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Chapter I

Introduction

An understanding of superconductivity is based on the Bardeen-
Cooper-Schriffer theory (BCS) [1], which involves the Bose
condensation of pairs of electron which their binding energy is much less
than the Fermi energy. Before the BCS theory was developed, Pippard [2]

had discovered that the length scale ¢, which is related to the size of the

Cooper pairs at low temperatures, 1s much longer than the penetration
depth A in type I superconductor. Afterwards, the type II superconductor
had been discovered and they found that the penetration depthA in this

type is much longer than the length scale ¢. In such a superconductor,

when magnetic field is applied to it with field strength exceeds a value
referred to the lower critical field, B.;, a magnetic flux is able to penetrate
into the superconductor as a quantized unit of magnetic flux and forming
a cylindrically symmetric domain called “vortex. For an applied field
slightly above B.j, the magnetic field inside a type I superconductor is
strongest in the cores of the vortex, and decreases with distance away
from the core, and becomes very small at large distance. For much higher
applied magnetic field there are many vortices occur and they are overlap.

Hence the field inside the superconductor becomes strong everywhere.



proposed by Friedel, de Gennes and Matrican [4] and later developed and
extended by Nozieres and Vinen [5] by including pinning and friction but
they are phenomenological theories. More over, the first microscopic
theory that tries to explain the Magnus force is due to Ao and Thouless
[6]. They derived the force for an adiabatic motion of the vortex. They
also found that the existence of the Magnus force is a general property of
the vortex line and is not influenced by the presence of the disorder and
the magnetic field. Since then there have been several attempts to derive
the Magnus force from different fundamental approaches such as by the
Chern-Simons theory[7], Feynman-Hellmann theorem [8], path integral

derivation of Magnus force [9],etc.

1.1 The Magnus Force in Classical Hydrodynamics

Fluid dynamics concerns itself with the study of motion of fluids.
Since the phenomena considered in fluid dynamics are macroscopic, a
fluid is regarded as a continuous medium. This means that any small
volume element in the fluid is always supposed to be solarge that it still

contains a great number of molecules. Consider the volume V. The mass

of fluid in this volume is J dV p , where p is the fluid density, and the

integration is taken over the volume V. The mass of fluid flowing in unit

time through an element dA of the surface bounding this volume is



pV -dA , V is the velocity field, the magnitude of the vector dA is
equal to the area of the surface element, and its direction is along the
normal. We take dA along the outward normal. Then pV -dA is
positive if the fluid is flowing out of the volume, and negative if the flow
is into the volume. The total mass of fluid flowing out of the volume V|

in unit time is therefore
{:d,& pV (1-1)
where the integration is taken over the whole of the closed surface

surrounding the volume in question. Next, the decreasing the mass of the

fluids per unit time in the volume can be written
- —[dav p. (1-2)
Equating the two expressions, we have
-~ = 0
SEdA-pvz—ajde, (1-3)

The surface integral .can be transformed by Divergence theorem to a

volume integral
fdA - pV' = [av V (pV). (1-4)
Thus

[av [a—p+§-(p\7):l=0 (1-5)

t



since this equation must hold for any volume, the integrand must vanish,
P9 .(pV)=0. (1-6)
ot
The vector
i=pV (1-7)
is called the mass flux density. Its direction is that of the motion of the
fluid, while its magnitude is equal to the mass of fluid flowing in unit
time through unit area perpendicular to the velocity.
For a better understanding of the origin of the Magnus force it is
worth recalling how the Magnus force arises in classical hydrodynamics.
Let us consider an isolated straight vortex line in an incompressible

inviscid liquid (see Fig. 1-2). The vortex line along the axis z induces the

velocity field

V()= = (1-8)

—

Here T is position vector in the moving frame, V,, and K is the
circulation vector directed along the axis z. This circulation given by

k= pdl Vy (1-9)
and may have arbitrary values in classical hydrodynamics. In addition,
there is the fluid flow past the vortex line with a transport velocity V., .

Then the net velocity field around the line is

VvE)=v,GF)+ Vv, (1-10)



Fig. 1-2

Sketch of the vortex move in uniform background.

The Euler equation for the liquid is

%_YJF(\?.%)V:—&[?P—FS(?)] (1-11)

Here P_is the liquid density and P is the pressure. This equation implies

that an external force F is applied to the vortex line.
Assuming that the vortex line move with the constant velocity V,
and replacing the center point of vortex by

X =X,-V.t. (1-12)



Here X,1s the center point of vortex in the fixed frame at t = 0. Then the

Euler equation (1-11) yields the Bernoulli law for the pressure:

(1-13)

’ 1 \7 7 IF .
Here Py, and P, =P, _EP[V“ —VL] are constant which are of no

importance for the following derivation. Next one should consider the
momentum balance for a eylindrical region of radius ry around the vortex
lines by 1y 1s the radius of vortex.

The momentum - flux tensor is given by

m,=P°s5,+pV,G)V,F) (1-14)

1
or in the reference frame moving with the vortex velocity V, :
My =P8, +p(V,(E)- vV, Vi(E)-Vy) (1-15)
The momentum conservation law requires that the external force F

on the vortex line must be equal to the momentum-flux through the entire

cylindrical boundary in the reference frame moving with the vortex

im0

velocity V,. The latter is given by the integral JdA.Hf where dA, are the

components of the vector dA directed along the outer normal to the
boundary of the cylindrical region and is equal to the elementary area of

the boundary in magnitude.



Then using Equation (1-8), (1-10) and (1-13), the momentum balance
yields the following relation:

Fue = p[(V0 = ¥, )x K] (1-16)

Thus a force is exerted on the vortex when it moves relative to the

fluid density. This force is proportional and perpendicular to the vortex

velocity, and proportional to the fluid density. It is the Magnus force. The

Magnus force makes the vortex dynamics similar to that of charged

particles in a magnetic field, which the role of the magnetic field played

by the fluid density.

1.2 Magnus Force and Chern-Simons Vortices

In type II superconductors, we derive the Magnus force in a two-
dimensional superconductor film at zero temperature. We start by used
the conclusions of 1. V. Barashenkov and A.O Harin [10]. They
formulated a (2+1) dimensioned Chern-Simons theory in which the
matter density is finite at infinity and found that the Euler-Lagrange
equation gives to the vortex solutions. The Lagrangian is written solely in
terms of the matter field ¢ (c] - X )

L=[d*qle@:X)ino,e@:X)-H(e@G:x)) (1-17)
where H (¢(g; X )) is the energy density of system and has not explicit on

time.



