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We have calculated the interaction between interstellar matter (mostly
hydrogen atoms) flowing into the solar system with the solar wind ( mostly pro-
tons) emitted from the Sun inside and outside the solar system. We have applied
the Boltzmann transport equation and a model of charge exchange collisions
between hydrogen and protons in order to determine the distribution function
f(r,v,t) of hydrogen atoms in phase space. We calculate the distribution func-
tion of hydrogen in one dimension along the solar apex and in two dimensions of
velocity space, fy(z,v,,v,,t), by numerical methods. From our computer simu-
lation results, we are able to study 3 populations of hydrogen atoms, resulting
from inflow of the interstellar medium or from charge exchange with protons in
3 distinct regions. Our results can be used to improve full fluid models of the
structure of the outer solar system.
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Chapter 1

Introduction

The study of our solar system in the past thousands of years had yielded
many important discoveries. In the past, many things about the solar system
environment were not clearly understood. Nowadays, we can study many phe-
nomena about the Sun and the solar system better than in the past with data
from spacecraft, satellites, space telescopes, etc. that were developed by scien-
tists. In this work we focus on effects in the inner and outer solar system (the
heliosphere; see Figure 1.1). We consider the interstellar wind (mostly neutral
hydrogen) that flows into our solar system, which collides with the solar wind
(almost entirely a charged plasma of protons and electrons) flowing out from the
Sun. More details about the heliosphere’s structure are presented in Chapter 2.

The study of the interaction of the interstellar wind (interstellar medium)
with the solar wind is a basic topic in heliospheric physics research. At present,
many research groups are working on this problem. Research to date has not
completely explained this interaction, because of the complexity of the Sun and
environment of the solar system.

The overall size and structure of the heliosphere result from the inter-

action of the interstellar wind (mostly hydrogen atoms with low velocity) and
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Figure 1.1: Schematic model of the heliosphere (bordered by the heliopause).



solar wind (with a mass flow dominated by proton of high, supersonic velocity).
Our model calculates the distribution function of hydrogen from the interstellar
wind which interacts with solar wind protons at each distance along the solar
apex, i.e., the direction to the left of the Sun in Figure 1.1, toward the incoming
interstellar wind. In this work we use numerical modeling as a tool to calculate
the important physical effects.

The aims of this work are:

1. To study in detail the effect of the distribution of hydrogen atoms
from the interstellar medium that flow into our solar system and their interaction
with solar wind protons.

2. Calculate the distribution of hydrogen atoms along the solar apex in
velocity space, fy(z,,t), and interpret the results physically.

We present results that are new and unique when compared with similar
research in this field by research groups around the world. Our research work can
explain the distribution function in velocity space in greater detail than that of
other groups (e.g., Zank et al. 1999, Miiller et al. 1999, 2000).

Advantages of our work compared with of other research groups can be
explained as follows:

e We use grid points in two-dimensional velocity space which show distinct
details for the velocity distribution function along the solar apex.

e Even though we cousider the position in one-dimension along the solar
apex from 1 to 200 AU, we use fine spatial position steps. That gives detailed

results for each position.



The other chapters in this thesis are organized as follows: The basic
knowledge, theoretical model and mathematical formulation are given in Chapter
2. The numerical model for solving the mathematical formulation is described
in Chapter 3. The results of numerical calculations are presented in detail in

Chapter 4. The discussion and conclusions of this work are presented in Chapter

5.



Chapter 2
Theoretical Background

The environment around the solar system is matter and gas of the local
interstellar medium. When observed on the large scale of our galaxy, it is found
that the Sun and solar system orbit around the center of the galaxy (see Figure
2.1). Because of the Sun’s movement through the interstellar medium, it seems
that matter flows toward the solar system. This can be called the local interstellar
wind. The physics of these phenomena is the field of heliospheric physics, which

can be used to explain and understand the solar system and its environment.

2.1 Space Physics and Heliospheric Physics

The region called the heliosphere includes space influenced by the Sun and solar
wind. The heliosphere and solar system are in some sense synonymous. When
studying the structure of the solar system on a large scale, it is found to be quite

complex and full of detail.

2.1.1 . The solar wind

The solar wind is the plasma of charged particles (protons, electrons, and heavier

ions) coming out of the Sun in all directions at very high velocities from 300 to
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Figure 2.1: Schematic of the galaxy and the part of galaxy within 10 light-years
of the Sun.



800 km/s (see in Figure 2.2). The average equatorial velocity is about 400 km/s
or about 1.4 million kilometers per hour. The composition of the solar wind
reflects the composition of the solar corona, modified by solar wind processes.
Anyway, the exact mechanism of solar wind formation is not known in detail
(NASA, 1997).

At 1 AU the average speed of the solar wind is about 400 km/s, and the
average density is about 5 protons/cm?® with large variations (Frisch 2000, Zank
1999, Cravens 1997). When the solar wind expands in space far from the Sun,
its density decreases as the inverse square of its distance from the Sun. At some
far distance from the Sun (in a region known as the heliopause), the solar wind
interacts with plasmas of the local interstellar medium and the solar wind slows
down from nearly 400 km/s to perhaps 20 km/s. The location of this transition

region is unknown at the present time.

2.1.2 The interstellar wind

The first discovery of interstellar matter within the solar system was made in
the 1960s by a spacecraft observing the Earth’s geocorona, a layer of neutral
hydrogen atoms that forms in the outermost part of the planet’s atmosphere. The
spacecraft detected a weak fluorescent glow of Lyman-alpha (Ly «) ultraviolet
radiation. (A Ly « photon is emitted when an-electron in a neutral hydrogen
atom falls from, the first excited energy level to the ground state.)

From this discovery in 1960, many scientists have studied about the in-
terstellar matter that flows into the solar system, mostly comprising neutral hy-
drogen atoms. The interstellar medium can be observed by electromagnetic

radiation as follows:
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Figure 2.2: The solar wind velocitiy distribution around the Sun from the
ULYSSES spacecraft.



X RADIO: Thermal radiation, bremsstrahlung and non-thermal radia-
tion by dust.

X INFRARED: Thermal emission of dust, line spectra of atoms and
molecules.

VISIBLE: Extinction of starlight, absorption/emission lines of nebu-
lae.

X ULTRAVIOLET: Absorption lines, neutral gas and fluorescent emis-
sion by highly ionized gas.

X X-RAYS: Emission and absorption of the hot interstellar medium.

X v-RAYS: Cosmic ray interactions with interstellar nuclei or cosmic
ray bremsstrahlung emission.

In the solar system, the effects from solar radiation and the solar wind

almost completely ionize the interstellar hydrogen atoms within several AU of the
Sun, partly by photoionization (see Figure 2.3) and partly by charge exchange

interactions with the solar wind.

2.2 The Boltzmann Transport Equation

To study the flow of interstellar neutrals into the solar system and their inter-
actions with the solar wind protons, we use the mathematical formulation of
the Boltzmann transport equation to describe in detail the phase distribution of
interstellar neutral hydrogen inside and outside the solar system.

Consider the motion of particle of mass m. We are not interested in the
motion of each particle in detail; instead we are interested in the phase space

distribution function f(7,,t),

(2.1)
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Figure 2.3: The photoionization process for neutral hydrogen atoms. After ion-
ization, the so-called pickup ions can travel to the termination shock, undergo
scattering, and be accelarated to become so-called anomalous cosmic rays.
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where phase space is a six-dimensional space with coordinates (z,y, z, v,, vy, v,).
We define f(7,7,t)d*rd®>v as the expected number of particles at time
t with positions within a volume element d*r about 7 and velocities within a
velocity space element d®v about .
The distribution function f(7,,¢) is a function of seven independent

variables in the form f(x,y, 2, vy, vy,v,,t). The total time derivative of f is

df of Ofdx Ofdy 0fdz 6fdvm+ﬁ% of dv,

dt 0t ordi oydt  zdi v, dt v, dt | dv, di

af _of .of  .Of  .Of af of of
dt = o g, i Slemmb Uy, Uiy,

which can be written in the form

dif £9f A 9f N Of
dt EjLT 8T+U v (2.3)

(2.2)

Consider the evolution of f, describing the physical behavior of parti-
cles in (7, 7). In the absence of collisions, each particle’s orbit would describe a
continuous curve and the function f(7,,¢) would obey the continuity equation

(Liouville equation) in this form:

df _Of - Of . 0f
dt—at—l—r 8r+v 57 =0 (2.4)

2.2.1 Streaming process

From equation (2.4) we derive the collisionless-Boltzmann transport equation,

which we write in the form

of _ . 0f . 0f

MYT LN 16d
_ _2.of . 0f
- v or “ ov
N _g.%_ﬁ of

oFr m 07
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We consider that no external force acts on particles in the system (ﬁ = 0);

therefore we get an equation in the form

or _ .91

5 = U (2.5)

The term — - 0f /07 in equation (2.5) represents the streaming process
of particles in the system which move with velocity #. We can call equation (2.5)

an advection equation that describes the flow of particles in the system.

2.2.2 Collision process

The physical processes of particles moving in the system include their collisions.
Therefore equation (2.5) should have a collision term in the form (0f/0t)cou, in

order to describe a real physical system:

of = .of (9f
i AN 29)

(Huang 1987). The calculation starts with
R'=nov,. =nald — 7y,

where the collision rate, R, depends on the number density of target particles, n,
the cross section, o, and the relative velocity of the target particle and projectile

particle. The number density of particles is given by

N
=17y /f(F, 7, t)dv,

do
1 dey
] / ay

where do/d€Y is the differential cross section and d€?' is an element of solid angle

and

in the center of mass frame.
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Figure 2.4: The collision of two particles.

Consider the collision of two particles of the system which have the same
position but have different velocities as in Figure 2.4. Here
¥ is the velocity of the particle of interest,
77 is the velocity of the particle collision partner,
¥ is the velocity of the particle of interest after the collision, and
U7 is the velocity of the particle collision partner after the collision.

For collisions of two particles we can write the change in f in the form

<ﬁ> drdPo ==Coup+ Ci,, (2.7)
ot coll

where C,,; and C;, are rates at which particles leave and enter the elementary
volume d3rd3v of interest in phase space due to collisions.

Consider a beam of particles of number density n; and velocity ¢ colliding
with another beam of particles of number density n and velocity #. A particle
in the second beam experiences a flux I = n; |t = @] of particles from the first
beam. We consider the number of collisions per unit volume per unit time, on.,
which deflect particles from the other beam into d)', an element of solid angle

in the center of mass frame. This number is proportional to the number density
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n of particles in the other beam, proportional to the flux I these particles are
exposed to and proportional to the solid angle. We can write

do
dSY

dcy. (2.8)

dne. =nny |0 — ]

Consider collisions between the stream of particles having a velocity within d3v of
7 and the stream of particles having velocities within d3v; of @#;. The first particles
make up a beam with number density n = f(7, 7, t)d*v and velocity ¢, whereas
the partner particles constitute a beam with number density n, = f (7, v, t)d>v;

and velocity ¥, so the collision rate is

d
Sne = (7, )d f(7, @, t)dP0i |7 — | dg,dQ’. (2.9)
Therefore we write Cy,; in the form
c - / (7801, 7017 — %dQ’(d% Py )dPr. (2.10)
u1 J

To evaluate C,, we consider the reverse collision between particles of
velocity within d®v’ of ¥ and particles of velocity within d*v] of ¥ such that
velocities after the collision lie within d®v of ¥ and d®v; of v;. As in (2.9), the

number of such collisions per unit volume per unit time is

d
Snl = f(7, T, )d3' f(F, T, 8)d>, | — mdg,dga (2.11)
If we consider only elastic collisions we have | — #;| = |t/ — #| and the phase

space of the forward and reverse collisions are equal: d*vdv, = d*v'd*v]. Then

we get
do
sy’

oty = f (7o' t) dPu f (7, Ty s 1) dPoy | — Uy —=dSY. (2.12)

and

o = / [ - 171|%d9’(d3v Poy)dr. (2.13)
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From (2.10) and (2.13) substituted into (2.7),

0 L o o do
<8_Jtt> . Erd®v = / o f("“; U, t)f(?", U1, t)|U o |dQ/dQI d*v d3’U1 d’r

/ FF T4 f(F, T, 8)|7 — Uﬂjg,dfz’ Bo o, dPr
Q/

af do
(%) = [ [ resoncaom—a/ige ¢
= B = — — do— ! 13
- f(r,v,t)f(r,vl,t)|v—vl|dQ,dQ d’vy
o e

For the distribution function of particles, we write f = f(7,¥,t) and
fi = f(7, 91,t) (before the eollision), and f" = f(7, ', t) and f] = f(F, ¥}, t) (after

the collision). Then

( ) / 4 |v—v1|dQ,(f fi— ff)dYdPv,. (2.14)
coll 4
From (2.6) and (2.14) we get,
0 L 0 - L do ., ., ’
Lo S D meas s - radn. e
17— Lk
(streaming term) (collision term)

2.3 Ionization Process

The interstellar medium that flows into the solar system interacts with pho-
tons from the Sun by the photo-ionization process (see Figure 2:3). The photo-
ionization by solar extreme ultraviolet (EUV) radiation has a direct effect on the

number density of interstellar neutral atoms in the inner solar system.
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For interstellar hydrogen atoms the rate at which neutral hydrogen is

photo-ionized is inversely proportional to the square of the heliocentric distance

v =1, <T—g> : (2.16)

r2

o

where v is the rate of photo-ionization per hydrogen atom at any distance r, and
vo = 0.9 x 1077 s7! is the rate of photo-ionization per hydrogen atom at 7y = 1

AU (Mébius, 1993; Whang 1996, 1998).

2.4 Maxwellian Distribution Function

The phase space distribution of particles in thermal equilibrium, in a fluid at rest,
is given by a Maxwellian distribution. For particles of type i, this is given by the

expression

3/2 1,2

m; imv
i _‘7 _))t — 1Yy qat . —2 ) 2.17
e at) =) (5 ) o -] 217

where n; is the number density as a function of position and time which can be
found by integration of f; over all velocity space, v? = vi+v§+v§, the temperature
T; is a function of position, 7; = T;(7), and m; is the mass of particles of type
i. The distribution function f; in equation (2.17) falls off more rapidly for low
temperature than for high temperature. The probability of finding a particle of
type i decreases exponentially with increasing v? for a Maxwellian distribution
(or equivalently with increasing kinetic energy).

The Maxwellian distribution is isotropic; that is, f; depends on the mag-
nitude of the velocity vector ' and not on its direction. A distribution that is
closely related to the Maxwellian is the “drifting Maxwellian” distribution for

which the particles have an additional velocity, 7, in some direction, which is
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the average or bulk velocity. In this case, the distribution function looks like the

Maxwellian distribution in equation (2.17) with v? replaced by |0 — vp|%.

~,
Y |
!'lJ

|

4
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Chapter 3
Numerical Method

Numerical methods for computational physics have the advantage of al-
lowing us to study physical systems that are complicated and cannot be fully
examined by theory or experiment. Computational physics is now widely ac-
cepted as a third branch of physics in addition to theoretical and experimental
physics. In fact, the majority of physics research projects use numerical methods
instead of or in addition to traditional experimental and analytic methods. Using
simulations of a physical system can have the advantage of approaching the core
of the problem, mathematical formulation, and nature of the system of interest.
In this chapter we will explain the mathematical formulation of our problem and

the basic methods for we use for our numerical calculations.

3.1 Finite Differencing

There is a wide range of methods for solving problems involving differential equa-
tions. ‘An important class of numerical methods are the finite difference methods,
using differencing formulae in place of a differential equation. A particular ad-

vantage of finite difference methods is that they are often closely related to the
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Figure 3.1: Discretization of = € [a, b].

physical processes. We can use a Taylor series approach to verify and evaluate
the error of difference formulae.

