การแปรผันทางพันธุกรรมของนกยูงไทย Pavo muticus ในภาคเหนือของประเทศไทย

นางสาวภัทรา พลับเจริญสุข

สถาบนวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีทางชีวภาพ หลักสูตรเทคโนโลยีทางชีวภาพ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2543 ISBN 974-13-1148-6 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

GENETIC VARIATION OF GREEN PEAFOWLS *Pavo muticus* IN NORTHERN THAILAND

Miss Pattra Plubcharoensook

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biotechnology Program of Biotechnology Faculty of Science Chulalongkorn University Academic Year 2000 ISBN 974-13-1148-6

Thesis Title	GENETIC VARIATON OF GREEN PEAFOWLS		
	Pavo muticus imperator IN THE NORTHERN THAILAND		
Ву	Miss Pattra Plubcharoensook		
Field of study	Biotechnology		
Thesis Advisor	Associate Professor Wina Meckvichai		

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

(Associate Professor Wanchai Phothiphichitr, Ph.D.)

THESIS COMMITTEE

.....Chairman (Chanpen Chanchao, Ph.D.)

(Associate Professor Wina Meckvichai, M.Sc.)

(Thaweesak Tirawatnapong, Ph.D.)

.....Member

(Sirawut Klinbunga, Ph.D.)

ภัทรา พลับเจริญสุข : การแปรผันทางพันธุกรรมของนกยูงไทย *Pavo muticus* ในภาคเหนือ ของประเทศไทย. (GENETIC VARIATION OF GREEN PEAFOWLS *Pavo muticus* IN NORTHERN THAILAND) อ. ที่ปรึกษา : รศ. วีณา เมฆวิชัย, 93 หน้า. ISBN 974-13-1148-6

ความแปรผันทางพันธุกรรมของประชากรนกยุงไทย Pavo muticus 2 แห่งในภาคเหนือของ ้ประเทศไทย คือที่อุทยานแห่งชาติดอยภูนาง และเขตรักษาพันธุ์สัตว์ป่าเวียงลอ โดยศึกษาลำดับนิว คลีโอไทค์ของคืลปในไมโทคอนเคลียล ยาว 330 bp พบว่า ภายในประชากรนกยงที่อทยานแห่ง ชาติดอยภนางมี variable site ทั้งหมด 26 ตำแหน่ง โดยเป็น informative site 14 ตำแหน่ง transition 16 ตำแหน่ง transvertion 8 ตำแหน่ง และมีค่า Genetic distance ระหว่าง 0.0000 - 0.0513 ส่วนภาย ในประชากรนกยูงที่เขตรักษาพันธุ์สัตว์ป่าเวียงลอ พบว่ามี variable site 7 ตำแหน่งซึ่งเป็น transition ทั้งหมด และมี Genetic distance ระหว่าง 0.0000 - 0.0219 และเมื่อศึกษาลำดับนิวคลีโอไทด์ ระหว่างประชากรทั้งสองพบว่ามี variable site ทั้งหมด 24 ตำแหน่ง เป็น transition 16 ตำแหน่ง และ transversion 8 ตำแหน่ง ส่วน Genetic distance อยู่ระหว่าง 0.0000-0.0547 ความหลากหลายทาง พันธุกรรมของนกยุงที่อุทยานแห่งชาติดอยภูนางสูงกว่าเขตรักษาพันธุ์สัตว์ป่าเวียงลอ โดยมี genetic diversity เท่ากับ 1.92 และ 0.22 ตามลำคับ ซึ่งชี้ให้เห็นว่าประชากรนกยูงที่อุทยานแห่งชาติดอยภู นางมีการแปรผันทางพันธุกรรมมากกว่านกยุงที่เขตรักษาพันธุ์สัตว์ป่าเวียงลอ เมื่อศึกษาความ สัมพันธ์ทางพันธุกรรมเชิงวิวัฒนาการโดยใช้ Parsimony method พบว่าประชากรนกยุงที่อุทยาน แห่งชาติดอยภูนางกลุ่มหนึ่งยังคงมีความสัมพันธ์กัน และประชากรนกยุงที่อุทยานแห่งชาติดอยภู นางอีกกลุ่มแยกต่างออกไป โคยมีคัชนีคอนซิสเทนซีเท่ากับ 0.943 และคัชนีรีเทนชั่นเท่ากับ 0.853

ภาควิชา	ลายมือชื่อนิสิต
สาขาวิชาเทคโนโลยีทางชีวภาพ	.ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

##4072346123 : MAJOR BIOTECHNOLOGY

KEYWORD : Pavo muticus / D-loop/ NUCLEOTIDE SEQUENCE/POPULATION PATTRA PLUBCHAROENSOOK : GENETIC VARIATION OF GREEN PEAFOWLS Pavo muticus IN NORTHERN THAILAND. THESIS ADVISOR : ASSOC. PROF. WINA MECKWICHAI, M.Sc., 93 pp., ISBN 974-13-1148-6

Genetic variation of Pavo muticus between Doi Phu Nang National Park and Wieng Lor Wildlife Sunctuary populations by 330 bp by mitochondrial D-loop nucleotide sequence. It is found there are 26 variable site, 14 informative sites, 16 transition sites and 8 transversion sites in Doi Phu Nang National Park population. And its genetic distance ranges between 0.0000 and 0.0513. Meanwhile, there are 7 variable sites and transition in Wieng Lor Wildlife sanctuary population, and its Genetic distance ranges between 0.0000 and 0.0219. According to the Nucleotide sequence study between the two populations, there are 24 variable sites, 16 transition sites and 8 transversion sites and their Genetic distance is between 0.0000 - 0.0547. Genetic diversity of Pavo muticus within Doi Phu Nang National Park and Nucleotide diversity within Wieng Lor Wildlife Sunctuary is 1.92 and 0.22 respectively. These result reveal that genetic variation of Green Peafowls from Doi Phu Nang National Park is higher than that of Wieng Lor Wildlife Sunctuary. The analysis of phylogenetic relationship using parsimony approach found that one group of population of Doi Phu Nang and Wieng Lor Wildlife Sanctuary are still to related, and another group of Green Peafowls of Doi Phu Nang National Park has been diverged. The consistency index (CI) is 0.949 and Retention index (RI) is 0.853.

Department	Student's signature
Field of studyBiotechnology	Advisor's signature
Academic year2000	Co-advisor's signature

ACKNOWLEDGEMENT

I would like to express my deep gratitude and appreciation to Assoc. Prof. Wina Meckvichai, my adviser for her encouragement, suggestions, discussion, and helpful guidance throughout this research.

My appreciation is also express to Dr. Thaweesak Tirawatnapong for his kindness in using ABI PRISM 310 Genetic analyzer and helpful in primer designed, suggestion about PCR reaction, cycle sequencing reaction in my thesis.

I am especially thanks to Dr. Sukamol Srikwan for her helpful in encouragement and valuable suggestions about the result.

I am especially thanks to Dr. Sirawut Klinbunga for helpful in data analysis in this study and my thesis committee.

I wish to thanks Mr. Theerawit for helpful to instruct me using ABI Prism 310 Genetic Analyzer.

I wish to thanks my junior colleagues in Department of Biology and Biotechnology for their help and suggestion in many ways.

This work was supported by the TRF/BIOTEC Special Program for Biodiversity Research and Training grant BRT 542072.

I am especially thankful to father and mother and sister for their love, encouragement and financial support during my study in Chulalongkorn University

CONTENTS

Page

Thai Abstractiv
English Abstractv
Acknowledgementsvi
Contentsvii
List of Tablesviii
List of Figuresix
List of Abbreviationsx
Chapter 1 : Introduction1
Chapter 2 : Literature Review5
Chapter 3 : Materials and Method15
Chapter 4 : Results24
Chapter 5 : Discussion
Chapter 6 : Conclusion and Recommendation
References
Appendices
Appendices I : Reagent preparation protocol45
Appendices II : Electropherogram and D-loop sequences
Biography93

List of Tables

Tabl	e	Page
3.1	The oligonucleotide primers used for PCR amplification	
	of D-loop primer	.18
4.1	Haplotypes of D-loop region (330 bp) of Pavo muticus from	
	Doi Phu Nang National Park and Wieng Lor Wildlife Sanctuary	
	which are shown only variable sites	.32
4.2	Genetic distance estimated by Kimura's parameter method of	
	Pavo muticus imperator	33

List of Figures

Figu	Ire Page
2.1	Green Peafowls (<i>Pavo muticus</i>)6
2.2	Distribution map of Green Peafowls9
2.3	Mitochondrial genomes of Birds12
4.1	DNA extraction from the extraction of bloodstain and feather of
	Pavo muticus on 1% agarose that stained with Ethidium bromide
	that stained with ethidium bromide
4.2	PCR product from D-loop region of Pavo muticus from Doi Phu Nang
	National Park separated by 1.5% agarose gel electrophoresis25
4.3	PCR product from D-loop region of Pavo muticus from Wieng Lor Wildlife
	Sunctuary sepatated by 1.5% agarose gel electrophoresis
4.4	Multiple sequence alignment (330 bp) of partial D-loop region from
	two population of <i>Pavo muticus</i> from Doi Phu Nang and Wieng Lor Wildlife
	Sanctuary population, cotunix and <i>Gallus gallus</i> as an outgroup29
4.5	Strict consensus tree derived from 15 parsimony tree of 330 bp of
	Pavo muticus indicate that percentage of bootstrap replicates out of 100
	that support each branch

List of Abbreviations

ATGC	nucleotide containing the base Adenine, Thymine, Cytosine		
	and Guanine		
bp	base pairs		
dNTP	deoxyribonucleotide triphosphate containing the base Adenine,		
Thymi	ne, Cytosine, and Guanine		
DNA	deoxyribonucleic acid		
EDTA	ethylinediamine tetraacetic acid		
mМ	millimolar		
ng	nanogram		
MgCl2	Magnesium Chloride		
rpm	revolution per minute		
SDS	Sodium Dodecyl Sulphate		
TBE	Tris / Borate / EDTA buffer		
μι	microliter		
μм	micromolar		

Chapter 1

Introduction

Peafowls have been famous in arts and letters for several tens of centuries. Not only in India and in China, but also around the Mediteranean Sea (Delacour, 1977). They have been admired for beauty so they are hunted for flesh. Recently, they became one of the most popular and graceful additions to parks and gardens (Wayre, 1969).

There are three species of Peafowls, the Congo Peafowls (*Afropavo Conginsis*), live in congo, central africa, the Indian Peafowls (*Pavo cristatus*) from India, often called Blue Peafowls, and the Green Peafowls (*Pavo muticus*) which live in southeast Assam through Burma and Thailand to the China sea and Southwards to the Malaysian Peninsula and Java. The characteristics of two Asian Peafowls are similar but Green Peafowls are bigger than Blue Peafowls. Furthermore, the feather of Blue Peafowl's body coverts are blue and of it's wings are light black and white. The other's feather is brown. The facial skin of Blue Peafowls are white while Green Peafowl's facial skin of Blue Peafowl's crest is fan shaped while Green Peafowl's crest is erect standed (Wayre, 1969).

The classification of Green peafowl is :

Class	Aves			
Subclass	Neonithes			
Order Subo	Gallifo order G	rmes Galli		
	Family	Phasia	nidae	
	Subfamily	F	Pavoninae	
	Genus		Pavo	
	Speci	es	Pavo n	nuticus
	Su	bspecies	Pavo mutic	us imperator

(Ponsena, 1988)

There are three subspecies of Green Peafowls; *Pavo muticus specifer* distributed in the western Burma. *Pavo muticus imperator* live in eastern Burma, Thailand and Indo-China. In the southern part of Thailand from Kra and Java were founded *Pavo muticus muticus* (Wayre, 1969).

There is only one species of *Pavo muticus* in Thailand. There are two subspecies, the Indo-Chinese green peafowl (*Pavo muticus imperator*) and the javenese green peafowl (*Pavo muticus muticus*). The former is distributed in the north to Kra and the latter is found in Kra to the south (Deignan, 1963).

Green Peafowls (Pavo muticus) were classified as an endangered species reflected from small population sizes in Thailand. Furthermore, it is one of the important about beautiful and well known bird of Southeast Asia including Thailand. Once they were found through out Thailand below nine hundred meter except in the central valley of Chao Phraya and Southeastern of the northwest (Humprey and Bain, 1990). Overhunting threatens to eliminate this species from Thailand. Hunters intensively trap it for the feather and pet trade and vellagers take it as food as well as collect eggs from the forest. Not only its' habitats were destroyed but were also separated in to small areas. Currently, IUCN (International Union For The Conservation of Nature and Natural 1998) classified as vulnerable species. In Thailand, Green Peafowls have been classified as a protected animal and endangered species (OEPP, 1997). Furthermore, they were classified into Appendix II by CITES (The Conservation on International Trade in Endanger Species of World Fauna and Flora 1996). Green Peafowls were founded in small individual at the following national parks (NP) and wildlife sanctuaries (WS): Phu khieo WS, Phu Wa Ws, Phu Miang-Phu Thong WS, Salawin WS and Khun Yuan WS (Humphrey and Bain, 1990). The largest population of Green Peafowls are found at Huai Kha Khaeng about three to four hundred (Ponsena, 1988).

The wildlife conservation required the informations about ecology, biology and behavior for species survival. In addition, genetic variation in population level is the important information in a long run. Because genetic variation is the essential quality for adaptation to survival. At present, there is no report about genetic variation of Green peafowls in Thailand yet. Then, it should be necessary to study this information so that it would to be laid plans for conservation and maintain the populations.

Recently, mitochondrial DNA were useful for studying genetic variation among species, populations and individuals. Mitochondrial DNA has high mutation rate (Brown *et al*, 1979). Furthermore, the different regions of the mitochondrial genome evolve at different rates (Saccone *et al*, 1991). Mitochondrial DNA is materanally inherited in most species and does not recombine (Hayashi *et al*, 1985). The animal mitochondrial DNA (mtDNA) is a small circular molecule of 16,000 base pairs. There is no repetitive DNA, spacer or intron. The mitochondrial DNA encodes 13 mRNAs, 22 tRNAs, control region (D-loop) containing initiation sites for replication and transcription, cytochrome b, NADH dehydrogenase, three subunits of cytochrome c oxidase (*CO I*,*II*,*III*) and 2 rRNAs.

When polymerase chain reaction (PCR) has been developed. The small amount of DNA from the field such as bloodstain, hair, feather can be amplified at specific DNA region such as mitochondrial DNA. Furthermore, To detect variation in nucleotide sequencing is a powerful tool assess an intraspecificly phylogenetic pattern in many animal species (Avise, 1994).

Objective

- To study genetic variation within and between two populations of Green Peafowls (*Pavo muticus*) in northern Thailand by D-loop sequences.
- 2. To get partial D-loop sequences of Green Peafowls.

Anticipated benefit

1. For basic knowledge on genetic variation within and between two populations of Green peafowls in northern Thailand.

- 2. For knowledge on the present status of genetic variation of the Green Peafowls Of two populations in northern Thailand.
- 3. To applied this information for planning wildlife management to conserve Green Peafowls in length.

Chapter 2

Literature Reviews

2.1 The Characteristic of Green Peafowls

The male Green Peafowl is larger and more colorful than the Indian Peafowl. Its brilliant green crest is composed of a long narrow tuft of feathers and its plumage is even more colorful. The neck, breast and mantle are scaleappearant. Each feather are bright blue and are with a broad metallic green border. The train is of a brighter emerald green. The wing coverts are bright metallic blue and green, and the bare facial skin is pale blue and yellow. The mantle, back and tail of the Green Peafowls are the same as in the Indian Peafowls, but only are more brilliant and coppery. The primaries are bright chestnut, the dark green abdomen and the grey vent and under tail coverts. The secondaries are blackish-brown on the inner web and dark blue and green on the outer. The female peafowl is similar to the male, but are only slightly duller. There is no train in female but it is replaced by short greenish-brown feathers with buff. The female can be distinguished from the young males by the brown patch instead of bluish-black loral one between an eye and the bill. Also, distinguished by the primaries, the female's chestnut speck are bright and brown, whereas the male's chestnut is pure.

