence tolerances        . 

4. Define the material constitutive models for the unconfined concrete, partially 

confined concrete, highly confined concrete, structural steel, and 

reinforcement bar. 

5. Discretize the composite cross-section into fiber elements. 

6. Impose the initial lateral deflection     at the mid-height of the column by an 

increment of     . 

7. Determine the mid-height curvature     from the imposed lateral deflection 

    at the mid-height of the column. 

8. Choose the initial guessing values of the neutral axis depth                as 

   ,    ,      , respectively. These initial values shall be chosen using the 

proposed adaptive technique. 
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9. Using the chosen initial values of the neutral axis depth                to 

compute the fiber strains of each material. 

10. Calculate the fiber stresses of the unconfined concrete, partially confined 

concrete, highly confined concrete, structural steel, and reinforcement bar 

from the uniaxial stress-strain relationships accordingly. 

11. Calculate the internal axial force 𝑃 and the internal bending moment     

carried by the composite column, and the external bending moment       

corresponding to the initial guessing values. 

12. Determine the Müller’s function of the residual moments                at the 

mid-height of the composite column corresponding to the initial values of the 

neutral axis depths               . 

13. Compute the coefficients       and the adjusted neutral axis depth      using 

Müller’s numerical method. 

14. Compute the strains and stresses of the each fiber element corresponding to 

the adjusted neutral axis depth      from the material uniaxial stress-strain 

relationships. 

15. Calculate the internal axial force 𝑃 and the internal bending moment     

carried by the composite column, and the external bending moment       

corresponding to the adjusted neutral axis depth     . 

16. Calculate the residual moment      of the Müller’s function. 

17. Check the conditions using Equations 5.10-5.11 for the interchanged values of 

               along with the corresponding residual moments               . 
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18. Check the convergence condition |  |      . If the convergence condition is 

satisfied, proceed to the next step. Otherwise, repeat from step (14) to (18). 

19. Increase the mid-height lateral deflection,             . Repeat from 

step (6) to (19) until the imposed stopping criteria in step (3) is reached. 

Generate the load-deflection  𝑃     curve. 
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Figure 6.2: Flowchart for determining axial load and deflection responses of concrete 

encased steel composite beam-columns. 
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6.3 Validation of the Numerical Approach  

6.3.1 Summary of Relevant Experimental Tests 

The present numerical approach has been validated against the relevant full-

scale experimental tests conducted by Morino et al. (1984), Mirza et al. (1996), Al-

Shahari et al. (2003), and Zhao et al. (2005). The detail of dimensions, material 

properties, and cross-section configurations of all the composite column specimens 

used for comparison are shown in Tables 6.1 and 6.2.  

 

Table 6.1: Specimen dimensions and material properties of CES beam-columns 

Specimen 

ID 

Dimensions Structural steel section e/D Material Properties Reference 

B 

(mm) 

D 

(mm) 

kL 

(mm) 
Shape         𝑡    𝑡  

Concrete 

(MPa) 

Steel 

(MPa) 

Rebar 

(MPa) 

BC1 230 230 2000 H 100 x 96 x 5 x 8 0.3 20.5 337 459 

Al-
Shahari et 

al. (2003) 

BC2 230 230 2000 H 100 x 96 x 5 x 8 0.3 13.7 337 459 

BC3 230 230 2000 H 140 x 133 x 5 x 8 0.3 20.5 307 459 

BC4 230 230 2000 H 140 x 133 x 5 x 8 0.3 28.2 307 459 

BC5 230 230 3000 H 140 x 133 x 5 x 8 0.3 28.2 307 459 

BC6 230 230 3000 H 100 x 96 x 5 x 8 0.17 20.5 337 459 

BC7 230 230 3000 H 100 x 96 x 5 x 8 0.17 13.7 337 459 

           

BC8 160 160 960 H 100 x 100 x 6 x8 0.25 21.1 345 460 
Morino et 

al. (1984) 
BC9 160 160 2400 H 100 x 100 x 6 x8 0.25 23.4 345 460 

BC10 160 160 3600 H 100 x 100 x 6 x8 0.25 23.3 345 460 

           

BC11 240 240 4000 H 100 x 96 x 5.1 x 8.6 0.17 27.4 311.2 634 

Mirza et 

al. (1996) 

BC12 240 240 4000 H 100 x 96 x 5.1 x 8.6 0.25 27.4 311.2 634 

BC13 240 240 4000 H 100 x 96 x 5.1 x 8.6 0.41 25.5 311.2 634 

BC14 240 240 4000 H 100 x 96 x 5.1 x 8.6 0.86 25.5 311.2 634 

BC15 240 240 4000 H 100 x 96 x 5.1 x 8.6 2.58 25.5 311.2 634 

           

BC16 160 180 3200 I 68 x 100 x 4.5 x 7.6 0.22 46.6 379 358 Zhao et 

al. (2005) BC17 160 180 3200 I 68 x 100 x 4.5 x 7.6 0.17 43.3 379 358 

 



80 

 

 

Table 6.2: Detailed section dimensions and reinforcement of CES beam-columns 

Specimen 

ID 

Steel Concrete Composite Dimensions Reinforcements Reference 

b1 

(mm) 

b2 

(mm) 

b3 

(mm) 

d1 

(mm) 

d2 

(mm) 

d3 

(mm) 

Main bar Stirrup 

Number Ø Spacing Ø 

BC1 35 65 100 35 67 96 4 12 140 8 

Al-Shahari 
et al. 

(2003) 

BC2 35 65 100 35 67 96 4 12 140 8 

BC3 35 45 140 35 48.5 133 4 12 140 8 

BC4 35 45 140 35 48.5 133 4 12 140 8 

BC5 35 45 140 35 48.5 133 4 12 140 8 

BC6 35 65 100 35 67 96 4 12 140 8 

BC7 35 65 100 35 67 96 4 12 140 8 

            

BC8 19 30 100 19 30 100 4 6 75 4 
Morino et 

al. (1984) 
BC9 19 30 100 19 30 100 4 6 75 4 

BC10 19 30 100 19 30 100 4 6 75 4 

            

BC11 38 70 96 38 72 100 4 10 150 6 

Mirza et 

al. (1996) 

BC12 38 70 96 38 72 100 4 10 150 6 

BC13 38 70 96 38 72 100 4 10 150 6 

BC14 38 70 96 38 72 100 4 10 150 6 

BC15 38 70 96 38 72 100 4 10 150 6 

            

BC16 15 46 68 15 40 100 4 12 150 6 Zhao et al. 

(2005) BC17 15 46 68 15 40 100 4 12 150 6 

 

All the beam-column specimens were H-shaped and I-shaped steel section 

encased in concrete (cube strength) with four longitudinal reinforcement bars at the 

corners as shown in Figure 6.3. The standard cylinder concrete strength is taken as 0.8 

of the standard cube strength. From the sixteen full-scale tests conducted by Al-

Shahari et al. (2003), nine CES specimens in lightweight aggregate concrete, three 

CES specimens in normal concrete, and four bare steel columns were full-scale pin-

ended beam-columns subjected to eccentric compressive load in the major axis 
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bending in single curvature. Seven CES beam-column specimens BC1-BC7, having 

H-shaped cross-sections, are employed in this study. 

 

 

Figure 6.3: Cross-section configurations of concrete encased steel beam-columns. 

 

Similarly, three H-shaped steel encased column specimens from Morino et al. 

(1984) is chosen and denoted as BC8-BC10. Furthermore, Mirza et al. (1996) 

conducted a series of tests on the concrete H-shaped encased steel composite beam-

columns using high-strength reinforcement bars of 634 MPa, where five specimens 

are denoted as BC11-BC15 in this study. Finally, eight specimens in the experimental 

studies were performed by Zhao et al. (2005) on the slender concrete encased I-

shaped steel composite columns using high-strength concrete. However, only two 

specimens BC16, BC17 were loaded with eccentricity; which is employed here for 

validation. 
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6.3.2 Comparison between the numerical and experimental results 

The ultimate capacity as well as the load and deflection nonlinear response 

measured from the tests (Morino et al. 1984, Mirza et al. 1996, Al-Shahari et al. 2003, 

Zhao et al. 2005) are compared with those generated from the current developed 

numerical scheme, and at the same time shows the results from previous researchers 

(Mirza et al. 1996, Zhao et al. 2005, Ellobody et al. 2011). Table 6.3 summarizes the 

ultimate load-carrying capacity of the concrete encased steel composite columns 

generated from the proposed analysis approach (𝑃    ), previous researchers 

 𝑃      𝑃     𝑃     , and experimental tests  𝑃     . Evidently, good agreements 

between PProp and PTest have been achieved, in which the average value, the standard 

deviation (SD) and the coefficient of variation (COV) of the PProp  PTest ratio are 0.95, 

0.06 and 0.06, respectively.  