Consider a problem in one independent variable, x. We divide the region
of interest along the z-axis by using N points (see Figure 3.1). For = € [a,b],
the continuous spatial domain can be discretized into an equally spaced grid
of discrete points as illustrated in Figure 3.1, where the subscript ¢ denotes a
particular spatial location, with f; as an approximation to f(x;) (Hoffman 1993).

Difference formulae for f'(z;), f"(z;), etc. can be developed from the

Taylor series of f(x) in the form

f(x) = f(xo) + f(wo) Az + %f”(wo)sz - . 1% %f(”)(xo)Ax" +... (3.18)

For a function of more than one variable, such as f(z,t), difference for-

mulae can be developed from the Taylor series for the function f(z,1):

f(l‘, t) = f(.'L'(),t()) - fm(l‘o, tg)Al‘ F ft(.’I)(),t())At

1
+§[f:m:(x07 to)Al‘z —+ 2f:1:t(x07 to)AIL’At + ftt(.'L'g, to)AtZ] 4+ ...

1

where fi), denotes 0" f/0x". The continuous domain D(z,t) can be discretized
into an orthogonal and equally spaced grid of discrete points (x;;t,) (given i as
the spatial index and n as the time index). Values such as f*, which approximates

f(z4,t,), can be combined to obtain difference formulae for f,, f;, etc.
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If we want to derive differencing formulae in multidimensions, we can
start by considering those in one dimension. Indeed, when considering the partial

derivative of f(x,t) with respect to x, and given t = ¢, =constant, (3.2) becomes

1
f(z,to) = flwo,to) + fa(2o,t0) Az + §fm($0, to)Az® + ...
1
+af(n)a:($0, to)Az™ + ... (3.20)

Equation (3.3) is identical in form to equation (3.1), where f’(zy) corresponds
to fz(wo), etc. The partial derivative f,(zo,%p) of the function f(x,t) will be
obtained from (3.3) in exactly the same manner as the total derivative f'(xg) of
the function f(z) is obtained from equation (3.1). Since equations (3.1) and (3.3)
are identical in form, the difference formulae for f'(x) and f,(x¢, ty) are identical
if the same discrete grid points are used to develop the formulae. Consequently,
difference formulae for partial derivatives of a function of several variables can be
derived from the Taylor series for a function of a single variable.

Similarly, the partial derivative of f(x,t) with respect to ¢ (when z =

xo=constant) can be obtained from
1
f(ZUU, t) = f(ZUU, t[)) s ft([ll’o, to)At -+ iftt(l'[), to)AtZ + ...
1

Returning to equation (3.1), this can be written as a finite Taylor series

f(@) = flxo) + falwo)Az+ %fm(xg)AxQ nggm %f(n)w(%mxn
1

TG

f(n+1)x(§)AIn+1, (3.22)

where we give the final term of (3.5) as the remainder term,

Ry = f(n+1)x(§)A$n+1

(n+1)!
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for some £ such that zo < & < xg + Ax.

Therefore, the error incurred by truncating the infinite Taylor series after
the nth derivative is exactly the remainder term of the n'"-order Taylor formula.
Truncating the Taylor series is equivalent to dropping the R, term of the finite
Taylor series. The finite difference approximation of exact derivatives can be
obtained by solving exactly from either the infinite or finite Taylor series, and
then either truncating the Taylor series or dropping the remainder term R, .1,
respectively.

The terms that are truncated from the infinite Taylor series, which are
identical to the R,;; term of the Taylor formula, are called the “truncation
error” of the finite difference approximation of the exact derivative. An important
point is that the truncation error approaches to zero as Az — 0. The order
of the truncation error, i.e., the R, ; term, can be written O(Az(™*"), where
O(Az™*1)) means that the leading-order term is of order (Az)™+Y.

We develop the formulation of a finite difference equation, which is adapted
from a differential equation by differencing formulae.

We start in one dimension by considering the equally spaced discrete finite
difference grid shown in Figure 3.1, using point ¢ as the base point and writing

the Taylor series of f;1; and f; ; as
1 o 1 5, 1 4
fir1 = fi—i-fx(xi)Ax—l—ifm(xi)Ax —|—6fxm(xi)Ax —i-ﬂfmm(xi)Ax +... (3.23)

Subtracting f; | from f;,q,

Fit — fir = 2fa(m) A + %fmx(xi)Ax?’ o (3.25)
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n+1 & ® *
n o ® »
n-1 - ' »

Figure 3.2: Discretization in two-dimensional x — ¢ space.

we can derive a formula for f,(z;), converting the f,..(z;) term to be a “remainder

term”:

falwi) = fmm;f %f e (§) A7, (3.26)

where z; 1 < & < x;;. Equation (3.9) gives a good approximation for f,(x;) if

the reminder term is dropped:

fulirs) ~ L ’“2 Axfz - (3.27)

Adding f;+; and f; ; from (3.6) and (3.7) gives
1

where here the fy;..(x;) term is taken to be the “remainder term”:

Jirt — 2fi + fica

_ % NI (3.29)
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or
—2fi+ fia

fi+1

(3.30)

Equations (3.10) and (3.13) are central-difference formulae, which are
inherently more accurate than corresponding one-sided difference formulae.

When considering a problem with more than one independent variable,
e.g., in terms of a function of two variables, f(x,t), as shown in Figure 3.2, we
approximate the true solution f(x;,t,) by f. Difference formulae for ¢ derivatives

can be developed similarly to those for x.

3.2 Operator Splitting

Partial differential equations can sometimes have many variables, or be compli-
cated, large, or hard to solve analytically. Even when using a numerical method
such as finite differencing, it may not be easy to solve. We can solve the finite
difference equations for a large problem in multiple variables by sequentially up-
dating for each term or set of terms in the differential equation. This technique
for solving step by step is the “operator splitting” technique.

The operator splitting technique (Press et al. 1992) is also called time
splitting or the method of fractional steps. Suppose we have a partial differential

equation for a function u(t,xy, s, ..., x)) in the form

au

—'=Tu 3.31
at ) ( )

where L is a differential operator. While L is not necessarily linear, suppose that

it can at least be written as a linear sum of k variables, which act additively on

u,

Lu=Liu+ Lou+ ...+ Lyu,
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so that

0
8_:: =Liu+Lou+ ...+ Liu. (3.32)

Finally, suppose that for each L;, we already know a differencing scheme for
updating the variable u from timestep n to timestep n + 1, valid if that piece
of the operator were the only one on the right-hand side. We will write such

updating symbolically as

0

8_? = Liu — w' T =y (u, At)

0

% f o9 Wy, A

au n+1 n

£ Liu — u™ = ug(u”, At). (3.33)

One form of operator splitting would be to get from u" to u™*! for the

full equation (3.15) by the following sequence of updating:

un+(l/k) = (un, At)
un+(2/k:) = uQ(un—F(l/k), At)
= gy (umtEDE AR (3.34)

For example, a numerical method including operator splitting was used
(Ruffolo 1995) to solve a problem with a transport equation for the function
f(t, p, z,p). The procedure can be physically interpreted as having particles al-
ternately undergo changes in p, p, and z during each time step. As the time
step is shortened, this sequence provides a more accurate approximation. In that

work, the procedure for updating f(¢, u, 2, p) from ¢ to t + At is as follows:
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1. Update f for p-changing processes over a time At/2.

2. Update f for z-changing processes (streaming) over a time At.

3. Update f for p-changing processes over a time Aft.

4. Update f for p-changing processes over a time At/2.

Note that p-changing processes are treated for At/2 each at the beginning

and end for better (second-order) accuracy.

3.3 Advection Process and TVD Method

The advection term of the transport equation (2.5) is

of | of

3 = —U - o (3.35)
or in one dimension,
O.(n of

This systematic, advection process can also be referred to as streaming.
We employ a type of method for solving this part of the problem known as a “Total
Variation Diminishing” (TVD) method (Harten 1983) as generalized by Nutaro
et al. (2001). The advantages of this method are that it can accurately solve
advection problems as well as avoiding artificial numerical diffusion of particles
moving from one position to another.

The total variation (TV) of a function f(z) is defined by

v

dz. 3.37
0| & (3.37)
We can write this in discrete form as

TV (f) :Z|fi+1 — fil, (3.38)

)
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where f; approximates f(z;). Considering a function of x which depends on time
t, too, we can approximate f(z;,t") by fI', where i is the spatial index and n is

the time index. Equation (3.21) at any time can be written as
V) =2 M = 1 (3:39)
The principal requirement of a t;tal variation diminishing method is that
TV (f" < TV(f™). (3.40)

The motivation of this requirement is to avoid creating new maxima or minima
of the function in each time step.

The TVD scheme that we employ is based on Roe’s superbee limiter (Roe,
1983), which gives remarkably constant shape profiles for the linear advection
equation. We define the Courant number as v = vAt¢/Az, and in usual TVD
methods 0 < v < 1. For our application, we want to be able to set v > 1 for
greater flexibility. Thus we use a developed generalization of a TVD method
(Nutaro et al., 2001) to allow a general value of 4 which can also vary with
position, z.

In the generalized TVD technique, the advection of F' in the z-direction
first uses an integral number of steps g, where g is obtained by rounding v down-
ward. For example, if v=4.6, then F' is moved forward by 4 z-grid points and
the remainder v/ = v — g = 4.6 — 4 = 0.6. We see that 0 < +' < 1. Then by the

usual TVD differencing,

At At
E%P’l—g_—sl !

S TS (3.41)

where 1 is the index of the z-cell, and S;;, /5 is the flux of particles from z-cell ({)

to (I + 1) due to +', which is calculated from

1
Sl+$ - Uzl+%Flﬁ + §vf+%(1 - 'Ygl+%)(Flfg+1 o Flfg)qslfm (3.42)
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where 71, » = 7' (20 + A2/2) and v,y = 7], A2/ AL, the index [ + 1 referring
to the position of the cell boundary at z; + Az/2. Here ¢; is Roe’s superbee
limiter (Roe, 1983), given by

0 T S 0
2r; 0<r; <05
d={1 05<nr<l (3.43)
T 1 S T <2
2 > 2 ,
where 7 in equation (3.26) is
i
= 3.44
© Ea-h (34

The TVD method will sacrifice convergence speed (sometimes converging only to
first order in Az) in order to guarantee equation (3.25) that no new minima or
maxima are introduced.

Next, we should consider a variation in v and hence v as a function of
z, in which case ¢ itself can change from one grid point the next. To take this

possibility into account, F' over a time step At is updated by
m=l—g

- ,

Fe > B85 )) (3.45)
m=l=g_

where g, is the rounded-down integer corresponding to -y, 1 and ¢g_ corresponds to

Vi1 This formula is subject to the constraint that g < g +1, and ifg, = g_+1

we interpret the sum to be zero. In practice that constraint can often be avoided

by reducing At, and in physical situations where v(2) is discontinuous a different

technique is needed.

3.4  Interpolation Method

Interpolation, an important topic in numerical analysis, is the approximation of

the value at a point of interest given a set of known values of any function, or
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Fp(x)
e et e it e i e .
F(x;) P F (xis1)

Figure 3.3: Linear interpolation in one dimension.

data from an experiment. Many famous mathematicians such as Gauss, Newton,
Bessel, and Stirling are associated with procedures for interpolation. The need to
interpolate began with the early studies of astronomy when the motion of heavy

bodies was determined from periodic observations (Gerald and Wheatley, 1994).

3.4.1 Linear interpolation

Linear interpolation is the simplest method to determine the value at a point
of interest between two points with known values of data or a function in one
dimension (Figure 3.3).

From Figure 3.3 we have known values at two points, F'(x;) and F(x;41).

We can calculate an approximate value of F(x) at the point P by the formula:

Tiy1 — T — I
F =—— F(x; — F(x;1). 3.46
A(o) = T F(w) + e F(ryu) (3.40)
We can also write this in the form
Fp(z) = (V= fo)F(zi) + foF(2it1), (3.47)

where f, is the fractional distance of P from z; to z;,1,

X —I4
fm: ’

)
Tit1 — T

and the value of f, should be between 0 and 1 for interpolation.
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F (xf;y_m) Q F (Xis+1,Yj41)

F (i, yi ®, F (xis1,y))

Figure 3.4: Bilinear interpolation in two dimensions.

3.4.2 Bilinear interpolation

For our work, we use bilinear interpolation to determine the value of a function in
two dimensions, F'(x,y), which is useful for creating contour plots of our results.
The bilinear interpolation is adapted from basic linear interpolation.

Figure 3.4 shows the known values for four points, F'(z;,y;), F(%it1,Y;),
F(xi,yj11), and F(Zig1,Y541) We want to estimate the unknown value at point
S, which can be estimated by projection from the points P and Q by using linear
interpolation to find Fip and Fyy (Tooprakai 1999).

e At point P:

Tiy1 — T
Ep(z,y;) = 790: — Flw ) + pr—
7 2 (2 (2

= (1 il fx)F(LL'Z, yj) + fmF(xi—l—l; yj)- (348)

T — T;
- F($i+1,yj)
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e At point Q:
Tiy1 — T r— T
(%, Yjr1) Tor1 — 4 (@i, yj41) + Tir1 — (@41, Yj41)
= (1= fo)F(2i,yju1) + foF (Tig1, Y1), (3.49)

where f, = (z — x;)/(®iy1 — x;). After we know the values of Fp and Fg, next

we will calculate the value at point S:

Y—Y;

Yji+1 =Y
Fs(z,y) = ﬁFP(%%‘) + Vil — y_FQ(fanjH)
= (= fy)Fp(z,y;) + fyFo(z,yjt1), (3.50)

where f, = (v — y;)/(y;41 — y;), so the approximate value at point S can be

written as

Fs(z,y) = (L= f)(d = fo) - F(riy5) + (L= fy)fo - Flwi11,95)

+fy (L= fo)* F(xoyit1) + fyfo: F(Tiv1, yjn)- (3.51)

3.4.3 Geometric interpolation

In this work, in addition to using bilinear interpolation, we use the geometric
interpolation technique, too. We use geometric interpolation to find values of a
function that roughly increases or decreases as an exponential in z and y. We can
determine the value of F'(x,y) by geometric interpolation by a process similar to
the bilinear interpolation technique of Section 3.4.2 (Figure 3.4) as follows:

e At point P:

log Fp(xy1;) = (1. = f2)x log F (x5 u;) + fz><log F%is1:Y5)-

e At point Q:

log FQ(QT, yj+1) = (1 - f:z:) x log F(ﬂﬂi, yj+1) + fz X log F(Ii-l-la ?Jj+1)-
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Here f, is defined by
logx — log x;

fx_

~ log Tiy1 — logx;
From the values at points P and Q, we then determine the value at point

S by the approximation formula

Fs(z,y) = (1 = f,) xlog Fp(z,y;) + f, x log Fo(x, yjt+1), (3.52)

in which f, is defined by

= log y — log y;
log y;4+1 — log v;

3.5 Numerical Procedure

In our problem we investigate the distribution of hydrogen atoms at each heliocen-
tric distance in the solar system by considering the physical effects of streaming,
charge-exchange collisions, and photo-ionization. We show the numerical proce-

dure and mathematical formulation for taking these effects into account.

3.5.1 Mathematical formulation

We consider hydrogen atoms as the major neutral constituent of interstellar mat-
ter in the galaxy (Axford ‘and Suess 1994, Audouze and Israél 1996). We would
like to determine the distribution function of hydrogen atoms: fy (7, 7,t). We

apply equation (2.15) written in the form

afH___.% _,__,d_O' s 133
o= [ 16 A s~ faryid @59

(neglecting photoionization for the time being).
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before after

@O =@ —
H P H p

Figure 3.5: Charge exchange between a proton and a hydrogen atom in the center
of mass frame.