The one-vortex solution centered at X has the form

—

0@:%X)=p2(@G-%)et® (1-18)

with G=(qy.qy) andx = (x,v). Here @is function of ¢ — X where the

latter is given by @ = tan ! {qY _ Y} and p (q - X )is the superfluid
qx - X

density
pla-X)=p, +3p(@X). (1-19)
The superfluid density is the sum of the background density in the

absence of the vortex plus the modification due to the presence of the

vortex. The density p(d — )2) vanishes continuously at 51=5( and

approaches the background density p, as‘d - X‘ — o ., This is done by

regarding X as time dependent function and substituting equation (1-18)
into (1-17) then we obtained effective Lagrangian describing the
dynamics of the vortex center.

We consider the two terms in: equation (1-17) separately. The
second term, when integrated, gives the rest energy of the vortex and is

irrelevant to our discussion of the Magnus force. The first term leads to
[in S S .
Ly = _[dz({%a tP(Cl - X )— p(q - X )h@ O (q - X )} (1-20)

The number of particles is constant in time since 5tjd251p(51—5()=0,

equation (1-20) can be simplified to



10

. (1-21)
oli-x)
where we have used the fact that ® only depends on G-X and V, is
differentiation with respect to q. Recalling that X is the velocity of the

vortex, we observe that L, describes the interaction of the vortex with the

vector potential. The force F experienced by the vortex due to this

interaction can then be obtained by varying (1-21) with respect to X :

—

FMagnus u X x B (1'22)
The field strength B is given by

B=V,x[ddpg-X)v,0G-X). (122

—

Since the integrand only depends on ¢ — X, we write
B=-n[d*qV, x|pld-XV 0-%). (1-23)

Using the Stokes theorem J‘dzf6 XD §d1 -D and relation of

5% (14 %) 2k da - %) (1-24)

s
equation (1-23) can be simplified to
B=—hpyk. (1-25)

We can write the Magnus force as

——hpofixl;, (1-26)

agnus

Ey
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The Magnus force was defined as the force between a vortex and
superconductor at zero temperature. It corresponds to the Magnus force
acting on a vortex in classical hydrodynamics, equation (1-16). This force
appears if the vortex moves with respect to the liquid. This force is

normal to the relative vortex velocity and does not produce work.

1.3 Magnus Force and Feynman—Hellmann Theorem

In this section we consider the derivation of the Magnus force
using Feynman-Hellmann theorem, following the review paper of E.
Sima'nek [8]. The derivation starts from the time-dependent Schrodinger
equation for the superconductor film at zero temperature which contain a
single vortex located at point X. The Schrodinger equation for the time

evolution of the superfluid wave function is
0 (s , g,
1ha‘(p(X(t))>= H(X(0)[o(X (1)) (1-27)
At any instant, for X =X (t), the instantaneous eigenstates satisfy
HE®)[0.(X0))=E, X1, &) (1-28)
Differentiating the ground—state energy E, (X(t)) with respect to the

vortex center coordinate X, we obtain
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%;;Lt)) = <6(P0/5X1|H(5((t))|(p0>+ <(p0|H(X(t))|a(p0/aXl>
+<(Po|m|(ﬁ)o>.

oX,

(1-29)

Using equation (1-29) the first two term of this equation can be expressed

in term of the derivative of ‘cpo(f((t)» We have

0 S 0 -
2 oGl 528, w0
k k
equation (1-29) can be simplified to
oH OE(X ,
_<(P0|K (P0>:— X . +Zka0‘)ki (1-31)

and

o, = i 99, |09, \ /09,
OX | 0X, oX

where o, 1s the adiabatic curvature tensor.

o0,
oX, (1-32)

The right-hand size of equation (1-31) 1s known as a time—
dependent version of the Feynman—Hellmann theorem.

The force on the liquid at the vortex line is

0

0X

k
F Magnus E e

E(X )+ 3 X,0, - (1-33)

The second term makes the vortex dynamics similar to that of charged
particles in a magnetic field, with the role of the magnetic filed played by
the adiabatic curvature tensor. From equation (1-32) and (1-33), the

components of Magnus force in x and y direction are
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FXMagnus :ihXY <a(p0 8@0>_<8(Po a(Po>

oY | 0X 0X | oY
- : (1-34)
FYMa i — thX a(Po a(PO _ a(pO a(PO
e |\ 0Y | 0X 0X | 0Y /|
respectively.
Scope of This Thesis

In this chapter, we show the derivation of Magnus force in classical
hydrodynamics by following Sonin [11] and the was derived Magnus
force occur in type Il superconductor was derived reviewing the paper of
I.V. Barashenkev and A.O. Harin [10] and E. Simanek [8].

In chapter 11, we will give a brief review of the B—O approximation
in molecular physics by follow textbook Geometric Phase in Physics,
[12].

In chapter III, the mathematical method of path integration is
reviewed [13] and its application to the geometrical phase will be given
[14].

In chapter IV, we will present an attempt to clarify the origin of the
Magnus force and the effect of the environment on the Magnus force will
be discussed.

In chapter V, the discussion of the results and conclusion will be

given.
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Chapter 11

Born—-Oppenheimer Hamiltonian

In molecular physics, it is useful to treat the electronic and nuclear

degrees of freedom as fast and slow variables, respectively. This is

because the gap between nuclear levels, by a factor of order (ﬂ)“. In the
m

Born—Oppenheimer approximation, one solves for the electronic states in
a fixed nuclear background. By the adiabatic theorem, one expects these
electronic states to be approximately stationary with respect to the
relatively slow motions of the nuclei. We can thus obtain an effective
description for the nuclear motion, relative to a fixed electronic orbital, by
integrating over electronic coordinates. We shall find that the effective
nuclear Hamiltonian obtained in this way involves both an ordinary
potential terms due to electronic energy levels and background gauge
potential that couples to the nuclear current. This gauge potential takes
into account. the Berry phase accumulated by the electronic wave
functions when the nuclear coordinates change adiabatically.

The Born—Oppenheimer effective Hamiltonion begins with the full

Hamiltonion of system

H = + 2L Vv(R,T) 2-1)
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and full Schrodinger equation can be written as

P B (: :j Lo L
+ +V|R,T r,R)=Eo@p(r,R 2-2
vt 2o )¢ (T,R)=Eo@(f,R), (2-2)
D 2
where P is the kinetic energy term of the nuclei,
2M

B is the kinetic energy term of the electronic,
2m

V(R,F) contains the interaction energies of the nuclei and

electronic, and ¥ and R are the electronic and the nuclear coordinates

respectively. We spit therefor the full Hamiltonian into the fast and slow
part

B2 AN\=
HF = <= +h(p,r,R) (2_3)
2
h(p.7.R )= 2 —+ v(iR) .