Green Peafowls live in the same habitat like Indian Peafowls. Green Peafowls are even more wary and less prone to live near human habitation. They are often found in a jungle, usually in the vicinity of a river or open clearing. The flock is small, except during the breeding season. Adult males fight to defend their territory and band of female (Wayre, 1969).

Figure 2.1 Green Peafowl (Pavo muticus)

2.2 Pavo muticus imperator (An Indo-Chinese green peafowl)

Males are similar to *Pavo muticus muticus* but are not quite brilliant generally. The fringes of the neck, upper back, and breast feathers are more coppery, but are not so golden green. Lower breast and flanks are duller and darker. Mantle and back are slightly more bluish and less golden. Wing coverts and the outer web of secondaries are bluer and little duller, and less green on the borders.

Females differs from *Pavo muticus muticus* in having the borders of the breast feathers. They are more heavily marked with buff, less green, and the wing-coverts are less brilliant (Delacour, 1977).

2.3 Distribution of Green peafowl

Once, Green Peafowls had been found through out Thailand below 900 meter except in the central Valley of the Chaophraya and the southeastern provinces. At present, this bird is classified as one of the threatened species. The decreasing of its population is due to habitat destruction, environmental pollution and hunting. (Rojanadelok *et. al*, 1986).

They have been reported in many areas, but about 300 peafowls are only confirmed in Hwai Kha Kaeng wildlife sanctuary (Collar *et al*, 1994). According to a report on ecological effects of Kaeng Sua Ten Dam project, there are one of two possibly surviving wild population of Green Peafowls in the north of Thailand at Doi Phu Nang National Park. Furthermore, Green Peafowls had been found at Wieng Lor wildlife sanctuary which these two areas are bounded (Meckvichai *et al*, 2001).

2.5 Biology of Green peafowl

The Green Peafowls often flock into a small group of 3-5 birds (Ponsena, 1988). It uses a wide variety of habitats, including an open forest which

is preferable, a riverbank, a coastal scrub, a teak, a tea and coffee gardens, a forest edge and clearing, an area with dense secondary growth near shifting agriculture, and others. (Humphrey and Bain, 1990). It can fly weakly so it spend most of its time on the ground looking for food or perching. It is omnivorous. It likes to eating berries, pears, and other fruits, including rice-grain and seedling such as grass seed. Also, it can eat crickets, dragonflies, small moth, etc., and frogs and lizards, etc. (Humphrey and Bain, 1990). At Doi Phu Nang National Park, they can be also fed on *Heteropgon contortus, Antidesma ghesimbia , Onchna integerrina , Vegna mungo and Zea mays* (Arrathrakorn and Meckvichai, 2000).

Peafowls are polygamous, so four or five females may be mated to one male. Moreover, it has specially behavioral characteristic. During the breeding season, the dominant male will move to sand bars along the main stream and create a breeding territory. It tries to defend its territory from other males. A females usually moves in its flock ranging from 2 to 6 individuals. Their feeding range at this season may cover 2 to 4 male's territories. The male uses calling signals and displays to induce females to come into his territory. Mating usually occurs in the morning and in the late afternoon. A mated begin to lay eggs at 22 months of age (Humphrey and Bain, 1990). A Female usually lays 3-5 eggs in a shallow hole dug on the ground. The female incubates the eggs for approximately 28 days by herself. After hatching, the young chicks follow the mother, even though they are capable of foraging on their own. Arrathrakorn and Meckvichai (2000) reported that a breeding season of green peafowl at Doi Phu Nang is from January to April. They create breeding territories on the top of the hill and also found at the bottom of the hill. The clutch sizes are for 4-6 eggs. The nestling and hatching are abundantly found in May.

Green peafowls have a good sense of seeing and bearing. They usually can run away from human from far distance. It prefers to run away from an enemy but, for sudden alarm, they will run for a short distance and then fly up into the air (Rojahadelok *et.al*, 1986).

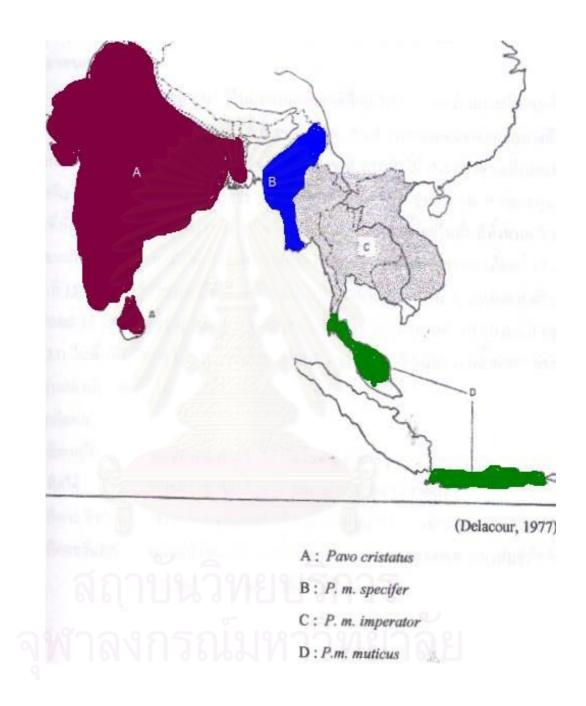


Figure 2.2 Map showing geographic distribution of *P. cristatus* and 3 subspecies of *P. muticus*.

2.6 The areas of this study

Doi Phu Nang National Park

Doi Phu Nang National Park. is located in Prayao Province. The area is about 840 km². It covers the area about 840 km². It locates in Prayao covering within three district which are Dok Khum Tai, Pong and Chiang Muan. Fishing cat is the only extirpated species of this area. Furthermore, there are many vulnerable species such as foxes, wild cats, and green peafowls (Arrathrakorn, 1998). Doi Phu Nang National park boundary is connected to Wieng Lor wildlife sanctuary in the north, Mae Yom National Park in the south, Doi Pha Chung wildlife sanctuary in the east and Wieng Lor wildlife sanctuary in the west (Phungsawade, 1997).

Weing Lor wildlife Sunctuary

It is located in Prayao Province. The total area is 371 km^2 . It is between $19^{\circ} 4' \text{ N}$ to $19^{\circ} 28' \text{ N}$ in latitude and $100^{\circ}3' \text{ E}$ to $100^{\circ} 19' \text{ E}$ in longtitude. Wieng Lor wildlife sunctuary is connected to Doi Phu Nang in the south. Wieng Lor wildlife Sunctuary is a source of Yom and Eing river, so this area is very rich or suitable for wildlife and plants. Furthermore, it is s residence of green peafowls which one the important wildlife (Wieng Lor WS, 1998).

2.6 Genetic Variation

The loss of genetic variation is caused by reduced population size and habitat fragmentation which are important for biodiversity conservation. Genetic variation is a highly desirable characteristic (Woodruff, 1990). Genetic variation can be monitored directly and indirectly in a number of ways. Studies of allozyme variation have been the most commonly employed approach during the last twenty years. In this technique, the allelic variants of soluble enzymes and other proteins that can be visualized biochemically on a gel after electrophoresis are counted directly. More recently, there are several molecular genetic approaches to monitoring genetic variation and determine relationships between individual birds, population, species including mitochondrial DNA (mtDNA), restriction fragment length polymorphism (RFLP) analyses, whole genomic DNA-fingerprinting and direct sequencing of mtDNA and nuclear DNA loci. Such techniques facilitate very fine detail analysis of microevolutionary process. (Avise, 1994).

2.7 Genetic in the conservation of Biodiversity

The late 1980's, all studying DNA level variation required the large amount of tissue or blood and the large-scale extraction of high molecular weight DNA. Furthermore, collecting tissue samples from free-ranging animals was difficult. The development of the polymerase chain reaction (PCR) technique enables investigators to amplify very small amounts of tissue, Thus eliminating the need for large blood or tissue samples which are difficult to handle in the field (Woodruff, 1990). DNA can be extracted and amplified from nanogram samples of pulp from feathers and microgram amounts of tissue from museum skin or preserved specimen (Kocher et al, 1989). Appropriate molecular genetic markers can be chosen by matching the level of innate variability of a gene to the level of ecological of evolutionary resolution requied (Hillis et al, 1996). Mitochondrial DNA is an information molecule for defining species and subspecies boundaries, interspecific and intraspecific phylogeny and phylogeography (Palumbi & Wilson, 1990, Edward et al, 1991, Irwin et al, 1991). Beside that it has potential for use in population level studies.

2.8 Mitochondrial DNA

The control region is the primary non-coding region, and is responsible for the regulation of heavy (H) and light (L) strand transcription and H-strand replication (Figure 2.3)

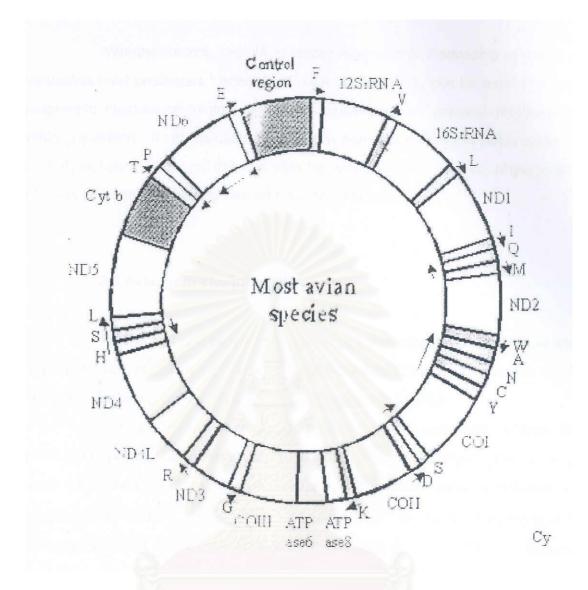


Figure 2.3 Mitochondrial genomes of birds. The outer circle represents the heavy (H) strand and the inner circle represents the light (L) strand. Polarity of transcription and the transcribed strand is shown with arrowheads.

As a molecular marker, mitochondrial DNA has many advantages. It evolves faster than nuclear DNA (Brown *et al*, 1982). Different regions of the mitochondrial genome evolve at different rates (Saccone *et al*, 1991). This allows suitable regions to be chosen for the study. Mitochondrial DNA is maternally inherited in most species and does not recombine (Hayashi *et al*, 1985). In addition, mitochondrial DNA is simple, it has 500-1000 copies per cell instead of only one copies per haploid genome. Whether or not mtDNA is strictly neutral, it is a sensitive indicator of population level processes. Analysis of mtDNA divergence can be used to reveal geographic clusters of related molecules (individuals) or maternal relationships within population. It can be used also to trace historical events like bottlenecks, or to analyse hybrid zone, mtDNA can also be very useful in resolving phylogenetic relationships between closely related taxa (Moritz *et al*, 1987).

2.9 Avian mitochondrial DNA

The first complete sequence of an avian mitochondrial genome was published from chickens by Desjardins and Moriais (1990). It showed highly conserved features when compared to other vertebrate MtDNA.

Since many features are the same in all the vertebrate mtDNAs, the avian genome has some remakable differences. First, the avian gene order is novel when compared to the mammalian's. The ND5 gene is followed by cytochrome b, tRNAThr and tRNAPro, ND6 and tRNAGlu in the 5' \rightarrow 3' direction of the avian L-strand (Desjadins & Morais 1990, Quinn & Wilson, 1993). Second, the L-strand replication origin that is found between tRNACys and tRNAAsn in other vertebrates is absent in the avian genome (Desjadins & Morais, 1990).

2.9.1 Cytochrome b

Cytochrome b is one of the cytochromes involved in the electron transport system. It is the only cytochrome coded by mitochondrial DNA. The cytochrome b gene is the most widely used gene for phylogenetic. Although it evolves slowly in terms of nonsynonymous substitutions (Irwin *et al*, 1991). Cytochrome b is variable enough to study at a population level, and conserved enough to clarify phylogenetic relationships in deeper details.

2.9.2 Control region of mtDNA

The mtDNA control region is the only large non-coding region in avian mitochondria. It varies from 1,044 - 1,227 bp in Gallus domesticus (Desjadin & Morais, 1990). It contains the heavy strand replication origin. This region is divided into three domains identified by Desjadeans and Morais 1990 from Gallus domesticus and by Quinn and Wilson (1993). The first domain at the 5' end of the control region contains C-stretch and high variation. C-stretch is specific to the 5' terminus of the avian control region. It is present in various forms at least in Anatidae, Phasianidae and Poridae (Quinn & Wilson 1993, Desjadins & Morais 1990). The central domain is the most conserved. The most variable part is usually the third domain at the 3' end of the control region. Also, it is highly variable in other birds (Wenick et al, 1993). This variability has lead to the expanding usage of control region sequence to examine questions ranging from population structures to phylogenetic relationships. This region has already been proven to be quite a powerful tool in elucidating the global population structures in shorebirds (Wenick et al, 1993) and fringilline finches (Marshall and Baker, 1997), DNA polymorphism in two local populations of blue tit Parus caeruleus (Taberlet et al, 1992), phylogeography studies of Nearctic songbirds (Milai et al, 2000) in revealing recent mixing of maternal lineages in snow geese (Quinn, 1992) and inevaluating gene flow between social groups and populations in babblers (Edwards, 1993). Moreover, this region can be used in geographic analysis of many species such as song sparrow (Adam et al, 1998), blue chaffinch (Pestano et al, 2000).

งูฬาลงกรณมหาวทยาลย

Chapter 3

Material and Method

3.1 Materials

3.1.1 Equipments

- Disposable syringe tuberculin[®] 1.0 ml with needle gauge number 25
- Whatman[®] filter paper (number 1)
- Whatman Laboratory sealing film
- Automatic Micropipette P10 ,P20 ,P200 and P1000 (Gilson Medical Electronic)
- Microcentrifuge tube 0.2 ,0.5 and 1.0 ml. (Treff® switzerland)
- Micropipette tip P10,P20,P200 and P1000 (Treff® switzerland)
- Ice-box (Scientific plastic Co.,Ltd.,)
- Electronic clock timer Model CT-30 (Canon Co., Ltd.,)
- Surgical knife, scissors and forceps
- Disposable Gloves (Meditrate)
- Polaroid film 677 (Polaroid)
- Polaroid DS-34 camera (Polaroid)
- Dessicator
- Autoclave
- Waterbath (Uni-Bath model RU-2, Sakura Finetecnical Co.,Ltd.,)
- Centrifuge (Eppendorf model 5410)
- Minicentrifuge
- Incubator (TaiTec Microincubator M-36)
- Shaker (MS 1 minishaker)
- Larminar flow hood with UV Light (Model DFL 120)
- PCR Thermal cycler : omnigene (Hybrid)
- PCR Thermal cycler:Perkin-Elmer 2400 (PE Applied Biosystem)
- ABI 310 Genetic Analyzer (Perkin Elmer, Applied Biosystem)
- Mupid Electrophoresis (ADVANCE Co., Ltd.,)

- Ultra-lum UV transluminator
- -20oC Freezer (Sanyo Co., Ltd.,)
- pH meter sp-7 (SunTex Digital pH meter)
- Balance (Sartorius)

- ABI Prism 310 Capillaries, 47 cm. x 50 (m i.d. (for rapid sequencing with Pop-6)

- (PE Applied Biosystem)
- Smartspec 3000 spectrophotometer (Biorad laboratory)

3.1.2.Chemicals

- Chelex[®] 100 (BioRad laboratory)
- Absolute ethanol (Merck)
- Sodium acetate (Merck)
- 100 mM dATP ,dTTP, dCTP, dGTP (Promega)
- Tris-(Hydroxymethyl) aminomethane (Promega)
- Boric acid (Biorad Laboratory)
- EDTA (Biorad Laboratory)
- Loading Dye (Promega corporation)
- Agarose (Promega)
- λ DNA (Promega)
- Big-Dye Terminator Cycle Sequencing (PE Applied Biosystem)
- Phi x 174 Hinfl Marker (Promega)
- D-Loop primer (BSU)
- Ethidium bromide (Etbr)
- Mineral oil (Sigma)
- Geneclean spin kit (Bio 101, Inc)
- Qiagen purification kit (QIAGEN)
- Performance optimized polymer 6 with TSR for the ABI Prism 310
- Genetic Analyzer (PE Applied Biosystems)

3.1.3 Enzymes

- Taq DNA Polymerase (Promega)
- Proteinase K (Promega)

3.2 Methods

3.2.1 Sample collection

Green Peafowls specimens had been collected 14 individuals from Doi Phu Nang National Park and 8 individuals from Wieng Lor wildlife Sanctuary between 1997 -1999. Blood was collected by radial venipuncture from branchial vein, with a tuburaclin[®] syringe with needle gauge number 25. Blood of 0.1-0.2 ml was dropped on a piece of Whatman[®] filter paper, air dried and placed into labeled paper bag for each sample. A feather was collected by cutting at the end and placed into a labeled paper bag. Both blood stain and feathers were kept in descicators.