For the collision term, the second term of the right side in (3.36), we

consider elastic collisions between hydrogen and protons, so we replace f; with

fp(7, U, t):

S = =it T [ T OV ) = i (1) 0,

For the collisions of particles in the system of interest, we consider charge
exchange interactions. It is easiest to work in the center of mass frame (see
Figure 3.5).

In the case of charge exchange collisions, we can approximate the differ-

ential cross section by

do I 1 ail .
7 (0", v1,7) = %aﬂvl — )o@ — ). (3.54)

Physically, the reason why the charge exchange differential cross section is con-
centrated at #' ~ 7 is because the hydrogen atom and proton basically continue
moving in the same direction after exchanging an electron, so the result is that in
the center of mass frame, the product hydrogen atom moves with an angle ' ~ «
relative to the motion of the original hydrogen atom before the collision.

From Figure 3.5, conservation of momentum implies that after the colli-

sion, p’’ = p) and p}’ = p. The mass of hydrogen can be assumed to be equal to
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the mass of a proton, so the velocities after the collision are ¢ = ¥} and 0] = ¥.

Thus we have the greatly simplied equation,

Ofn _ . O

— -

o or
- f le—m%a(w_m)a( U (E VB — For (0 (E )AL

where d€)' is an element of solid angle in the center of mass frame, d) =

sin@'df'd¢’. We integrate from ' =0 — & and ¢' = 0 — 27

Ofn _ . O

ot or

3 [ — = 1 £ _, — — ! /33
v [ ] 15 taln = G080 = mifaT )5 - (D) ()

71 ¢'=00"=0

v [on [ d 2o (5= A0 0@ )16 S 1 E )

aaLtH:: el / [0 — vl (e — i Difu (1) £ (0) — Fr () fy(8)]d 1. (3.55)

We would like to solve this equation by considering the position 7 in one
dimension along the solar apex (we use the z-axis) and considering the velocity 7
in two dimensions (v, is the velocity along the solar apex, while v, is perpendicular

to the solar apex):

ofw afH £ (2] 3
S, / 3 — Ao (15 — 0 ) [ (3) (@) — Fu (0)fy (@)]dPvr. (3.56)

For collisions of particles in the system, we use the momentum p’ = m
instead of the velocity ¢, to permit an easier generalization to relativistic particles.

Thus in the program we consider momentum space in two dimensions, p, and
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Py, and assume axisymmetry in momentum space about the p,-axis. The angle
between p and 7' is 0, and we define p = cos 6, which gives v, = v cos = pw.
Thus in our work, we would like to determine the distribution function

as fH(Zapa M, t)a USng

%LLLH = _Nvaaij + /ﬁl |0y — ¥]o (|7 — Ul|)[fH(ﬁ1)fp(}5) _ fH(ﬁ)fp(ﬁﬂ] d3p1.

We consider momentum space d3p; in spherical coordinates (py, 01, ¢1):

o _ ot
o M
+ |0 = Blo (|6 =@ ]) [ (91) fo () — Fu (D) fp(51)]dpy sin 6y d6; pTdp,
/]

which we integrate over the ranges ¢; = 0 to 2 and 6; = 0 to 7 (u; = cosby =

—1to 1):
e _ _ Ofm
ot " 52

n / / / 15 & Glo([7 — TNl fold) — Fr () fo ()] diur .

p1 p1=—1¢1=0
Because of symmetry around the z-axis, the distribution functions do not depend

on ¢; and we can isolate the integral over the angle ¢;:

Ofn _ _,0fn
o~ "oz
2w

’ / / U P Ty W%} (1P ®) a5, (50)|dus P,

(3.57)
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We now apply the effect of the photo-ionization process from (2.16) into (3.40):

Ofn = —u Ofu (streaming)
ot 0z

52
+p (z_g> fu (photo-ionization)

1 2T
+ |771 - 77’|U(|17_ 171|)d¢1 fH(ﬁl)fp(ﬁ) - fH(ﬁ)fp(ﬁl) dpiy p?d]h
IV

(charge exchange interaction). (3.58)

3.5.2 Numerical techniques

From equation (3.41), we see that term of charge exchange interactions cannot
be solved analytically for general fy and f,. Therefore, we have used an ap-
proximation in momentum space (volume element dy p*dp) in two dimensions by
considering discrete grid spacings (dp — Apu, and p*dp = d(p?)/3 — A(p*)/3).
We consider that each point in two-dimensional momentum space, (p;,p,) or
(p, i), represents a “torus-like volume” in three-dimensional momentum space, a
volume that covers a range of Apin p, Ap in p, and 27 in ¢, because of symmetry
in the ¢ angle. Finally the momentum volume element is AV = 27 A(p®/3)Ap.
The key point is the numerical technique for calculating the last term of the
equation by changing the integral in momentum space to use a summation over
discrete momentum points and their associated volumes. This approximation
scheme can be written as

o~ ““W*”O(? Ju

ST bt (A 9 60

p1 points in 2D

X [Aul %pi’)}
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or
afH afH EH
ot . T (‘ T

2w
n S [QL/ |7 — 17|a(|17—171|)dq§1] {fg(ﬁl)fp(ﬁ) — fu(P)f,(P1)
P1 points in 2D T Jo
term A term B

X {Am %ﬁﬁ(pi’)} :

term C (3.59)

We solve (3.42) for the distribution function fg(p, 2, i, t) by a finite dif-
ference method using forward finite differencing for the time-derivative term on
the left side of equation (3.42). In the computer code, we use the array f[w][l][u]
for f(pw, 21, tu). We use a generalized total variation diminishing method to solve
the streaming term (Nutaro et al., 2001). For the charge exchange cross section
in term A, we use a fit to o(|7 — #1]) data from Schultz et al. (1995) (see details
in Appendix A). We caleulate the complete charge exchange interaction term (by
multiplying in terms A, B, and C) by our numerical program’s chex.c routine
(see Appendix C). We calculate all terms on the right side and then update over
the time step by using the technique of operator splitting.

We usually define the initial condition of the distribution function of
hydrogen atoms fy(v) to be zero. We then assume an inflow boundary condition

very far from the Sun as in equation (2.17):

. n —m(T — (Ty))?
I (®) = G i P { 2%T ]

or in terms of fg(p),

n —(7— (p))?
T P) = Gy P { omkT ] '
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We set the outer boundary of the simulation region at the far distance of
200 AU (inflow boundary), and use conditions for interstellar medium hydrogen

3, average velocity (ty) = —26 km/s ((p) = m(7)),

atoms of density n=0.1 cm™
and temperature 7' = 10900 K (Axford and Suess 1994, Zank et al., 1996, Miiller
et al., 1999).

For the proton distribution function f, (which we use to calculate term B
of the charge exchange interaction), we use simulation data for solar wind protons
from 2-D hydrodynamical calculations performed by expert scientists (G. Zank
and L. Pauls, private communication, 1997), with values of the proton density,
velocity, and temperature depending on distance (z) from the Sun, from z =1

AU to z = 200 AU (see table in Appendix B). We set the distribution function

of protons depending on distance from the Sun in the form

n(z) =7 —(0(2)))”
RrmkT ()R [ 2mkT () ] '

fp(z7ﬁ) 2

In our simulation program, we express the results for the distribution
function of hydrogen atoms fy (¢, p, it, z) by converting (p, i) into velocity space
(vy,vy). We simulate over the spatial region z=1 to 200 AU by Az=1 AU,
momentum p = mw for v = 0 to 500 km/s, and u = cosf for =0 to 180
degrees.

A strong point of our approach is that we have specially designed a sim-
ulation grid in velocity space (or momentum space) in two dimensions, in order
to achieve sufficient detail in regions where a substantial hydrogen density is ex-
pected. There is a total of 226 points in momentum space (coarse grid: 181
points, fine grid: 45 points). For term C of equation (3.42), each grid point is

assigned a surrounding volume.
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Figure 3.6: Grid points in velocity space in our simulation model (scale in km/s).

3.5.3 Numerical simulation program

We have written a C-language program for simulations in this work in 6 files as
follows:

1. boltz.c: This is the main program in our calculation of fy (¢, z, p, ).

2. chex.c: This is a subroutine for calculation of the charge exchange
interaction term in equation (3.42) as a process of elastic collisions between hy-
drogen atoms and solar wind protons.

3. initial.c: This is‘a subroutine for defining the distribution function
of hydrogen atoms fy at the initial time of the simulation. We can set this to a
Maxwellian distribution, or for simulation results shown in the next chapter, we

used an‘initial fy of zero.
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4. streaming.c: This is a subroutine for calculation of the advection
term for the streaming process of flowing of hydrogen atoms, in which we applied
a generalized total variation diminishing code (Nutaro et al., 2001).

5. nrutil.c: This contains subroutines for supporting techniques of com-
putation for allocating and deallocating memory for vectors and matrices, which

we modified from Numerical Recipes in C (Press et al., 1998).

6. printout.c: This is a subroutine for output of computational results

of fu, which we have calculated by interpolation in velocity space (v,,v,).

The flow chart structure of our simulation program is shown in Figure

3.7.
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Figure 3.7: Flow chart of the simulation program.

t = t+At



Chapter 4
Results

We use an initial condition of fz = 0 throughout, and an inflow boundary
condition (at 200 AU from the Sun) for interstellar hydrogen atoms of density
ng = 0.1 cm 3, kinetic temperature 7' = 10900 K, and average velocity (vg) =
—26 km/s (following Zank and Pauls, 1996). We plot the initial distribution
function of interstellar hydrogen in velocity space before its flow into the solar
system in Figure 4.1.

In simulating the time evolution of the distribution function fgy according
to equation (3.42), we use a time step A¢ = 5 days and continue the simulation
until fg relaxes to the steady-state neutral distribution, which we found from
results that used a simulation time of 60000 days. [Such a long time is needed
for relaxation from an initial condition of fz = 0. The relaxation time after a
minor perturbation may well be much shorter.] The actual CPU time used on a
PC Linux system computer was 42.5 seconds per time step.

The values of fy in units of em™3(eV /c)~*are plotted in two-dimensional
velocity space (v,-vy, space) in which v, is the velocity in the direction of flow
from the Sun along the solar apex (v, is positive for particles moving outward

from the Sun, whereas v, is negative for particles flowing toward the Sun), and v,
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is the velocity in a direction perpendicular to v, (assuming cylindrical symmetry
about the z-axis).

Before illustrating simulation results, we show f,, the velocity distribu-
tions of plasma protons (using data from Appendix B), in three distinct regions
as: (1) supersonic solar wind protons in the inner solar system, (2) solar wind
plasma in the inner, shock-heated heliosheath, and (3) plasma protons outside
the heliopause (Figures 4.2, 4.3, and 4.4, respectively). These plasma protons
at each location in distance z have a direct effect on the distribution of neutral
hydrogen that flows into the solar system after charge exchange interactions. Be-
cause H-p charge exchange causes H and p to switch locations in velocity space,
charge exchange in each region effectively injects a distribution of hydrogen (fy)

like the f, distribution.

We illustrate the results from our simulation in Figures 4.5 to 4.13 for
different locations along the solar apex (20 to 180 AU from the Sun).

From the results in Figures 4.5 to 4.13, we found the steady-state distri-
bution of neutral hydrogen in velocity space. The dominant population of neutral
hydrogen (at a high density of about 107'° to 107'% em=(eV /c)™3, which we call
the “low-velocity peak”) appears near the initial interstellar hydrogen velocity
(v ~ —26 km/s), and part of the hydrogen (at a peak about 100 times lower than
that of the low-velocity peak) oceurs at high velocity (v & 400 km/s) in the op-
posite direction of the interstellar hydrogen flow. The low-velocity peak includes
the original interstellar hydrogen atoms which flow from the outer boundary into
the solar system, and the high-velocity peak (near the velocity of solar wind pro-
tons) results from the charge exchange interaction of hydrogen with solar wind

protons (H+p — p+H). Thus we see that some hydrogen atoms flow toward the
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Sun and some flow outward. The low-velocity peak overlies a highly anisotropic
pedestal distribution, which is broader than the high-velocity peak, over the entire

simulation range. We can explain the results in detail as follows:

e For distances < 80 AU (Figures 4.5 to 4.8), we found low-velocity and high-
velocity peaks, with fy values only weakly dependent on distance. The low-
velocity distribution peak appears at negative v, only, indicating hydrogen flow
into the solar system. The peak distribution is apparently a truncated, narrow
Maxwellian due to interstellar hydrogen (Figure 4.4) superimposed on a much
broader half-Maxwellian due to charge exchange between hydrogen atoms with
the high-temperature (broad) proton distribution of the inner heliosheath (Figure
4.3). Both distributions are truncated for v, < 0 because only inflowing H from
these sources is found in the inner solar system. The high-velocity peak due to
charge exchange interactions within the inner solar system is similar to the dis-
tribution in Figure 4.2 and has a Maxwellian-like distribution. The density of the
high-velocity peak (a “beam-like” distribution) can be quantitatively understood

in terms of a Lagrangian integral along characteristics:

1 [(0f

Here (0f/0t)cou is dominated by the production term close to the Sun, and the
integral of the production term alone provides a good approximation to the sim-

ulation results.

e For distances of 100-120 AU (Figures 4.9 and 4.10), in the inner heliosheath,
we found low-velocity and high-velocity peaks like those at 1-80 AU, except that

the broad distibution due to charge exchange in the heliosheath is quite different.



45

That distribution has expanded in the v,-direction. Plasma protons in this region
have a very high temperature due to shock heating of the solar wind (Zank et al.
1996), so charge exchange interactions in this region produce hydrogen atoms of
a distribution like that shown in Figure 4.3. We can understand the elongation

of this component along the v,-axis from the integral along characteristics:

L[ (o
fH_Uz / <at>colldz, (v: > 0)

86 AU

or
131 AU

_ of
i = o / (8t>wu = (v, < 0)

Z

where 86 AU and 131 AU are the boundaries of the inner heliosheath region of
hot plasma. [Note that there is no divergence as v, — 0, where the integral is
better expressed as an integral over time, and at late times (0f/0t)qu — 0 as an
equilibrium is reached between production and destruction by chrge exchange.]
The increase at v, ~ 0 appears as an elongation along the v,-axis. Thus we
found hydrogen from all three sources in this region (100-120 AU): interstellar
medium neutral hydrogen which flows into this region, hydrogen locally pro-
duced by charge exchange, and a high velocity peak of hydrogen atoms occurring
through charge exchange from the inner region and flowing outward from the Sun

at high velocity.

e For distances of 140-180 AU (Figures 4:10 to 4.13), outside the heliopause, the
velocity distributions have a similar pattern, with -hydrogen found in the velocity
range of -50 to 500 km /s, except that hydrogen from inner sources appears only at
v, > 0. The low-velocity peak is dominant at negative and low velocity because

charge exchange interactions with local plasma protons have low velocity and low



46

temperature (see the distribution of f, in Figure 4.4). Thus we found hydrogen
atoms occurring from three sources: (1) from this region with a velocity peak
around low velocity plus interstellar medium neutral hydrogen which flows into
this region, (2) a high-velocity peak of hydrogen atoms occurring through charge
exchange inside the termination shock and flowing outward from the Sun at high
velocity, and (3) from some hydrogen atoms with a broad distribution, created

by charge exchange in the inner heliosheath and flowing outward to this region.
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Chapter 5

Discussion and Summary

We have developed a simulation model for determining the distribution
of hydrogen atoms resulting from neutral interstellar matter which flows into
the solar system. We numerically solve a Boltzmann transport equation that
includes the processes of streaming, photo-ionization, and charge exchange inter-
action given a distribution of protons, based on previous research results kindly
provided by Zank and Pauls (private communication, 1997). Our research fo-
cuses on the neutral hydrogen velocity distribution functions, clarifying the role
of charge exchange in the evolution and response of the distribution to solar
wind protons along the solar apex. The resulting neutral hydrogen distribution
functions clearly show the importance of effects of the charge exchange interac-
tion and streaming. Our results provide more detailed velocity-space hydrogen
distributions than those obtained in previous research.