2 m

Where the fast Hamiltonian h(ﬁ,f,f{) depends parametrically on the slow

variable R, the snapshot Hamiltonian (for fixed R) lead to the

Schrodinger equation

b (AR ol (R )= el (R Dol (7R ) (2-4)
where g 'is the energy of the fast system. The wave function for the
whole system (p(f, ﬁ) is separated into nuclear and electronic components

o, (R)and ¢, (¢,R)as

@(iﬁ):ZcI)n(li)q)n(f,R). (2-5)
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Substituting the wave function (p(f,R) into the full Schrodinger equation

and using the equation for the fast variables we get

2

2 [fM +8n(ﬁ)]®n(ﬁ)¢n(?,ﬁ)= B,3 e, (K)o, (7.8) (2-6)

Where E is the energy of the whole system.

We may now integrate out the electronic degrees of freedom to
leave a system of equations for the nuclear wave function @ (ﬁ) alone.

Using bracket notation for the normalized electronic eigenstates, we get

P’ > "
> (] 2Mq>n(R]¢n)+sncI>n(R) ~Eo,(R) . (2-7)
n -
The nuclear kinetic energy operator T, .. = oM V. operator on

both the nuclear and electronic wave function @ | (ﬁ ) and ¢, (f,ﬁ).

Thus the kinetic energy term in (2-7) are proportional

1

(0 = 592" @, R 0,) =5 005 =0 (9 06,7~ ih(o V] 0,)) 0, ) - (2-8)

2M

We can write a-complete matrix-valued Schrodinger operator for the

nuclear wave function

>Hgo (R)=Eo (&) (2-9)

which act on the nuclear wave @ , (R ).
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We denote the matrix—valued Hamiltonian as

Hfrl:fl :ﬁ - 1:[nkljlkm +8n(ﬁ )Snm (2-10)
when
i, =8,P—in(o, (R )V.[6.(R) R o
=8 _P-A__ R
and A =ik(d, [Vi|d, )

2.1 Born-Oppenheimer Approximation

In the Born-Oppenheimer approximation, the effect of the off—
diagonal matrix elements A, which mix different energy levels is

ignored. Then for a non degenerate electronic level, the effective nuclear

Schrodinger operator in the Born-Oppenheimer approximation is then

simply

H 2O :_zh;d (V o — &y (R +en (R (2-12)

Equation (2-12) looks-like the - Schrodinger operator of a charged
particle in the presence of a background magnetic potential. To further
strengthen this analogy, the vector field A, even transforms likes a U(1)
gauge potential. The phase each of the wave function¢ , (ﬁ ) is

arbitrary, and our description of the dynamics of the nuclei must always
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respect this arbitrariness. The use of a vector potential brings out the fact
that our description possesses the freedom of performing gauge
transformation in analogy with electromagnetism [Appendix A]. The

effect of a redefinition of phases of electronic wave function

6, R)> ey (R) (2-13)

is to rotate the nuclear wave function oppositely
o (R )> e ™o (R) (2-14)
so that the full wave function (p(f,f{) is preserved.

From Eq. (2-14), we see that the gauge potential transforms just as it
should

AR)-> A& R)+v 4, [R) (2-15)
and it is easy that the overall effect of the phase redefinition is to leave
the Schrodinger equation invariant.

We conclude that the nuclei behave like charged particles in a

magnetic field B =V xA « semiclassicall speaking, when the nuclei go
around a closed path, the wave function will-accumulate a geometrical
phase proportional to the enclosed magnetic flux. This phase is the Berry

phase.
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Chapter III

Feynman Path Integral in Quantum Mechanics

In proceeding to evaluate the geometrical phase by path integral
method, the basic ideas of constructing the Feynman path integral
(Feynman 1961) will be presented in this chapter. We present in this
chapter the mathematical formulation of the quantum—mechanical

transformation of the propagator in the form of a path integral.

3.1 The Sum over all Paths

In classical mechanics, If we consider a particle at an initial time t,
start from the point x, and goes to a final point x, at time t, , there will be
one specific and particular trajectory which goes from a to b. This
particular trajectory 1is called the * classical trajectory ”, which satisfy the

classical Lagrangian equation of motion

oL - d 61.4 o (3_1)
0 X dt 0x

where L is the Lagrangian for the system.

The classical path x is that for which S is extreme.
s = [ dL (3-2)

where S is action for the system.
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In quantum mechanics, the systems deal with probability amplitude
so that if we consider a particle moves from a one point to an other point,
there are many possible paths which the particle can take. By this reason,
our function x(t) will have the property that x(t,) = x, and x(t,) = x, . The
probability amplitude K(b,a) to go from the point x, at the time t, to the
point X, at ty is the sum of contribution from each path. The contribution

of a path has a phase proportional to the action S :

K(b,a) = > (const)exp[;l—S{x(t)}] (3-3)

over all
paths from a to b

If we need to find the probability amplitude of the particle going from a
to b, we have to carry out the sum in Eq. (3-3). But the number or path
from a to b is infinite, so Eq. (3-3) is very difficult to work with. Another
method and more efficient method of computing the sum over all paths
will now be described.

We choose a subset of all path by first separating the independent
time into small interval,¢. This gives us a set of successive time ti, t,,...
between the values t, and t, , where - t., =t. + €. At each time t; we select
some special point x; and constructing a path by connecting all the points
so selected of from a line. This process is shown in Fig. 3-1. It is possible

to define a sum over all paths constructed in this manner by taking a
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multiple integral over all values of x; for 1 between 1 and N-1, where

N =t, —t, /€. By using this method, Eq. (3-3) then becomes

K(b,a) = Lim ”...je;S{X(t)}dxl...de | (3-4)

N—> o
This is called a path integral and the amplitude K(b,a) is known as the

Feynman propagator.

Fig. 3-1

Diagram showing the path integration can be constructed. [13]
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3.2 The Feynman Propagator

We shall be interested in the path integral framework in topological
structure by the recent discovery of quantum adiabatic theorem. The
problem this is stated as follows. Kuratsji and lida find this way of
formulating the Born—Oppenheimer idea much more appropriate than the
usual formulation in terms of fast and slow variables. In the derivation of
effective Lagrangian, we should expect, and will find, that geometrical
phases occur. This is particularly clear if we think in term of path
integral. Then along any particular path the slow degrees of freedom can

be considered as external parameters governing the state of the fast ones.