3.2.2 Total DNA Extraction

The most common method of DNA extraction can be divided into two methods. They can be used to extract DNA from bloodstain for DNA template in PCR amplification.

Chelex[®] extraction method

Chelex is a polyvalent chelating agent in resin form. it is used routinely to assay a small number of cells and amount of DNA. Heating over boiling point condition may help to disrupt cell membranes, which it may also help to assure completed denaturation of the DNA template and separate DNA from cell (Sanger-Sam et al, 1989). This method is easy, inexpensive, less time-consuming and reduce contamination chance. Protocol of this method is below.

Total DNA was extracted from bloodstain and feathers using Chelex extraction medium (Sanger-Sam *et al*,1989; Walsh *et al*; 1991). Bloodstain of 2×2 mm² was cut and immersed in 1.5 ml eppendorf tubes containing 1,000 µl of

sterile distilled water, Then mixed gently. It was incubated at room temperature for 15-30 minutes, then spined in microcentrifuge at 10,000 -15,000 x g for 2-3 minutes and carefully remove supernatant and discard. Take the filter paper out off the eppendorf tube, then add 5-10 % Chelex[®] 100 to final volume of 200 μ I. The sample was incubated at 56 °C for 15-30 minutes and vortexed again at 14,000 for 5-10 s, incubated at 100°C for 8-10 minutes and centrifuged for 2-3 minutes at 14,000xg in microcentrifuge. DNA extraction was kept at -20°C and used in amplification.

The single feather tips were washed with 70% ethanol and sterile water. Then 5-10 mm of the end of the tips was sliced off with a sterile razor blade and transferred to a 1.5 microcentrifuge tube containing 300 μ I sterile 10% Chelex[®] 100. Sample were vortexed and incubated at 56°C overnight. After that, the sample was vortexed again then, incubated at 100°C for 8 minutes and centrifuged at 14,000 rpm for 2-3 minutes in microcentrifuge. DNA extracts were kept at -200C.

3.2.3 *In vitro* Amplification of D-loop using the Polymerase Chain Reaction (PCR)

- Selection of Polymerase Chain Reaction Primers

Two D-loop primers were designed from sequences reported in genebank (http://www.ncbi.nlm.nih.gov). Primer 3 program was used in primer design for this study (http://www.genome.wi.mit.edu). The designed primer sequences is in Table 1. Oligonucleotide primers were synthesized by Bioservice Unit (BSU) of National Science and Technology Development Agency (NSTDA), Thailand.

 Table 2.1 The oligonucleotide primers used for PCR amplification of D-loop primer.

Oligonucleotide sequence	Length	Tm (°C)
5'GGGGG TATAC TATGC ATAAT CGTG'3	24	60.67
5'AAAGA ATGGG CCTGA AGCTA GT'3	22	60.61

- Polymerase Chain Reaction (PCR)

Fragment at 330 bp of the D-loop was amplified. The amplification reaction as performed in 50 μ I reaction mixture containing 20 mM Tris-HCI (pH 8), 100 mM KCI, 0.1 mM EDTA, 1 mM DTT, 50% glycerol, 2 mM MgCl₂, 200 μ M each of dATP, dGTP, dTTP and dCTP, 0.4 μ M of each different primers, 30-50 ng of DNA from chelex extraction, and 1 unit of *Taq* Polymerase (Promega). The amplification was performed in omnigene PCR Thermal cycler (Hybaid) for predenaturation at 94°C of 3 minutes and then 35 cycles of denaturation at 94°C for 30 seconds, annealing at 57°C for 1 minutes, extension at 72°C for 1 minutes and the final extension at 72°C for 10 minutes. The amplification product was electrophoretically analysed by agarose gel electrophoresis.

- PCR product analysis by 1.5 % agarose gel electrophoresis

The size of PCR products and the size markers (Phix174 Hinfl) are appeared after electrophoresis. One primer pair provide a single expected band of PCR product. The positive band was observed under ultraviolet light.

3.2.4 PCR product purification

The PCR products were purified by Bio 101 Geneclean spining kit. This kit eliminates the small size DNA such as primers, dNTP and others. Protocol for Geneclen spining kit was used as follow (Bio 101, 1998):

Add DNA solution to 400 of GC spin Glassmilk in Spin Filter.

- a Shake to mix Geneclean spin glass milk and add 400 μ l to spin filter.
- b Add DNA Solution (300 μl maximum/filter). Incubate at room temperature for
 5 minutes. Invent a tube every minute to prevent settling of glassmilk.
- c Spin liquid out of spin filter into a catch tube.

Wash with GENECLEN SPIN WASH

- a Add 50 μ I of GENECLEN SPIN NEW WASH to the spin filter.
- b Spin at 14,000 rpm for 30 seconds or until spin filter is emptied of wash .
- c Optional: Repeat wash.
- d Empty a catch tube and spin for 1 minutes to dry pellet.

Elute DNA with GENECLEN SPIN Elution Solution.

- a Transfer spin filter to a catch tube .
- b Add 10-25 μl geneclean spin elution solution to the filter and resuspend glassmilk by flicking the tube or by gently vortexing 1-2 seconds.
- C Spin 30 seconds to transfer eluted DNA to a catch tube. A second elution can increase 10-15% yield.
- d Discard the spin filter and cap the tube. DNA in solution is ready to use without further manipulation.

3.2.5 Measurement of DNA concentration

The concentration of PCR product was measured at 260 nm by UV absorbance with smartspec 3000 spectrophotometer. Double strand DNA at concentration of 50 μ g/ml have an absorbance of 1.0 at 260/280 nanometer. For DNA sequencing, the DNA amount of 30 – 90 ng is required.

3.2.6 Direct Sequencing of D-loop region by automatic Sequencer Cycle Sequencing (Perkin Elmer ABI PRISM Big-Dye terminator protocol, 1998).

a)	To prepare a reaction mixture		
	A reaction mixture was combined as follow :		
	- Terminator Ready Reaction Mix	4	μι
	- Template	30-90	ng
	- D-loop primer (5 pmol)	1	μι
	- Dionized water	q.s	

For a total volume of 10 μ I, this reaction mix was sequenced by a GeneAmp PCR System 2400. The cycle program consists of 25 cycles of denaturation step at 96°C for 10 seconds, primer annealing step at 50°C for 5 seconds , and extension step at 60°C for 4 minutes, then extension products were purified..

b) To precipitate Extension products by Ethanol/Sodium Acetate The protocol was used as follow:

1. For each sequencing reaction, prepare a 1.5 ml microcentrifuge tube contain the following :

- 1.0 µl of 3 M Sodium acetate (NaOAc), pH 4.6
- 50 µl of 95 % Ethanol (EtOH)
- 2. Pipet the entire contents of each extension reaction into a tube of sodium acetate and Ethanol mixture. Mix throughly.
- Vortex the tubes and leave at room temperature for 15 minutes to precipitate the extension products. Precipitation time under 15 minutes will result in the loss of very short extension products.
- 4. Spin the tubes in a microcentrifuge at 14,000 rpm for 20 minutes.
- 5. Carefully aspirate the supernatant with a pipette tip and discard. The supernatant must be removed completely, as unincorporated dye terminators are dissolved in them. The more residual supernatant left in the tube, the more unincorporated dye terminators will remain in the samples.
- 6. Rinse the pellet with 250 μ l of 70 % Ethanol
- 7. Vortex briefly.
- 8. Spin for 5 minutes in a microcentrifuge at maximum speed. Again, carefully aspirate the supernatant and discard.
- 9. Dry the pellet in a vacuum centrifuge for 10 15 minutes , or lids open in a heat block or thermal cycler at 90° C for 1 minutes.

C) Electrophoresis on the ABI PRISM 310 was used as follow:

- 1. Resuspend each sample pellet in 12-25 μ I of template suppression reagent. Vortex and spin the samples.
- 2. Heat the samples at 95oC for 2 minutes to denature , then chill on ice.
- 3. Vortex and spin the samples again. Place on ice until ready to loading the sample.

3.2.7 Data analysis

Sequence reading by an automate sequencer was illegible, so it is needed to be re - alphabetical by eye again. From sequence Navigator comparision, all sequences were aligned visually using the program clustal W (http://www.ebi.ac.uk/clustalw). The correct alignment of the sequences is fundamental to identify homologous characters.

Genetic distance

The most common way to evaluate the degree of sequence dissimilarity is to calculate pairwise genetic distance. The distance is the estimation of the number of nucleotide substitution per nucleotide site between two sequence. The two distance methods used in this study are the Jukes-Cautor distance and Kimura's two parameter distance (Kimura, 1980) by MEGA.

The genetic distance between sequence (d) is often given simply as the percentage difference, when d is small or corrected for multiple substitutions at a given site as follows (Kimura two parameter).

d = (1/2) ln [1-2P-Q] + 1/4ln [1/(1-2Q)]

P and Q are the proportional difference between two sequences.

Nucleotide diversity within a population

The average number of nucleotide substitutions within a population was calculated by

$$\pi = n/(n-1)\sum_{ij} x_i x_j d_{ij}$$

where n is the number of sequences sampled and d_{ij} is the number of nucleotide substitution per site between the ith and jth genotype. The x_i and x_j values are the sample freqrencies of the ith and jth genotype within population.

Phylogenetic analysis

Aligned sequences were defined haplotype and analysed based on the parsimony method by using PAUP (Vers. 3.1.1 Swofford, 1991) and MEGA (Ver. 1.02 Kumar *et al.*, 1993). Phylogenetic analyses were performed using maximum parsimony. The analysis was conducted using heuristic search option. The trees produced by were run through 100 replication bootstapping analysed for statistic proof.

Chapter 4

Results

4.1 DNA extraction

The total DNA from two populations of *Pavo muticus* specimens were extracted from bloodstains and feathers by 5% chelex extraction method. The quality of extracted DNA was visualized by 1% agarose gel. The result shows that the quality of DNA extraction from bloodstains was higher than the feather. Figure 4.1 shows quality of DNA extraction from bloodstains and feathers

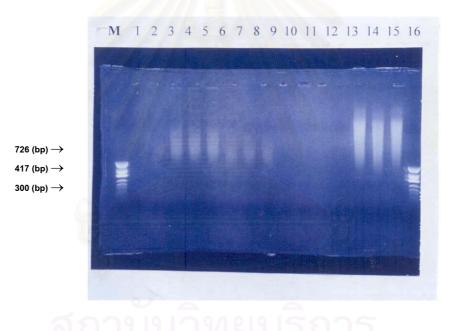
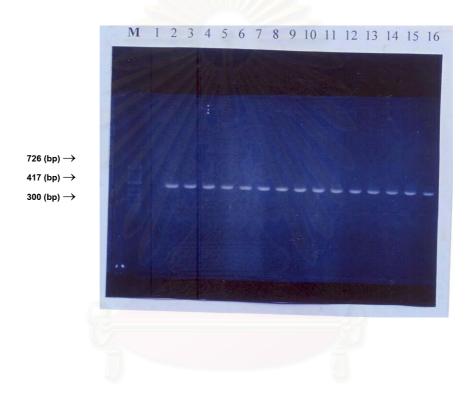
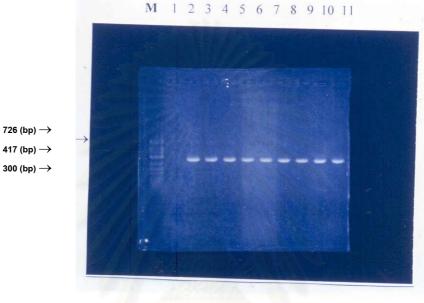


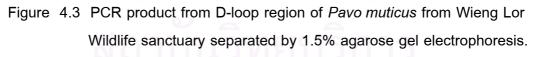
Figure 4.1 DNA extraction from the extraction of bloodstain and feather of *Pavo muticus* on 1% agarose that stained with Ethidium bromide.

lane M and 16	: Phix174 Hinf I standard marker
lane 1-2 and 9-12	: total DNA extraction of <i>P. muticus</i>
	from feather by 5% chelex extraction method
Lane 3-8 and 13-15	: total DNA extraction of <i>P. muticus</i>
	from bloodstain by 5 % chelex extraction method

4.2 PCR product of D-loop region

PCR product of D-loop region from 14 samples of *Pavo muticus* from Doi Phu Nang National Park and 9 samples of Wieng Lor Wildlife sanctuary were successfully amplification and seperated by 1.5% agarose gel electrophoresis shows in Figure 4.2


Figure 4.2PCR product from D-loop region of Pavo muticus from Doi PhuNang National Park seperated by 1.5% agarose gel electrophoresis.

Lane M	: Phix174 Hinf I	standard marker
Lane M	: Phix174 Hinf I	standard marker

- Lane 1 : Negative control
- Lane 2 : Positive control
- Lane 3-10 : PCR product from D-loop region of *P. muticus* from bloodstains
- Lane 11-16 : PCR product from D-loop region of *P.muticus* from feathers.

- : Phix 174 Hinf I standard marker Lane M
- : Negative control Lane 1
- Lane 2 : Positive control
- Lane 3-10 : PCR product from D-loop region of *P. muticus* from feathers.

4.3 Direct sequencing by an automated Sequencer

DNA concentration about 50 ng is the best quantity for a successful reaction mixture. The excess dye must be removed from the successful sequence completely.

4.4 Data analysis

Partial sequences of D-loop region were determined from all samples. At least 333 bp of D-loop were readable. The sequences were compared to *Gallus domesticus* sequences by Desjardins and Morais (1990) at L 55 to L 382 positions which is in the domain I of control region. The Alignment of *P. muticus* sequences with two sequences outgroups species, *Coturnix coturnix japonica*, and *Gallus gallus* are shown in Figure 4.4. There are eight haplotypes of *Pavo muticus* from Doi Phu Nang National Park population. The first haplotype (Pm1a) is peafowla11. The second haplotype is peafowla11. The third (Pm3a) is compose of peafowla10, a12, a8. The fourth (Pm4a) is peafowl is peafowl a9. The fifth (Pm5a) is peafowla13. Then, Pm69 ompose of peafowla2, a6 and a7. Pm7a is peafowl a4. Finally Pm8a is compose of peafowl a1, a3, a5. Meanwhile, there are three haplotypes in Wieng lor Wildlife Sanctuary population, the first haplotype (Pm3b) compose of peofowlb1, peafowl b2, peafowl b3, peafowlb5, peafowl b6 and peafowl b8. The second (Pm9b) is peafowl b4 then, Pmb haplotype is peafowl B7.

Twenty six variable sites from 14 individuals of *P. muticus* from Doi Phu Nang National Park population (Table 4.1). Sixteen nucleotide substitutions were transitions. Eight were transversions between intrapopulation. Fourteen sites were phylogenetically informatives. The genetic distance within this population is between 0.000-0.0513. The sequence divergence varies from 0 to 5.13 %.