We obtained simulation results determining the steady-state distribution
in velocity space vs. distance along the solar apex (Figures 4.5 to 4:13), which for
clarity are summarized in Figure 5.1, and we analyze physical processes which
we consider in detail from simulation results to describe neutral matter and he-

liospheric structure. Note that charge exchange tends to switch the locations of
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H and p in velocity space, so at a given distance, fg will appear in the region
where f, is large (see graphs of f, in Figure 4.2 to 4.4). The origin of the neutral
hydrogen can be explained as follows:

(1) Neutral hydrogen occurred from the original interstellar medium that
flows into the solar system from a very far distance from the Sun. This component
is found in all regions considered.

(2) Some neutral hydrogen is found at high velocity (and positive v,) at all
distances in our simulation results. These hydrogen atoms occurred from charge
exchange interactions with the cold, supersonic solar wind inside the termination
shock (within 80 AU), so these neutral hydrogen atoms have a direction outward
from the Sun. We also see this component in each region along the solar apex
from 1 to 200 AU.

(3) Some neutral hydrogen results from charge exchange interactions with
hot plasma protons in the shock-heated solar wind of the inner heliosheath region
(in this work, 86-131 AU). Some of this neutral hydrogen, with v, &~ 0, remains
in this region; that with v, > 0 is found outside this region; and that with v, <0

is found in inner regions.

5.1 Comparison with Previous Results

Our numerical results have been compared with previous work of the Com-
putational Astrophysics Research Group at Chulalongkorn University Thailand
(Boonma 2000) and our collaborative group at the Bartol Research Institute of

the University of Delaware, USA (Miiller et al. 2000).

» Comparison with results of Boonma (2000) (Figure 5.2) - We consider the

streaming process, charge exchange interaction, and photo-ionization process in



62

200
260
320

44
44

500

500
440,
380
-320
260
200!
140
=80
40
100
160
220
280
340
40(
460

V2 (kmis)

EE e 460
-400
-340
280
220
-160
-100

[AE3ERES)

0 km/:
80( s)

140
200
260

380
440
500

80
-10
60

-500
430
-360
290
220
-150
130
200
270
340
410
480

V2 (km/s)

Figure 5.2: Results of the hydrogen distribution in velocity space at 10 AU
(top) and 30 AU (bottom) from Boonma (2000). Contours indicate fy =
107210107295 107290 10195 "and 1079 cm™(eV /c)™® for a charge exchange

duration of 1 day.



63

our simulation model, whereas Boonma, used elastic collisions only in a Boltzmann
transport equation. Thus effects of the flow of hydrogen did not appear in those
results (Figure 5.2). Since Boonma did not consider interstellar flow into the solar
system, our results describe physical effects of the velocity distribution along
the solar apex more clearly. Furthermore, Boonma was not able to consider
a steady state. Our results also show the different distributions at 100-120 AU
better than Boonma (2000), who only considered distances inside 60 AU. Anyway,
Boonma employed a good concept for detailed consideration of elastic collisions
of hydrogen atoms and protons.

» Comparison with results of Miiller et al. (2000) (Figure 5.3) - Miiller et al.
used self-consistent hybrid simulation of the interaction of hydrogen with plasma
protons based on the particle mesh method to solve the Boltzmann equation.
Results for the hydrogen distribution in velocity space are qualitatively similar
to our results along the solar apex (to z of about 300 AU, while our results are
for z up to about 200 AU).

In Figure 5.3 from Miiller et al. (2000), the hydrogen distributions at 1
AU and 100 AU have large statistical variations. The hydrogen distribution at
1 AU, with a circle at around 400 km/s, many arise because of an artifact of
integrating over a volume including r = 0.

In addition to calculating the velocity space distribution of hydrogen
atoms along the solar apex, Miiller et al. calculated many other aspects of helio-
spheric structure and the interaction between the solar wind and the interstellar
medium.

At the suggestion of one of those authors (G. Zank), we have considered

the photo-ionization process in our model, which Miiller et al. did not consider.
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Figure 5.3: Results of the hydrogen distribution in velocity space at 1 AU, 100
AU, 200 AU, and 300 AU from Miiller et al. (2000).

Since our simulations are specifically designed for a more limited objec-
tive, our finite difference method calculates the neutral hydrogen velocity distri-
bution in more detail, avoiding the statistical uncertainty of the particle method.
However, this detail comes at the expense of approximating the true heliospheric
geometry by a plane-parallel geometry, which limits the application of our results
to a distance of about 200 AU. Also, our results are not self-consistent in that
we do not calculate the effect of our derived hydrogen distribution on the pro-
ton distribution, as Miiller et al. do. The simulations of Miiller et al. are much
more computation-intensive and involve a solution of hydrodynamic equations of

motion.

5.2 Summary

We summarize the conclusions of this work as follows:

e We have developed and adapted a mathematical formulation and sim-
ulation'model of the distribution of the neutral interstellar medium (ISM) in the
heliosphere, and calculate the hydrogen atom distribution function fg in velocity

space along the solar apex.
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e We can find neutral hydrogen atoms in three regions of velocity space,
which come from three sources: 1) the original ISM, 2) neutral hydrogen pro-
duced from charge exchange interactions with cold, supersonic solar wind inside
the termination shock, and 3) neutral hydrogen produced from charge exchange
interactions with the solar wind shock heated in the inner heliosheath (between
the termination shock and heliopause).

e The hydrogen distribution in the solar system is clearly different in
three regions: the inner solar system (within 86 AU), beyond the heliopause (at
or beyond 131 AU), and the inner heliosheath (86 — 131 AU).

Our results can be used to improve the multi-fluid model (Zank et al.
1996) of the structure of our solar system. Zank et al. used a sum over all three
components, approximated as Maxwellian distributions. In this work we find that
H distributions from the ISM or due to charge exchange with inner heliosheath
protons are highly non-Maxwellian due to streaming effects. Anyway, our model
cannot examine structure outside the heliosphere, such as the possible bow shock

of interstellar plasma, examined in the two-shock model of Miiller et al. (2000).

For future work we can use this model to simulate the time dependence
of the neutral hydrogen distribution based on time-dependent solar wind data,
taking into account the expansion or contraction of heliospheric structure due
to solar cycle fluctuations (Wang aud Belcher, 1999; Richardson et al. 1995).
Our novel computational techniques would be especially useful when applied in

conjunction with hydrodynamic simulations such as those of Miiller et al. (2000).
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Appendix A

Cross Section of Charge Transfer
between H and H+

When two particles a and b collide without a change of state, we term
the event elastic scattering. A familiar example is the Rutherford scattering of
two pointlike charges (e.g., proton-proton scattering), for which the differential

cross section is

do qaGp 2
B Ecm; ecm NS e TV
dQerm ( ) [4Ecm sin? Gcm]

(Schultz et al. 1995). Here 0., e, and E., are the center-of-mass (cm) scat-
tering angle, solid angle, and collision energy, respectively, and ¢, and ¢, are the
charges of the two ions. The non-relativistic relationship between the center-of-

mass and laboratory collision energies is

my
Ecm &7

=7 7Elab;
T it

where in the laboratory a is the projectile and b is the target. The total elastic

cross section can be written as
dO’el - - dO’el " g dO'el .
o = dQ) = 0dOdo = 2 0do.
Oel / 70 /0 /0 70 sin 0] 7r/0 0 sin

In the case when either or both of the two particles have electronic struc-

ture [e:g., proton-hydrogen atom scattering (H*--H)]; there is no-exact analytic
classical or quantum mechanical expression for the differential cross section. In

fact, rather than being governed by a single interaction potential, the collision
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system may have an adiabatic potential energy curve, representing the open elec-
tronic transition channels. Even at very low energies where not even the first ex-
citation theshold can be reached, charge transfer between two identical or nearly
identical nuclei can take place with a probability almost as large as that for elas-
tic scattering. Thus, above the first excitation threshold, elastic scattering is but
one of the competing channels in a possibly complicated multichannel scattering
problem, while even below this energy, it may be necessary to solve at least a
two-channel problem.

Knowledge of the elastic total and differential cross sections, computed by
theoretical means or measured experimentally, is critical to modeling the trans-
port of ions and neutrals in cool dense gas or plasma. However, other related cross
sections are actually of greater practical use. They may be measured through
various parameters of the gas or plasma transport or calculated from the elastic
differential cross section.

Figure A.1 presents results from Schultz et al. (1995) for the following
cross sections: elastic (o), momentum transfer (o,,;), viscosity (o,;), and charge
transfer (= charge exchange; 0.;). The center-of-mass collision energy is in the
range 0.001 < E.,, < 100 eV. This range accommodates the fact that often the
cross section must be averaged over Maxwellian distributions so that knowledge
of the cross section over a slightly larger range is useful. In addition, at the low
end of this range comparisons can be made with data of astrophysical interest,
thus providing an addititional benchmark.

Energy valuesin Figure A.1 can be written in terms of the relative velocity
of particles a and b from the relation E,, = M|, — 4,|?, giving |0, — ,|* =

AE /M.
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transfer cross section (simulation results from Schultz et al. 1995).
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We fit the simulation data in Figure A.1 in terms of the relative velocity

as

o([Va = 0p]) = B + Flog(|va — 1)), (A1)

where B and ( are constant coefficients fit to curve ct in Figure A.1, depending
on energy in the center of mass frame (E.,):

when E,,, <10 eV: B = —-13.09, B = —0.2000

and FE., > 10 eV: B\—= SI2408 B =—-0.2717.
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Appendix B
Solar Wind Proton Distribution

The solar wind protons distribution at each distance from 1 AU to 200
AU can be derived from previous hydrodynamic simulation results (G. Zank and
H.L. Pauls, private communication, 1997) in terms of a Maxwellian distribution

of varying density, velocity, and temperature as follows:

distance from the Sun density velocity temperature

(AU) (=) (km/s) (K)

1.000 5.216E4-00 400.000 1.07E4-05
1.208 3.693E-+00 403.000 8.48E+04
1.418 2.747E4-00 406.900 6.96E+04
1.629 2.120E4-00 409.600 5.86E+04
1.843 1.683E+00 411.600 5.04E4-04
2.058 1.366E+400 413.000 4.41E+04
2.276 1.130E+00 414.100 3.91E404
2.495 9.485E-01 415.000 3.51E+404
2.716 8.066E-01 415.600 3.19E4-04
2.939 6.935E-01 416.200 2.92E4-04
3.164 6.019E-01 416.600 2.7T1E404
3.391 5.268E-01 416.900 2.53E4-04
3.620 4.645E-01 417.200 2.38E4-04
3.851 4.122E-01 417.400 2.25E404
4.084 3.679E-01 417.600 2.15E4-04
4.319 3.301E-01 417.800 2.07E4-04
4.557 2.976E-01 417.900 2.00E4-04
4.796 2.694E-01 418.000 1.95E+04
5.037 2.449E-01 418.000 1.91E+04
5.281 2.234E-01 418.100 1L.87TE+04
5.526 2.045E-01 418.100 1.85E+04
5.774 1L.877E-01 418.100 1.84E+04
6.024 1.728E-01 418.100 1.83E+04
6.276 1.595E-01 418.100 1.84E+04
6.531 1.476E-01 418.100 1.84E+04




distance from the Sun density velocity temperature

(AU) (cm™?) (kn /5) (K)

6.787 1.369E-01 418.000 1.86E4-04
7.046 1.273E-01 418.000 1.87E4-04
7.307 1.185E-01 417.900 1.90E4-04
7.571 1.106E-01 417.900 1.92E4-04
7.837 1.034E-01 417.800 1.95E4-04
8.105 9.676E-02 417.700 1.99E+4-04
8.375 9.073E-02 417.600 2.03E+04
8.648 8.521E-02 417.600 2.07E+04
8.924 8.013E-02 417.500 2.12E+404
9.201 7.546E-02 417.400 2.16E+04
9.481 7.115E-02 4177.200 2.22E+404
9.764 6.717E-02 417.100 2.27E+04
10.050 6.348E-02 417.000 2.33E+04
10.340 6.006 E-02 416.900 2.39E+04
10.630 5.689E-02 416.800 2.45E+04
10.920 5.393E-02 416.600 2.51E+04
11.210 5.118E-02 416.500 2.58E+04
11.510 4.862E-02 416.300 2.64E+04
11.810 4.622E-02 416.200 2.71E+04
12.120 4.398E-02 416.100 2.79E+04
12.420 4.188E-02 415.900 2.86E+04
12.730 3.991E-02 415.700 2.94E+04
13.040 3.806E-02 415.600 3.02E+04
13.360 3.632E-02 415.400 3.09E+04
13.670 3.469E-02 415.200 3.18E+04
13.990 3.315E-02 415.100 3.26E+04
14.310 3.170E-02 414.900 3.34E+04
14.640 3.033E-02 414.700 3.43E+04
14.970 2.904E-02 414.500 3.52E+04
15.300 2.782E-02 414.400 3.61E+04
15.630 2.667E-02 414.200 3.70E+04
15.970 2.558E-02 414.000 3.79E+04
16.310 2.454F-02 413.800 3.89E+04
16.650 2.356E-02 413.600 3.98E+04
17.000 2.263E-02 413.400 4.08E+04
17.350 2.175E-02 413.200 4.18E+04
17.700 2.091E-02 413.000 4.28E+04
18.050 2.011E-02 412.800 4.38E+04
18.410 1.935E-02 412.500 4.48E+04
18.770 1.863E-02 412.300 4.59E+04
19.140 1.794E-02 412.100 4.69E+04
19.500 1.728E-02 411.900 4.80E+04
19.870 1.665E-02 411.700 4.91E+04
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distance from the Sun density velocity temperature

(AU) (cm™?) (kn /5) (K)

20.250 1.606E-02 411.400 5.02E+04
20.630 1.549E-02 411.200 5.13E+04
21.010 1.494E-02 411.000 5.24E+04
21.390 1.442E-02 410.700 5.35E+04
21.780 1.392E-02 410.500 5.47TE+04
22.170 1.345E-02 410.200 5.58E+04
22.560 1.299E-02 410.000 5.70E+04
22.960 1.255E-02 409.700 5.82E+04
23.360 1.214E-02 409.500 5.94E+04
23.770 1.173E-02 409.200 6.06 E+04
24.180 1.135E-02 409.000 6.18E+04
24.590 1.098E-02 408.700 6.31E+04
25.000 1.063E-02 408.400 6.43E+04
25.420 1.029E-02 408.200 6.56E+04
25.840 9.962E-03 407.900 6.68E+04
26.270 9.649E-03 407.600 6.81E+04
26.700 9.347E-03 407.400 6.94E+04
27.140 9.058E-03 407.100 7.07TE+04
27.570 8.779E-03 406.800 7.21E+04
28.020 8.511E-03 406.500 7.34E+04
28.460 8.253E-03 406.200 7.48E+04
28.910 8.005E-03 405.900 7.61E+04
29.360 7.766E-03 405.600 7.75E+04
29.820 7.536E-03 405.300 7.89E+04
30.280 7.314E-03 405.000 8.03E+04
30.750 7.100E-03 404.700 8.17E+04
31.220 6.893E-03 404.400 8.31E+04
31.690 6.694E-03 404.100 8.45E+04
32.170 6.502E-03 403.800 8.59E+04
32.650 6.317E-03 403.500 8.74E+04
33.140 6.138E-03 403.200 8.88E+04
33.630 5.965E-03 402.800 9.03E+04
34.130 5.798E-03 402.500 9.18E+04
34.630 5.637E-03 402.200 9.33E+04
35.130 5.481E-03 401.900 9.48E+04
35.640 5.330E-03 401.500 9.63E+04
36.150 5.185E-03 401.200 9.78E+04
36.670 5.044E-03 400.900 9.93E+04
37.190 4.908E-03 400.500 1.01E405
37.720 4.776E-03 400.200 1.02E4-05
38.250 4.648E-03 399.800 1.04E4-05
38.780 4.525E-03 399.500 1.06E4-05
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distance from the Sun density velocity temperature