Consider the trace of the evolution operator K(T) = Tt{exp%i ﬁT)],
which is the evolution operator of two interacting systems. We adopt a
Hamiltonian
H=h(gp,X) +H,(X,P) (3-5)
which are described by the variable conventionally called “internal” and
“collective” ‘coordinate § ~and X respectively. Where the internal
Hamiltonian ﬁ(c],f),f() is assumed to dependent on coordinates G, X,

conjugate momentum p and not explicitly on conjugate momentum P

and the collective Hamiltonian i dependent on X and P.
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The trace of the evolution operator which is written as

K(T)= J<n(X0), X o | expl %ﬁTHn(XO), X)X, . (3-6)

In Equation (3-6) one naturally picks up the transition amplitude for the
quantum process starting from the initial state of product form

In(X),X,) =|n(X,))®|X,) and returning via closed loops C to the same
state, where | X, ) denotes the eigenstate of X and |n(X,)) is the

eigenstate of h(q,p,X) at X = X, with eigenvalue E,(X,). Then with the

aid of the time—discretization together with the completeness relation

holding for X, we get

i

<n(XO),XO |67HT|n(XO),X0>= <n(X0),XO |67H£...e?Hg|n(X0),X0>(3-7)

with ¢ = %\I . Further noting the relation for ¢ ~ 0,

—1 A

PRI, C= = TraX, [ (n(X,), X X WX eh (X
<n( 0)s 0|e |n( 0)> 0> Nlinw S i <n( 0)s ole | N—l>< N—l|e | N—2>'"

Xy e X X e (X X,) ]
(3-8)

and

-6). N 4 —in
—Hge —Hge —h(p,q,Xy)e
h ~ [/ h
(Xile" X )= (X le? Xy q)e

X “ig T Rp.a.X0)
= [ aP (X, [P (P fe °8|¥k_1>eh o k (3-9)
Uy (P, X e .e’;‘ﬁ@,q,xk)e

= [P (X PP X e

—ir
—h(p,q,Xy)e

= .de eXP{iPk(Xk = X))~ %I:IO(XkaPk)i| e
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From quantum mechanics, the momentum eigenfunction <X‘ P> are

3

1 )2 -1
X|P)=|— —P.X]. -1
(X[) =5 ) ewi P (3-10)
Eq. (3-6) can be expressed as

K(T)=3 [dX,dP, T, ©er " (3-11)

T
where S,(C) = J.dt[P(t)-X(t)—HO(X(t),P(t))] is the action for the collective
0

motion along closed loops C. T, (C)is just the internal transition

amplitude and give by
T, (C)= <n(X0)|e_ﬂ(0)8...e—7ﬁ(k)s...e%ﬁm|n(XO)> (3-12)

where h(k)denotes the internal Hamiltonian at the point X = X, on the

loop C . If we denote |®,(T)) as a solution of the time—dependent
Schrodinger equation {ihg—ﬁ(ﬁaflaX)}@n(t»:O with the boundary
t

condition |®,(0)) =|n(X,))", T,,(C)is written T, (C) = (n(X,)

@,(T)).
Under the above prescription we turn to the case of the adiabatic
motion where the period T is large. By inserting the completeness holding

for the internal state on each point of external variables Xi;

Z|mk><mk| =1.

mk
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Eq. (3-12) is written as

T R.a.X0)e T h6.ax0e “hepax))
T (©=> .. (aXle® " myg)fmyfer T my e (X)) -

my mg m

(3-13)
In the adiabatic approximation, we pick up the quantum transition only

between the states with the same quantum number n,
(n, |exp {% h(p,q, Xk)s}| —— Then using the relation
h(p,d, X, )|ny ) = B, (X;)n, ) where E,(Xj) is an energy of an adiabatic level
n at X=X;. We obtain

T, (C) = {n(X,)|n(X,)), eXp[%iJ‘thn(X(t))] : (3-14)

Here the overlap function

N
(n(Xy)[n(X;)),. = lim I(n(X,)|n(X,)) . (3-15)
Thus, by using the approximate relation

(n(X)[nX ) % 1= (n(X,0)|Vxn(X,)) - AX

(3-16)
~ expliAo]
where “AX =X, -X, ;. and Ao=in(X)|Vin(X,))-AX.
Eq. (3-12) is written as
(n(X,)|n(Xy)),. = explil,(C)] (3-17)

and I (C)= if(n(X(t))WXn(X(t))) dl. (3-18)
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Equation (3-18) is essentially the same as the phase obtained by Berry.
Thus we arrive at the effective path integral associated with the adiabatic

change of the external dynamical variable X,

KTy =) j D[X(t)]D[P(t)]expE(Sid +1T, (C))} (3-19)

T
where  S¥ ESO—jthn(X(t)) i1s the adiabatic action function. From
0

equation (3-19) we get a natural explanation that the phase T, (C)appears

as topological action function which is to be added to as the usual

dynamical action.
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Chapter IV

Path Integral Derivation of the Magnus Force

In this chapter, firstly, we will describe the exact derivation of the
transverse force acting on the quantized single vortex moving in a uniform
background. The derivation is based on the model of the charged boson
embedded in a constant positive back ground represented the
superconductor. The basic of mathematical method in this derivation of the
Magnus force is due to Kuratsuji and lide [14] and we use it to calculate all
the quantum transition exactly.

Secondly, we will show that the conditions of the occurrence of the
Magnus force in superconductors are that a vortex has a local circulation
around it and the velocity of vortex must be finite. Therefore the net

velocity of the fluid that flows past the vortex in the reference frame which

-

moving with the vortex is V.=V, — R :

Thirdly, we will analyze the effect of environment on the original
Magnus force by using model Hamiltonian of Ao and Thouless [15]. In
their work they considered tunneling of a vortex influenced by the pinning

potential and the dissipation which represented by A set of N harmonic

oscillator.
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4.1 The Original Magnus Force

In this section, we shall show the mathematical approach to the
problem and assumption. We derive the Magnus force from a model system
consisting of a single vortex imbedded in uniform positive background and
coupled to a mutual interaction charged bosons by following the model of
Michael R. Geller, Carlos Wexler and David J.Thouless [16] but we shall

neglect the current-current interaction between the charged bosons.

Fig. 4-1
This is model of supercurrent, it is 2-dimensional charged boson gas under the

influence of positive background.



29

The full Hamiltonian for a quantized vortex coupled to the

interacting charged boson is given as

A ~

H=H,+h_+h. (4-1)

Where i, (P,R) is the Hamitonian for a quantized vortex, the second term

2
~ €
h

Z p]nTU (in 4 in’)p;il' (4_2)

n#n'

2m’c
with  Ti(x) = (8%| "' + x'x/[%| )/2¢, 1s the current-current interaction,

lowest-order relativistic effects. This interaction form was first obtained by
Darwin in 1920 [17].

2 el FH2
C_(pe AR -R) N .
= z c +EZ V(X; -X;)+h, (4-3)

i 2m i<j

is the Hamiltonian representing N bosons with negative charge -2e,
interacting with the vector potential a(x, —ﬁ) satisfying the equation
§ﬁ(§n —E)-dT = ¢, = he/2e. The V term represents the Coulomb interaction.
Finally h

. is a ~ uniform  positive background and
hy,=-> jd%z' en(x)[x, - x| n(X) is the charge distribution of lattice.
This problem is simplified by using the symmetry of the lattice.