 

Table 6.3: Comparison between numerical approach with tests and previous 

researchers 

Specimen 

ID 

Test FE.1  FE.2 (Zhao et al.)  Proposed Model PFE.1 PFE.2 PZhao PProp Reference 

PTest 

(kN) 

PFE.1 

(kN) 

PFE.2 

(kN) 

PZhao 

(kN) 

PProp  

(kN) 

PTest PTest PTest PTest 

BC1 654 601 - - 658.21 0.92 - - 1.00 

Al-

Shahari et 

al. (2003) 

BC2 558 511 - - 554.55 0.92 - - 1.00 

BC3 962 827 - - 825.71 0.86 - - 0.86 

BC4 949 946 - - 942.13 1.00 - - 0.99 

BC5 900 822 - - 864.81 0.91 - - 0.96 

BC6 813 684 - - 820.43 0.84 - - 1.01 

BC7 704 583 - - 680.07 0.83 - - 0.97 

           

BC8 740 660 - - 595.70 0.89 - - 0.81 
Morino et 

al. (1984) 
BC9 504 530 - - 515.26 1.05 - - 1.02 

BC10 412 406 - - 404.68 0.99 - - 0.98 
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BC11 927 - 980.6 - 912.89 - 1.06 - 0.99 

Mirza et 

al. (1996) 

BC12 720 - 782.7 - 702.95 - 1.09 - 0.98 

BC13 540 - 548.1 - 479.39 - 1.02 - 0.89 

BC14 296 - 295.2 - 270.13 - 1.00 - 0.91 

BC15 100 - 100.7 - 94.35 - 1.00 - 0.94 

           

BC16 678 - - 647 654.73 - - 0.95 0.97 Zhao et 

al. (2005) BC17 820 - - 739 739.99 - - 0.90 0.90 

           

Average - - - - - - - - 0.95 - 

SD - - - - - - - - 0.06 - 

COV - - - - - - - - 0.06 - 

 

Moreover, the complete nonlinear axial load and deflection responses of the 

concrete encased steel composite columns under eccentric compressive load have 

been fully traced with good agreements with experimental data plots. One of the most 

common issues in the numerical approach is to predict the post-peak response. Again, 

in the present numerical scheme, the post-peak response is well established as shown 

in Figures 6.4, 6.5 for the specimens BC4 and BC5, respectively. 

 

 

Figure 6.4: Comparison between numerical and experimental nonlinear load-

deflection response for specimen BC4. 
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Figure 6.5: Comparison between numerical and experimental nonlinear load-

deflection response for specimen BC5. 
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parametric beam-columns are divided into 9 groups (G1–G9), where the D/kL ratio is 

varied within the range of 0.058 to 0.23. Both stub and slender concrete encased steel 

composite beam-columns are thus investigated.  

All specimen groups are chosen similarly to BC1, which was previously tested 

(Al-Shahari et al. 2003), by changing only the key parameters. The composite beam-

columns have square concrete cross-section of (230230) encasing H-shaped 

structural steel section (1009658) with four longitudinal reinforcement bars of 12 

mm in diameter, and lateral tie diameter of 8 mm (see Figure 6.3). The column 

specimen groups (G1–G3) use the same concrete cube strength    
  , steel yield stress 

(   ), and reinforcement bars yield stress (   ) as in the tests [10]. And the specimen 

(viz. having the cross-sectional properties of BC1 with kL of 1000 mm, 2500 mm, and 

4000 mm) is used to plot the interaction curves of P-M, P-e/D, and M-e/D for the 

study of the influence from the effective length kL. The present study varies the 

parameter D/kL ratio for each variation of e/D to investigate the axial load and 

deflection response. Again, the specimen groups (G4–G6) have the same properties as 

in BC1, only the concrete strengths    
   are selected from 20 MPa, 40 MPa, and 

60 MPa for each D/kL ratio. In essence, the beam-column BC1 of 1000 mm is used to 

plot the interaction curves of P-M, P-e/D, and M-e/D to illustrate the effect of 

concrete strength. Lastly, the groups G7-G9 consider the variation of structural steel 

yield stress (   ) which is chosen from 250 MPa, 345 MPa and 485 MPa for each 

D/kL ratio. Similarly, the specimen BC1 of 1000 mm is used to plot the interaction 

curves of P-M, P-e/D, and M-e/D to investigate the domination of the structural steel 

yield stress. 
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Table 6.4: Dimensions and material properties of CES parametric beam-columns. 

Group Parametric 

Column 

Concrete 

Section 

Steel Section Effective 

Length 

e/D Concrete Steel Rebar 

B x D (mm) Shape         𝑡    𝑡  kL (mm)    
  

(MPa) 
    

(MPa) 

    

(MPa) 

G1 PC1 230 x 230 H 100 x 96 x 5 x 8 1000 0.125 20.5 337 459 

PC2 230 x 230 H 100 x 96 x 5 x 8 1000 0.25 20.5 337 459 

PC3 230 x 230 H 100 x 96 x 5 x 8 1000 0.375 20.5 337 459 
          

G2 PC4 230 x 230 H 100 x 96 x 5 x 8 2500 0.125 20.5 337 459 

PC5 230 x 230 H 100 x 96 x 5 x 8 2500 0.25 20.5 337 459 
PC6 230 x 230 H 100 x 96 x 5 x 8 2500 0.375 20.5 337 459 

          

G3 PC7 230 x 230 H 100 x 96 x 5 x 8 4000 0.125 20.5 337 459 
PC8 230 x 230 H 100 x 96 x 5 x 8 4000 0.25 20.5 337 459 

PC9 230 x 230 H 100 x 96 x 5 x 8 4000 0.375 20.5 337 459 

          
G4 PC10 230 x 230 H 100 x 96 x 5 x 8 1000 0.3 20 337 459 

PC11 230 x 230 H 100 x 96 x 5 x 8 1000 0.3 40 337 459 
PC12 230 x 230 H 100 x 96 x 5 x 8 1000 0.3 60 337 459 

          

G5 PC13 230 x 230 H 100 x 96 x 5 x 8 2500 0.3 20 337 459 
PC14 230 x 230 H 100 x 96 x 5 x 8 2500 0.3 40 337 459 

PC15 230 x 230 H 100 x 96 x 5 x 8 2500 0.3 60 337 459 

          
G6 PC16 230 x 230 H 100 x 96 x 5 x 8 4000 0.3 20 337 459 

PC17 230 x 230 H 100 x 96 x 5 x 8 4000 0.3 40 337 459 

PC18 230 x 230 H 100 x 96 x 5 x 8 4000 0.3 60 337 459 

          

G7 PC19 230 x 230 H 100 x 96 x 5 x 8 1000 0.3 20.5 250 459 

PC20 230 x 230 H 100 x 96 x 5 x 8 1000 0.3 20.5 345 459 
PC21 230 x 230 H 100 x 96 x 5 x 8 1000 0.3 20.5 485 459 

          

G8 PC22 230 x 230 H 100 x 96 x 5 x 8 2500 0.3 20.5 250 459 
PC23 230 x 230 H 100 x 96 x 5 x 8 2500 0.3 20.5 345 459 

PC24 230 x 230 H 100 x 96 x 5 x 8 2500 0.3 20.5 485 459 

          
G9 PC25 230 x 230 H 100 x 96 x 5 x 8 4000 0.3 20.5 250 459 

PC26 230 x 230 H 100 x 96 x 5 x 8 4000 0.3 20.5 345 459 

PC27 230 x 230 H 100 x 96 x 5 x 8 4000 0.3 20.5 485 459 
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6.4.2 Effects of eccentricity ratios with different effective length ratios 

The eccentricity ratio (e/D) provokes significant influences between the stub 

and slender columns on the axial load and deflection response of the concrete encased 

steel composite beam-columns. Thus, it is important to plot the effect of e/D ratios 

with D/kL ratios as shown in Figure 6.6. It can be observed that increasing the 

eccentricity ratio reduces the axial load capacity of the composite columns as 

illustrated in Table 6.5. The columns with small value of D/kL (i.e. towards the 

slender column) are even more ductile than those of large D/kL (i.e. towards the 

stocky column). Similarly, the columns subjected to large e/D ratios are more ductile 

than that those with small e/D ratios. Figure 6.7 shows the interaction diagram of the 

axial and the flexural strength of the composite beam-columns. Again, the capacity of 

the columns reduces significantly as the decreasing of D/kL. It is worth noticing that 

the axial force in the stub column helps increasing the maximum bending resistance 

(which is greater than the pure bending moment resistance) at the early existence of 

the axial force application. In the contrary, the increasing of the axial force in the 

slender column will not help increase but instead reduce the moment resistance due to 

the additional bending moment created by the P-delta effect. The pure bending 

moment resistance remains the same despite the column length since the composite 

columns now depict the behavior of the composite beams. As also illustrated in Figure 

6.9, the D/kL mainly influences the flexural capacity of the beam-columns at the early 

increasing of e/D but this effect fades away as e/D becomes large. It is also observed 

that there is a drop of the bending capacity for the columns with large D/kL before the 

moment becomes constant. Furthermore, the axial capacity of the stub columns 

reduces at faster rate than that of the slender columns when the eccentricity lies within 
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the half of the cross-section as shown in Figure 6.8. And after increasing e/D more 

than 0.5, the axial load-carrying capacity drops almost at the same rate.  