Within eight individuals of *P. muticus* from Wieng Lor Wildlife sanctuary population (Table 4.1), the variable site were seven. All were transitions. The

genetic distance within this population is between 0.000 - 0.0219. The sequence divergence varies from 0 to 2.19%

The variable site between populations were 24 transitions and seven transversions. The genetic distance between two populations are between 0.0000 - 0.0547.

The nucleotide diversity within Doi Phu Nang National Park was 1.92 and nucleotide diversity within Wieng Lor Wildlife Sanctuary was 0.22

Genetic distances by Kimura's two parameter method are shown in Table 4.2. The maximum parsimony analysis yields the strict consensus tree shown in Figure 4.5. The tree was confirmed by more than 80% of the bootstrap replication performance. the tree has a consistency index (CI) of 0.947, homoplasy index (HI) of 0.053, excluding uninformative character, CI = 0.821 and HI = 0.179. The retention index (RI) = 0.908.

peafowla2	GGGGGTAAACTATGCATAATCGTGCATACATTTATATACCACATACAT	60
peafowla6	GGGGGTAAACTATGCATAATCGTGCATACATTTATATACCACATACAT	60
peafowla7	GGGGGTAAACTATGCATAATCGTGCATACATTTATATACCACATACAT	60
peafowla4	CCCGGTAAACTATGCATAATCGTGCATACATTTATATACCACATACAT	60
peafowla3		60
peafowlal	GGGGGTAAACTATGCATAATCGTGCATACATTTATATACCACATACAT	60
peafowla5		60
-		58
peafowla10		50 60
peafowlb2	GGGGGTAAACTATGCATAATCGTGCATACATTTATATACCACATACAT	
peafowla11		59
peafowla14	GGGGGTAAACATGATATCGTGCATACATT-ATATACCACATACATTATGGTCACAGT	56
peafowla12		60
peafowlb3	GGGGGTAAACTATGCATAATCGTGCATACATTTATATACCACATACAT	60
peafowlb1	GGGGGTAAACTATGCATAATCGTGCATACATTTATATACCACATACAT	60
peafowla8	GGGGGTAA-C-ATGCA-ATCGTGCATACATTTATATACCACATACATTATGGTCACAGT	56
peafowlb8	GGGGGTAA-CTATGCAT-ATCGTGCATACATT-ATATACCACATACATTATGGTCACAGT	57
peafowlb5	GGGGGTAA-CTATGCATAATCGTGCATACATTTATATACCACATACATTATGGTCACAGT	59
peafowlb6	GGGGGTAA-CTATGCATAATCGTGCATACATT-ATAT-CCACATACATTATGGTCACAGT	57
peafowlb7	GGGGGTAA-CTATGCATAATCGTGCATACATTTATATACCACATATATTATGGTCACAGT	59
peafowla9	GGGGGTAA-CTATGCATAATCGTGCATACATTTATATACCACATACATTATGGTCACAGT	59
peafowla13	GGGGGTAAACTATGCATAATCGTGCATACATTTATATACCACATATATTATGGTCACAGT	60
peafowlb4	GGGGGTAAACTATGCATAATCGTGCATACATTTATATACCACATATATTATGGTCACAGT	
coturnix	GGGGGTATACTATGCATAATCGTGCATACATTTATATTCCACATATACTATGGTACCGGT	60
chicken	GGGGGTATACTATGCATAATCGTGCATACATTTATATACCACATATATTATGGTACCGGT	
CHICKCH	**** * ********************************	00
		120
peafowla2		
peafowla6		120
peafowla7		120
peafowla4	AATACATACTATATACGTACTAAACCCATTATATGTAGACGGACATTACACTATCCTCCC	
peafowla3	AATACATACTATATACGTACTAAACCCATTATATGTAGACGGACATTACACTATCCTCCC	
peafowlal	AATACATACTATATACGTACTAAACCCATTATATGTAGACGGACATTACACTATCCTCCC	120
peafowla5	AATACATACTATATACGTACTAAAACCCATTATATGTAGACGGACATTACACTATCCTCCC	120
peafowla10	AATACATACTATATACGTACTAAAACCCATTATATGTAGACGGACATTACACTATCTTCCC	118
peafowlb2	AATACATACTATATACGTACTAAACCCATTATATGTAGACGGACATTACACTATCTTCCC	120
peafowla11	AATACATACTATATACGTACTAAACCCATTATATGTAGACGGACATTACACTATCTTCCC	119
peafowla14	AATACATACTATATACGTACTAAACCCATTATATGTAGACGGACATTACACTATCTTCCC	116
peafowla12	AATACATACTATATACGTACTAAACCCATTATATGTAGACGGACATTACACTATCTTCCC	
peafowlb3	AATACATACTATATACGTACTAAACCCATTATATGTAGACGGACATTACACTATCTTCCC	120
peafow100	AATACATACTATATACGTACTAAACCCATTATATGTAGACGGACATTACACTATCTTCCC	
peafowla8	AATACATACTATATACGTACTAAACCCATTATATGTAGACGGACATTACACTATCTTCCC	
peafow180	AATACATACTATATACGTACTAAACCCATTATATGTAGACGGACATTACACTATCTTCCC	
peafow1b5	AATACATACTATATACGTACTAAACCCATTATATGTAGACGGACATTACACTATCTTCCC	
-		117
peafowlb6	AATACATACTATATACGTACTAAACCCATTATATGTAGACGGACATTACACTATCTTCCC	
peafowlb7	AATACATACTATATACGTACTAAAACCCATTATATGTAGACGGACATTACACTATCTTCCC	
peatow1a9	AATACATACTATATACGTACTAAACCCATTATATGTAGACGGACATTACACTATTCTCCC	
peafowla13	AATACATACTATATACGTACTAAACCCATTATATGTAGACGGACATTACACTATCCTCCC	
peafowlb4	AATACATACTATATACGTACTAAACCCATTATATGTAGACGGACATTACACTATCCTCCC	
coturnix	AATATATATATATACGTACTAAACCCATTATATGTATACGGGCATTACA-TATTGTCCC	
chicken	AATATATACTAT-TATGTACTAAACCCATTATATGTATACGGGCATTAACCTATATTCCA	119
	**** *** *** ** ***********************	
peafowla2	CATTTATCCCCACGTTCAACCAATGCATGCTT-CCAGACATAAGACCTACACCTACCTAT	179
peafowla6	CATTTATCCCCACGTTCAACCAATGCATGCTT-CCAGACATAAGACCTACACCTACCTAT	179
- peafowla7	CATTTATCCCCACGTTCAACCAATGCATGCTT-CCAGACATAAGACCTACACCTACCTAT	179
peafowla4	CATTTATCCCCACGTTCAACCAATGCATGCTTTCCAGACATAACACCTACACCTACCT	180
peafowla3	CATTTATCCCCACGTTCAACCAATGCATGCTT-CCAGACATAACACCTACACTTACCTAT	179
peafowlal	CATTTATCCCCACGTTCAACCAATGCATGCTTTCCAGACATAACACCTACACTTACCTAT	
peafowla5	CATTTATCCCCACGTTCAACCAATGCATGCTT-CCAGACATAACACCTACACTTACCTAT	
peafowla10	CATTTATCCCCACGTTCAACCAATGCATACTC-CTAGACATAACACCCTATACTTACCCCAT	
peafowlb2	CATTTATCCCCACGTTCAACCAATGCATACTC-CTAGACATAACACCCTATACTTACCCCAT	
peafowlal1	CATTTATCCCCACGTTCAACCAATGCATACTC-CTAGACATAACACCTATACTACCACT	
peafowla14	CATITATCCCCACGTTCAACCAATGCATACTC-CTAGACATAACACCTATACTACCACCAT	
peafowla14	CATITIATCCCCACGTTCAACCAATGCATACTC-CTAGACATAACACCTATACTTACCCCAT CATTTATCCCCCACGTTCAACCAATGCATACTC-CTAGACATAACACCTATACTTACCCCAT	
peafowlaiz peafowlb3	CATITIATCCCCACGTTCAACCAATGCATACTC-CTAGACATAACACCTATACTTACCCCAT CATTTATCCCCCACGTTCAACCAATGCATACTC-CTAGACATAACACCTATACTTACCCCAT	
peafowlb3	CATITIATCCCCACGTTCAACCAATGCATACTC-CTAGACATAACACCCTATACTTACCCCAT CATTTATCCCCCACGTTCAACCAATGCATACTC-CTAGACATAACACCCTATACTTACCCCAT	
pearowidi peafowla8	CATTTATCCCCACGTTCAACCAATGCATACTC-CTAGACATAACACCCTATACTTACCCCAT CATTTATCCCCCACGTTCAACCAATGCATACTC-CTAGACATAACACCCTATACTTACCCCAT	
PCALOWIGO	CITTITICCCCCCCTTCAACCAATGCATACTC-CTAGACATAACACCTATACTTACCTAT	CIT

peafowlb8 peafowlb5 peafowlb6 peafowlb7 peafowla9 peafowla13 peafowlb4 coturnix chicken	CATTTATCCCCACGTTCAACCAATGCATACTC-CTAGACATAACACCCTATACTTACCCAT CATTTATCCCCACGTTCAACCAATGCATACTC-CTAGACATAACACCCTATACTTACCCAT CATTTATCCCCACGTTCAACCAATGCATACTC-CTAGACATAACACCCTATACTTACCCAT CATTTATCCCCACGTTCAACCAATGCATACTC-CTAGACATAACACCCTATACTTACCCAT	178 176 178 178 179 179 177
peafowla2 peafowla6 peafowla7 peafowla4 peafowla3 peafowla1 peafowla5 peafowla10 peafowla10 peafowla12 peafowla14 peafowla13 peafowlb6 peafowlb5 peafowlb6 peafowla9 peafowla13 peafowlb4 coturnix chicken	$\label{eq:tccccccccc} TAACTATGAATGGTCACAGGACATAACGT\\ TCCCTGCTCACA-AACCCACAAGTCACC-TAACTATGAATGGTCACAGGACATAACGT\\ TCCCTGCTCCCACAACCCACAAGTCACC-TAACTATGAATGGTCACAGGACATAACGT\\ TCCCTGCTCCCACAACCCACAAGCCACC-TAACTATGAATGGTCACAGGACATAACGT\\ TCCCTGCTCCCACAACCCACAAGCCACC-TAACTATGAATGGTCACAGGACATAACGT\\ TCCCTGCTCCCACAACCCACAAGCCACC-TAACTATGAATGGTCACAGGACATAACGT\\ TCCCTGCTCCCACAACCCACAAGCCACC-TAACTATGAATGGTCACAGGACATAACGT\\ TCCCTGCTCCCACAACCCACAAGCCACC-TAACTATGAATGGTCACAGGACATAACGT\\ TCCCTGCTCCCACAACCCACAAGCCACC-TAACTATGAATGGTCACAGGACATAACGT\\ TCCCTGCTCCCACAACCCACAAGCCACC-TAACTATGAATGGTCACAGGACATAACGT\\ TCCTGCTCCCACAACCCACAAGCCACC-TAACTATGAATGGTCACAGGACATAACGT\\ TCCCTGCTCCCACAACCCACAAGCCACC-TAACTATGAATGGTCACAGGACATAACGT\\ TCCCTGCTCCCACAACCCACAAGCCACC-TAACTATGAATGGTCACAGGACATAACGT\\ TCCCTGCTCCCACAACCCACAAGCCACC-TAACTATGAATGGTCACAGGACATAACGT\\ TCCCTGCTCCCACAACCCACAAGCCACC-TAACTATGAATGGTCACAGGACATAACGT\\ TCCCTGCTCCCACAACCCACAAGCCACC-TAACTATGAATGGTCACAGGACATAACGT\\ TCCCTGCTCCCACAACCCACAAGCCACC-TAACTATGAATGGTCACAGGACATAACGT\\ TCCCTGCTCCCACAACCCACAAGCCACC-TAACTATGAATGGTCACAGGACATAACGT\\ TCCCTGCTCCCACAACCCACAAGCCACC-TAACTATGAATGGTCACAGGACATAACGT\\ TCCCTGCTTCCCACAACCCACAAGCCACC-TAACTATGAATGGTCACAGGACATAACGT\\ TCCCTGCTTCCCACAACCCACAAGCCACC-TAACTATGAATGGTCACAGGACATAACGT\\ TCCCTGCTTCCCACAACCCACAAGCCACC-TAACTATGAATGGTCACAGGACATAACGT\\ TCCTGCTTCCCACAACCCACAAGCCACC-TAACTATGAATGGTCACAGGACATAACGT\\ TCCTGCTTCCCACAACCCACAAGCCACC-TAACTATGAATGGTCACAGGACATAACGT\\ TCCTGCTTCCCACAACCCACAAGCCACC-TAACTATGAATGGTCACAGGACATAACGT\\ TCCTGCTTCCACAACCCACAAGCCACC-TAACTATGAATGGTCACAGGACATAACGT\\ TCCTGCTTCCACAACCCACAAGCCACC-TAACTATGAATGGTCACAGGACATAACGT\\ TCCTGCTTCCACAACCCACAAGCCACC-TAACTATGAATGGTCACAGGACATAACGT\\ TAATAGACTTTCCACTAACAGGACACCATAACTATGAATGGTCACAGGACATAA-GC$	236 236 235 236 236 236 232 236 236 236 236 236 233 235 235 235 235 236 236
peafowla2 peafowla6 peafowla7 peafowla3 peafowla1 peafowla5 peafowla10 peafowla10 peafowla12 peafowla12 peafowlb3 peafowlb1 peafowlb3 peafowlb5 peafowlb5 peafowlb5 peafowlb6 peafowla9 peafowla13 peafowlb4 coturnix chicken	TCATATTACAGCTC-TTCCCCATTTGGTTATGCTCGACGTACCAGATGGATTTATTGATC TCATATTACAGCTC-TTCCCCATTTGGTTATGCTCGACGTACCAGATGGATTTATTGATC	294 295 293 295 294 295 295 295 295 295 295 294 292 294 294 295 295 295
peafowla2 peafowla6 peafowla7 peafowla4 peafowla3 peafowla1 peafowla5	GTACACCTCACGAGAGA-TCAGCAACCCCTGCCCGT330GTACACCTCACGAGAGA-TCAGCAACCCCTGCCCGT330GTACACCTCACGAGAGA-TCAGCAACCCCTGCCCGT330GTACACCTCACGAGAGA-TCAGCAACCCCTGCCTGT329GTACACCTCACGAGAGA-TCAGCAACCCCTGCCTGT330GTACACCTCACGAGAGA-TCAGCAACCCCTGCCTGT330GTACACCTCACGAGAGA-TCAGCAACCCCTGCCTGT330GTACACCTCACGAGAGA-TCAGCAACCCCTGCCTGT330	

		220
peafowla10	GTACACCTCACGAGAGA-TCAGCAACCCCTGCCTGT	328
peafowlb2	GTACACCTCACGAGAGA-TCAGCAACCCCTGCCTGT	330
peafowla11	GTACACCTCACGAGAGA-TCAGCAACCCCTGCCTGT	329
peafowla14	GTACACCTCACGAGAGA-TCAGCAACCCCTGCCTGT	326
peafowla12	GTACACCTCACGAGAGA-TCAGCAACCCCTGCCTGT	335
peafowlb3	GTACACCTCACGAGAGA-TCAGCAACCCCTGCCTGT	330
_ peafowlb1	GTACACCTCACGAGAGA-TCAGCAACCCCTGCCTGT	330
peafowla8	GTACACCTCACGAGAGA-TCAGCAACCCCTGCCTGT	326
peafowlb8	GTACACCTCACGAGAGA-TCAGCAACCCCTGCCTGT	350
peafowlb5	GTACACCTCACGAGAGA-TCAGCAACCCCTGCCTGT	329
peafowlb6	GTACACCTCACGAGAGA-TCAGCAACCCCTGCCTGT	330
peafowlb7	GTACACCTCACGAGAGA-TCAGCAACCCCTGCCTGT	329
peafowla9	GTACACCTCACGAGAGA-TCAGCAACCCCTGCCTGT	329
peafowla13	GTACACCTCACGAGAGA-TCAGCAACCCCTGCCTGT	330
peafowlb4	GTACACCTCACGAGAGA-TCAGCAACCCCTGCCTGT	330
coturnix	GTACACCTCACGAGAGAATCACCAACCCCTGTCTGT	330
chicken	ATACATTTAACTACCATGTT-CTAACCCAT-TTGGT	328
	**** * ** * *** *	

Figure 4.4 Multiple sequence of 330 bp partial D-loop region from two populations of *Pavo muticus* at Doi Phu Nang National Park and Wieng Lor Wildlife Sanctuary population and *Cotunix cotunix* and *Gallus gallus* as an out groups. Stars indicated identityfications of the sequence.