Next, the full Hamiltonian H can be separate into the internal and

collective part. The internal part is h, = h + h, and it depends on the center

point of the vortex,R and not explicitly on the conjugate momentum of the
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vortex,P . The collective Hamiltonian, f, is the Hamiltonian for a

quantized vortex.

4.1.1 Propagator as a Transition Amplitude

We consider the Propagator as the probability amplitude for the
system at an initial time t, starting from the position %,_...,%,,; R, to the
final position X, ,.,Xy,; R,at time t,. The Hamiltonian operator is

independent of time. Thus the time—evolution operator is

i %
B Y AN
h (b tm)

U(t,,t,)=e (4-4)
The Propagator can be written as
K @, Ry Ryt ) = (R [ RO ) R, ) R, )
= (Kl Re exp:_%ﬁ(tb —ta)} Ry ) £, )
- 33 RutiRe [ mR, ) R, [ R, feng - 1A -0 R.)
x| RN MR Ry X R
(4-5)

where ‘ n;R >

m;R >denote the eigenvector of the internal Hamiltonian

h, at R with eigenvalue E (R), E, (R) respectively.

1
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We can insert complete set of coordinate states and complete set of
momentum states at t = t;

JaR, R ) Ry | =1 o [aB] B (B |=1. (4-6)

(4-7)
with ¢ = b 0 %%  Purther noting the relation as ¢ -0,
< #k ‘exp{——Hg}‘ R, 1> ~ < ﬁk ‘exp{—%ﬁvs:h ﬁk_l >exp[—%h (ﬁk)s}
= Jde exp [%[ﬁk (ﬁk_f“" )]— IA{V(q " ﬁk)s} 6711 (%)
(4-8)
equation (4-5) can be expressed as
i Vortex[ﬁ(t) f’('[)]
K(tb, t, ZZwm Xiboe aXNbaRb)\If H(Xlzv ’XNa9 ID[P]D[R]
(4-9)
with ¢ (&) P@)]= ]" . s_the action for a single vortex
motion along path between a to b \Vm(le ..... Xnb Rb) is the wave function of

charge boson gas at R =R,,.
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Tmn 18 just the transition amplitude between the quantum state from
‘ m; R, >to‘ n;R, > and is given by

mR, ). (410)

T, = (mE, [e [_;_ﬁm(ﬁb)]..exp [-;—ﬁm(ﬁa)}

This expression of the transition amplitude T, can be obtained by
integrating equation (4-11)

n,t;ﬁ(t)>+ih}i-§R n,t;ﬁ(t)> (4-11)

n, t;f{(t)> = ih%

Vi 4
dt
by using the Schrodinger equation. we obtain

n,t;ﬁ<t>>=\n=to;ﬁ<to)>‘;_j[ B, £0AR ¥ 0, iR (1)) ar - (4-12)

This equation (4-12) can be solved by iteration

t

\nJi(t))-{HZ(%) jdtljdtz--- Idtnﬁ(tl)ﬁ(tz)-~-ﬁ(tn) n,to;ﬁ(t0)>
n=1 i) ity i)

(4-13)
where O(t)y=h, (R(t) +ihR -V 4 (4-14)

and using the relation [ﬁin (t'),flin (t)J:O, this ~equation(4-13)can be
simplify to

.ot ‘
_;T.[dt'[ﬁ n (R(t") +iAR -V ]

nLGR (D)= e O n,t;R(tg)).  (4-15)
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We arrive at the effective path integral associated with exact external

dynamical variable R,

tb’ a ZZWm les 7XNb9Rb)W ( la o°* ’XNa’R )Kmn (4 16)

here K, , just gives the usual dynamical evolution of the wave function

for the charged boson with an additional effect from the motion of the
external variable R(t)over all possible paths. We can express the transition

matrix K, as

Koo = [ DLBIDLR] <m;ﬁb\ex{% :j‘:dt (b1 ], <) Hhﬁ.@R)} k) @-17)

In the adiabatic approximation, we pick up the quantum transition
only between the states with the same quantum number. Therefore, the

Propagator reduce to the diagonal form

K(tb’ a ZWm(leﬂ ’XNb’Rb)W (ilaﬂ"'ﬂiNa;ﬁa)Knn (4_18)

- X 1t an -
and K, = ID[P]D[R] exp{% t{ dt ( - o )} (4-19)
We denote the effective Lagrangian as

L =P-R-H, —E,([R)+inA,, R, (4-20)

which corresponds to the effective Schrodinger equation, equation (2-9)

for the molecular physics, in chapter two. It is a matrix-valued Schrodinger
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operator for the nuclear wave function. Equation (4-18), is the effective
Lagrangian which additive the effect of quantum transition is added which
is similar to the vortex acting as a charge particle in a magnetic field B, ,, .
The magnetic field defined as

B,,=inVyxA,, (R) (4-21)
and the scalar potential E_(R).

Then the new force, which in addition to the original force can be

written as

e f Ve i(aU.n J (4-22)
O0R dt { sR

and U, =-E, (ﬁ) +ih A, , ‘R is the generalized potential or velocity-

dependent potential. This equation (4-22) 1s a time dependent version of the
Feynman-Hellmann theorem [18].

The strong analog between the behavior of electron in the strong
magnetic field and a single vortex in the superconductors is a transverse
force, which proportional to the velocity. So that we can define the

components of Magnus force as

Fy .. = ih RXK;‘;

Fynn = —ihiR Kaa_\r;

on B on
0X oY

on \ _/Oon
0X oY

2]
=)

(4-23)




35

4.1.2 The Magnus Force at Ground State

We now return to the model system of an ideal charged boson gas. In
thermal equilibrium at absolute zero temperature, all particles occupy in
ground state according to Bose-Einstein distribution. We consider equation

(4-21) at absolute zero temperature,

FX = i R (Vo
oY

FY = —ihRYRaWO

Oy, \ /Oy, |0y,
X X | oY
o\ [0V, |0y,
X oxX ey /|

In finding the wave function of charged boson system at the ground

(4-24)

oY

state energy we must understand about this equation (4-1). The full

Hamiltonian for a quantized vortex corresponds to charged particles

influence by an infinitely long straight solenoid that encloses a magnetic

flux, as in the Aharanov-Bohm effect. The energy eigenvector ‘ m,R >0f

the Hamiltonian h, satisfy

A

h

, 2

ik ) <[5

1

{fai —zc—eﬁ(ii—ﬁ)r HLVIE, —ij)}\ m:R ) (4-25)
R ).