 

Table 6.5: Results of the verified numerical approach for parametric study. 

Group Parametric Column ( Square – H ) e/D D/kL  Ultimate Strength (kN) 

G1 PC1 0.125 0.23 1146 

 PC2 0.25 0.23 801 
 PC3 0.375 0.23 608 

     

G2 PC4 0.125 0.092 1034 
 PC5 0.25 0.092 698 

 PC6 0.375 0.092 534 

     
G3 PC7 0.125 0.058 799 

 PC8 0.25 0.058 543 

 PC9 0.375 0.058 424 
     

G4 PC10 0.3 0.23 702 

 PC11 0.3 0.23 1009 
 PC12 0.3 0.23 1259 

     
G5 PC13 0.3 0.092 612 

 PC14 0.3 0.092 859 

 PC15 0.3 0.092 1084 
     

G6 PC16 0.3 0.058 481 

 PC17 0.3 0.058 672 
 PC18 0.3 0.058 828 

     

G7 PC19 0.3 0.23 663 
 PC20 0.3 0.23 715 

 PC21 0.3 0.23 775 

     
G8 PC22 0.3 0.092 594 

 PC23 0.3 0.092 621 

 PC24 0.3 0.092 640 
     

G9 PC25 0.3 0.058 486 

 PC26 0.3 0.058 486 
 PC27 0.3 0.058 486 
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Figure 6.6: Effects of eccentricity and column effective length on nonlinear load and 

deflection responses. 

 

 

Figure 6.7: Effects of column effective length on force and moment interaction 

diagrams. 
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Figure 6.8: Effects of eccentricity and column effective length on axial force. 

 

 

Figure 6.9: Effects of eccentricity and column effective length on bending moment. 
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6.4.3 Effects of concrete strength with different effective length ratios 

The effects of concrete strength and D/kL ratio on the overall behavior of the 

concrete encased steel composite beam-columns are shown in Figure 6.10. It is 

observed that increasing the concrete strength enhances the ultimate axial capacity of 

the composite beam-columns, but with lower ductility. The less the effective length 

ratio becomes, the less influence the concrete strength has on the axial capacity of the 

columns. Furthermore, the axial force-moment interaction diagram in Figure 6.11 

shows that increasing the concrete strength will increase the axial capacity 

significantly only before reaching the maximum bending moment resistance, and 

becomes less significant as the beam-columns behave as pure bending. The 

decreasing rate of the axial capacity of the composite beam-columns due to 

eccentricity ratios for different concrete strength can be observed from Figure 6.12. 

Obviously, the concrete strength reduces the axial capacity of the beam-columns 

significantly only when the e/D lies probably within 0.5 of the section depth. When 

e/D becomes larger, increasing the concrete strength is not a good decision for 

engineers. However, it still can enhance the moment capacity of the composite beam-

columns (as shown in Figure 6.13) although its influence is less significant when e/D 

is larger than 0.5. 
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Figure 6.10: Effects of concrete strength and column effective length on nonlinear 

load and deflection responses. 

 

 

Figure 6.11: Effects of concrete strength on force and moment interaction diagrams. 
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Figure 6.12: Effects of concrete strength on axial force and eccentricity curves. 
 

 

 

Figure 6.13: Effects of concrete strength on moment and eccentricity curves. 
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6.4.4 Effects of steel strength with different effective length ratios 

Figure 6.14 illustrates the influences of the structural steel yield strength and 

the D/kL ratio on the load-deflection responses of the concrete encased steel 

composite beam-columns. It is found that increasing the steel strength increases 

mainly the column ultimate strength of the stocky columns, but does not the ductility. 

Moreover, it increases the axial load capacity of the stub columns more significantly 

than that of the slender columns. However, it is observed that the more slender the 

columns are, the less effective the structural steel strength becomes on the axial 

capacity of the columns.  

 

 

Figure 6.14: Effects of steel strength and column effective length on nonlinear load 

and deflection responses. 
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Figure 6.15: Effects of steel strength on force and moment interaction diagrams. 

 

 

 

Figure 6.16: Effects of steel strength on axial force and eccentricity curves. 
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Figure 6.17: Effects of steel strength on moment and eccentricity curves. 
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6.5 Concluding Remarks 

The ultimate strength capacity and full structural response of the stub and 

slender concrete encased steel composite columns subjected to eccentric compressive 

load have been investigated using the sophisticated nonlinear inelastic numerical 

approach. The numerical scheme has carefully taken into account of the nonlinearity 

of material behaviors such as the strain hardening and softening, local buckling of the 

structural steel, the confinement effects from the structural steel and reinforcement 

bars, and the buckling of the longitudinal reinforcement bars. The initial geometric 

imperfection and P-delta effect are cooperated directly into the numerical analysis. 

The numerical approach for pin-ended composite beam-columns is developed based 

on the fiber element formulation using lateral displacement control. Good agreements 

between the numerical results with experiments has proved that the proposed 

numerical scheme is very efficient for predicting both the ultimate strength and the 

axial load and deflection response of the stub and slender concrete encased steel 

composite beam-columns. 

The validated numerical approach is used in the parametric studies to extend 

the investigation of the concrete encased steel composite beam-columns behaviors 

due to the changes in the column effective length ratios, eccentricity ratios, concrete 

strength, and structural steel yield stress. It is concluded that slender beam-columns 

(i.e. having small depth-to-effective length ratio) are more ductile than stocky ones 

(i.e. having large depth-to-effective length ratio). The effective length mainly affects 

the flexural capacity of the beam-columns at the early increasing of e/D but its effect 

become less when e/D is large. Similarly, the columns subjected to large eccentricity 

ratios are more ductile than that those with small eccentricity ratios. Increasing the 
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concrete strength enhances the ultimate axial strength, but with lower ductility. And 

when e/D becomes larger, increasing the concrete strength does not significantly 

increase the axial capacity of the beam-columns. Furthermore, increasing the steel 

strength improves mainly the stocky column ultimate strength but not the ductility. 

High steel strength enhances the axial capacity of the stub columns more significantly 

than the slender columns. 

  



 

 

 

CHAPTER 7 

PERFORMANCE ASSESSMENT OF CES STRUCTURES 

AND STRENGTHENING WITH STEEL BRACING 

SYSTEMS 

 

7.1 Introduction 

Steel–concrete composite frame systems can consist of many combinations of 

structural steel members and reinforced concrete members. For instance, the 

composite structures comprised of concrete encased steel (CES) columns and steel 

beams are commonly found in typical high-rise building constructions. This chapter 

aims to investigate such composite structures by introducing a simplified yet efficient 

approach with practical application. From a mesoscale simulation of CES members, a 

piecewise yield function as well as a softening rule have been proposed and 

implemented in a stepwise holonomic approach to analyze the CES composite 

structures. The proposed analysis approach has been validated by comparing with the 

experimental tests. The complete structural responses of such composite structures 

along with the plastic formations and developments can be illustrated event-by-event 

for further investigation. After being able to assess and understand the performance of 

CES structures, the structural retrofitting by means of conventional steel bracing 

system can be carried out. By comparing the responses of various steel bracing 

systems, recommendations can be made to select a suitable type of bracing 

configurations for performance and economical view point. 
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7.2 Mathematical Programming Tools 

Mathematical programming (MP) has been used extensively almost in every 

field, not to mention only Engineering. In broad terms, MP can be defined as a 

mathematical model to assist the decision-making with the best possible allocation of 

scarce resources. In other words, MP is a set of mathematical equations. When the 

mathematical model composes of linear functions, it is called a linear-programming 

(LP) model. Researchers in the past recognized the power of MP as a theoretical and 

computational tool for finding extensive structural plasticity problems, such as limit 

analysis, elastoplastic deformation analysis, unilateral contact, and dynamic plasticity. 

The algebraic modeling languages are generally accepted as the best way to solve 

mathematical programming problems. Mathematical programming approaches and 

extended limit analysis incorporated with General Algebraic Modeling System 

(GAMS) has been extensively used with steel frame structures problems concerning 

with strain softening, nonlinear performance, safety assessment, and optimization 

(Tangaramvong and Tin-Loi 2007, 2008, 2009, 2011, Tangaramvong et al. 2014). 