								Nu	cle	oti	de	ро	siti	on											
										1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	3
				1	1	1	1	1	4	1	1	4	5	6	6	6	7	7	8	8	9	0	5	7	2
Haplotype	1	2	2 3	4	5	6	7	8	6	5	6	9	2	4	3	9	2	7	8	9	2	3	2	7	8
										7															
Pm1a	G	G	G	G	С	A	т	С	С	С	Т	A	С	Т	С	Т	Т	С	С	С	С	С	С	Т	Т
Pm2a		•		Α	т	G	A	т	9		•			•											
Pm3a			-			•		A				•		•											
Pm4a			-					А		٦	с			•											
Pm5a								А	Т	•	С								т						
Pm6a					/.			A			С	G	Т	С	G	С	С	Т		A	١G	Т	т	С	С
Pm7a	С	С	с	<u>/</u> .	/		2	A	0		С	G	Т	С		С	С	Т		A	۰ ۱	Т	т	С	
Pm8a								A			С	G	т	С		С		Т		A	١.	Т	т	С	
Pm3b				<u> </u>	//			A																	
Pm9b							-	A	Т		С	7.							т	Т	• .				
Pm10b							•		т																

Table4.1 Haplotype of D-loop region (330 bp) of *P. muticus* from Doi Phu Nang National Park and Wieng Lor Wildlife Sanctuary which are shown only variable sites.

Note:

Dots indicated identical nucleotides with Pm1a

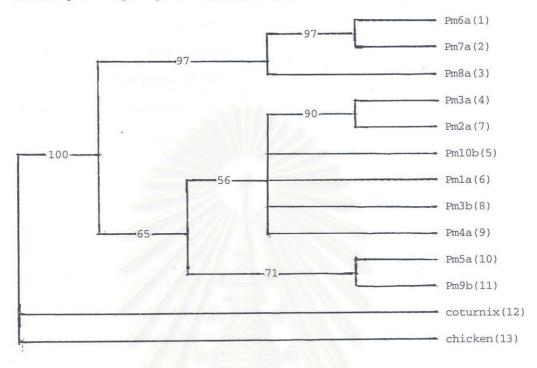

Pm1a-Pm8a = *Pavo muticus* haplotype from Doi Phu Nang National Park Pm9b-Pm10b = *Pavo muticus* haplotype from Wieng Lor Wildlife Sanctuary. Pm1a = peafowla11, Pm2a = peafowla14, Pm3a = peafowla8,a10,a12 Pm4a = peafowla9, Pm5a = peafowla13, Pm6a = peafowla2, a6, a7 Pm7a = peafowla4, Pm8a = peafowla1, a3, a5 Pm3b = peafowlb1, b2, b3, b5, b6, b8 Pm9b = peafowlb4, Pm10b = peafowlb7

 Table 4.2
 Genetic distance estimated by Kimura two parameter method among 22 samples of Pavo muticus imperator and Cotunix cotunix japonica is an out group which were obtained from 333 base pair of D-loop sequence

.

	A2	AG	A7	A4	A1	A3	A5	A11	A14	B3	A12	B2	B1	B6	B8	A10	A8	B5	B7	A9	A13	B4	CC	
A2	-	0.0000	0.0000	0.0156	0.0156	0.0125	0.0283	0.0481	0.0481	0.0448	0.0448	0.0481	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0547	0.0448	0.0415	0.0447	0.2147	
A6		100	0.0000	0.0156	0.0156	0.0125	0.0283	0.0481	0.0481	0.0448	0.0448	0.0481	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0547	0.0448	0.0415	0.0447	0.2147	
A7				0.0156	0.0156	0.0125	0.0283	0.0481	0.0481	0.0448	0.0248	0.0481	0.0448	0.0448	0.0448	0.0448	0.0448	0.0448	0.0547	0.0448	0.0415	0.0447	0.2147	
A4					0.0188	0.0156	0.0316	0.0513	0.0513	0.0480	0.0480	0.0513	0.0480	0.0480	0.0480	0.0480	0.0480	0.0480	0.0579	0.0480	0.0447	0.0479	0.2223	
A1						0.0031	0.0188	0.0382	0.0382	0.0414	0.0414	0.0447	0.0414	0.0414	0.0414	0.0414	0.0414	0.0414	0.0513	0.0414	0.0381	0.0413	0.2139	
A3							0.0156	0.0350	0.0350	0.0382	0.0382	0.0414	0.0382	0.0382	0.0382	0.0382	0.0382	0.0382	0.0480	0.0382	0.0349	0.0381	0.2099	
A5*								0.0413	0.0412	0.0446	0.0446	0.0479	0.0446	0.0446	0.0446	0.0446	0.0446	0.0446	0.0545	0.0446	0.0413	0.0445	0.2220	
A11									0.0000	0.0031	0.0031	0.0062	0.0031	0.0031	0.0031	0.0031	0.0031	0.0031	0.0124	0.0093	0.0188	0.0220	0.2235	
A14									-	0.0031	0.0031	0.0062	0.0031	0.0031	0.0031	0.0031	0.0031	0.0031	0.0093	0.0093	0.0188	0.0220	0.2235	
B3										-	0.0000	0.0031	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0093	0.0062	0.0157	0.0188	0.2194	
A12												0.0031	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0124	0.0062	0.0157	0.0188	0.2194	
B2													0.0031	0.0031	0.0031	0.0031	0.0031	0.0031	0.0093	0.0093	0.0188	0.0220	0.2235	
B1														0.0000	0.0000	0.0000	0.0000	0.0000	0.0093	0.0062	0.0157	0.0188	0.2194	
Bô															0.0000	0.0000	0.0000	0.0000	0.0093	0.0062	0.0157	0.0188	0.2194	
BS															-	0.0000	0.0000	0.0000	0.0093	0.0062	0.0157	0.0188	0.2194	
A10																	0.0000	0.0000	0.0093	0.0062	0.0157	0.0188	0.2194	
A8																	-	0.0000	0.0093	0.0062	0.0157	0.0188	0.2194	
B5																		-	0.0093	0.0062	0.0157	0.0188	0.2194	
B7																				0.0156	0.0188	0.0219	0.2231	
A9																				14	0.0157	0.0188	0.2151	
A13																						0.0031	0.2022	
BA																							0.2062	
CC																								

Remark : A1 - A14 = Pavo muticus from Doi Phu nang National Park , B1 - B8 = Pavo muticus from Wieng Lor Wildlife Sunctuary.

Bootstrap 50% majority-rule consensus tree

Figure 4.5 Strict concensus tree derived from 15 parsimony tree of 330 bp of *Pavo muticus* indicated the percentage of bootstrap replicates out of 100 that support each branch.

Note : out group	= Cotunix and chicken
Pm1a - Pm8a	= Pavo muticus haplotype 1-8 from Doi Phu Nang
	National Park
Pm3b	= Pavo muticus haplotype 3 from Wieng Lor Wildlife
	Sanctuary
Pm9b - Pm10b	= Pavo muticus haplotype 9-10 from Wieng Lor Wildlife
	Sanctuary

Chapter 5

Discussion

DNA from feathers and bloodstain of *Pavo muticus imperator* from Doi Phu Nang Nationnal Park and Wieng Lor Wildlife Sunctuary were successfully extracted by using Chelex[®] 100 extraction medium (Sanger-Sam *et al*, 1989; Walsh *et al*, 1991). This extraction method is easy, cheap, and less time consuming. It involves fewer opportunities for DNA contamination and loss of DNA than traditional phenol/chloroform extraction (Sambrook *et al*, 1989). Furthermore, this method involves no organic solvent and does not alliquote in to several tubes (Walsh *et al*, 1991). The advantage of chelex extraction method is capable to extract small amount of degraded DNA in samples such as bloodstains, feathers, hairs or even museum skins or preserved specimen. Although they are in very small amount, DNA can be extracted by this method and successfully amplified (Cooper, 1994). Although phenol/chloroform extraction is successful in recovering high molecular weight DNA. Chelex [®]100 is still more efficient than proteinase K and phenolchloroform extraction because this method includes the use of high salt concentration and excess proteinase K digestion (Walsh *et al*, 1991).

Furthermore, chelex extraction can be amplified even small quantities of short target DNA sequence of specific oligonucleotide primers. In general PCR can not amplify a long chain DNA but it also can amplify a difficult template DNA such as degraded DNA (Walsh *et al*, 1991).

One or two, or three tips of primary, or secondary, or train feathers are enough to harvest DNA for amplification. The result shows that concentration of the extracted DNA from feathers was lower than from bloodstains. Even, it could not be detected with 1% agarose gel but it can be detected by UV spectrophotometer at 260 nm. This method can also be used in many avian species such as Hazel grouse in Japan (Yoshiyuki *et al*, in press), Red Junglefowl subspecies of *Gallus gallus spadiceus* (Begthaisong, 1998), and American Woodcock, *Scolopax minor* (Alyson *et al*, inpress). The primers in this study were designed from D-loop gene (Fumihito *et al*, 1995), and covered 365 bp of D-loop region in Domain I. In this study, Polymerase Chain Reaction (PCR) is successfully amplified by using 5% chelex extraction. The most importance thing for amplification succeeded is based on a concentration of DNA template, it should be between 30-50 ng. Supposing that the concentration is too high or too low, the amplification may not be succeeded. A result from this research disagreed with a previous study by Boripat in 1997 that chelex [@] 100 extraction can not be used to provide DNA amplified D-loop region in Red *Gallus gallus gallus and jungle fowl Gallus gallus spadiceus.*

Furthermore, this extraction method can provide DNA from red jungle fowl *Gallus gallus spadiceus* for microsatellite technique (Begthaisong,1998). Meckvichai (1997) succeeded in using chelex[®]100 extracts for cytochrome b gene amplification.

A cycle sequencing reaction for automated sequencing is based on the dideoxynucleotide chain-termination method of Sanger *et al*, 1977. There are three important processes. First, The concentration of template is the critical composition. The concentration of template should be ranged from 40 to 50 nanogram which was the same as recommended in ABI PRISM BigDye terminator cycle sequencing Ready Reaction kit (30-90 ng). Second, the specific primer is needed for automated sequencer. Third, DNA is precipitated by Ethanol and Sodium Acetate. Excess dye has to be removed completely because it can interfere sequencing reaction which will result in unclear

From the DNA sequence analysis, it is shown that *Pavo muticus imperator* within Doi Phu Nang National Park population are higher divergent and more variable than *Pavo muticus imperator* within Wieng Lor Wildlife sanctuary population. From a progressive report of Wina and colleague, (2001) found that the number of *Pavo muticus imperator* in Wieng Lor Wildlife Sanctuary population is about three times less than in Doi Phu Nang population, therefore, it is possible that the population size should be involved in genetic variation within population. It is found that nucleotide sequences from the study of Fumihito and colleague, (1995) are

more similar to Wieng Lor Wildlife Sanctuary population than to Doi Phu Nang National Park population. There are only 2 difference site.

From a phylogenetic tree based on the nucleotide sequence using Parsimony method to find the optimal tree by heuristic method and 100 bootstrap frequency, two populations of *Pavo muticus imperator* are divided into two groups. The first group composites some Green peafowls at Doi Phu Nang National Park only (Pm6a, Pm7a, and Pm8a haplotype). The results coincides with the result from a bootstrap 50% majority consensus tree. It shows that this group is to be diverged from another group.

The second group is composed of populations from both Doi Phu Nang National Park and Wieng Lor Wildlife Sanctuary (Pm3a, Pm2a, Pm1a, Pm4a, Pm5a, haplotype and Pm3b, Pm9b, Pm10b haplotype). All of the samples in this group did not separated clearly. In addition, there are some Green Peafowls in this group begins to be diverged. It is possible that both areas are located closely and two populations can still be involved. Furthermore, these population were separated not for a long time by geographical barriers. There are moutains and roads separating two populations. These populations still share more character of ancestors, because in the former, these two populations may be in continuous areas. At present, both populations were separated by two roads. Furthermore, there are many villages along two side of the road so the two populations of Green Peafowls can not to be in the habit of visiting but the some section of roads are the forests. Therefore, Green Peafowls still related. The first one is a road from Amphor Chiang Muan to Amphor Dokkhumtai and the second are from Amphor Chiang Muan to Amphor Chun. Although both populations live in different river basin; Doi Phu nang population is in Yom basin and Wieng Lor population is in Eing basin. However, in the past both populations used to be in one population. Therefore, these populations still share some of the character. As in previous study about population such as Fringilla teydea (blue chaffinch) by using 767 basepair of control region analyse by maximum parsimony. The tree is clearly supported the separated of two population maternal lineage (Pestano et al, 2000). Furthermore, Ava and Felix et al

(1992) studied in *Poecilia reticulata* (The Trinidad guppy) about 465 base pairs of control region. Found that The maximum parsimony shown the four populations of the drainage comprised one dichotomy group, and the second group included all other populations.

Genetic distances of these two populations supports the pasimonious infer phylogenetic tree. The range of genetic distances within Doi Phu Nang population and Wieng Lor population are 0.0000 - 0.0513 and 0.0000 - 0.0219 respectively and between population is 0.0000 - 0.00547 but the genetic distance between population is closed to the genetic distance within population of Doi Phu Nang National Park. The nucleotide diversity within Doi Phu Nang National Park ($\pi = 1.92$) is higher than nucleotide diversity within Wieng Lor Wildlife Sanctuary ($\pi = 0.22$). These value within Doi Phu Nang National Park are higher than Wieng Lor Wildlife Sanctuary, it may be population size of Wieng Lor Wildlife Sanctuary less than Doi Phu Nang National Park.

From this study partial D-loop nucleotide sequence of *Pavo muticus imperator* (330 base pairs) can be classified genetic variation in population level at Doi Phu Nang and Wieng Lor population. Even D-loop is very variable. It may be two populations are closed areas and still contact together. It is different from *Fringilla teydea* (blue chaffinch) which are separated to each population by D-loop sequence. It is may be the life cycle span of finch is shorter or more than Green Peafowls and the areas of this species populations are long distance.

However, this study found that both populations begin separate into subpopulations. In the future, two populations may be completely separated. If people who live along these two roads expand the area. Green Peafowls from these two populations can not move and flow back and forward. Then, the conservation may by considered because metapopulation or habitat fragmentation may occur.

Chapter 6

Conclusion and Recommendations

Conclusion

Genetic variation of *Pavo muticus* between Doi Phu Nang National Park and Wieng Lor Wildlife Sanctuary populations by 330 bp D-loop nucleotide sequences. Doi Phu Nang National Park has 26 variable site, 14 informative site, 16 transition site and 8 transversion site. Genetic distance were 0.0000-0.0513.

Within Wieng Lor Wildlife Sanctuary population has 7 variable site and transition. Genetic distance were ranged 0.0000-0.0219.

Genetic diversity of *Pavo muticus* of Doi Phu Nang National Park and Wieng Lor Wildlife Sanctuary is 1.92 and 0.22 respectively.

From a phylogenetic tree based on the D-loop sequence using parsimony method, two populations of *Pavo muticus* are divided into two groups. The first group to be diverged. It is composed some Green peafowls at Doi Phu Nang National Park only. the second groups is composed of populations from both Doi Phu Nang National Park and Wieng Lor Wildlife Sanctuary but, the partial of two populations begin to be diverged.