(AU) (cm™?) (kn /5) (K)

39.320 4.405E-03 399.100 1.07E+05
39.870 4.290E-03 398.800 1.09E4-05
40.420 4.178E-03 398.400 1.10E4-05
40.970 4.069E-03 398.100 1.12E+05
41.530 3.964E-03 397.700 1.14E4-05
42.100 3.862E-03 397.300 1.15E4-05
42.670 3.763E-03 397.000 1.17E405
43.240 3.667E-03 396.600 1.19E4-05
43.820 3.574E-03 396.200 1.20E4-05
44.410 3.484E-03 395.800 1.22E+05
45.000 3.397E-03 395.400 1.24E+05
45.590 3.312E-03 395.000 1.25E4-05
46.190 3.230E-03 394.600 1.27E405
46.800 3.150E-03 394.200 1.29E4-05
47.410 3.073E-03 393.800 1.31E4-05
48.030 2.997E-03 393.400 1.33E4-05
48.650 2.924E-03 393.000 1.34E4-05
49.270 2.854E-03 392.600 1.36E4-05
49.910 2.785E-03 392.200 1.38E+05
50.550 2.718E-03 391.800 1.40E4-05
51.190 2.653E-03 391.300 1.42E4-05
51.840 2.590E-03 390.900 1.44E+05
52.490 2.528E-03 390.500 1.46E4-05
53.160 2.469E-03 390.000 1.48E4-05
53.820 2.411E-03 389.600 1.50E+05
54.500 2.355E-03 389.100 1.52E405
55.170 2.300E-03 388.600 1.54E4-05
55.860 2.246E-03 388.200 1.56E+05
56.550 2.195E-03 387.700 1.58E4-05
57.250 2.144E-03 387.200 1.60E4-05
57.950 2.095E-03 386.700 1.62E4-05
58.660 2.048E-03 386.200 1.64E4-05
59.370 2.001E-03 385.700 1.66E+05
60.100 1.956E-03 385.200 1.68E+405
60.820 1.912E-03 384.700 1.71E4-05
61.560 1.870E-03 384.200 1.73E4-05
62.300 1.828E-03 383.600 1.75E4-05
63.050 1.787E-03 383.100 1.77E4-05
63.800 1.748E-03 382.500 1.80E+05
64.560 1.710E-03 382.000 1.82E4-05
65.330 1.672E-03 381.400 1.84E4-05
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distance from the Sun density velocity temperature
(AU) (cm™?) (kn/s) (K)
66.100 1.636E-03 380.800 1.87E+05
66.880 1.600E-03 380.300 1.89E405
67.670 1.566E-03 379.700 1.91E405
68.470 1.532E-03 379.100 1.94E4-05
69.270 1.499E-03 378.500 1.96E+05
70.080 1.467E-03 377.900 1.99E+05
70.890 1.436E-03 377.200 2.02E4-05
71.710 1.406E-03 376.600 2.04E405
72.550 1.376E-03 376.000 2.07TE+405
73.380 1.347E-03 375.300 2.10E405
74.230 1.319E-03 374.700 2.12E405
75.080 1.291E-03 374.000 2.15E405
75.940 1.265E-03 373.300 2.18E405
76.810 1.239E-03 372.700 2.20E405
77.680 1.213E-03 372.000 2.23E405
78.570 1.188E-03 371.300 2.26E405
79.460 1.164E-03 370.600 2.29E405
80.350 1.140E-03 369.900 2.32E405
81.260 1.117E-03 369.100 2.35E405
82.170 1.094E-03 368.400 2.37TE+05
83.100 1.073E-03 367.700 2.40E405
84.030 1.048E-03 367.000 2.43E405
84.970 1.037E-03 366.300 2.47TE405
85.910 1.100E-03 360.600 2.67TE405
86.870 1.359E-03 322.900 4.37TE405
87.830 2.012E-03 237.900 9.63E405
88.800 3.098E-03 147.200 1.57E+06
89.780 3.440E-03 101.000 1.74E4-06
90.770 3.470E-03 93.770 1.74E4-06
91.770 3.492E-03 89.910 1.74E4-06
92.780 3.517E-03 85.980 1.74E4-06
93.790 3.542E-03 82.030 1.75E+06
94.820 3.567E-03 78.210 1.75E+06
95.850 3.592E-03 74.520 1.75E+06
96.900 3.615E-03 70.930 1.75E+06
97.950 3.638E-03 67.440 1.75E4-06
99.010 3.659E-03 64.050 1.74E4-06
100.100 3.682E-03 60.750 1.74E4-06
101.200 3.705E-03 57.530 1.74E4-06
102.200 3.728E-03 54.390 1.73E+06
103.300 3.752E-03 51.340 1.73E+06
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distance from the Sun density velocity temperature
(AU) (cm™?) (kn/s) (K)
104.500 3.776E-03 48.350 1.72E+06
105.600 3.801E-03 45.440 1.72E+06
106.700 3.828E-03 42.590 1.71E+06
107.800 3.857E-03 39.810 1.70E+06
109.000 3.887E-03 37.090 1.69E4-06
110.100 3.920E-03 34.420 1.68E4-06
111.300 3.957E-03 31.820 1.66E4-06
112.500 3.996E-03 29.270 1.65E4-06
113.700 4.041E-03 26.790 1.63E+06
114.900 4.091E-03 24.360 1.61E+06
116.100 4.148E-03 22.000 1.59E+06
117.300 4.213E-03 19.690 1.57E406
118.500 4.290E-03 17.450 1.54E+06
119.800 4.380E-03 15.270 1.51E+06
121.000 4.490E-03 13.170 1.47E+06
122.300 4.625E-03 11.140 1.43E+06
123.600 4.795E-03 9.195 1.37E+06
124.900 5.019E-03 7.341 1.31E+06
126.200 5.330E-03 5.588 1.23E+06
127.500 5.806E-03 3.942 1.13E+06
128.800 6.713E-03 2.414 9.78E+05
130.100 9.444E-03 1.146 6.94E405
131.500 1.011E-01 0.239 6.46E4-04
132.800 1.854E-01 -0.367 3.49E4-04
134.200 1.969E-01 -0.795 3.25E404
135.600 2.050E-01 -1.182 3.08E+04
137.000 2.111E-01 -1.537 2.96E4-04
138.400 2.159E-01 -1.868 2.86E4-04
139.800 2.198E-01 -2.177 2.7T7E404
141.200 2.229E-01 -2.468 2.70E4-04
142.700 2.254E-01 -2,746 2.64E4-04
144.100 2.275E-01 -3.010 2.58E4-04
145.600 2.292E-01 -3.265 2.53E4-04
147100 2.307E-01 -3:510 2.49E+-04
148.600 2.318E-01 -3.747 2.45E4-04
150.100 2.328E-01 -3.977 2.41E+4+04
151.600 2.336E-01 -4.200 2.38E4-04
153.100 2.343E-01 -4.418 2.34E4-04
154.700 2.347E-01 -4.631 2.31E4-04
156.200 2.352E-01 -4.838 2.28E4-04
157.800 2.355E-01 -5.040 2.26E4-04
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distance from the Sun density velocity temperature
(AU) (cm™?) (kn/s) (K)
159.400 2.358E-01 -5.238 2.23E+4+04
161.000 2.360E-01 -5.433 2.21E+04
162.600 2.361E-01 -5.623 2.19E+04
164.200 2.362E-01 -5.810 2.17TE+04
165.900 2.363E-01 -5.994 2.15E+404
167.500 2.363E-01 -6.175 2.13E+4+04
169.200 2.363E-01 -6.353 2.11E+404
170.900 2.363E-01 -6.528 2.09E+404
172.600 2.363E-01 -6.700 2.08E+04
174.300 2.363E-01 -6.870 2.06E+04
176.100 2.362E-01 -7.038 2.05E+04
177.800 2.362E-01 -7.202 2.03E+04
179.600 2.361E-01 -7.366 2.02E+4-04
181.300 2.361E-01 -7.527 2.00E+404
183.100 2.360E-01 -7.687 1.99E4-04
185.000 2.359E-01 -7.845 1.98E4-04
186.800 2.358E-01 -8.002 1.97E4-04
188.600 2.356E-01 -8.158 1.95E4-04
190.500 2.355E-01 -8.313 1.94E4-04
192.400 2.354E-01 -8.466 1.93E4-04
194.200 2.353E-01 -8.618 1.91E404
196.200 2.352E-01 -8.770 1.90E4-04
198.100 2.351E-01 -8.920 1.89E4-04
200.000 2.350E-01 -9.068 1.87E+4-04
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Figure B.1: Graph of proton density, velocity, and temperature versus distance
from the Sun (z).



Appendix C

Source Code

Boltz.c

/* adapt on interpolate case on Oct 10, 2000
New Lastest update for interpolate case
boltz.c -- November 25, 2000

Modified from wind.c (t) of February 1, 1997 to solve the
Boltzmann equation for neutral Hydrogen in the outer heliosphere.

The processes we consider at this point are:
Necessary files and subroutines:

boltz.c main, arctan, grid_t, grid_p, interpo, sub_interpo,
polint, interpo_t, interpo_t, interpo_f
chex.c chex, protondata, fact, doublefact, alphafact, velocity_term
initial.c initial
nrutil.c nrerror, dvector, ivector, dmatrix, darray,

free_dvector, free_ivector, free_dmatrix, free_darray
printout.c printout
stream.c stream, tvdinflow, gengam

Variables input from the user:

starttime Initial value of time (days)

stoptime Final value of time (days)
timestep Time step (days)
printtime Printing interval (days)
length Length of simulation region  (AU)
zstep Spatial step slong solar apex (AU)

printextra Print extra diagnostic information? (0/1)

Chanruangrit Channok, Panita Boonma, Worachate Boonplod and David Ruffolo
Department of Physics

Faculty of Science

Chulalongkorn University

Bangkok 10330, THAILAND

#include <math.h>
#include <stdio.h>

#define M 938780000.0  /* Mass of a hydrogen atom (eV/c72) */
#define DUMP 1 /* (0 = DON’T DUMP), (1 = DUMP) x/

double **xf , kokkgam;
double *dens, *px, *temp;
double *p, *mu,*mu0,*mul, *theta, zstep;



int *fine, np, nz, nmu0, nmui;

main()
{
FILE *f_dump;
double starttime, stoptime, printtime, timestep, time, nextprint;
double *beta, *ke, length;
int nmu, printextra, u, w, 1;

double **xdarray2(), *dvector();

void free_darray2(), free_dvector(), nrerror();

void initial(), printout(), gen_gam(), stream(), chex(), photoionization(),
print_fp(), test_f(), grid_t(), grid_p(), protondata();

/* Input parameters from the user */

printf (" ———— R S S e - \n");
printf(" Hello! Welcome to Boltzmann Transport Simulation Project. \n");
printf (" ————--—— - R e —— g e —— —————— \n");

printf(" \n Please input the following parameters:\n");

printf("\n Starting value of time (days): ");
scanf ("%1f" ,&starttime);

printf("\n Final value of time (days): ");
scanf ("%41f",&stoptime);

printf("\n Time step (days): ");

scanf ("%41f",&timestep);

printf("\n Time interval after which to print out data (days): ");
scanf ("%41f",&printtime) ;

printf("\n Length in the z-direction (AU): ");
scanf ("%41f",&length);

printf("\n Step in the z-direction (AU): ");
scanf ("%1f",&zstep) ;

/* find plw] */
grid_pQ; /* set np */
printf("\n numeber of momentun grid (np) = %d ",np);
beta = dvector(0,np);
ke dvector(0,np);
for (w=0;w<=np;w++)
printf("\n p[w=}2d] = %12.41f eV/C  finel[w=/2d] = %d",w,plw],w,finelw]);

printf("\n Do you want to print extra diagnostic information 7 ");
printf("\n Enter 1 for <Yes>, 0 for <No> ");
scanf ("%d" ,&printextra) ;

/* Calculating kinetic energy[w] and betalw]. */
ke[0]=0.0; betal[0]=0.0;
for (w=0;w<=np;w++) {
ke[w] = sqrt(plwl*plw]l + MxM) - M;
betalw] = plwl/(ke[w] +M);
if (printextra)
printf("\n boltz.c: ke[%2d]=%13.51f, betal[%2d]=%11.81f",w,ke[w],w,betalw]);
}
printf("\n");

/* Calculating nz, zstep; length is now rounded to be integral multiple of zstep. */

nz=(length/zstep)+0.5;

if (nz==0) nrerror("boltz:nz=0");

printf("\n input : nz(double)=)lf, nz(int)=%d, length=}1f",length/zstep,nz,nz*zstep);
length = nz*zstep;



printf("\n nz=)d : for use in array temp[l...nz] dens[l...nz] px[i...nz] \n",nz);
temp = dvector(l,nz);
dens = dvector(1l,nz);
px dvector(1,nz);

grid_t(); /* set nmu0 & nmul */
for (u=0;u<=nmulO+nmul;u++) printf(" thetal})2d] = %6.21f \n",u,thetalul);

/* Echoing */
printf("\n Your input the following parameters:\n");

printf("\n Starting time (days) : %121f",starttime);
printf("\n Final time (days) : %121f",stoptime);
printf("\n Time step (days) : %121f",timestep) ;
printf("\n Print interval (days) : %121f",printtime);
printf("\n Length (AU) : %121f",length);
printf("\n Step in z-direction (AU) : %121f",zstep);
printf("\n Printextra (0 & 1) : %5d\n",printextra);

/* Idiot Proofing */
if (stoptime < starttime) nrerror("boltz: stoptime < starttime");

if (timestep <= 0) nrerror("boltz: timestep <= 0");

if (printtime < timestep) nrerror("boltz: printtime < timestep");
if (length <= 0) nrerror ("boltz: length <= 0");

if (zstep <= 0) nrerror ("boltz: zstep <= 0");

/* Defining array for f */

nmu=nmu0>nmul ? nmuO:nmul;

f = darray2(0,np,1,nz,0,nmu);

printf("\n boltz.c: array of £(0-%d,1-%d,0-%d)",np,nz,nmu);

if (printextra) printf("\n Now we are here step ONE \n");

/* Start Programing Calculation */

initial(); /* initial for f[w][1][u]l */
printf("\n Start for print test f from initial() \n");
test_f(); /* print value f[w][1l][u] for test */

printout(printtime,starttime);

protondata(nz,zstep);
gen_gam(timestep,beta);