Particularly in the current work of this thesis, GAMS is used to solve MP 

problems related to the simulation of composite frames. Various MP solvers are 

available within this platform. The input generations are performed within MATLAB, 

which then GAMS is called to solve MP problems, and the solutions are then returned 

within MATLAB. The connection tasks between MATLAB and GAMS are done 

through an interfacing software known as MATLAB/GAMS link, which was 

developed by Ferris (1998). 
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GAMS (Brook et al. 1988) was initially developed by the Development Research 

Committee, under the support of The World Bank in Washington, DC, to produce the 

high-level programming languages for large and complex MP problems. Models in 

GAMS can be made changes easily and safely. It allows clear algebraic relationships 

for coding without the complexity of the algorithm programming language. And it 

permits model descriptions that are independent of solution algorithms.  

Multiple model types are available in GAMS such as: Linear Programming 

(LP), Mixed Integer Programming (MIP), Nonlinear Programming (NLP), Mixed 

Complementarity Programming (MCP), Mixed Integer Nonlinear Programming 

(MINLP), NLP with Complementarity Constraints (MPEC), General Equilibrium 

Models (MPSGE), and Stochastic Optimization. The supported built-in solvers are 

briefly described below: 

 BDMLP: LP solver that comes with any GAMS system 

 CONOPT: Large scale NLP solver from ARKI Consulting and Development 

 CPLEX: High-performance LP/MIP solver from Ilog 

 DECIS: Large scale stochastic programming solver from Standard University 

 DICOPT: Framework for solving MINLP models. 

 MILES: MCP solver from University of Colorado 

 MINOS: NLP solver form Stanford University 

 MPSGE: Modeling environment for CGE models from University of Colorado 

 OSL: High performance LP/MIP solver from IBM 

 OSLSE: OSL Stochastic Extension for solving stochastic models 

 PATH: Large scale MCP solver from University of Wisconsin at Madison 
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 SBB: Branch-and-Bound algorithm from ARKI Consulting and Development 

for solving MINLP models 

 SNOPT: Large scale SQP based NLP solver from Stanford University 

 XA: Large scale LP/MIP system from Sunset Software 

 XPRESS: High performance LP/MIP solver from Dash 

7.3 Plasticity Model 

7.3.1 Review of Yield Criterion 

In the theory of plasticity, there are three main components, i.e. a yield 

criterion or yield function, a flow rule, and a hardening/softening rule. A yield 

criterion defines the initial state of material inelastic response. A flow rule associates 

the relations between the plastic strain increments and the stress increments after 

initiation of the inelastic response. A hardening/softening rule determines the changes 

of the yield surface due to the plastic deformation. Generally, the yield surface, i.e. a 

geometrical representation of a yield function, is a continuous nonlinear surface which 

poses big computational challenges to large size numerical problems. Simplified 

piecewise linearization of yield surface was successfully adopted by Maier and his 

team (Maier 1970, 1971, De Donato and Maier 1972, Maier et al. 1972, Maier 1976). 

An approximation of a nonlinear yield locus, for combined generalized stresses   
  and 

  
  in a hinge a of a frame element i, using piecewise linear yield hyperplanes is 

illustrated in Figure 7.1.  
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The yield function is usually expressed in mathematical expression as:  

 

      𝑃        (7.1) 

 

where    denotes the yield function,    the multiple stresses, 𝑃  the plastic strains, 

and    the hardening/softening parameters. 

 

 

Figure 7.1: Simplified yield surface by piecewise linear yield hyperplanes. 
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      and axial force   

      

where     and     are the corresponding yield capacities, respectively. When yielding 

is governed by only a single stress, the yield surface consists of two straight parallel 

lines running perpendicular to the governing stress (see Figure 7.2a-b). For yielding 

governed by combined stresses, the yield surface is formed by the interaction of those 

stresses (i.e. Figure 7.2c-f).  The shape of the yield surface depends on the cross-
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section and material of the element.  A good piecewise yield hyperplane for an I-

shaped steel section is best represented by the hexagonal shape (Massonnet and Save 

1965, Cohn and Rafay 1974) and was successfully used in corporation with GAMS 

(Tangaramvong and Tin-Loi 2007, 2008, 2009, 2011). Grierson and Abdel-Baset 

(1977) adopted the octagonal stress interaction yield hyperplanes for a solid 

rectangular cross-section to frame members.  

   

   

Figure 7.2: Types of piecewise linear yield hyperplanes. 
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Figure 7.2: Types of piecewise linear yield hyperplanes – Cont. 
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Figure 7.3: Hardening rules (a) Koiter’s noninteracting hardening, (b) Prager’s 

kinematic hardening, (c) Isotropic hardening. 

 

A well-known mathematical representation of the yield criterion for all 

hyperplanes was given by Maier (1970) as follow: 

 

   𝑁               (7.2) 

 

where 𝑁  is the normality matrix of each yield hyperplanes,    the multiple stresses, 

   the hardening/softening parameters,    the non-negative plastic multiplier rate 

vector, and    the vector of residual constants. 
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An extensive description and summary of piecewise linear yield functions for 

single stress and combined stress models in terms of perfect plasticity, softening, and 

hardening can be found in the work of Tangaramvong (2007). For an I-shaped steel 

section under combined axial force and bending moment, the hexagonal piecewise 

linear yield hyperplanes is commonly recommended (Massonnet and Save 1965). 

 

 

Figure 7.4: Hexagonal piecewise linear yield surface. 
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Figure 7.4, is characterized by expanding and shrinking the yield surface uniformly 

without changing the locus shape. 

For the case of hexagonal piecewise linear yield functions with isotropic softening 

law, the interaction between dimensionless bending ratio   
      and axial force 

  
      is represented by Figure 7.5. The mathematical representations of the yield 

surface are as follows: 
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where    denotes the yield function,    the multiple stresses,     the non-negative 

plastic multiplier rate vector, 𝑁  the normality matrix of each yield hyperplanes,    

the hardening/softening parameters, and    the vector of residual constants. 

 

 

Figure 7.5: Piecewise linear (a) hexagonal yield surface (b) softening law for plane j. 
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surface in Figure 7.5a. As the stress point starts moving along the inclined softening 

branches, the corresponding yield hyperplane will shrink to accommodate the 

softening behavior. At the same time, the rest of hyperplanes also shrink while 

keeping the same shape due to the assumption of isotropic softening law. 

 

 

Figure 7.6: Piecewise linear (a) hexagonal yield surface (b) perfectly plastic law for 

plane j. 
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Similarly, the mathematical representations for the hexagonal piecewise linear 

yield functions with perfectly plastic law as shown in Figure 7.6 can be simply 

expressed by removing the softening parameters as well as an additional yield 

function for residual hyperplane. The mathematical representations of the yield 

surface become: 

 

    [                 ] (7.4) 

    [  
   

 ] 

    [                 ] 

𝑁  *
 𝑛     𝑛            𝑛      𝑛     

                                                     
+ 

     

    [                           ] 

where 

𝑛          

           
 

7.3.2 Yield Criterion and Softening Rule for CES sections 

Despite many previous researches, there is no unified yield criterion or 

softening laws that has been established to accurately predict the yielding of all 

materials. A novel piecewise linear yield model of softening material properties 

underpinning concrete encased steel sections has been proposed to fully capture the 

nonlinear inelastic response with sophisticated post-peak softening behavior. The 

proposed yield surface for CES sections under combined stresses is singly symmetric 

about   
 /    axis as illustrated in Figure 7.7. It is comprised of six piecewise linear 
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hyperplanes (i.e. ω1 to ω6). The softening rule is defined as that the hyperplanes ω1, 

ω2, ω5, and ω6 shrink uniformly while retaining the original shape of the yield surface. 

The associated softening behavior is described by three plastic softening portions 

under compression (i.e. two softening and one residual portions), and a perfectly 

plastic under tension (where     is the maximum tensile yielding capacity) is assumed 

as indicated in Figure 7.8. As the stress point moves along the first softening portion, 

the interaction between the bending moment   
      and axial force   

      will 

reduce to represent the softened yield surface following the proposed softening rule.  