On the external variables R, which is the center of vortex and the

=E

m

—~
PULB

| m:

external magnetic B =V x 5(;2 - f{) must satisfy

B=¢,52x-R) k. (4-26)

In this situation a possible choice of the vortex potential is
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(%, -R)=29.0(z -R) (4-27)

27

Q)

This 1s Cherm—Simons vector potential. 6 (i -~ ﬁ) is function of X, —-R

which is given by e(i—ﬁ)=tan“{X‘{_RY}. However, Under a gauge

Xx Ry
transformation, it can change a problem of charged particles subjected to

vector potential to problem which the vector potential is absent, so that

non-relativistic ‘ m,R > eigenvector would acquire a phase factor

| ms )] R >:exp{ii o, —R)}| ) (4-28)

i=1

h, = exp[iﬁ; o(x, - R)} h, exp[— ii o(x, - ﬁ)}
- Z%+ > V(% = %)).

1

and (4-29)

We see that the equation (4-23) reduces to

=1

in

SRR SR LT

Here the eigenvector ‘ rYl,f{> describe the system of boson gas in the

absence of the vector potential a(i—ﬁ). If we consider system at absolute

zero temperature, all boson particles occupy in the ground state. The many-

body wave function has the form
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Here V), is a many-body wave function of superconductor in the absence of

the external magnetic field. The many-body wave function W, has the

properties

2
1. Idle...d2XN|\|lo| = N, number of charged boson
2. J‘dle...dsz_1|\llO|2 = p(i,ﬁ).

By p(i, R): Po + Sp(i, f{) 1s the probability density of finding particle at
x. It is the sum of values p, in the absence the vortex plus modification

due to the presence of the vortex which depends on the size of a single

vortex. The probability density p(i,ﬁ) is a function of X—R so that the

probability density p(i,ﬁ) must satisty the boundary condition,

1. Lim p(i,ﬁ) e
‘i—R‘—)oo
2. Vepx.R) = -V p(%.R).

By virtue of the properties of the many-body wave function and boundary

conditions, the Magnus force becomes

—

2imp K % R (4-32)

Magnus

This 1s the Magnus force at absolute zero temperature. Where

ps = N p, is the number charge boson density, R s velocity of

A

vortex, kK is unit vector in z direction.
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4.2 The Condition for the Existent of Magnus Force

In chapter 1, we show the existent of Magnus force in classical
hydrodynamic. The condition of the occurrence of the Magnus force is that
the circulation must exist. The local circulation breaks symmetry of
pressure around the vortex structure. The difference of pressure creates a
force on the vortex, which is the Magnus force.

In the case of superconductors at zero temperature, the behaviors of
bosons are governed by a single wave function of coherent phase. We used
a time independent wave function which both amplitude and phase can vary

in space and time,
Vo (R s oy 3R )= g (& o X ;ﬁ)expBS(i“-.., ;ﬁ)](4-31>

Since we can choose the many-body wave function in such a way that the
dependence on x is entirely through Xx—R, the partial derivatives with
respect to R can be replaced by a sum over partial derivatives with respect

to the particle coordinate X, and define the phase of many-body wave

function of the system by the polar angle in cylindrical coordinate:

S(il,...iN;R)zhi o(%, —R). (4-32)

i=1

We can write equation (4-22) into the integral from as

Fupe = kxR §Np(z:R)P(%;R)-d (4-33)

OVer space
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and
P(%:R)= nv 0(x-R). (4-34)

We can define velocity field

"5 o(x-R) (4-35)
m

i;V
where m is the mass of charged boson which equals to 2 xmass of an

electron. We obtain
e’ [L&jx(li. (4-36)

The probability density p(i;ﬁ) must satisfy the boundary condition that the
density p(i;f{) vanish continuously at x=R and approaches the

background density p, as }i—f{j—wo. So that equation (4-33) can be
written as

FMagnus - (Npo )12 X ﬁ §vv ) di
. over space (4_3 7)
=2np ik xR.

Equation (4-36) and (4-37) look like equation (1-8) and (1-9) respectively
in classical hydrodynamic. We can say that the conditions of the occurrence
of the Magnus force in superconductor are that the circulation exists or a

vortex has a local circulation around it and the vortex velocity is non-

vanishing in the reference frame moving with the vortex velocity R.
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— —

There the net velocity flow of fluid past the vortex is V=v, —R. The

occurrence of the local circulation around a vortex concerns the result of
transition amplitude of superconductor.

The transition amplitude of charged boson system from ground state
to ground state happens by external parameter evolving in time. If we
consider the adiabatic motion of vortex along close loop C, in the adiabatic
approximation, we pick up the quantum transition only between the states

with the same quantum number n. So that we can write equation (4-17) as
- . it = —
K,, = ID[P]D[R] exp Ii;ﬂjdt ([P ‘R -H, ]— En(R))+ hr}ﬂ . (4-38)

We are interested only the quantum transition between the ground state to
the ground state. The second term in the exponent is immediately

recognized as Berry’s phase. We can write as

o= i wiR | Vy| wiR )-dR (4-39)

C
and equation (4-40) is essentially the same as the Berry phase in chapter

three. Using the Stokes theorem equation (4-40) can be simplify to

, YR )-AdS, (4-40)

I = ijﬁRx<wn;li‘§R
S

where S (C) is the area enclosed by loop C and n is the unit vector which

its direction in 2 dimension problem along the z direction.
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We find that the Berry phase of the ground eigenstate for closed loop C is

I, = —2npsxS(C). (4-41)

The Berry phase I for adiabatic motion of vortex around a closed loop 1s
proportional to the number charged boson density ps and S (C) is the area

enclosed by loop C.

4.3 Environment

In recently, Professor Virulh Sa-yakanit studies the dynamic effect of
the pinning potential on the original Magnus force by using the model
Hamiltonian of Ao and Thouless to treat the problem of vortex tunneling in
superconductor with pinning potential and dissipation [14]. He formulates
this problem by using the real time path integral and calculated the
propagator exactly by eliminating the x direction leaving only the path
integral in y-direction. The result 1s the Magnus force in y direction and it
can be written as

_ MoQ,

Flt)=—x
(T) 2sinQ ¢t

[x2 cosQ. T X, cosQXr] (4-42)

In this section we derive the effect of environment on the original
Magnus force. By using the Hamiltonian of Ao and Thouless [14], which

vortex moves in 2 dimension.
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The Hamiltonian is

H =ﬁ(f’ —qvl&)z + V(ﬁ)+ i 211‘? + mizo)f [i S ; ﬁJz. (4-43)
where

M is the vortex mass, V(R) is the vector potential, h the Planck
constant, p, the superfluid electron numbers density, q, =+(1) stating for

the parallelism (amtiparallelism) in the z direction. The original Magnus

force 1s

— —

F=Vx(f7xﬁ) = qyhp, Vxk . (4-44)
I v _ - -
The first term, y ¥ (P —qVA)Z +V(R), P and R represent

momentum and position of vortex respectively. It is the system of vortex

[ ]
moving in superconductor at T = 0 K" under the influence of pinning

=9 2
potential V(R ) The second term, »° 2pi " mizmi (ii S . RJ , it 1s the
AT m.o;

Hamiltonian of the environment coupled to the vortex coordinate R
harmonically.