Recommendations

From the result, the Green Peafowls from Doi Phu Nang National Park should be maintained because this population has high genetic variation.

In the future , researcher should study genetic variation of Green Peafowls that far away from Doi Phu Nang National Park and Wieng Lor Wildlife Sanctuary. So would to know about using D-loop in population study. Researcher will increase the number of Green Peafowls specimens from both Doi Phu Nang National Park and Wieng Lor Wildlife Sanctuary so that this information has good better about genetic variation for wildlife management in the future.

References

- Adam, J.F., and Robert, M.Z. 1998. Geographic analysis of nucleotide diversity And song sparrow (Aves: Emberizidae) population history. <u>Molecular Ecology.</u> 7 : 1303-1313.
- Arrathrakorn, S., Meckvichai, W. 2000. Foraging ecology of green peafowl in breeding season at Doi Phu nang National Park , Phraya Province. Proceeding of the 26th Congress on Science and Technology of Thailand : 19-VIP-01
- Ava, F., and Felix, B. 1992. Mitochondrial DNA sequence variation among natural populations of the Trinidael Guppy, *Poecilia reticulata*. <u>Evolution</u>.
 46 (5) : 1457 1465.
- Avise, J.C. 1994. <u>Molecular Markers Natural History and Evolution</u>. New York: Chapman and Hall.
- Begthaisong, P., 1998. Microsatellite DNA variation of Red Jungle Fowls Gallus gullus spadiceus In northern and Southern Thailand. Master's Thesis, Program of biotechnology, Graduate School, Chulalongkorn University.
- Bio 101 . 1997-1998. <u>Protocols, Procedures and References Geneclen spin Kit.</u> California.
- Boripat Siriaroonrat, 1997. Mitochondrial DNA Sequence Variation Within and
 Between RED Jungle Fowl (*Gallus Gallus Gallus and Gallus Gallus padiceus*) In Thailand, Master's Thesis . Departmant of Biology ,
 Graduate School , Chulalongkorn University.
- Brown, W.M., George, M.Jr., and Wilson, A.C. 1979. Rapid evolution of animal mitochondrial DNA. <u>Proceeding Academic National Science USA</u>. 76: 1967-1971.
- CITES, 1996. Checklist of CITES species. World Conservation Monitoring centre. United kingdom.
- Collar, N.J., Crosby, M.J., and Stattersfield, A.J. 1994. <u>Birds to watch 2. The</u> world List of Threatend Birds. Washington, DC : Smithsonian Institution Press.
- Cooper,. A. 1994. DNA from museum specimens. Ancient DNA. Springer Verlag.
- Deignan, H.G. 1963. <u>Checklist of the Birds of Thailand</u>. Washington, D.C.: Smithsonian Institution United States National Museum.
- Delacour, J. 1977. The Pheasant of the World.2nd. England: The World Association.

- Desjardins, P., and Morais, R. 1990. Sequence and gene organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates. <u>Journal</u> <u>of Molecular Biology and Evolution</u>. 212: 599-634.
- Edwards, S.V. 1993. Long-distance gene flow in a cooperative breeder detected in genealogis of mitochondrial DNA sequence. <u>Proceeding Royal Society</u> London series B. 252: 177-185.
- Fumihito, A., Miyake, T., Takada, M., Ohno, S., and Kondo, N. 1995. The genetic link between the Chinese bamboo partridge (*Bam busicola thoracica*) and the chicken and junglefowls of the genus *Gallus*. <u>Proceeding National</u> Academic Science U.S.A. 92 : 11053- 11056.
- Hayashi,J.I., Tagaashira, Y., and Yoshida, M.C. 1985. Absence of extensive recombination between inter and intraspecific mitochondrial DNA in mammalian cell. <u>Exp. Cell Res.</u> 160: 387-395.
- Hillis, D.M., Moritz, C., and Barbara (eds.). 1996. <u>Molecular Systematics</u>. 2nd ed. Sunderland, Massachusetts: Sinauer Associates, Inc.
- Humphrey, R.S., and Bain, J.R. 1990. <u>Endangered Animals of Thailand</u>. Florida: Sandhill Crane Press.
- Irwin, D.M., Kocher, T.D., and Wilson, A.C. 1991. Evolution of cytochrome b gene in mammals. <u>Journal of Molecular and Evolution</u>. 32: 128-144.
- IUCN, 1998. IUCN Red Data List of Treatened Animal. Gland. Switzerland: IUCN.
- Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions Through comparative studies of mucleotide sequences. <u>Journal of Molecular</u> <u>Evolution.</u> 16 : 111-120.
- Kocher, T.D. Thomas, W.K., Meyer, A. Edwards, S.V., Paabo, S., Villablanee, F.X., and Wilson, A.C. 1989. Dynamics of mitochondrual DNAaa evolution ianimals: Amplification and sequenceing with conserved primers. <u>Proceeding</u> <u>Acadamic Science USA</u>. 86: 6196-6200.
- Kumar, S., Tamura, K., and Nel, M. 1993. MEGA: Molecular Evolution Genetic Analysis, Version 1.02. Pennsylvania State University, University Park, Pennsylvania.
- Meckvichi, W.,Malaivijtnond, S., and Tirawatanapong, T. 1997. Cytochrome b variation in phesants and junglefowls.Chulalongkorn University Reseach symposium Bangkok.
- Meckvichai, W., Sripong, U., and Srikwan, S. 2001. Progressive Report the "3 Biodiversity Research Tranning Program : 1-14.

- Marshall, H.D., and Baker, A.J. 1997. Structural conservation and variation in the mitochondrial contral region of fringilline finches (*Fringilla* spp.) and the greenfinch (*Carduelis chloris*). <u>Molecular Biology and Evolution</u>14: 173-184.
- Mila, B., Girman, D.J., Kimura, M., and Smith T.B. 2000. Genetic evidence for the effect of a postglacial population expansion on the phylogeography of a North American songbird. <u>Proceeding Royal Society London Biological Science</u> 267(1447) : 1033-1040. upper data
- Moritz, C., Dowling, T.E., and Brown, W.M. 1987. Evolution of animal mitochondrial DNA: Relevance for population biology and systematic. <u>Annual Review</u> <u>Ecological Systematic</u>. 18: 269-292.
- Palumbi, S.R., and Wilson, A.C. 1990. DNA diversity in the sea urchins *Strongylocentrotus purpuratus* and *S. droebachiensis*. <u>Evolution</u>. 44: 403-415.
- Perkin Elmer Applied Biosystems. 1998 . <u>ABI PRISM[®] BigDye[™] Terminator</u> <u>Cycle Sequencing Ready Reation Kit with AmpliTag[®] DNA Polymerase, FS</u> <u>protocol.</u> U.S.A. : The Perkin-Elmer Corporation
- Pestano, J., Brown, R.P., Rodriguez, F., and Moreno, A. mitochondrial DNA control region diversity in the endangered blue chaffinch, *Fringilla teydea*. <u>Molecular</u> <u>Ecology</u> . 2000(9) : 1421 – 1425.

Phungsawade, S. 1997. Doi Phu Nang National Park (Mimeographed)

- Ponsena, P., 1988. Biological Chracteristics and Breeding Behavior of Green Peafowl
 (*Pavo muticus* Linn.) In Huai Kha Khaeng Wildlife Sactuary. Master's Thesis,
 Department of Forest Biology, Graduate School, Kasetsart University.
- Quinn, T.W. 1992. The genetic legacy of Mother Goose phylogeographic patterns of lesser snow goose *Chen caerulescens* maternal lineages. <u>Molecular</u> <u>Ecology</u>. 1: 105-117.
- Quinn, T.W., and Wilson, A.C. 1993. Sequence evolution in and ground the mitochondrial control region in birds. <u>Journal of Molecular and Evolution</u>. 37: 417-425.
- Rojanadelok, P., Phumpakpun, N., Kutin, U., Naksatit, N., Prayulsit, T., and Sukmasaung, R. 1986. <u>Distribution Range and Some Behavioral</u> <u>Characteristic of Green Peafowl in Huai Kha Khang WildlifeSantuary.</u> 120-150.

- Saccone, C., Pesole, G., and Sbisa, E. 1991. The main regulatory region of mammalian mitochondrial DNA: Structure-function model and evolutionary pattern. Journal of Molecular Evolution. 33: 83-91.
- Sambrook, J., Fritsch, *E.F., and Maniatis*, T.1989. <u>Molecular Cloning : A Laboratory</u> <u>Manual.</u>Cold Spring Harbor : Cold Spring Harbor Laboratory Press.
- Sanger-sam, J., Tanguay, L., and Riggs, A.D. 1989. Use of Chelek to improve the PCR signal from a small number of cell. <u>Amplifications</u>. 3: 11.
- Swafford, D.L. 1991 PAUP 3.0 : Phylogenetic analysis Using parimony. Illinoi : Natural History Survey Champaign.
- Taberlet, P., Meyer, A., and Bouvet, J. 1992. Unsual mitochondrial DNA polymorphism In two local populations of blue tit *Parus caeruleus*. <u>Molecular Ecology</u>. 1(1): 27-36.
- Walsh, P.S., Metzger, A.P., and Higuchi, R. 1991. Chelex[®] 100 as a medium for simple extraction of DNA for PCR-base typing from forensic materials.
 <u>Biotechnigues</u>. 10(4): 506-113.

Wayre, P. 1969. A Guide to the Pheasants of the World. London: Poul Hamlyn

Wenick, P.W., Baker, A.J., and Tilanus, M.G.J. 1993. Hypervariable control region sequence reveal global population structuring in a long-distance migrant shorebird, the dunlin (*Calidris alpina*). <u>Proceeding National Academic Science</u> <u>USA</u>. 90: 94-98.

Wieng Lor Wildlife Sanctuary. 1998. Survey in Wieng Lor Wildlife sanctuary reports.Woodruff, D.S. 1990. Genetic and demography in the conservation of Biodiversity.Journal of Science Society Thailand. 16: 117-132.

APPENDICES I

Reagent preparation protocol

1) 1% Agarose gel

An enough amount of ingredients for a 100 ml gel is composed of

- Agarose	1.0	gm
- 1xTBE buffer	100.0	ml.

How to applied the description previously in use is as followed:

- 1. Mix 1 gm of agarose powder into 30 ml of 1xTBE buffer.
- 2. Cook the agarose resuspension in a microwave for 2 minutes.
- 3. Prepare a gel mould to set a gel. When time is finished, add 0.2 μ l of 1% Ethidium Bromide into the about 25-50 ml of dissolved gel. The gel is mixed.
- 4. Poure the soluble gel into the gel mould, which the comb is already inserted to the gel mould.
- 5. When the gel has completely been cooled and solidifed; removed the comb. Transfer gel into a gel chamber containing enough volume of 1XTBE buffer that will covers the gel about 1-2 mm above.

Remark : Preparing 1.5 % Agarose is like 1 % Agarose but 1.5 gram of agarose is used to dissolved in 100 ml 1X TBE buffer.

2) 10X TBE buffer (Tris Boric EDTA buffer)

An enough amount of ingredients for a 1,000 ml is composed of

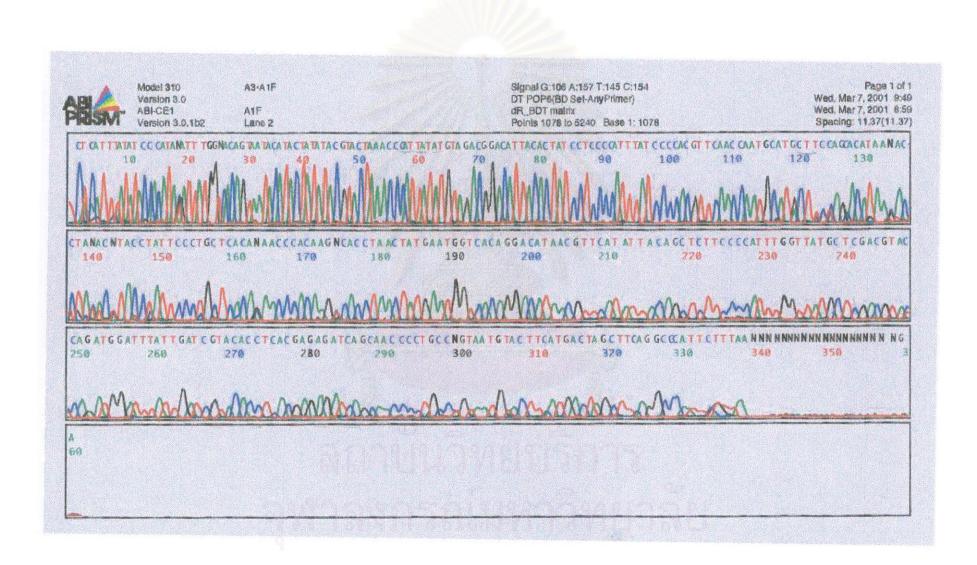
- Tris aminomethane	108.00 gm
- Boric acid	50.40 gm
- EDTA	7.44 gm

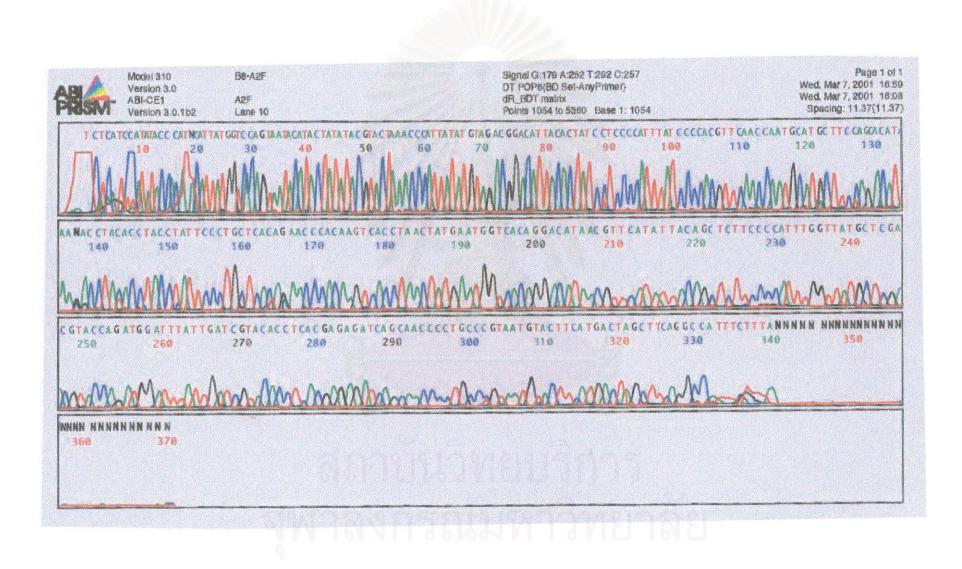
The buffer is prepared as followed :

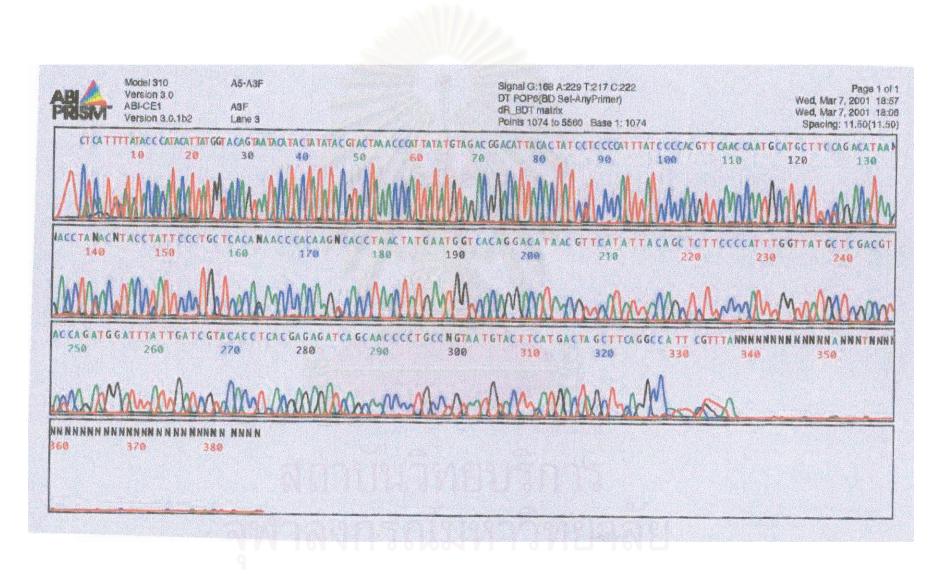
- 1. Tranfer the exact amount of Tris, Boric acid and EDTA into a 1,000 Volumetric flask
- 2. Add double distilled water up to 1,000 ml
- 3. Stir the solution until completely dissolved.