 

 

Figure 7.7: Piecewise linear yield surface for CES section. 
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Figure 7.8: Piecewise linear softening rule for CES section. 
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stresses can be established. The angle γ is denoted as an inclined angle of the top yield 
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Figure 7.9: Key parameters of piecewise linear yield surface for CES section. 
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Figure 7.10: Key parameters of piecewise linear softening rule for CES section. 
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For the second softening branch:                  
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We can decompose as follows: 
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    [  
   

 ] 

    [                              ] 



118 

 

 

𝑁  *
                                                   

                                                                                     
+ 

   

[
 
 
 
 
 
 
 
  

   

 
 

   

  

  

 

   

  

   

 
 

   

  

  

 

   

 
 
 
 
 
 
 
 

   

 
 
 
 
 
 
 
 

   

  

   

 
 

   

  

  

 

   

  

   

 
 

   

  

  

 

   

     

        
 
 

        

     

   

  

   

   

    

 
 

    

   

 
   ]

 
 
 
 
 
 
 

 

    [                                                  ] 

where  

  
   
   

 

    (
       

   
) 

    (
       
       

) 

7.4 Validation of Proposed Plasticity Components with 

Experimental Tests 

The proposed piecewise yield function and softening rule have been 

implemented in a stepwise holonomic analysis approach (Tangaramvong and Tin-Loi 

2010) with large scale MCP solver – GAMS/PATH (Dirkse and Ferris 1995). The 

stepwise holonomic scheme, which allows the approximation of plastic loading and 

elastic unloading of stresses, can predict the realistic path-dependent behaviors of 

structures. Both geometric and material nonlinearity were included in the analysis of 

CES structures. As mentioned earlier, the MATLAB-GAMS software link (Ferris 

2005) has been used throughout this thesis to enable MATLAB software to assess all 
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the built-in solvers from GAMS as well as to visualize the models directly within 

MATLAB interface. Two CES column specimens C2 and C4 from Chen and Yeh 

(1996), and two CES beam-columns BC4 and BC5 from Al-Shahari et al. (2003) were 

employed for validation purpose. The accuracy of the proposed piecewise yield 

function as well as the softening rule have been evidenced through comparisons with 

relevant full-scaled concrete encased steel columns and beam-columns. The full 

description and structural detailing of the CES columns (C2, C4) and beam-columns 

(BC4, BC5) specimens can be found in Chapter 5 and 6, respectively.  

Comparisons between full structural responses from the present analyses and 

the experimental tests for concrete encased steel columns and beam-columns were 

illustrated in Figures 7.11-7.14. Load and axial shortening responses for CES columns 

under axial compression for specimens C2 and C4 were shown in Figures 7.11-7.12, 

where PProp  PTest ratios are 0.97 and 0.92, respectively. For CES beam-columns BC4 

and BC5 under eccentric loadings, load and lateral deflection at mid-height were 

plotted for comparisons in Figures 7.13-7.14, where PProp  PTest ratios are 0.93 and 

0.90, respectively. It can be observed from Figures 7.13-7.14 which are the cases of 

beam-columns that the structural performances from the proposed analysis approach 

behave softer than those from the experimental tests. This might be resulted from the 

fact that the plasticity of the element was lumped to the hinges at each node which 

eventually forms the mechanism. However, such influence can be eliminated for 

columns having large depth to effective length ratio (D/kL) as for the cases of C2 and 

C4 in Figures 7.13-7.14. It is admitted that actual nonlinear responses with softening 

behavior are very challenging tasks for researchers to trace using simplified 

approaches. In general, the proposed simplified piecewise linear yield hyperplanes 
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and softening rule implemented in the stepwise holonomic analysis can predict the 

CES structural responses with sufficient accuracy, but with much less computational 

effort and time.  

 

Figure 7.11: Load and axial shortening response from the present analysis and the 

experiment for H-shaped encased column specimen C2. 

 

 

Figure 7.12: Load and axial shortening response from the present analysis and the 

experiment for I-shaped encased column specimen C4. 
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Figure 7.13: Load and lateral deflection response from the present analysis and the 

experiment for H-shaped encased beam-column specimen BC4.  

 

 

Figure 7.14: Load and lateral deflection response from the present analysis and the 

experiment for H-shaped encased beam-column specimen BC5. 
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7.5 Performance Assessment of CES Structures 

7.5.1 Description of Illustrative Examples 

This section aims to demonstrate the practical application of the proposed 

numerical approach to robustly assess the performance of CES composite structures. 

The nonlinear analyses have been performed using the novel piecewise linear yield 

function and softening rule implemented in the stepwise holonomic analysis method 

(Tangaramvong and Tin-Loi 2010) in corporation with GAMS/PATH (Dirkse and 

Ferris 1995). It should be worth mentioning that the global analyses begin with 

mesoscale simulation of composite cross-sections (i.e. under combined axial 

compression and bending moment) which act as vital elements to accurately predict 

the challenging softening behavior of CES composite structures. The appropriate 

attributes including the piecewise linear yield function and the softening rule have 

been set up using MATLAB Code.  

 Three examples have been carefully chosen to illustrate the overall behavior of 

CES composite structures, covering practical buildings such as low-rise and wide 

span, medium-rise, and slender. More importantly, in order to demonstrate the 

indispensible influence of softening simulation, two cases (i.e. Case A: perfectly 

plasticity model, and Case B: softening model) for columns have been carried out for 

each example. For all steel beams, pure bending model with perfectly plastic were 

assumed. The complete structural performance of CES structures have been traced 

and discussed along with the illustrations of event-by-event hinges formations. The 

full panoramas of the plastic hinge evolution have been illustrated for better 

understanding of the structural responses.  
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7.5.2 Example 1: Three-bay, two-story rigid frame 

This first example considers a three-bay, two-story composite frame which 

consists of concrete encased steel columns and steel beams as shown in Figure 7.15. It 

is subjected to the increasing applied gravity loads and lateral loads (kN) by load 

multiplier α, and the top right sway displacement ν (m) is recorded. 

The gravity loads were applied at equal intervals of values 60 kN and 120 kN for 

exterior and interior, respectively. The lateral loads of 5 kN were applied at the nodes 

for each story. The properties exterior and interior CES columns are detailed in Table 

7.1. For all steel beams, Young’s modulus of 200 GPa and yield strength of 275 MPa 

were assumed. Steel profiles IPE400 and IPE600 were used respectively for exterior 

and interior beams, which corresponded to S2u = 327 kNm and S2u = 878 kNm.  

 

 

Figure 7.15: Example 1: Three-bay, two-story rigid frame. 
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Table 7.1: Properties of CES composite columns for example 1. 

Exterior Columns Interior Columns 

  

Concrete 160 x 180   (f’c = 30 MPa) Concrete 230 x 230   (f’c = 30 MPa) 

Steel 68 x 100 x 4.5 x 7.6   (fys = 355 MPa) Steel 140 x 133 x 5 x 8   (fys = 355 MPa) 

Rebar 4 Ø12   (fyr = 400 MPa) Rebar 4 Ø12   (fyr = 400 MPa) 

Stirrup Ø8 @ 75 Stirrup Ø8 @ 75 

Capacity 

S1u = 1507 kN, S1s = 834 kN, 

S1r = 697.6 kN, S1t = -683.352 kN 

S2u = 42.627 kNm 

Capacity 

S1u = 2696 kN, S1s = 1270 kN, 

S1r = 921.151 kN, S1t = -1205 kN 

S2u = 90.737 kNm 

Softening 
h1 = -12254.83 kNm,  

h2 = -5595.16 kNm 
Softening 

h1 = -27350.89 kNm,  

h2 = -7387.58 kNm 

 

 

Figure 7.16: Example 1: Responses of CES composite structures. 
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Nonlinear responses of CES composite structures for two cases, i.e. Case A: 

perfectly plastic with combined stresses (dash line) and Case B: piecewise linear 

softening with combined stresses (solid line), are compared in Figure 7.16. As 

expected, the difference between the two cases is the response after peak, which 

illustrates the significance of softening simulation.  

 

 

Figure 7.17: Examples 1: Hinge developments (● denotes hinge on perfectly plastic 

or 1st softening branch; ■, ♦ denote respectively hinge on 2nd, 3rd softening branch). 

    

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 



126 

 

 

The formations and developments of hinges for both cases with perfectly 

plastic and with softening assumptions have been illustrated in Figure 7.17, where the 

labels (i.e. a to h) correspond to the states of structural performance in Figure 7.16. 

For Case A with the assumption of perfectly plastic, the hinge formations and 

developments are the same as Case B up to the state (d) and remain unchanged since 

there is no softening simulation included. From Figure 7.16 and Figure 7.17d-e, the 

difference became more significant when the softening of the hinge started to occur 

on the second softening branch for Case B, while the hinge in Case A still remain on 

the perfectly plastic portion. The peak load occurred at α = 0.75 for ν = 0.14 m 

although no hinge was formed yet (see Figure 7.17a). Slightly after attaining the 

maximum load, the first hinge occurred at the base column at α = 0.72 for ν = 0.17 m 

(i.e. Figure 7.17b). 

7.5.3 Example 2: Five-bay, five-story rigid frame 

The second example concerns a five-bay, five-story composite frame which 

consists of concrete encased steel columns and steel beams as shown in Figure 7.18. It 

is subjected to the increasing applied gravity loads and lateral loads (kN) by load 

multiplier α, and the top right sway displacement ν (m) is recorded. 