/* FOR EACH TIME STEP:
- Inject new flux (IF NECESSARY).
- Calculate f at the new time step, according to the transport equation
Print out the data (IF NECESSARY).
*/

nextprint = starttime + printtime;

for (time=starttime;time+timestep<=stoptime+timestep/2;time+=timestep) {
printf("\n - Loop of time t = %1f \n",time);

chex(timestep/2,beta);
/* ## No need for streaming when [w=0] because p=0 and therefore v_z=0. */

printf(" \n Streaming Process \n'");
for(w=1;w<=np;w++) stream(time,timestep,w);

photoionization(timestep);

chex(timestep/2.,beta);
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if (time+timestep >= nextprint-0.0l*timestep) {
printf("\n\n time = %,.21f days \n",time+timestep);

printf("\n *kxkkxkkkkx test_f after change of time *kxkkxkx*x \n");
test_f();

printout(printtime,time+timestep);

nextprint += printtime;

}

/* "DUMP" out £, SO THAT THE RUN MAY BE CONTINUED. < 0 or 1 > */
if (DUMP) {
f_dump = fopen("dump.dat","w");
printf("\n\n Now dumping f(p[w],z[1],mulul)

for a later run... time final = 7.21f day \n",time);
/* w=0 */
for (1=1;1<=nz;1++) fprintf(f_dump,"\n £[0][%3d]1[0]=%121e ",1,£[01[1]1[0]1);
/¥ w>0 */

for(w=1;w<=np;w++) {
if(fine[w]==1) nmu=nmuil;
else nmu=nmu0;
for(l=1;1<=nz;1++) {
for(u=0;u<=nmu;u++) {
fprintf (f_dump,"\n f[%2d][%43d][%2d]=%121e ",w,1,u,f[w][1][ul);
¥
}
}
fclose(f_dump);
¥

free_dvector(theta,0);
free_dvector(mu0,0);
free_dvector(mul,0);
free_dvector(p,0);
free_dvector(ke,0);
free_dvector(beta,0);
free_ivector(fine,0);
free_darray2(f,0,np,1,nz,0);
free_dvector(dens,1);
free_dvector(px,1);
free_dvector(temp,1);

printf("\n  ----- ‘0 *k E N D % fo =—=- \n");
printf("\n -——------mm—m Finish Boltz.c =————————————————mmmm \n");
}

/* test_f : for print test data of flw]l[1][ul =*/

void test_f()
{

int u, w, 1, nmu;

/* for w=0 */
for(1=1;1<=nz;1++) {

/% printf("\n f[w=0][1=%3d] [u=0] = %le ",1,£[0][11[0]); " */
}

/* for w>=1 x/
for(w=1;w<=np;w++) {
if (fine[w]==0) nmu=nmu0;
else nmu=nmul;



for(1l=1;1<=nz;1++) {
for (u=0;u<=nmu;u++)

printf("\n f[w=%2d][1=%3d] [u=%2d]

/* This function discretizes

*/

void grid_t()

{

}

double pi, *dvector();
pi=4.0*atan(1.0);

nmu0 = 11; nmul = 4;

mu0 =dvector(0,nmu0);

mul =dvector(0,nmul);
theta=dvector (0,nmu0+nmul) ;

thetal[0] =
thetal[l] =
thetal[2] =
thetal[3] =
thetal[4] =
thetal[5] =
thetal[6] =
thetal[7] =
thetal[8] = 8
thetal[9] = 90.0;
theta[10] = 100.0;
thetal[11] = 120.0;
thetal[12] = 150.0;

0;

03

0;

D W O PN~ O

theta[13] = 165.
thetal[14] = 175.
theta[15] = 180.

muO[0]=cos( theta[0]*pi/180.
muO[1]=cos( theta[5]*pi/180.
muO[2]=cos( theta[6]*pi/180.
muO[3]=cos( theta[7]*pi/180.
mu0[4]=cos( theta[8]*pi/180.
muO[5]=cos( theta[9]*pi/180.
mu0[6]=cos(theta[10]*pi/180.
muO[7]=cos(theta[11]*pi/180.
mu0[8]=cos(theta[12]*pi/180.
mu0[9]=cos(theta[13]*pi/180.

muO[10]=cos(theta[14]*pi/180.);
muO[11]=cos(theta[15]*pi/180.);

mul[0]=cos(theta[0]*pi/180.
mul[1]=cos(theta[1]*pi/180.
mul[2]=cos(theta[2]*pi/180.

)
)

).

thetal0
and discritize mu0[0....11]

H /* add new grid

/* add new grid

mul[3]=cos(theta[3]*pi/180.);
mul[4]=cos(theta[4]*pi/180.);

*/

*/

/* This function discretizes momentum p[O0.....

void grid_p()

{

%le ",w,l,u,f[w]l[1][ul);

13] from 0 - 180 degree
& mui[0....4]
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double a, *dvector();
int *ivector();

np = 24;

p = dvector(0,np);

fine = ivector(0,np);

[*k=—mmm fine[...] = 0 for course grid----------- */
[Hmmmmm fine[...] =1 for fine grid----------- */

a=3136.125; /* factor for change velocity(km/s) to momentum(eV/C) */

pl0]l = (0.*a); fine[0] = 0;
pl1l = (10.*a); fine[1] = 0;
p[2] = (15.%a); fine[2] = 0;
pl3] = (20.%a); fine[3] = 0;
p[4] = (25.%a); fine[4] = 0;
pl5] = (30.%a); fine[5] = 0;
pl6] = (40.%a); fine[6] = 0;
pl7] = (60.%a); fine[7] = 0;
pl8] = (100.*a); fine[8] = 0;
p[9] = (140.%*a); fine[9] = 0;
pl[10] = (180.*a); fine[10] = 0;
pl[11] = (220.*a); fine[11] = 0;
pl[12] = (260.*a); fine[12] = 0;
pl[13] = (310.%a); fine[13] = 0;
pl[14] = (320.%*a); fine[14] = 1;
pl[15] = (340.*a); fine[15] = 1;
pl[16] = (360.%a); fine[16] = 1;
pl[17] = (380.%a); fine[17] = 1;
pl[18] = (395.*a); fine[18] = 1;
p[19] = (400.%a); fine[19] = 0;
p[20] = (410.%*a); fine[20] = 1;
pl[21] = (420.%a); fine[21] = 1;
pl[22] = (430.*a); fine[22] = 1;
p[23] = (450.%a); fine[23] = 1;
pl[24] = (500.%a); fine[24] = 0;

/* Program interpo.c 15 Feb 2000

The output is the *log base 10* of f for momentum pp and angle theta.
An output of -999 means that f is zero.
Note: we must have a value of theta[] (the last one) as 180.0;

*/

double interpo(pp,l,th)

int 1;

double pp,th;

{
double 1f00, 1£01, 1f10, 1fi1, 1fpO, 1lfpl, 1lftH, 1ftL, output;
double frac, f00, f01, f£10, fi1;
int w, wl, u, u0, ul, angle0O, anglel;

double fourpt();
void nrerror();

if (th > 180.0) nrerror("interpo: bad th");
[*===== case 1: coarse grid, p near 0, use log-linear p-interpolation-----

if (pp>=0 && pp<=p[1]) {
if (th <= theta[5]) {
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u0=0; ul=1;
angle0=0; anglel=5;
} else {
for (u0=1;thetalu0+5]<th;ul++);
ul=ul+1;

angleO=u0+4; anglel=ul+5;
}

/* First, log-linear interpolation in theta at p[1]. */

if (£[1]1[1] [uOl*£f[1]1[1] [ull*£[0]1[1]1[0] == 0) return -999.;

else {
frac = (th-thetalangle0])/(thetalanglel]-thetalangle0]);
1fpl = (1-frac)*loglO(£[1]1[1]1[u0]) + frac*loglO(£[1][1][ull);

/* Now, log-linear interpolation in p, from p[0]=0 to p[1]. */

frac = pp/pl[1];
output = (1-frac)*loglO(£[0][1]1[0]) + fracxlfpl;
return output;

[ e case 2 uiEE= = S ll L */
else if ((pp>p[11)&&(pp<=p[13]1)) {
for (w=1;plw+1]<pp;w++);

if (w<il || w>12) nrerror("interpo: bad w in case 2");
if (th <= theta[5]) {

u0=0; ul=1;

angle0=0; anglel=5;
} else {

for (u0=1;thetal[5+u0]<th;ul0++);

ul=ul+1;

angleO=u0+4; anglel=ul+5;
}
if (f[w][1] [u0l*f [w] [1] [ull*f [w+1] [1] [uO]*£[w+1][1][ull == 0) {
return -999.;
} else {
1£00 = loglO(f [w][1][u0l);
1£f01 = loglO(f[wl[1][ull);
1£10 = loglO(f [w+1][1] [u0]);
1f11 = loglO(f[w+1][1][ull);
return fourpt(pl[w],plw+1],pp,thetalangle0],thetalanglel],th,1£00,1£01,1£f10,1f11);

[ e caB 3 --—--— o */
else if ((pp>pl[14]&&pp<=p[23]&&th<=theta[4])&&! (pp>p[18]&&pp<=p[20]&&th<=thetal[1])) {
if (pp>p[18] && pp<=p[20]) {
w=18; w1=20;
for (u=0j;thetalu+l]<th;u++);
if (f[w][1] [ul*f[w] [1] Cu+1]*f[wi] [1] [ul*f [wi] [1] [u+1] == 0) {
return -999.;

} else {
1£00 = loglO(f [w][1][ul);
1£01 = logl0(f[w][1] [u+il);
1£f10 = loglO(£f[wi][1][ul);
1f11 = loglO(f[wi] [1][u+il);

return fourpt(pl[w]l,plwl],pp,thetalul,thetalu+1],th,1£f00,1£01,1£f10,1£11);
}
} else {
for(w=14;p[w+1]<pp;w++) ;
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for (u=0;thetalu+1]<th;u++);
if (£ [w][1] [ul*f [w] [1] [u+1]*f [w+1] [1] [ul*f [w+1] [1] [u+1] == 0) {
return -999.;

} else {
1£00 = loglO(£f[wl[1][ul);
1£f01 = loglO(£[w]l[1] [u+11);
1£10 = loglO(f [w+11[1][ul);
1f11 = loglO(£[w+1][1] [u+11);

return fourpt(pl[wl],p[w+l],pp,thetalul,thetalu+1],th,1£00,1£01,1£f10,1f11);

}
}
¥
[Hmmmmm e case 4---——--——--——--——--——-- */
else if ((pp>p[131)&&(pp<=p[19]) && (th>theta[5])) {
w=13; wi=19;
for (u=1;thetalu+5]<th;u++);
if (f[w][1] [ul*f[w] [1] [u+i]*f[wi] [1] [ul*£[wi] [1] [u+1] == 0) {
return -999;
} else {
1£00 = loglO(f [w][1][ul);
1£f01 = loglO(f[w][1][u+1]);
1£10 = loglO(f[wi]l[1][ul);
1f11 = loglO(f [wi][1] [u+1]);
return fourpt(p[w],plwl],pp,thetalu+4],thetalu+5],th,1£00,1£01,1f10,1f11);
}
}
[ e case BEE- - s o e~ */
else if ((pp>p[19]1)&&(pp<=p[24]) && (th>theta[5])) {
w=19; wl=24;
for (u=1;thetalu+5]<thj;u++);
if (£ [wl[1] [ul*£[w] [1] Cu+dd*f [wi]l (1] [ul*f[wi] [1] [u+1] == 0) {
return -999;
} else {
1f00 = loglO(f[w][1][ul);
1£01 = loglO(f [w][1] [u+1l);
1£f10 = loglO(f[wil[1][ul);
1f11 = loglO(f [wi] [1] [u+il);
return fourpt(p[w],plwll,pp,thetalu+4],thetalu+5],th,1£00,1£01,1f10,1f11);
}
¥
[Hmmmmm e gy */
else if ((pp>p[13]1)&&(pp<=p[14]) && (th<=theta[4])) {
w=13; wl=14;

for (u=0;thetalu+1]<th;u++);

if (£[w][1][0J*£[w][1][1]*£[w1][1] [ul*f[wi][1][u+1] == 0) {
return -999;

} else {

/* First, interpolate in theta at w. */

frac. = th/thetal[5];

1fp0 = (1-frac)*loglO(£f[w][1]1[0]) + fracxloglO(f[w]l[1]1[11);
/* Next, interpolate in theta at wil. */

frac = (th-thetal[ul)/(theta[u+1]-thetalul);

1fpl = (1-frac)*loglO(£f[w1][1][ul) + frac*loglO(f[wi][1][u+1l);
/* Now, log-log interpolation in p. */

frac = 1log10(pp/plwl)/1logl0(plwil/plwl);

output = (1-frac)*1fp0 + frac*lfpl;



return output;

else if ((pp>p[23]1)&&(pp<=p[24]) && (th<=theta[4])) {
w=23; wl=24;
for (u=0;thetalu+l]<th;u++);

if

(£ [w] [1] [ul*f [w] (1] [u+1]*£ [wi] [1] [0]*£ [w1] [1]1[1] == 0) {

return -999;

} else {

/* First, interpolate in theta at wil. */
frac th/thetal5];
1fpl = (1-frac)*loglO(£f[wi][1][0]) + frac*loglO(£f[wi]l[1]1[11);

/* Next, interpolate in theta at w. */

frac = (th-thetal[ul)/(thetal[u+i]-thetalul);

1fp0 = (1-frac)*1loglO(£[w]l[1]1[ul) + frackloglO(f[w][1][u+1]);
/* Now, log-log interpolation in p. */

frac = loglO(pp/plwl)/loglO(plwil/plwl);

output = (1-frac)*1fp0 + frac*1lfpl;

return output;

else if((pp>p[13])&&(pp<=p[19]) && (th>theta[4])&&(th<=theta[5])) {
if (£[131[11[11*£[19]1[1]1[1] == 0) {
return -999;

} else {
frac = logl0(pp/p[13]1)/1logli0(p[19]1/p[13]1);
1ftH = (1-frac)*loglO(£[13][1][1]) + frac*loglO(£[19][1]1[1]);
}
if (pp<pl[14]) {

if (£[13]1[1]1[0]*£f[14][1][4] == 0) {

return -999;

}

else {

frac = th/thetal[5];

1f00 = (1-frac)*loglO(£[13]1[1]1[0]) + frac*loglO(£[13][11[1]);
frac = logl0(pp/p[13]1)/1logl0(p[14]/p[13]1);

1ftL = (1-frac)*1f00 + frac*loglO(£f[14][1][4]);

/* Second, interpolate in theta (use linear) */

£
o

rac = (th-theta[4])/(theta[5]-thetal[4]);
utput = (1-frac)*1ftL + frac*lftH;

return output;

}

}
else if(pp>=p
for

[14] && pp<=pl[181) {
(w=14;p[w+1]<pp;w++);

if (f[wl [11[4]1*f[w+1]1[11[4] == 0) {

return -999;

¥

else {

frac = logl0(pp/plwl)/loglO(plw+1]l/plwl);

1ftL = (1-frac)*loglO(f[w]l[1]1[4]) + fracxloglO(f[w+1][1][4]1);
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else

else if((
if

} e

}
if (pp<p[20]

}
else if(pp>

£

else

/* Second, interpolate in theta (use linear) */
frac = (th-theta[4])/(theta[5]-thetal[4]);
output = (1-frac)*1ftL + frac*lftH;

return output;

}

if (pp>p[18])1

if (£[18]1[11[41*£[201[11[4]1 == 0) {

return -999;

}

else {

frac = logl0(pp/pl[18])/logl0(p[20]1/p[18]1);

1ftL = (1-frac)*loglO(£[181[11[4]) + frac*loglO(£[20][11[4]1);