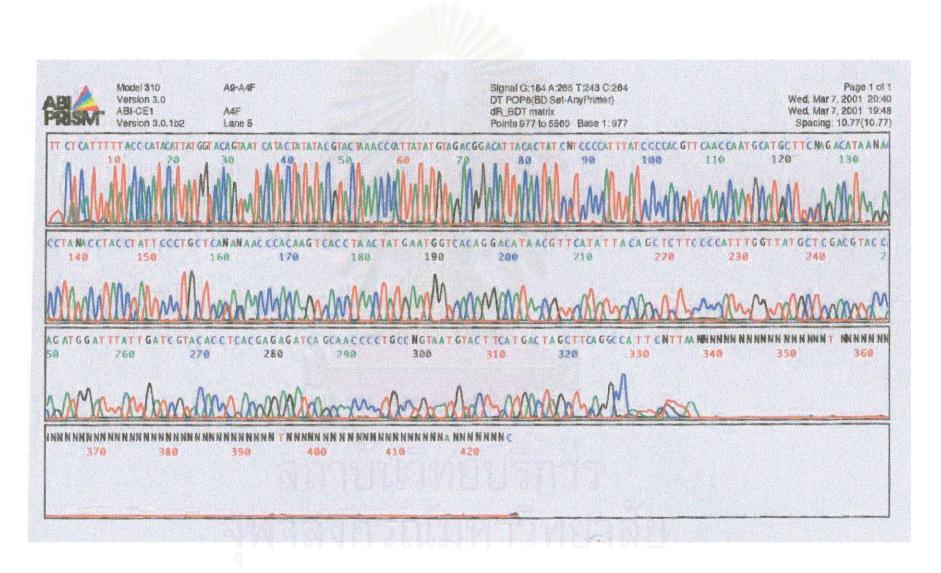
4. Store the solution at room temperature and dilute into 1X TBE for Agarose gel preparation.

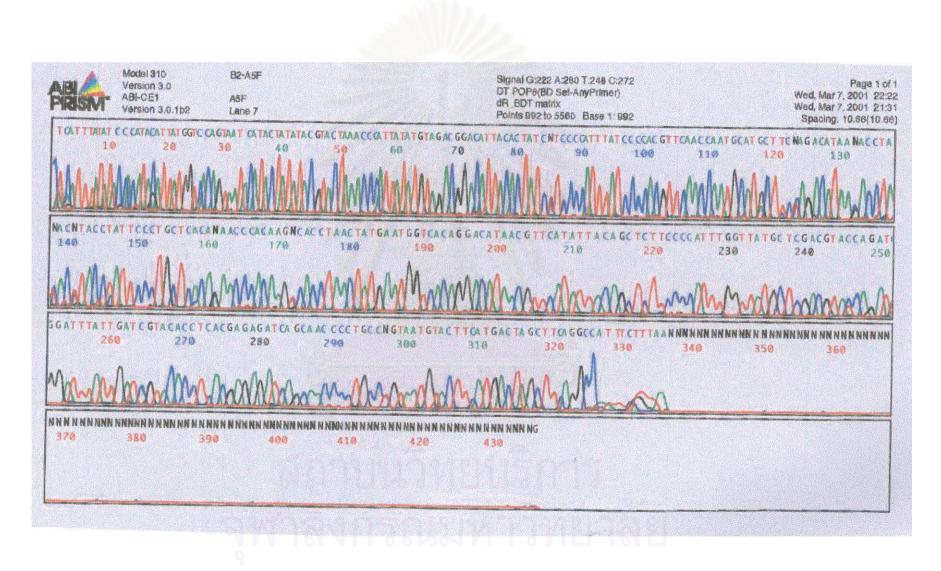
2) 3M NaOAc pH 4.6 (20 ml) M.W = 136

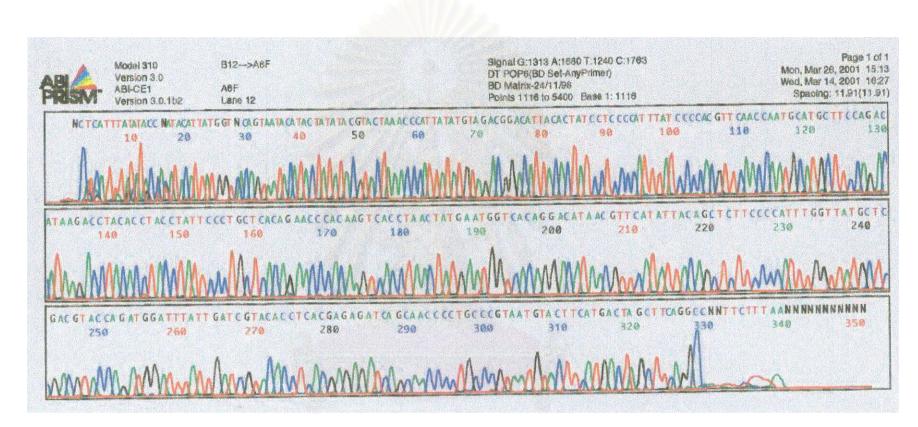

- Dissolve 8.16 g Sodium Acetate in double distilled water
- Add any acetic acid
- Adjust pH with glacial acetic acid to be 4.6
- Add H2O to 20 ml