The gravity loads were applied at equal intervals of values 60 kN and 120 kN 

for exterior and interior, respectively. The lateral loads of 3 kN, 6 kN, 9 kN, 12 kN, 

and 15 kN were applied respectively at the nodes for each story. The properties all 

CES columns are detailed in Table 7.2. For all steel beams, Young’s modulus of 200 

GPa and yield strength of 275 MPa were assumed. Steel profiles IPE400 was used for 

all beams, which corresponded to S2u = 327 kNm.  
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Figure 7.18: Examples 2: Five-bay, five-story rigid frame. 

 

Table 7.2: Properties of CES composite columns for example 2. 

All Columns 

  

Concrete 280 x 280   (f’c = 30 MPa) 

Steel 75 x 150 x 5 x 7   (fys = 355 MPa) 
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S1u = 3895 kN, S1s = 3050 kN, 

S1r = 1950 kN, S1t = -1595 kN 

S2u = 148.952 kNm 

Softening 
h1 = -69051.59 kNm,  

h2 = -33380.08 kNm 
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Figure 7.19 presents the comparison between two nonlinear responses of 

composite structures based on the assumptions of perfectly plastic with combined 

stresses (dash line) and piecewise linear softening with combined stresses (solid line). 

Again, only the post-peak responses show the differences which confirm the 

importance of softening behavior. For a better understanding, a series of hinge 

formations and evolutions have been displayed in Figure 7.20 for both Cases A and B.   

 

 

Figure 7.19: Examples 2: Responses of CES composite structures. 
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bay started to yield at α = 2.57 for ν = 0.064 m, and the unload event occurred at α = 

2.5 for ν = 0.072 m (see Figure 7.20c).  

 

 

Figure 7.20: Examples 2: Hinge developments (● denotes hinge on perfectly plastic 

or 1st softening branch; ■, ♦ denote respectively hinge on 2nd, 3rd softening branch; 

and ○ denotes unloading hinge). 

(a) (b) 

(c) (d) 

(e) (f) 

(g) 



130 

 

 

Figure 7.20d illustrates the final state of hinge dispositions for Case A (i.e. perfectly 

plastic) corresponding to α = 1.37 for ν = 0.2 m. When softening behavior is taken 

into account, the second softening branch was activated (Figure 7.20e) at α = 2.16 for 

ν = 0.088 m on the intersection of yield hyperplane 1 and 2 for a base column at the 

first grid. In Figure 7.20f, the third piecewise linear softening branch was further 

developed at α = 1.27 for ν = 0.174 m from the previous second portion location. The 

final event of hinge formations for Case B is displayed in Figure 7.20g at α = 1.12 for 

ν = 0.2 m. 

7.5.4 Example 3: Three-bay, twelve-story rigid frame 

This three-bay, twelve-story frame is a practical example of a CES composite 

building which is composed of concrete encased steel columns and steel beams as 

shown in Figure 7.21. It is subjected to the increasing applied gravity loads and lateral 

loads (kN) by load multiplier α, and the top right sway displacement ν (m) is 

recorded. 

The gravity loads were applied at equal intervals of 5 kN. The lateral loads 

were divided into three groups for every four stories. They were applied respectively 

at each node of the groups with magnitudes of 1 kN, 2 kN, and 3 kN. The columns 

were categorized into two types, i.e. lower columns from first to sixth floor, and upper 

columns from seventh to twelfth floor. The properties of all CES composite columns 

are detailed in Table 7.3. For all steel beams, Young’s modulus of 200 GPa and yield 

strength of 275 MPa were assumed. Steel profiles IPE400 was used for all beams, 

which corresponded to S2u = 327 kNm.  

 



131 

 

 

 

Figure 7.21: Examples 3: Three-bay, twelve-story rigid frame. 
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Table 7.3: Properties of CES composite columns for example 3. 

Columns for floors 1 – 6 Columns for floors 7 – 12 

  

Concrete 280 x 280   (f’c = 50 MPa) Concrete 280 x 280   (f’c = 30 MPa) 

Steel (2) 175 x 90 x 5 x 8   (fys = 460 MPa) Steel (2) 175 x 90 x 5 x 8   (fys = 355 MPa) 

Rebar 12 Ø15.9   (fyr = 400 MPa) Rebar 4 Ø15.9   (fyr = 400 MPa) 

Stirrup Ø8 @ 35 Stirrup Ø8 @ 35 

Capacity 

S1u = 6543 kN, S1s = 5712 kN, 

S1r = 5586 kN, S1t = -2998 kN 

S2u = 229.51 kNm 

Capacity 

S1u = 4324 kN, S1s = 4100 kN, 

S1r = 3302 kN, S1t = -1945 kN 

S2u = 154.33 kNm 

Softening 
h1 = -67100.88 kNm,  

h2 = -8758.73 kNm 
Softening 

h1 = -19924.96 kNm,  

h2 = -15039.50 kNm 

 

For clarity, various critical events of hinge evolutions have been drawn in 

Figure 7.22 for the cases of perfectly plastic and piecewise linear softening 

assumptions under combined stresses. These hinge illustrations are very informative 

to help understand the behavior of CES structure under loadings in each incremental 

step, and to picture the overall structural performance as well. The complete nonlinear 

responses of composite frame have been successfully traced and compared in Figure 

7.23, even though the challenging snap-back response exists. Only the post-peak 

responses are different due to assumption of softening laws. The labels on the 

response curves in Figure 7.23 correspond to the critical events of hinge formations 

and developments as presented in Figure 7.22. The hinge evolutions for Case A 

started from Figures 7.22 (a – d), and for Case B started from Figures 7.22 (a, e – i). 
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Figure 7.22: Examples 3: Hinge developments (● denotes hinge on perfectly plastic 

or 1st softening branch; ■, ♦ denote respectively hinge on 2nd, 3rd softening branch; 

and ○ denotes unloading hinge) 

(a) (b) (c) 

(d) (e) (f) 
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Figure 7.22: Examples 3: Hinge developments (● denotes hinge on perfectly plastic 

or 1st softening branch; ■, ♦ denote respectively hinge on 2nd, 3rd softening branch; 

and ○ denotes unloading hinge) – Cont. 

 

 

Figure 7.23: Examples 3: Responses of CES composite structures. 

(g) (h) (i) 

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1

L
o

ad
 M

u
lt

ip
li

er
 

Displacement (m) 

Perfectly Plastic 

PWL Softening 

a b 

c 

d 

d 

e 

f 
g 

h 

i 



135 

 

 

 

In Case A, a plastic hinge was firstly formed in a steel beam section at α = 

12.26 for ν = 0.65 m (Figure 7.22a). When attaining the limit load level α = 12.57 for 

ν = 0.7 m (Figure 7.22b), more plastic hinges spread to other beam locations and the 

composite columns started to soften under combined stresses following the first 

softening path. As the load factor kept increasing, the unloading hinges occurred in 

steel beams and composite columns as shown in Figure 7.22c at α = 11.59 for ν = 0.73 

m in order to maintain equilibriums. After unloading hinges were formed at many 

locations of both beams and columns, the structure became susceptible to sudden loss 

of strength and stability. It is best to mention that with the small increasing of 

displacement (i.e. from ν = 0.73m to 0.75m), the load multiplication factor α dropped 

significantly from 11.59 to 7.63. This phenomenon can be illustrated from Figure 

7.22c and Figure 7.23. The computation terminated at α = 4.49 for ν = 1 m which was 

considered to violate the small deflection assumption, and the corresponding event 

was displayed in Figure 7.22d. 

In Case B, the first plastic hinge also occurred at the same location and load 

factor as in Case A. The maximum load limit in this softening case was attained at α = 

12.52 for ν = 0.67 m and the corresponding hinge formation is presented in Figure 

7.22e which shows more plastic formation in steel beams and first slope of plastic 

softening in composite column. The load factor decreased to α = 11.79 for ν = 0.69 m 

as a composite column in the second floor underwent softening along the second 

branch (see Figure 7.22f). The unloading hinge in steel beam started to form at α = 

11.46 for ν = 0.7 m as in Figure 7.22g, while more composite columns exhibited more 

softening hinges. The snap-back response occurred when there were many unloading 
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hinges formed at critical beam sections as the composite columns became very soft 

(viz. in the third residual softening branch). This phenomenon has been clearly 

illustrated by observing Figure 7.22h and Figure 7.23 at load level α = 9.46 for ν = 

0.65 m. The final state of hinge evolution, chosen to be at α = 3.91 for ν = 1 m, has 

been plotted in Figure 7.22i which also shows the critical soft story when the hinge 

attain its residual softening stage in all composite columns.  

7.6 Strengthening of CES Structures with Common Steel Bracings 

7.6.1 Description of Retrofitted Structures 

The performance of concrete encased steel composite frames has been fully 

traced and investigated using the proposed numerical approach. This section aims to 

retrofit the composite structures used in the previous section by means of steel 

bracings and compare their efficiency. Common steel bracing systems have been 

carefully selected to reflect the practical design applications. In order to compare 

various bracing configurations fair and square, the steel profile for bracing members 

were selected so that the total weight of each bracing systems are marginally equal. 