/* Second, interpolate in theta (use linear) */

frac = (th-theta[4])/(theta[5]-thetal[4]);

output = (1-frac)*1ftL + frac*lftH;

return output;
}
—————————— caseMO==————oul o st - —F — o asn
pp>p[191) && (pp<p[24]) && (th>thetal[4])&&(th<=theta[5])) {
(£[191[11 [1]1*£[24]1[1]1[1] == 0) {

return -999;
lse {

frac = logl0(pp/pl[19])/logl0(p[24]/p[19]);

1ftH = (1-frac)*loglO(£[19]1[1]1[1]) + frac*loglO(f[24][1]1[1]);
) {

if (f[18]1[1]1[41*f[20]1[1]1[4] == 0) {
return -999;

}

else {

frac = logl0(pp/pl[181)/1logl0(p[20]1/p[18]1);

1ftL = (1-frac)*loglO(£[18][1]1[4]) + frac*loglO(£f[20][1]1[4]);

/* Second, interpolate in theta (use linear) */
frac = (th-thetal[4])/(theta[5]-thetal[4]);
output = (1-frac)*1ftL + frac*1ftH;

return output;

}

=p[20] && pp<=p[23]) {
or (w=20;p[w+1]<pp;w++);
if (£[w] [1] [41%f [w+11[11[4] == 0) {

return -999;

¥

else {

frac = logl0(pp/plwl)/loglO(plw+1]/plw]l);

1ftL = (1-frac)*loglO(f[w]l[1][4]) + frac*loglO(f[w+1][1]1[4]);

/* Second, interpolate in theta (use linear) */
frac = (th-theta[4])/(theta[5]-thetal[4]);
output = (1-frac)*1ftL + frac*lftH;

return output;

}

if (pp>p[231){
if (£[24]1[1]1[01*£[241[11[1]1 == 0) {
return -999;
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}

else {

frac = thetal[4]/thetal[5];

1£10 = (1-frac)*logl0(£[24]1[11[0]) + frac*loglO(f[24]1[11[1]);

frac = logl0(pp/p[23]1)/logl0(p[24]1/p[23]1);
1ftL = (1-frac)*loglO(£f[23][1]1[4]) + frac*1f10;

/* Second, interpolate in theta (use linear) */
frac = (th-thetal[4])/(theta[5]-thetal[4]);
output = (1-frac)*1ftL + frac*1lftH;

return output;

else if (pp>pl[18]&&pp<=p[20]&&th<=thetal[1]) {
if (pp>pl[18]&&pp<=p[19]) {
if (£[181[1][01#£[19][1][0]*£[18][1] [11%£[20]1[11[1] == 0) {
return -999;

} else {
frac = logl0(p[19]1/p[18]1)/1og10(p[20]1/p[18]);
1f11 = (1-frac)*loglO(£[18][1][1]) + frac*loglO(f[20]1[1][1]1);
1£f00 = loglO(£[18][11[0]);
1f01 = loglO(£[18]1[1]1[1]);
1£f10 = loglO(£[19]1[11[01);
return fourpt(p[18],p[19],pp,theta[0],thetal[1],th,1£00,1£01,1£10,1£f11);
}
}
else {

if (£[019][1][0J*£[20][1][0]*£[18] [1][1]*£[20][1]1[1] == 0) {
return -999;
} else {

frac = logl0(p[19]1/p[18])/1log10(p[20]1/p[18]);
1f01 = (1-frac)*loglO(£[181[1]1[1]) + frac*loglO(£[20]1[1][1]);

1£f00 = loglO(£[191[11[01);
1£10 = logl0(£[20][1]1[01);
1f11 = logl0(£[20]1[1]1[11);
return fourpt(p[19],p[20],pp,thetal0],thetal1],th,1£00,1£01,1f10,1f11);

[Hmmmmmm e case Tl ——— oo */
else if (pp>p[24]) return -999;
else printf(" Out of Case on interpolate \n");

}
/* fourpt - four-point interpolation

First we use log-log interpolation of f in the p direction, and then
log-linear interpolation of f in the theta direction.

inputs:

p0 -> lower p

pl -> higher p

pp -> p where loglO(f) is desired

thO -> lower theta

thl -> higher theta

th -> theta where loglO(f) is desired



*/
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1f00 -> logl0(f) at the lower p, lower theta

1f01 -> loglO(f) at the lower p, higher theta
1£10 -> 1logl0(£f) at the higher p, lower theta
1f11 -> loglO(f) at the higher p, higher theta

variables in the subroutine:

1fint0 -> loglO(f) interpolated in (loglO)p, for lower theta
1fintl -> loglO(f) interpolated in (logl0)p, for higher theta
output -> final, interpolated loglO(f)

double fourpt(p0,pl,pp,th0,thl,th,1£00,1£01,1£10,1£11)
double pO, pl, pp, thO, thil, th, 1f00, 1f01, 1£f10, 1fi1;

{

double 1fint0, 1finti1, 1p0, 1lpl, lpp, frac, output;
void nrerror();

if (p0 <=0 || pt <= 0) {
printf ("pO=%le, pl=}le\n");
nrerror ("fourpt: bad p0 or pi");

}

1p0 = loglO(p0);
1pl = logl0(pl);
1pp = loglO(pp);

frac = (1pp-1p0)/(1p1-1p0);
1fint0 = (1-frac)*1f00 + frac*1f10;
1fintl = (1-frac)*1f01 + fracx1fii;

frac = (th-th0)/(th1-th0);
output = (1-frac)*1fint0 + fracxlfintl;

return output;



Initial.c

/* Define initial distribution of hydrogen atoms */

#include <stdio.h>
#include <math.h>
#define M 938780000.0 /* Mass of a hydrogen atom (eV/c"2) */

#define k 8.617384e-05 /* Boltzmann constant (eV/K) */

#define T 10900 /* Temperature (K) x/

#define VAVE -26 /* average velocity of maxwellian initial distribution (km/s) */
#define L 200 /* define position of z[l] for initial Hydrogen flow */

extern double *x*x*f;
extern double *p, *mu0, *mul;
extern int np,nz,*fine,nmu0,nmul;

void initial()
{
int u, w, 1, nmu;
double b, d, g, mu, pi, pave;

pi=4.0*atan(1.0);
pave=VAVE*3136.125; /* change volocity to momentum */
b=(2.0*pi*Mxk*T) ;

for (w=0;w<=np;w++) {

if (w==0) nmu=0;

else if(fine[w]==0) nmu=nmu0;

else nmu=nmul;

for(1l=1;1<=nz;1++) {

for(u=0;u<=nmu;u++) {

if (fine[w]==0) mu=mu0[u];
else mu=mull[u];

d=(p[wl*p[w])-(2.*muxp[w]*pave)+(pave*pave) ;
g=d/ (2.*Mxk*T) ;

if(1==L) f[w][1][ul=(1./pow(b,1.5))*exp(-g);
else f[w][1][ul=0.0;

}
}

/* consider lower Hydrogen distribution by if <very small> given to ZERO x/
for (w=0;w<=np;w++) {
if (w==0) nmu=0;
else if(fine[w]==0) nmu=nmu0;
else nmu=nmul;
for(1l=1;1<=nz;1++) {
for(u=0;u<=nmu;u++) {
if (f[w] [1] [ul<1.0e-100) f[wl[1][ul=0.0;
}
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Printout.c

/*  Print output for v_\perp vs. v_\parallel ---> Contour plots of distribution

We have f as a function of p and mu = p_z/p.

Now we want to output f for a rectangular grid of

v_\parallel and v_\perp values, using linear interpolation

in mu and geometric interpolation in p.

(Note that : v_\parallel = v_z = mu*v, and v_\perp = sqrt(l-mu*mu)*v. )

First step: what (pp) and (angle) correspond to our desired vz and vy 7
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

#define  VRANGE 500. /* in (km/s) */
#define  YVRANGE  400. /* in (km/s) */
#define  VSTEP 10. /* in (km/s) */
#define C 299790. /* in (km/s) */

#define M 938780000.0 /* Mass of a hydrogen atom (eV/c"2) */
#define SMALL 0.000000000001

extern double **x*f;
extern double *p,*mu0,*mul,*theta;
extern int np,nz,zstep,*fine,nmu0,nmuil;

void printout(printtime,time)
double printtime, time;

{
FILE xfp_f, xfp_v, *fopen();
static char fn_f[]="mu_z_f.dat", fn_v[]="vplot0000.dat";
double gamma, 1ff, angle;
double PP, V, Vy, VZ;
double pi, mu;
double interpo(),*dvector();
int u, w, nmu, 1;

pi= 4.0%atan(1.0);
printf("\n--------—-———— begin printout.c-——=—=———=—=-—————————— \n");

for(1=20;1<=200;1+=20) {

fn_v[8]++;
if(fn_v[8]==":’) {
fn_v[8]=’0";
fn_v[7]++;
if(fn_v[7]==:’) {
fn_v[7]1="0";
fn_v[6]++;
if(fn_v[6]==":7) {
fn_v[6]="0";
fn_v[5]++;

/* print value of velocity distribution : vplot of vy and vy into file */
fp_v = fopen(fn_v,"w");
printf(" Test printout at time = %.21f (days) at 1 = %d \n",time,1);



fprintf(fp_v," printout at time = %.21f
fprintf (fp_v," ");
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(days) at 1 = %d \n",time,l);

for (vz=-VRANGE; vz<=VRANGE+0 .1*VSTEP; vz+=VSTEP) fprintf(fp_v," %8.21f ",vz);

fprintf (fp_v,"\n");

for (vy=-YVRANGE ; vy<=YVRANGE+0.1*VSTEP; vy+=VSTEP) {

fprintf (fp_v," %8.21f ",vy);

for (vz=-VRANGE ; vz<=VRANGE+0 . 1*VSTEP ; vz+=VSTEP) {

v = sqrt((vy*vy)+(vz*vz));
if (v<SMALL) {

if (£[0]1[11[01>0.0) 1ff=loglO(£[01[11[01);

else 1ff = -999.;
}
else {

gamma = 1.0/sqrt(1.0-(v*v)/(CxC));
/* calcalte momentum

pp = gamma*M*v/C;

(eV/C) */

/* calculate angle [0 to 180 Degreel */

if (atan2(vy,vz)<0.0)
else

angle = -180.0*atan2(vy,vz)/pi;
angle = 180.0%atan2(vy,vz)/pi;

/* In most cases, will use linear interpolation of loglO(f) in terms of loglO(p). */

1ff = interpo(pp,l,angle);
}
fprintf (fp_v," %8.21f ",1ff);
}
fprintf (fp_v,"\n");
¥
fclose(fp_v);
}

[* -—-—= print value of
/* fp_f=fopen(fn_f,"a");
fprintf (fp_£f,"\n time = %1f \n",time);

w=1;
if (fine[w]==0) nmu=nmuo0 ;
else nmu=nmul ;

for(u=0;u<=nmu;u++) {
if (fine[w]==0) mu=mu0 [u] ;
else mu=mul [u] ;
for(1=1;1<=nz;1++) {

fprintf (fp_f,"\n mu=Y8.41f  z=/8.51f
}
}
fclose(fp_£);
*/
printf ("\n------------——--——-- Exit printout.c

/* interpolate part from function in boltz.c */

z_step, mu and f[w][1][u] into file ---- */

%9.51e ",mu,l*zstep,f[w][1][ul);
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Stream.c

/%
Update by used Tanin TVD original concept
September 4, 2000

change routine of New TVD from Tanin : tvd -> tvdinflow()
and adapt for inflow process in boltzmann case

s_inflow.c -- March 21, 2000

Adapting TVD for inflow boundary conditions, so tvd() -> tvdinflow().
Also improving modularity of tvdinflow().

s_cont.c -- February 15, 2000

Adapted for wind (stvd) code. gen_gam() now receives sstep as an
argument and calculates timestep inside. nz and zstep are not
arrays any more. W is an argument, no w loop inside.

s_cont.c -- November 23, 1999
Adapted for hybwind code.

Fixed a bug in tvd(), discovered with varwind code, which caused
segmentation faults when the Courant number was less than -1.
Also clarified some of logic in tvd().

April 7, 1999
Modified to incorporate the latest version of tvd(). 1ltrue is back.

-- February 2, 1999 @@Q only temporary version ©QQ
modified tvd() by eliminates "ltrue", by only using

1 to control the whole spatial movement;

-- January 25, 1999

-- January 15, 1999

Modified for compatibility with varwind.c. Instead of vel,
use gam, i.e., gamma = v_z * Delta t / Delta z.

*/

#include<stdio.h>
#include<math.h>

#define SMALL 1.0e-6
#define TINY 1.0e-10

#define C 173.1 /* units of AU/day */

#define M  938780000.0 /* Mass of a hydrogen atom (eV/C72) x/
#define k  8.617384e-05 /* Boltzmann constant (eV/K) */
#define T  10900. /* Temperature ( K ) */

#define pi 4*atan(1.0)
#define VAVE -26

extern double *¥xf, k¥gam;
extern double *p, *mu0, *mul, zstep;

extern int np, nz, nmuO, nmul, *fine;

double *dvector2(), **xdarray();



[ xkkkkskokskokkok ok ok ok Kok Kok Kok kR ok Kok ok sk ok ok ok ok ok sk ok ok ok sk ook ok ok kR kokkok ok kR ok ok k% /
void stream(time,timestep,w)
[ xkkkkskokkokkok ok ok ok Rk Kok Kok kR ok ok ok ok ok ok ok ok ok sk ok ok ok sk okok ok ok kR kok ok ok kk ok ok k% /

double time, timestep;
int w;

{
double delta_t_z, *ff, *Fj, *ga, *lsp, finu;
double b, d, g, mu, pave;

int nmu, u;

long 1;

void tvdinflow(), free_dvector();
ff = dvector2(1,nz+2);

ga = dvector2(0,nz);

1sp = dvector2(1,nz);

delta_t_z = timestep/zstep;
pave=VAVE*3136.125;

printf("\n in routine of Streaming w = %2d ",w);

if (w==0) nmu=0;
else if(finel[w]==0) nmu=nmul;
else nmu=nmul ;

for (u=0;u<=nmu;u++) {
if (fine[w]==0) mu = muO[u];
else mu = mullul;

gal0] = gam[w][0][ul;
for(1=1;1<=nz;1++) {
££[1] = £[w][1][ul;
galll = gam[w][1][u];

}

/* Setting upper z-boundary condition (finu): Maxwellian distribution. */
b=2. %pi*Mxk*T;
d=(p[wl*p[w])-(2.0*mu*p[w]*pave)+(pave*pave) ;
g=d/ (2.0%M*k*T) ;
finu=(1./pow(b,1.5))*exp(-g);
if (finu<1e-100) finu=0.0;

tvdinflow(ff, finu, ga, lsp, delta_t_z, w, nz, 1);

for(1l=1;1<=nz;1++) flw][1]l[u] = £f[1];
}
free_dvector(ff,1);
free_dvector(ga,0);
free_dvector(lsp,1);
}

J% skkorsk ko sokok Rk ks kok ok sk ks ok koK sk kKRR kK ok
void gen_gam(timestep,beta)
[% koo kkokok koo skokokokok sk ko sk koK sk kR ok kR ok ok ok /