To find the effect of environment on the original Magnus force,
firstly we can simplify the problem by changing a set of N harmonic
oscillators in Hamiltonian of Ao and Thouless, equation (4-43), to a single
harmonic oscillator represented the environment. We can simplify the

Hamiltonian of system, equation (4-43) become
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. _ ~ 2 2 2
Ho L pog &) +vR)s R m [X_mZZij. (4-45)

Secondly, using the mathematical model as in the derivation of

original Magnus force in the last section.

Fig 4-2
This is model of a single vortex in influence of a harmonic oscillator,

which represented environment.
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4.3.1 Effect of Environment

We find the propagator of a single vortex coupled to a mutual
interaction environment. The Hamiltonian opeator of the system is

independent of time. The time-evolution operator is

_LH (tb —ta )

Ulty,t,)=¢ * . (4-46)
Using the mathematical method as in the section 4.1. Therefore, the

propagator of this system 1s

Kltort)= Y > | xRy sl x, SR ID[f,]D[R]e;s;ﬁfnm)ﬁ(t)]
bota) — - WYm| Xp m(o2 b |V n| X, mm2 o

m

(4-47)
where

ty

S = J. dt L < is the effective action of the vortex

n
tll

and LI = lf) R —vaxJS ~E. 8., +ih A, ‘R is the effective

Lagrangian of a single vortex. We denote wm(x—nzosz] to be the
eigenfunction of a harmonic oscillator, which also depend on the external

parameter R , with the eigenvalue E_.

The derivation of the eigenfunction and the eigenvalue of a

P> mo’(. ¢
m me

2
harmonic oscillator, ot X-—— Rj , has been shown in Appendix

[B].
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We denote Amn to be

N . (4-48)
:Id)? \y*m[x— 2RX]VR \yn[x— 2RX).
mo mo

The propagator can be separated into two parts. The first part

depends on the initial and final state of a harmonic oscillator and the second

part depends on the transition amplitude for system of a single vortex with

—

an additional effect from motion of environment, E &,  and Amn.

Therefore, the effective Lagrangian of a single vortex have three terms, the
first term 1s bare Lagrangian of vortex, the second term corresponds with
the scalar potential, which make a single vortex dynamic similar to that of a

charged particles in a magnetic field, Aﬁmn :ﬁRX‘K‘m,n- It is effect of

environment on the original Magnus force.

) i C )
The properties of the wave function \Vm(x——szj and a harmonic
me

oscillator are (1)-a harmonic oscillator is invariant under the translation, (ii)

wave function depends only on x—%RX. We can change Gradient
mao

Vi = _mo’ Vv .. So that we can write
C
1/‘11&m,n :<m;ﬁ ‘1/‘1VR‘ n; R >—)<m;ﬁ ‘1?16)( n; R
2 . (4-49)




46

It is the matrix element of the f) = —ihV . momentum operator:
<f> >=<m;l§ ‘—ihﬁx‘ n; R >

(4-50)
=1 /m(;h (\/H5m,n71 +4/n +1 Sm’nﬂ)fc .

Here X is the unit vector in x direction. The vector potential Am’n is

independent  of  the  external  coordinate R.  Therefore,

—

AB, , V x Am’n = 0, the harmonic oscillator in x direction has no effect

on the original Magnus force.



47

Chapter V

Discussion and Conclusions

In this thesis we derive the Magnus force acting on a quantized
vortex in a charged superfluid or superconductor by following the model
of Michael R. Geller, Carlos Wexler and David J. Thouless [16] but we
shall neglect the current-current interaction. This problem was simplified
by using the symmetry of the lattice. Here the charged boson embedded
in a constant positive background is considered. This model is known as
the “jellium model”. It has been the property of superfludity, which the
current flows with out carried by charged boson. The interaction between
charged boson is the Coulomb type. The generalization of this model to
the case of superconductors is far from realistic, since it relies on the
uniformity of the positive background, therefore there is no phonon
interaction, so_our results can only form a first step towards a plausible
theory of the origin Magnus force.

The nature of the vortex state of a superconductor, it has been the
axial symmetry along the magnetic flux, which is quantized in units of
apply magnetic filed and the magnetic flux through a superconductor has

be found to be quantized in units of ch/2e.
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The shape of the vortex line corresponds to infinitely long straight
solenoid that encloses a magnetic flux. The magnetic field vanishes
outside of vortex but the vector potential dose not. The interaction
between charged boson gas and vortex is like that of A-B effect. A single
vortex has defined as a point particle tied up with magnetic flux quanta,
which the effect of a Chern-Simons gauge field is to tie magnetic flux to
point particle.

We formulate this problem using the real time path integral and
calculate the propagator exactly. The effective Lagrangian are proposed is

consistent which additive the effective Schrodinger equation for

molecular physics [12]. In this method, the wave functions of the system
are divided into 2 parts: fast and slow moving wave function. So we need
to solve a matrix-valued operator for the slow wave function. The basic
of mathematical methods in the derive the Magnus force is due to
Kuratsji and Iide [14] and we use it to calculate all the quantum transition
exactly. The result is that effective Lagrangian which additive the effect
of quantum transition is similar to the vortex acting as a particle in a
magnetic field and a scalar potential. The strong analogy between the
behavior of an electron in strong magnetic field and a vortex in
superconductor is that the transverse force is proportional to velocity. We

can be define the components of Magnus force acting on the vortex as:
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In sense of quantum mechanics we can say that the origination of

(5-1)

Magnus force is an effect of the transition amplitude of supercurrent

retrospectively affecting the vortex motion. And the transition amplitude

of charged boson system happens by the external parameter R evolving
in time. For ground state contribution we had shown that Magnus force at
the ground state, which 1s consistent with the method of E. Simanek.