The bracing configurations in this study include the followings: X-type, V-type, 

Inverted V-type, Eccentrically Inverted V-type, and Mega X-type. It should be noted 

that all properties (including materials, loadings, boundary conditions, analysis 

approach,…etc.) used in the original CES frames from Example 1 to 3 remains 

unchanged, only steel braces have been added to the existing structures. For all 

analyses, CES columns were simulated using the proposed combined stresses model 

with piecewise linear softening law, and the perfectly plastic assumption were 

assumed for all bracing members. 
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7.6.2 Example 4: Strengthening a three-bay, two-story rigid frame  

This example considers three types of bracing configurations to strengthen the 

existing CES frame in example 1. Typical bracing systems were carefully selected, 

viz. inverted V-bracing (Figure 7.24), eccentrically inverted V-bracing (Figure 7.25), 

and mega X-bracing (Figure 7.26). The steel profiles HEAA180, HEA200, and 

HEAA180 were employed respectively for inverted V-bracing, eccentrically inverted 

V-bracing, and mega X-bracing. The difference in steel weight between bracing 

configurations is minimal, i.e. 2.2%. Steel Young’s modulus of 200 GPa and yield 

strength of 275 MPa were assumed. The corresponding capacities for HEAA180 are 

S1u = 913 kN, S2u = 58.9 kNm; and S1u = 1346 kN, S2u = 107 kNm for HEA200.  

 

 

Figure 7.24: Examples 4: Inverted V-bracing. 
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Figure 7.25: Examples 4: Eccentrically Inverted V-bracing. 

 

 

Figure 7.26: Examples 4: Mega X-bracing. 
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formations at peak load have been illustrated in Figure 7.28 for all bracing systems as 

well as the original CES structure. The computations have shown that both the 

concentrically and eccentrically inverted V-bracings provided better capacity than the 

mega X-bracing approximately 35%. Although, the maximum load from 

concentrically and eccentrically inverted V-bracings are more or less the same, but the 

overall responses are different; which demonstrates the important roles of full 

structural investigation. The eccentrically inverted V-braced structures are more 

ductile than the concentric ones but less stiff. The retrofitted structures using mega X-

braces are both stiff and ductile. Comparing to the original unbraced CES structures, 

the conventional steel bracings enhance mainly the peak strength (i.e. from 2.8 to 3.7 

times of original frame in this example) but deteriorate the ductility of the structures. 

It is worth mentioning that ductility is very important for the new trend of structural 

design, viz. performance-based design, due to its effectiveness of energy dissipation. 

For unbraced frame, no yielding occurred up to the peak load. Whereas for retrofitted 

frames, plastic hinges were firstly formed at some steel beams and then evolved 

significantly for eccentrically and concentrically inverted V-braced structures. This 

kind of hinge evolution is typical for structure dominated by gravity forces. Only the 

mega X-braces were found yielding due to the combined stresses. 
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Figure 7.27: Examples 4: Responses of CES structures before and after retrofitting. 

 

 

 

Figure 7.28: Examples 4: Hinge formations at peak load (● denotes hinge on 

perfectly plastic). 
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7.6.3 Example 5: Strengthening a five-bay, five-story rigid frame 

The medium-rise rigid CES frame in example 2 has been retrofitted by three 

types of steel bracing system, i.e. inverted V-bracing, V-bracing, and X-bracing as 

shown in Figures 7.29-7.31. All steel braces were pinned-connected. Two steel 

sections were carefully selected to have the same structural weight (i.e. 0.2% 

difference). Inverted V-bracing and V-bracing were employed with profiles HEA200, 

and HEB120 was chosen for X-bracing. Steel Young’s modulus of 200 GPa and yield 

strength of 275 MPa were adopted. The corresponding capacities for HEA200 are S1u 

= 1346 kN, S2u = 107 kNm; and for HEB120 are S1u = 850 kN, S2u = 41.3 kNm.  

 

 

Figure 7.29: Examples 5: Inverted V-bracing. 
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Figure 7.30: Examples 5: V-bracing. 

  

 

Figure 7.31: Examples 5: X-bracing. 

 

The full structural response comparisons between unbraced CES composite 

frame and various bracing systems have been plotted in Figure 7.32. The labels on the 

figures denote the types of composite frame corresponding to the curves.  
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Figure 7.32: Examples 5: Responses of CES structures before and after retrofitting. 

 

 

Figure 7.33: Examples 5: Hinge formations at peak load (● denotes hinge on 

perfectly plastic or 1st softening branch). 
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The maximum load factors of the three braced structures are practically the 

same, i.e. α = 3.03, α = 3.07, and α = 3.11 for inverted V-bracing, V-bracing, and X-

bracing, respectively. However, V- and X-braced frames are almost identical but 

softer than the inverted V-braced one. The enhancement from steel braces increased 

peak load capacity of the frame (i.e. 1.19 times in this case), but the post-peak 

response became significantly more brittle. The states of hinge formations for each 

CES structure have been illustrated in Figure 7.33 for further investigating the 

structural response. It is observed that many CES columns at the base of existing 

frame had yielded at the state of peak load (see Figure 7.33a) due to the combined 

stresses from gravity and lateral forces. However, the hinge developments have 

changed after strengthening with steel braces. For all of the three braced structures, 

plastic hinges were found in steel beam sections and the softening hinges in the 

columns were significantly reduced. This transformation is expected due to the fact 

that the steel braces helped resisting the lateral force and the columns absorbed 

mainly the gravity load. The hinge dispositions at peak load for the braced structures 

are displayed in Figures 7.33b-d. It is noticed that no plasticity was developed in the 

bracing members, since the unloading in the beam occurred after attaining the peak 

load which caused the sudden capacity drop or snap-through response when the 

columns underwent the softening behaviors. 
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7.6.4 Example 6: Strengthening a three-bay, twelve-story rigid frame 

This example concerns the retrofitting of an existing twelve-story CES 

composite frame in example 3 by means of typical steel bracing systems. Three 

configurations of bracing were selected, i.e. inverted V-bracing, X-bracing, and mega 

X-bracing, as shown in Figures 7.34-35.  

 

 

Figure 7.34: Examples 6: (a) Inverted V-bracing, (b) X-bracing. 
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Figure 7.35: Examples 6: Mega X-bracing. 

 

The steel profile HEA200 was employed for the inverted V-bracing, and 

HEAA180 section was adopted for both X- and mega X-bracings. The steel profiles 

were selected so that the steel weights of each bracing configurations are marginally 

different, i.e. 2.2%. Steel Young’s modulus of 200 GPa and yield strength of 275 MPa 

were used for all bracing members. The corresponding capacities for HEA200 are S1u 

= 1346 kN, S2u = 107 kNm; and for HEAA180 are S1u = 913 kN, S2u = 58.9 kNm. 
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The comparisons between structural performances (load factor vs. top right 

sway displacement) of the existing and retrofitting composite structures have been 

illustrated in the Figure 7.36 whose labels referred to the types of structure being 

considered. For further clarity, the dispositions of plastic hinges for unbraced and 

braced frames were plotted in Figure 7.37 at the load level of peak load. The levels of 

plastic softening occurred in the CES columns have been made obvious for each state 

of the three softening branches, as well as the plastic hinge formed in any beams and 

bracing members. 

 

 

Figure 7.36: Examples 6: Responses of CES structures before and after retrofitting. 