/* This routine generates the initial velocity at each grid point in mu-z space */

double timestep, *beta ;
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{
double =z, mu;
int W, u, nmu;
long 1;
double x*kxdarray() ;
gam = darray(0,np,0,nz,0,nmu0);
for (w=0; w<=np; w++) {
if (w==0) nmu=0;
else if(fine[w]==0) nmu=nmu0;
else nmu=nmul ;
for(1=0; 1<=nz; 1++){
z=((double) 1)#*zstep;
for(u=0; u<=nmu; u++){
if(fine[w]==0) mu = muO[u];
else mu = mullu];
gam[w] [1] [u]l = muxbeta[w]*C*timestep/zstep;
}
}
}
}

void tvdinflow(ff, finu, ga, lsp, delta_t_z, w, znum, lstart)
/* use lstart = 1 on stream function after discussion with Dr.Tanin Nutaro */

double delta_t_z, *ff, *lsp, *ga, finu;

int w;
long znum, lstart;
{

double gamma, *fold, *Fj, *rj, *phi, *df_plus, veff, fin;
long 1, ltrue, 1lm;

int f_ward, fw_old;
void free_dvector(), nrerror();
= dvector2(1,znum);

fold

Fj = dvector2(0,znum) ;
rj = dvector2(0,znum);
phi = dvector2(0,znum) ;
df_plus = dvector2(0,znum); /* df _plus is the forward difference. */

ff[znum-1]=finu;
ff[znum]=finu;
for(1l=1;1<=znum;1++) fold[1l] = ff[1];

for(1=0,ltrue=lstart-1; 1l<=znum; 1++,ltrue++) {

gamma = ga[ltruel;
f_ward = floor(gamma+SMALL);
gamma -= (double)f_ward;

/* necessary condition for gamma calculation, because we have added a small number 1.0e-6 */

if(fabs(gamma) <= SMALL) gamma =0.0;
if(gamma < O || gamma >= 1){
nrerror("tvd: bad gamma after subtraction");

}
Im = 1 - f_ward;

if (gamma==0.0 || gamma < TINY ) { Fj[1]=0.0; }
else { veff = gamma/delta_t_z;
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if(lm == znum || Im == 1) { Fj[1] = veffx*fold[lm]; }
else if(lm < znum && 1m > 1) {
df_plus[1] = fold[lm+1] - fold[lm];

if (fabs(df_plus[1]) < TINY) { Fj[1] = veff*fold[lm]; }
else {
rj[1] = (fold[lm]-fold[lm-1])/df_plus[1];

if(rj[1] <= TINY) { phi[l] = 0.0; }

else if (rj[1] <= 0.5){ phi[l] = 2*rj[1l]; }
else if (rj[1] <= 1.0){ phi[1l] = 1.0; }
else if (rj[1] < 2.0){ phil[ll= rj[1]; }

else { phi[1]=2.0; 2}

Fj[1] = veff*fold[lm] + 0.5*veff*(1.0 - gamma)*df_plus[1]*phi[l];
}
}
else { Fj[1]=0.0; 1}

[* e e ending of Flux Fj[1l] calculation -—-----=--—==—=—=—————————— */
/* Boundary condition: No inflow. Fj = veff#*(incoming £). */
fw_old = floor(gal[lstart-1]+SMALL);

/* Now set 1lsp[l] to be the value of 1lsplit (Fj[l+f_ward]*delta_t_z/ff[1]).
When in doubt set to be gamma.

*/

for(1l=1,ltrue=lstart; 1l<=znum; l++,ltrue++) {

if (££[1] > TINY) {

1sp[1] = Fj[1+f_ward]*delta_t_z/ff[1];
} else {

gamma gall]l;

f_ward = floor(gamma+SMALL);

1sp[1l] = gamma - f_ward;
¥

}
/* Think backwards: particles come from 1-f_ward and 1-f_ward-1. */
for (1=1;1<=znum;l++) fold[1l] = ff[1];
for (1=1,ltrue=lstart; 1<=znum; 1++,ltrue++){
gamma = gal[ltruel;
f_ward = floor(gamma+SMALL);

£f£f[1] = -delta_t_zx(Fj[1]1-Fj[1-11);

/* Treats general case with different fw_old (g-) and f_ward (g+).
The only constraint is that f_ward <= fw_old+1l.

BC: assumes that ff from #outside# (1=1 to znum) is zero.

*/

for(Im=1-fw_old>1?1-fw_old:1 ; Im<=(l-f_ward<znum?l-f_ward:znum) ; lm++)
f£[1] += fold[1lm];

if (F£[1] < 0.0){
printf (" ERROR at ff[%3d] =%.5e\n",1,ff[1]1);
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nrerror("in tvd :: stream! ff < 0");
}
fw_old = f_ward;
}

free_dvector(df_plus,0);
free_dvector(rj,0);
free_dvector(Fj,0);
free_dvector(phi,0);
free_dvector(fold,1);
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Chex.c

/*
Charge Exchange Process.
## Nov 24, 2000 : change in Volume P: becuase add new coarse grid point

## Oct 27, 2000 : Update new version in chex2000.c at Terml & Term 3

> Modify on Th 2 Dec 99 at term3
> change for global variable on Jan,27 2000
by use global variable for Grid
*/

#include <stdio.h>

#include <math.h>

#define C 29979000000.0 /% light velocities (em/s) */

#define M 938780000.0 /* Mass of a hydrogen atom (eV/C"2) */
#define K 8.617384e-05  /* Boltzmann constant (eV/K) x/

double *x*fp;

extern double **x*f;

extern double *dens,*px,*temp;

extern double *p,*mu0,*mul;

extern int np,nz,zstep,*fine,nmu0,nmuil ;

void chex(timestep,beta)

double timestep, *beta;

{
FILE *fp_n;
static char fn_n[]="1_plot.dat";
int u, w, wi, ul, 1, nmu, Nmu, Nmul;
double **fnew,**volP, *m_mu, muOO0, mull, v, vi;
double pi, arg, value, terml, term2, term3;
double **dmatrix2(), *dvector(), Velocity_term();
void VolumeP();

printf("\n ------—--—-—-—— begin chex.c —=—=—=-—-—————————— \n");
pi = 4.0*atan(1.0);
fnew = dmatrix2(0,np,0,nmu0);
fp dmatrix2(0,np,0,nmu0) ;
volP dmatrix2(0,np,0,nmu0) ;
m_mu = dvector(0,nmu0);
fp_n=fopen(fn_n,"w");

VolumeP(volP);
printf ("\n in Charge Exchange Processing \n\n");

for(1l=1;1<=nz;1++) {
// printf("\n loop for chex ' 1=3d ' /D §

/* ---- define Hydrogen distributon fnew[w][1] = f[w][1][u] ------- x/

fnew[0] [0] = f£[0][1][0];
for (w=1;w<=np;w++){
if(fine[w]==0) nmu=nmuO;
else nmu=nmul;
for(u=0;u<=nmu;u++) fnewl[w][u]l = f[w][1][ul;
}
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/* ---- Let function of proton distribution fp[w=0..np][u=0..nmu] ----- */

arg = —(px[11*px[1]1)/(2.0*M*K*temp[1]);
if ((arg>-50.0) && (arg<50.0)) {

fp[01[0] = (dens[1]/pow(2.0*pi*M*Kxtemp[1],1.5))*exp(arg);

else if(arg<=-50.0) fp[0][0] = 0.0;
else nrerror("hello boy chex: bad fp[0][0]");

for (w=1;w<=np;w++) {

if (fine[w]==0) nmu=nmu0;

else nmu=nmul;

for (u=0;u<=nmu;u++) {
if (fine[w]==0) m_mu[ul=muO[u];
else m_mulul=mullul;

arg = -((pLwl*plw])-(2.0*%m_mu[u] *p [w]l*px[1]1)+(px[11*px[1]1))/(2.0*M*K*temp[1]);
if ((arg>-50) && (arg<50)) {
fplw] [u]l = (dens[1]/(pow(2.0%pi*M*K*temp[1l],1.5)))*exp(arg);
}
else if(arg<=-50) fplwl[ul = 0.0;
else nrerror("Error on chex: bad fp([w][ul");

}
—————————————————————————————————————————————————————————————————————————— */
—————— 1! consider Charge Exchange for [w][ul <---> [w1][ul] !!! ----—-- %/
for (w=0;w<=np;w++) {
if (w==0) Nmu=0;
else if(fine[w]==0) Nmu=nmuO;
else Nmu=nmul;
for (u=0;u<=Nmu;u++) {
if (fine[w]==0) m_mu[u]=mu0[ul;
else m_mu[ul=mui[u];
mu00 = m_mulu]; /* mu for position [w][u]l of interest particle */
/* 1! Let [wi][ul]l for collision !! %/
if (w==0&&u==0) { wi=1; ul=0; T
else { wi=w; ul=u+l; }

for(;wik=np;wi++) {
if(wl==0) Nmul=0;
else if(finel[wl]==0) Nmul=nmuO;
else Nmul=nmui;
for(;ul<=Nmul;ul++) {
if (fine[w1]==0) m_mu[ul]l=muO[uil];
else m_mulull=mull[ul];
mull = m_mulull; /* mul for position [wi1][ul] of particle collision */

/* here only: v is in units of (ecm/s) */
v = betal[w]*C;
vl = betal[wl]*C;

/* velocity term <TERM 1> %/
terml = Velocity_term(mu00,mull,v,vi);

/* transfer term <TERM 2> */
term2 = (£[wi][1] [ull=*fpw] [ul)-C(£Lw] [1] [ul*fplwi][ull);

/* volume term <TERM 3> */



term3 = volP[wl][ull; /* Call array of volumeP */
/* --- updates f --- %/
value = timestep*86400.*terml*term2*term3;
fnew[w] [u] += value; /* fnew increase in [w][u] */

if (! (value > -1000000. && value < 1000000.)) {
printf("\n value=Yle, timestep=%.21f days ",value,timestep);
printf("\n 1=}d: w=%d, u=/d, wi=J)d, ul=)d ",l,w,u,wl,ul);

printf("\n termi=jle , term2=jle , term3=)le",terml,term2,term3);
printf("\n fnew =}le\n",fnewl[w] [ul);
exit(1);

}

value = timestep*86400.*termi*term2*volP [w] [u];
fnew[wl] [ul]-=value; /* fnew decrease in [w1][ul] x*/

} /% END OF UL */

ul=0;
¥ /* END OF Wi %/
} /* END OF U x/
} /* END OF W %/

for(w=0;w<=np;w++) {
if (w==0) nmu=0;
else if(fine[w]==0) nmu=nmu0;
else nmu=nmul;
for (u=0;u<=nmu;u++) {
f[wl[1][u]l = fnew([w][ul;
if (f [w] [1] [ul<0.0) {

printf("\n chex: ## f[%2d][%3d][%d]1<0 --> f = }le",w,1,u,flw][1][ul);

exit(1);

}
} /x END OF L %/

fclose(fp_n);

free_dmatrix2(fnew,0,np,0);

free_dmatrix2(fp,0,np,0);

free_dmatrix2(volP,0,np,0);

free_dvector(m_mu,0);

printf("\n -----------—--—-- end chex.c-----------——————= T

}

void photoionization(timestep)
double timestep;
{
int w, 1 ,u, nmu;
double value;
printf("\n Photo-ionization Process \n");
for(w=0;w<=np;w++){
if(w==0) nmu=0;
else if(fine[w]==0) nmu=nmul;
else nmu = nmul;
for(1=1;1<=nz;1++) {
for(u=0;u<=nmu;u++) {
value=timestep*86400.*(9.e-08/(1x1))*f [w][1] [ul;
£ [w] [1] [u]l -=value;
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}

/* Arrays of proton data for each z */
void protondata(nz,zstep)

int nz;

double zstep;

{

/* Read data and computes from file pro97new.dat which is modified from pro_97.dat
Interpolated because steps in z-direction are NOT constant in proton data file */

FILE *fp;

double z_value, z, y, d, vy, p, t, m, frac, px_old, px_new;
double z_new, d_new, vx_new, t_new, VX;

int 1;

printf("\n---------------= begin protondata()------=-======-= \n");
fp=fopen("pro97new.dat","r");

fscanf(fp,"%le %le %le %le Yle %le %le %le",&z_new,&y,&d_new,&vx_new,&vy,&p,&t_new,&m);
px_new = M*(vx_new*100000.)/C; /* also changes (km/s) to (cm/s) */

for(1=1;1<=nz;1++) {
z_value = l*zstep;

while(z_value>z_new) {

Z = z_new;
d = d_new;
VX = vVX_new; px_old = M*vx*100000.0/C;
t = t_new;

fscanf (fp,"%le %le %le %le %le %le %le %le",&z_new,&y,&d_new,&vx_new,&vy,&p,&t_new,&m);

}
px_new = M*vx_newx100000.0/C;
frac = (z_value-z)/(z_new-z);

dens[1]=(1.0-frac)*d + frac*d_new;
px[1] =(1.0-frac)*px_old + frac*px_new;
temp[1]=(1.0-frac)*t + frac*t_new;

}

fclose(£fp);

printf("\n\n---------------- end_protondatal® e - \n");
}

double doublefact(int n)
{

int i;

double value;

value = 1;
for(i=1;i<=n;i++) value *= ((2.0%i)-1.0)/(2.0%1i);
return(value) ;

}

double alphafact(double alpha,int n)
{

int i;

double value;



}

/%

value=1;
for(i=0;i<=(2%n)-1;i++) value*=(alpha-i)/(i+1);
return(value);

Velocity Term */

double Velocity_term(mu, mul, v, vi)
double mu, mul, v, vi;

{

*/

}

double logsigma, Ecm, alpha, w2, r, v_rel;
double B, be, deviation, MeanVrel, MeanVrel_old;
int n;

v_rel = (v*v)+(vi*v1)-(2.0*v*vi*mu*mul);
v_rel

Ecm = 0.25%M*v_rel*v_rel/(CxC);

if (Ecm<0.0) {
nrerror("Velocity_term: bad Ecm (Ecm<0.0)");
exit(1);

logl0(sigma/cm”2)= B + (beta*loglO(v_rel/cm s~-1))

where B and beta are from the paper of Schultz, Ovchinnikov & Passovets 1995
Chapter 11: Elastic & Related Cross Sections for Low-Energy Collisions Hydrogen

—————————— and Helium ions, Neutrals, and Isotpspes

if (Ecm<=10) {
B = -14.3442-(0.1000134%10g10(M/ (4.%C*C)));
be = -0.1000134%2.;
alpha = (1.+be)/2.;

} else {
B = -14.33676-(0.1358551*10og10(M/(4.%C*C)));
be = -0.1358551%2.0;
alpha = (1.+be)/2.0;

}

w2 = (vkv)+(vi*vl)-(2.0*v*vikmu*mul) ;

r = (-2.0*%v*vixsqrt(1.0-(mu*mu))*sqrt(1l.0-(mul*mul)))/w2;

n=0;

deviation=1.0;

MeanVrel = 0.0;

while(deviation>=0.01) {
MeanVrel += alphafact(alpha,n)*doublefact(n)*pow(r,2.*n);
if(n=!0) deviation = fabs(MeanVrel-MeanVrel_old);
MeanVrel_old = MeanVrel;
n=n+1;

}

MeanVrel = pow(w2,alpha)*MeanVrel;

return(pow(10.0,B)*MeanVrel) ;

void VolumeP(volP)
double **volP;

{

volP[0] [0]
volP[1] [0]

1.615023e+13;
1.010350e+12;

sqrt(v_rel); /* v_rel = |vector(v) - vector(vil)]

*/
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volP[1][1] =
volP[1]1[2] =
volP[1][3] =
volP[1][4] =
volP[1][5] =
volP[1][6] =
volP[1]1[7] =
volP[1]1[8] =
volP[1]1[9] =
volP[1][10]

volP[1][11]

volP[2][0] =
volP[2][1] =
volP[2][2] =
volP[2][3] =
volP[2][4] =
volP[2] [5] =
volP[2][6] =
volP[2] [7] =
volP[2][8] =
volP[2][9] =
volP[2] [10]

volP[2] [11]

volP[3][0] =
volP[3][1] =
volP[3][2] =
volP[3][3] =
volP[3]1[4] =
volP[3][5] =
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