In thermal equilibrium at the absolute zero temperature, all
particles occupy in ground state energy as given by the Bose-Einstein
distribution. We used time independent wave function which both

amplitude and phase can vary in space and time,
WO(Xl,..., X N ;ﬁ)= \Tfo(il,..., X N ;ﬁ)exp [%S(}?l,..., X N ,ﬁ)} (5-2)

In case of the charged boson gas coupled to a vortex, we define phase of
the many-body wave function of system as the polar angle in the

cylindrical coordinate:
N
S(%, .. %, R)= > 16(%, —R) (5-3)

The probability density of finding a particle at X, must satisfy the

boundary conditions: the density,p()?;ﬁ), vanishes continuously at
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X =R and approaches the background density p, as ‘i — f{‘ — . By

virtue of the property of the many-body wave function and the boundary

condition, The Magnus force become

F = 2mp S\7><12, (5-4)

magnus

The above equation looks like the Magnus force in classical
hydrodynamics, equation (1-16). From corresponding of the equations (4-
36)-(4-37) and equations (1-8)-(1-9), we can be say that the exists of
Magnus force in superconductor because the general property of local

circulation around the vortex and the absence of the velocity of the

vortex, R. Therefore the net velocity flow of fluid past the vortex in the

reference frame which moving with the vortex velocity is V=V, —R..

The occurrence of local circulation around the vortex at the zero
temperature concerns the result of transition amplitude of supercurrent.
The main claim of Ao and Thouless is that there is a universal
exact expression for the total transverse force, on which does not depend
on the presence of quasiparticles or impurities, environment [15]. This
force derived from the concept of the geometrical phase, Berry phase,
coincides with the superfluid Magnus force and therefore is proportional
to the superfluid density. According to Ao and Thouless, there is no

transverse force on vortex from quasiparticles or impurities, though they
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might influence the value of the superfluid density and thereby influence
the amplitude of the Magnus force. Therefore it is important to
understand the Ao and Thouless theory is true or not.

We find that there is no influence of the environment on the
existence of the Magnus force in superconductor. We start with the
Hamiltonian of a single vortex from a model proposed by Ao and
Thouless for treating the vortex tunneling in a superconductor with the
pinning potential and the dissipation. We has been simplify problem by
changed a set of N harmonic oscillator to be a harmonic oscillator
represented the environment. The result 1s that the harmonic oscillator in
the x-direction was treated as a dissipative environment and we found

that it give not effects on the origination of the Magnus force.
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Appendices A

Gauge Transformation in Electromagnetism

Let us denote by |a) the state ket in the presence of vector potential
A, the state ket for the same physical situation when
A=A+VA (A.1)
is used in place of A is denoted by |a). Here A eRe, as well as A, isa

function of the position operator x. Our basis requirements are

(ofx]e) =(a| X |a) (A.2)
and
(o B==A fo)=(a| B~=A-=VA|a) (A.3)
C C C

where p is the canonical momentum. In addition we require, as usual,
the norm of the state ket to be preserved
(o] @) = (@] &@). (A4)
We must construct an operator T that relates|a) to |a):
o) =T|a). (A.5)
Invariance properties (A.2) and (A.3)are guaranteed if
TXT = % (A.6)

and

T*(ﬁ—EA—EﬁAj T=p-SA. (A.7)
C C C
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We assert that
T= exp[ii/\(i)} (A.8)
ch

will do the job. First, T is unitary, so equation (A.4) is all right. Second,
equation (A.6) is obviously satisfied because x commutes with any

function of x .As for equation (A.7), just note that
e = . € . € -
exp[—l—A(x)} p exp{l—/\(x)} = exp{—l—/\(x)} [p,exp{l—A(x)ﬂ p
ch ch ch
= exp{—1~A(x)} —1hV{exp 1—A(X) }+ p (A.9)

=p+VA
C

The invariance of quantum mechanics under gauge transformation

can also be demonstrated by looking directly at the Schrodinger equation.

;t)be a solution to the Schrodinger equation in the presence of

t)  (A.10)

The corresponding solution in the presence of A must satisfy

1 - 0~
lzm{p—EA——V/\} +e¢} , 't>:1ha ;1) (A.11)
We see that if the new ket is taken be
(]
t) = i—A it A.12
> exp{lch } > ( )
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in accordance with (A.8), then the new Schr odinger equation (A.11)

will be satisfied, all we have to note is that

C C ch

2 2
exp[_iihAMﬁ_sx_S@A} exp[iiAHf,_EA} (A.13)
C C

which follows from applying (A.9) twice.
Equation (A.12) also implies that the corresponding wave equation

are related via
e exp{iih/\(i)} oliot) (A.14)
C

Where A(%) is now a real function of the position vector eigenvalue X .
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Harmonic Oscillator in Constant potential
We find the energy eigenkets and energy eigenvalues of the simple

harmonic oscillator. The Hamiltonian of the simple harmonic oscillator is

A2 2 2
~ P« mao 4 C
=Py (x— 2ij, (B.1)

2m ) mo

where o is the angular frequency of the classical oscillator related to the

spring constant k in Hooke’ law via o=,/ % . The operators x and p,

are Hermitian. R, is the external parameter of the Hamiltonian. It is

convenient to define two non-Hermitian operators, known as the

annihilation operator and creation operator respectively.

a= DO Rogpil | 2= M R —iP | (B2)
2h m® 2h me

Using the canonical commutation relation, we readily obtain

2h

(o) b T3 D=1, (B.3)

We also define the number operator
N=a'a, (B.4)

which is obviously Hermitian. It is straightforward to show that

+a0 @ _ 2 pi L
a2 xr e 2 e () -
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so we have an important relation between the number operator and the

Hamiltonian operator:
- hm[N %j . (B.6)

Because H is just a linear function of N, Ncan be diagonalized
simultaneously with H. We denote an energy eigenket of N by its
eigenvalue n, so

N|n) = n|n). (B.7)

Therefore, the energy eigenvalues of Hamiltonian (B.6) are given

| :(m%jhm. (B.8)

The operator method can be used to obtain the energy eigenfunctions in

position space. Let us start the ground state define by
al0)=0 (B.9)

which, in the x-representation, reads

(x]al0) =2 e

We can regard this as a differential equation for the ground-state wave

]|o>=o. (B.10)

Py
mao

function (x|0):
((X—RX)+Xé%j<X|O>ZO , (B.11)

where we have introduced
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- , (B.12)
mo

which set the length scale of the oscillator. We see that the normalized

solution (B.11) is

<X|0>:[ﬁ} explé(xxf" H . (B.13)

We can also obtain the energy eignfunction for excited states by

evaluating
(shh= (a0 2 [ R o
(o) =l o (g [ - (.

(B.14)

The ground-state wave function (x|0) only depends on x —R, . So that, a

differential equation for excited state (B.14) can be written

B (S e ey L
(2 B | oK g ).

SA(xZR)

(B.15)
In general, we obtain

L e ) (NS

(B.16)




Curriculum Vitae

Mr. Sutee Boonchui was born on April 16 1976 in Ubon. He received
his Bachelor of Science in Applied Physics from King Mongkut’s Institute

of Technology Ladkrabang Bangkok, Thiland in 1997