 

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

L
o

ad
 M

u
lt

ip
li

er
 

Displacement (m) 

(a) 

(b) 

(c) 

(d) 



148 

 

 

 

 

Figure 7.37: Examples 6: Hinge developments (● denotes hinge on perfectly plastic 

or 1
st 

softening branch; ■, ♦ denote respectively hinge on 2
nd

, 3
rd

 softening branch; 

and ○ denotes unloading hinge). 
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The computations have shown that using the same amount of structural steel, 

the mega X-bracing provides better enhancement to the peak load capacity of the 

existing structure than the inverted V- and X-bracing systems. In other words, it is 

more economical to achieve the target strength by using the mega X-bracing 

configuration. The inverted V- and X-braced structures behaved similarly and attained 

the maximum limit load at α = 36.32 with ν = 0.54 m and α = 34.85 with ν = 0.68 m, 

respectively. The mega X-braced composite frame reached the peak load capacity at α 

= 49.07 with ν = 0.13 m, which is 35% higher than the inverted V-braced frame and 

41% higher than the normal X-braced frame. The conventional steel bracings enhance 

the lateral stiffness as well as the maximum load capacity of the unbraced frame 

significantly. For instance, the mega X-braced structure increased the peak load limit 

by 4 times and reduced the top lateral sway displacement by 5 times of the existing 

CES composite structure. It can be observed from Figures 7.3d-e that X-braced frame 

activated more plastic hinges on the second and third softening branch than the 

inverted V-braced frame which means that the CES columns contribute resistance 

more in the X-bracing system. For the mega X-braced structure, there was no 

unloading hinge or higher levels of softening hinge found in any member at the peak 

load. Only hinges on perfectly plastic or first softening branch were formed at some 

bracing members and columns (see Figure 7.3d), which has shown the efficiency of 

the mega X-bracing system. Since no snap-back or snap-through responses were 

encountered, the mega X-bracing solution is reliably more stable in terms of 

computational effort.  
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7.7 Concluding Remarks 

The full spectrum of nonlinear responses for concrete encased steel composite 

structures has been traced and investigated by a simplified yet efficient approach with 

practical applications. A piecewise linear yield hyperplanes for concrete encased steel 

sections with an associated softening law have been proposed with detailed 

mathematical expressions. The proposed plasticity components have been 

implemented in a stepwise holonomic analysis scheme in order validate with the 

experimental tests as well as to capture the complete responses of composite 

structures. Good results between the analyses and the tests have been achieved. In 

general, the proposed simplified analysis method is capable of predicting the CES 

structural responses including the difficult post-peak softening behavior with much 

less computational effort and time. In addition to the performance curves, full 

panoramas of the plastic hinge evolution have been illustrated for better investigation 

of the structural responses. By comparing the perfectly plastic with piecewise linear 

softening model, the computations have shown that the softening simulation has 

significant effects on the evaluation of post-peak response as well as the plastic hinge 

evolutions. 

 Effects of various steel bracing systems on the structural retrofitting for CES 

structures have been studied. The performance of common types of steel bracing such 

as V-bracing, inverted V-bracing, eccentrically inverted V-bracing, X-bracing, and 

mega X-bracing have been evaluated and compared. It is concluded that inverted V-

bracing increases the lateral stiffness of the structure significantly (i.e. reduces the top 

sway displacement) as well as the maximum load-carrying capacity. However, it 

makes the retrofitting structure become more brittle. The efficiency of strength 
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enhancement from the X-bracing and eccentrically inverted V-bracing is generally the 

same as the inverted V-bracing. But in terms of stiffness, they are not as good as the 

inverted V-braced one. Unlike the mega X-bracing configuration, it usually enhances 

both the maximum strength and stiffness without deteriorating the ductility. Among 

the steel bracing systems in the present study, the V-bracing is the least efficient one 

in terms performance and economical view point. 

  



 

 

 

CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

 

8.1 Summary 

An efficient fiber element based approach has been developed to simulate the 

nonlinear inelastic behaviors of concrete encased steel composite columns and beam-

columns. Not only stub columns, where slenderness and geometric imperfection are 

negligible, but also slender CES columns were investigated. The present analysis 

approach realistically accommodates various important influences, i.e. materials 

nonlinearity, geometric nonlinearity, geometric imperfection, various levels of 

concrete confinement, local buckling of structural steel, and buckling of 

reinforcement bar (viz. after the crushing concrete material occur during simulation). 

The definition of concrete highly confinement zone for cross-shaped encased steel 

section has been proposed and validated with experimental tests. The proposed 

numerical approach is capable of tracing the complete structural performance 

including the challenging post-peak inelastic softening response. The maximum load-

carrying capacity can be obtained as a by-product. Nonlinear inelastic load-lateral 

deflection curve, load-axial strain/shortening response, axial force-bending moment 

interaction diagram, and axial force-moment-curvature curve can be effectively 

generated. Despite rich features of the proposed numerical scheme, the computational 

time is highly efficient and suitable for practical design. An adaptive initial condition 

formulation with Müller numerical method has been developed to ensure the 

convergence solution. A total of 50 full-scale experimental tests of concrete encased 
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columns and beam-columns have been used to validate the developed numerical 

approach by comparing the ultimate load capacity, load-axial strain/shortening, and 

load-lateral deflection response curves. The verified analysis scheme was used to 

extend the study of critical influences on the performance of CES columns and beam-

columns such as the spacing of lateral ties (effects of confinement level), column 

effective length ratio, load eccentricity ratio, structural steel yield stress, and concrete 

compressive strength. 

As a result of mesoscale simulations of CES members, a piecewise yield 

function as well as an associated softening rule for CES sections have been proposed 

and implemented in a stepwise holonomic approach to capture full spectrum of CES 

structural responses. Mathematical expressions for the proposed plasticity 

components were derived and described in detail. The proposed composite structural 

analysis approach has been validated by comparing with relevant experimental tests. 

Both geometric and material nonlinearity were included in the analysis of CES 

structures. The proposed analysis method is capable of predicting the structural 

behaviors including the difficult post-peak softening response with less computational 

effort and time. In addition to the performance curves, panoramas illustrations of 

plastic hinge evolutions could be plotted event-by-event for insight investigation of 

the composite structural responses. After assessing the performance of CES 

structures, structural retrofitting by means of typical steel bracing systems has been 

carried out. Typical types of steel bracing systems such as V-bracing, inverted V-

bracing, eccentrically inverted V-bracing, X-bracing, and mega X-bracing have been 

evaluated and compared.  Some recommendations were given to select a suitable type 

of bracing configurations for the desired performance and economical view point. 
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8.2 Concluding Remarks 

Some apposite concluding remarks from this study are as follows: 

1. Various level of concrete confinement (viz. unconfined, partially confined, 

highly confined) need to be taken into account in numerical analysis of CES 

columns and beam-columns, since they affect mainly the maximum load-

carrying capacity. However, these concrete confinements have less effect on 

the slender columns. 

2. Two physical phenomena, i.e. buckling of reinforcement bars and local 

buckling of structural steel, play very important roles for predicting the 

realistic response of CES structures. They influence both the ultimate capacity 

and post-peak softening response. 

3. Increasing the concrete compressive strength enhances the overall load 

capacity but it also deteriorates the ductility which makes the columns become 

more brittle.  

4. For a column subjected to the eccentricity of load larger than half of its depth, 

increasing the concrete strength does not improve the load capacity 

significantly. 

5. Higher structural steel yield stress enhances only the maximum strength 

capacity of the composite stocky columns more significantly than the slender 

ones, and does not affect the overall ductility.  

6. Slender CES beam-columns are found to be more ductile than stocky ones. 

Similarly, columns with large eccentricity are more ductile than those with 

small eccentricity. 
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7. By comparing the perfectly plastic assumption with the proposed piecewise 

linear softening model, the computations have shown that it is indispensible to 

include the softening simulation in the CES structural analysis for realistic 

behavior. It truly has significant influences on the prediction of post-peak 

response as well as the evolution of plastic hinge formations. 

8. The inverted V-bracing systems can increase the lateral stiffness of the 

existing unbraced structure significantly (i.e. reduces the sway displacement) 

as well as the maximum load-carrying capacity. However, using this bracing 

configuration will deteriorate the ductility and make the existing structure 

become more brittle. 

9. For structures in the present study, strength enhancement from the X-bracing 

and eccentrically inverted V-bracing are generally the same as the inverted V-

bracing. But regarding to the stiffness enhancement, the inverted V-bracing 

does a better job. 

10. Generally, mega X-bracing system performs very well, since it enhances both 

the maximum strength and stiffness without deteriorating the ductility of 

existing structure.  

8.3 Recommendations for Future Research 

The recommendations for possible future research are described as follows: 

1. The numerical model presented in the thesis has been developed for fully 

concrete encased steel composite columns/beam-columns. Similarly, the same 

approach can be implemented for other types of composite sections, e.g. 

partially encased steel sections, composite shear wall, and so on. It is 
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important to realize that for CES columns, stress in structural steel can 

develop up to yield point without activating local buckling due to the fully 

restrained from concrete. But for partially encased steel columns, steel flanges 

can experience local bucking before reaching the yield stress. 

2. The present study focuses on CES structure with normal strength and normal 

weight concrete. It would be interesting to investigate the behavior of such 

composite structure for other materials, i.e. high-strength concrete, lightweight 

concrete, fiber-reinforced concrete, etc. 

3. The effects of temperature dependent properties have not been incorporated in 

the present study yet. Therefore, the research on the CES structural behavior 

under elevated temperature is of important. 

4. This study considers the structural response under static loading. Hence, 

further numerical models can be developed to investigate the CES structure 

under cyclic loading or preload effects. 

5. The retrofitting of composite structure has been done by means of 

conventional steel braces under static loadings. For seismic-retrofitting 

structures, composite buckling restrained braces (BRBs) are commonly used. 

Instead of modeling the steel braces as perfectly plastic material, the BRBs 

can be modeled using the numerical approach as suggested in point 4 to study 

the composite structural responses during earthquake.  
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