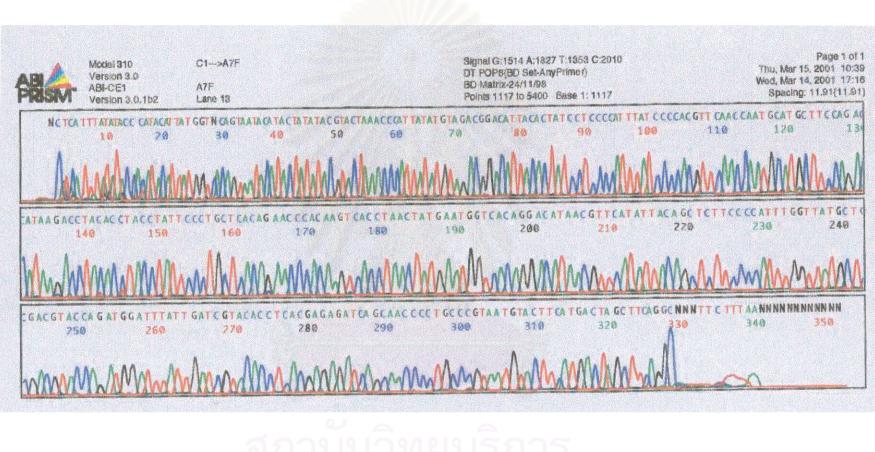


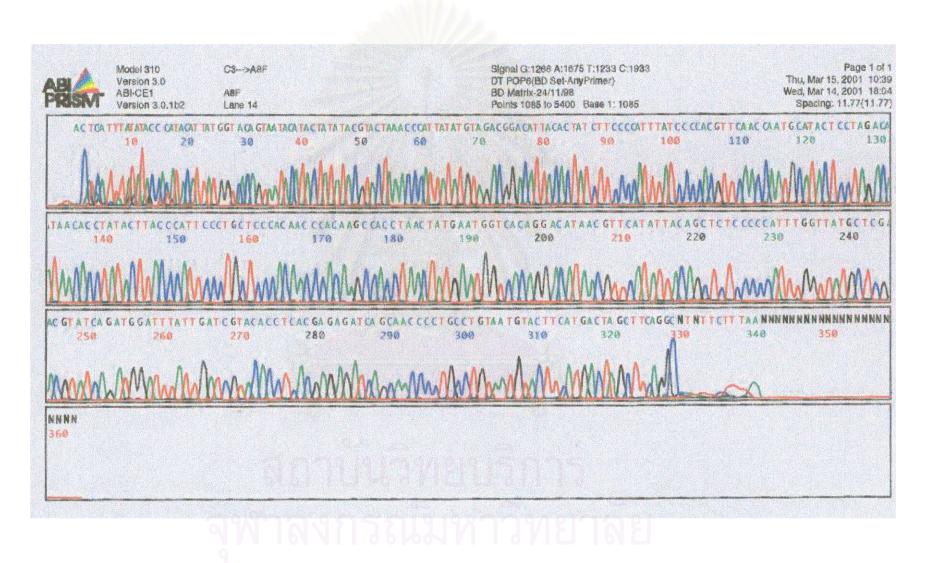

APPENDICES II

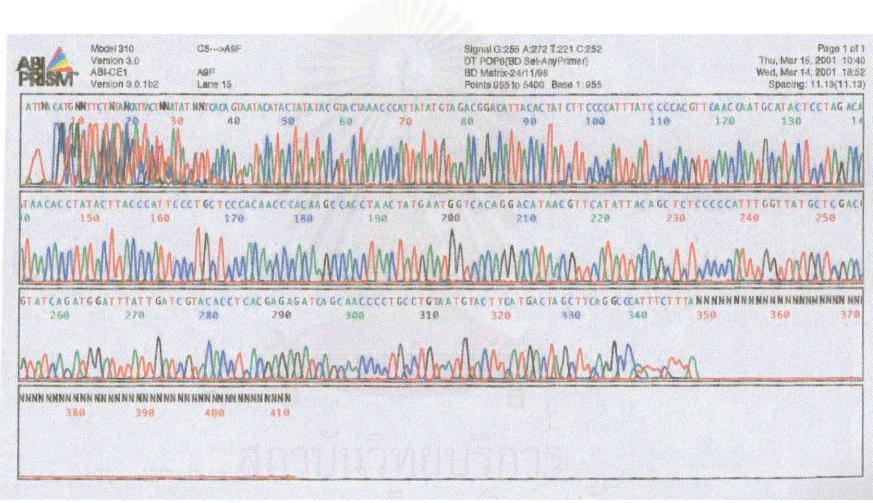

Electropherogram and D-loop sequences

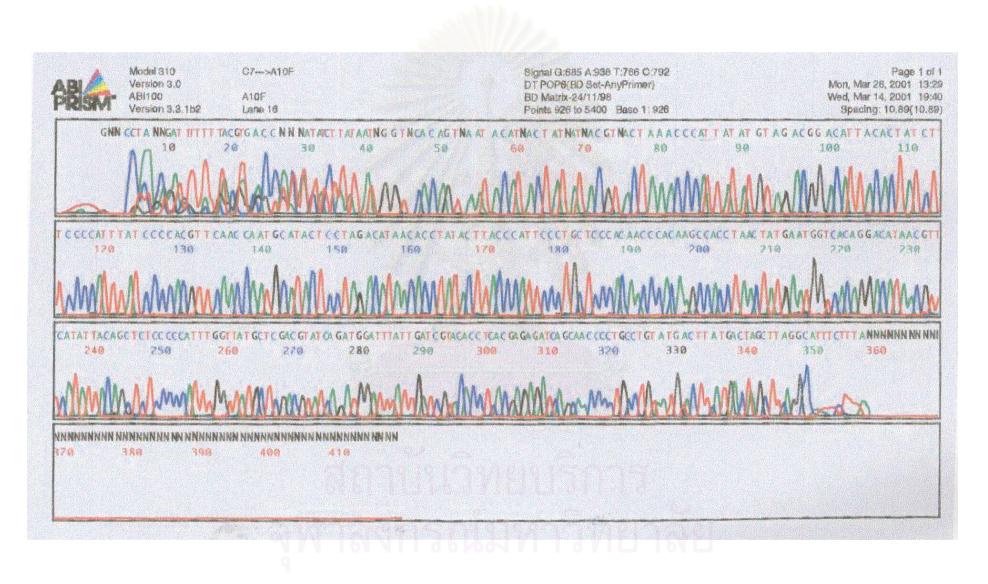

From ABI 310 Genetic Analyzer

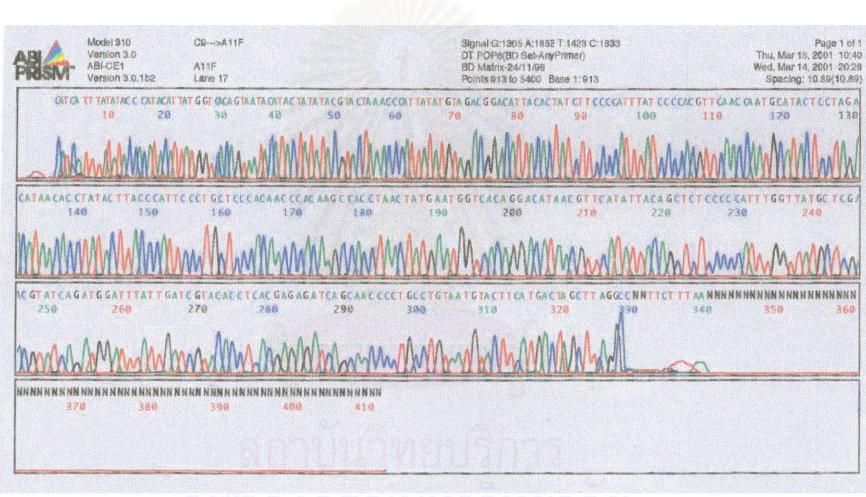


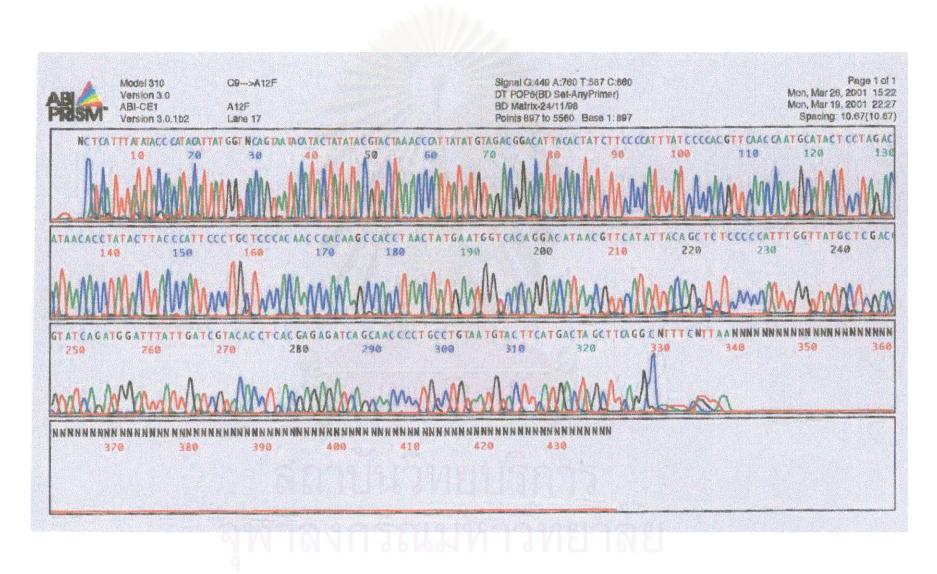


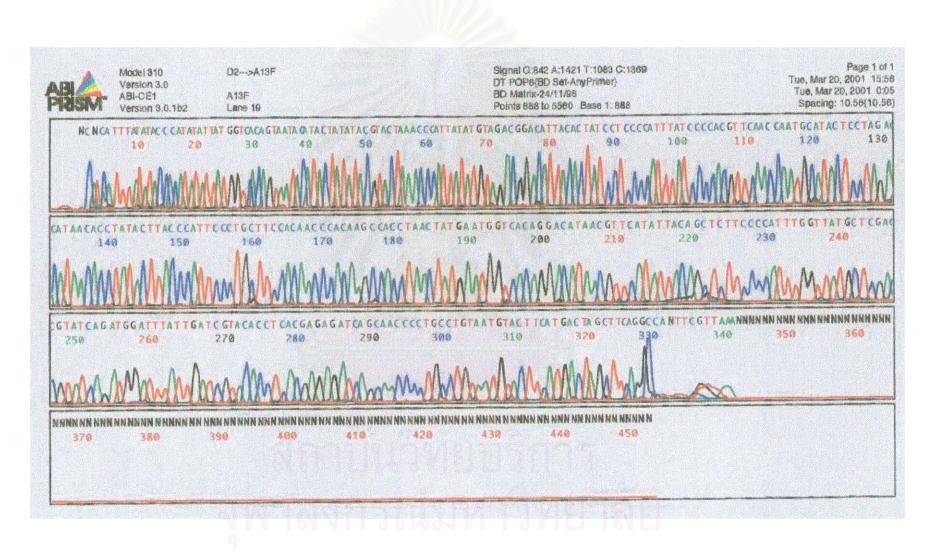


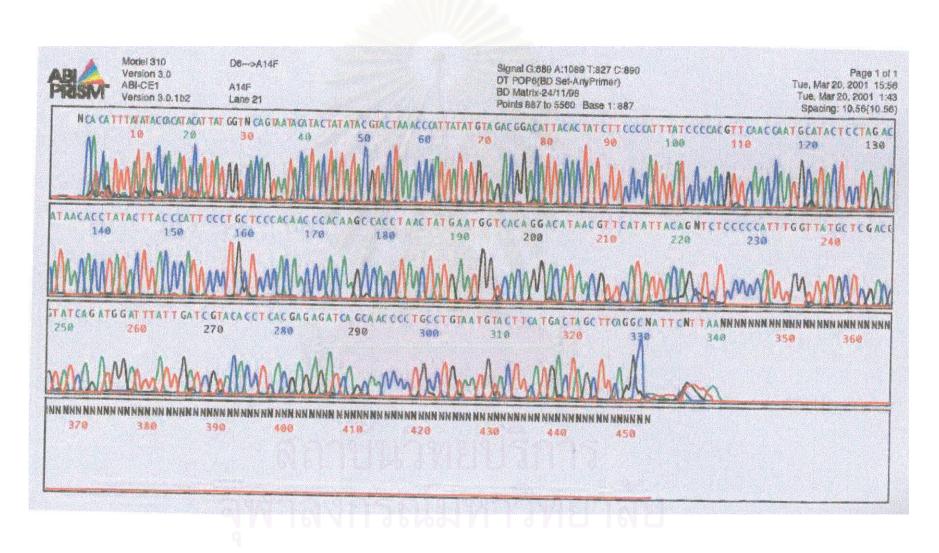


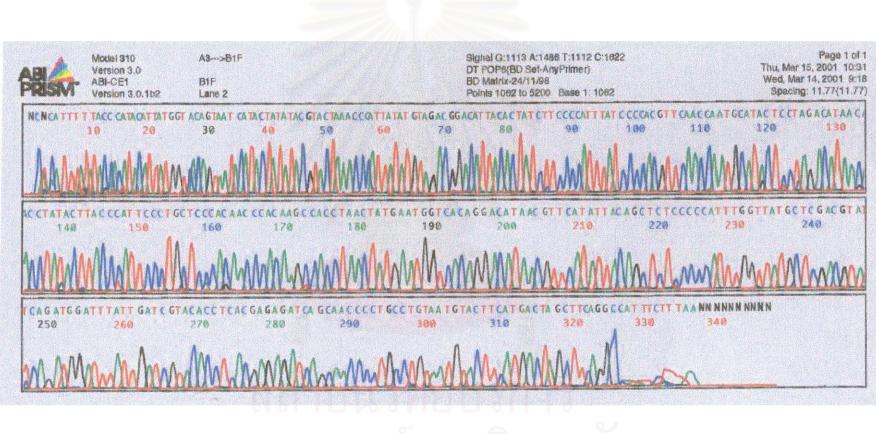




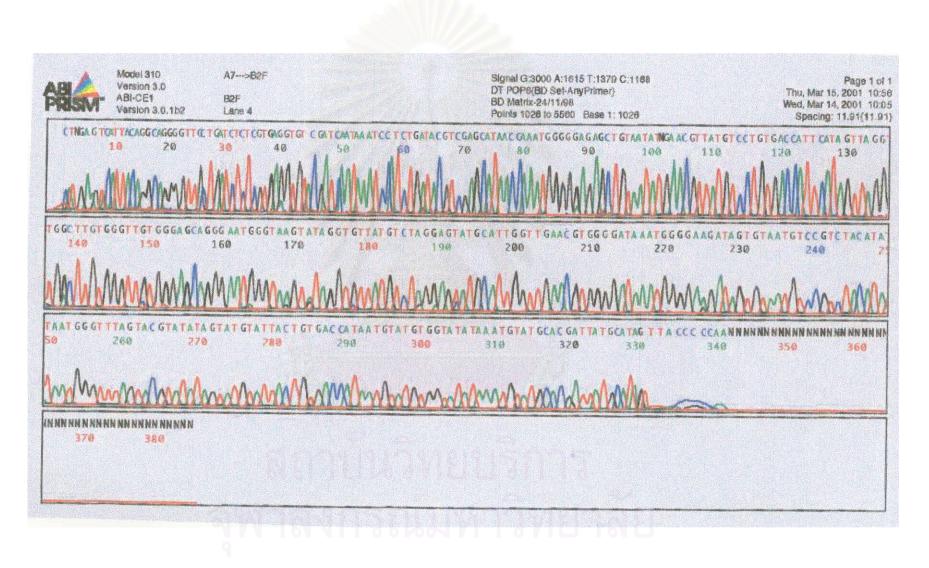


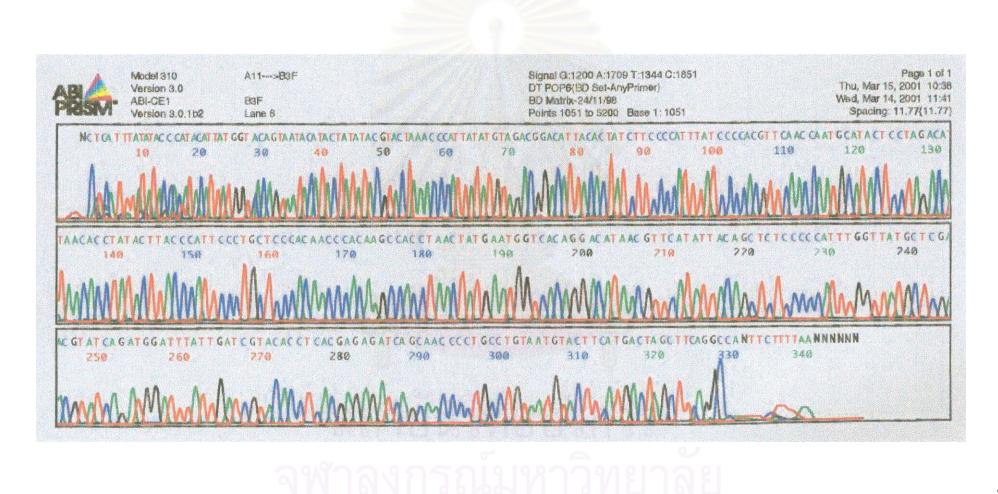

จุฬาลงกรณมหาวทยาลย

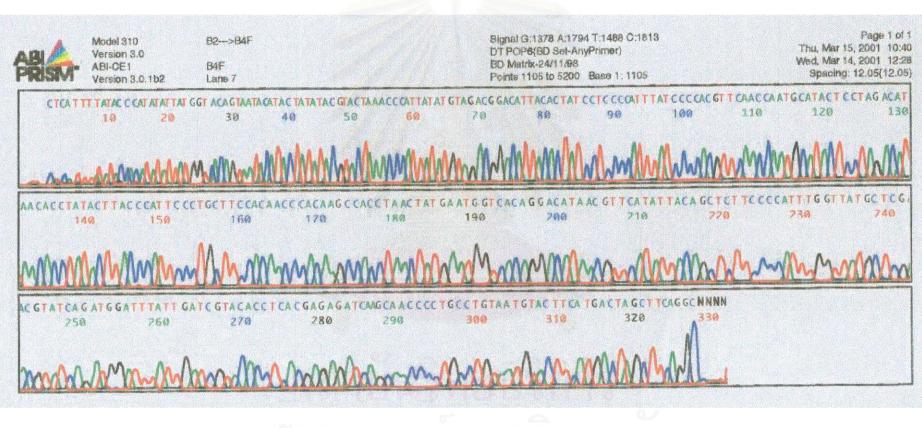


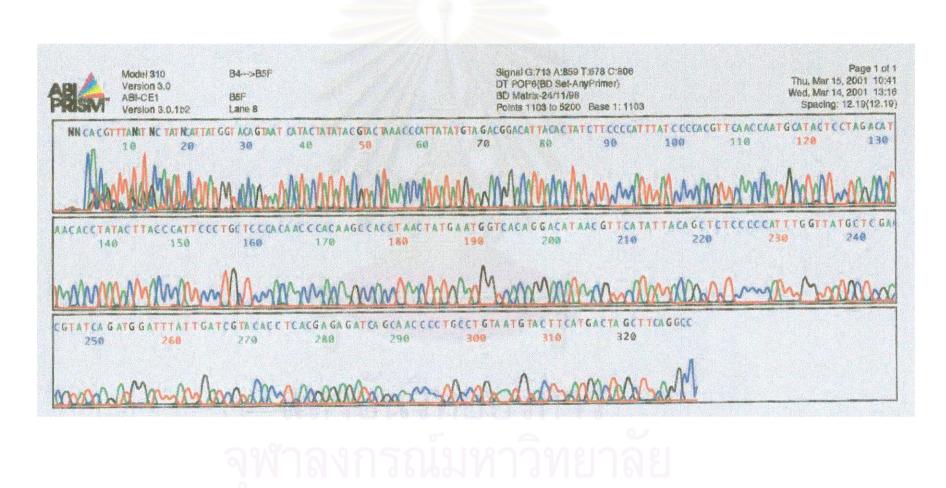


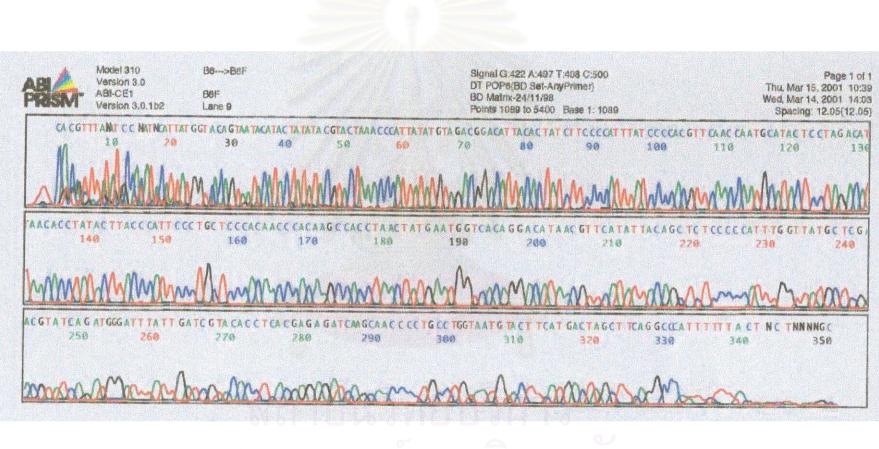
จุฬาลงกรณมหาวทยาลย

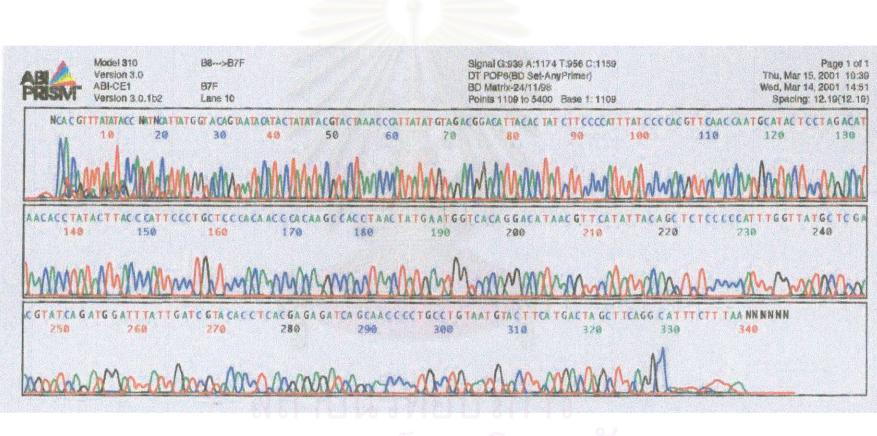




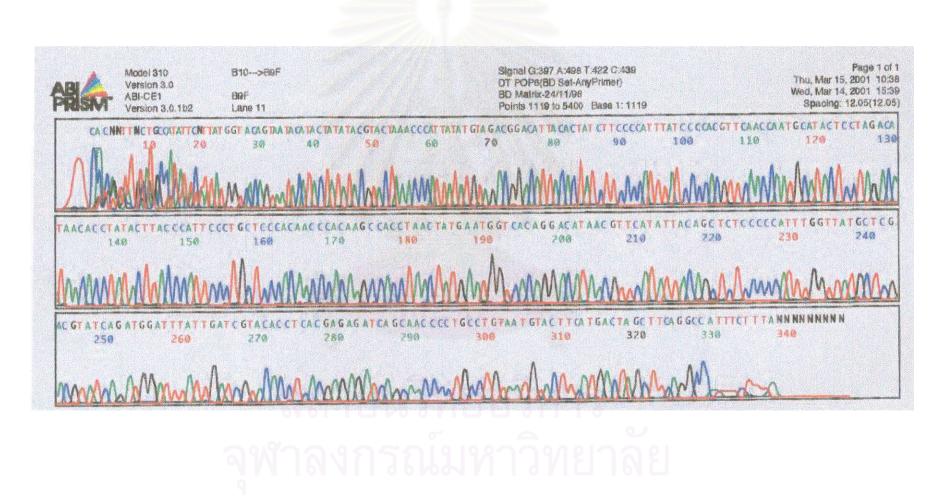



ุฬาลงกรณ์มหาวิทยาลัย





จุฬาลงกรณ์มหาวิทยาลัย



ฬาลงกรณ์มหาวิทยาลัย

	120 13	0 140	150	. 160	170	180	190	200	
• A3·A1F	CACAGTAATA CATACTATAT CACAGTAATA CATACTATAT	ACGTACTAAA	CCCATTATAT	GTAGAUGGAC	ATTACACTAT	CCTCCCCATT	T-ATCCCCAC TTATCCCCAC	GTTCAACCAA GTTCAACCAA	TO
A5 · A1R	CACAGTAATA CATACTATAT					(1) (2) (2) (2) (2)			1
A3 · A1F A5 · A1R	CACCTACACE TACCTATTCC		NACCACANC	NCACCTAACT TCACCTAACT	ATGAATGGTC ATGAATGGTC	ACAGGACATA ACAGGACATA	ACGTTCATAT ACGTTCATAT	TACAGCTCTT TACAGCTCTT	C
A3 · A1F	340 35 CGTACCAGAT GGATTTATTG CGTANCAGAt GGATTTATTG	0 360	370) 390 	A00 TGTACTTCAT	GACTAGCTTC	420 AGGCCCATTC) Tʻ
A5·A1R	450 46							530)
A3·A1F A5·A1R	NNNNGA			v c					

pareal	3/26/01 14:22			F.0.	60	70	80	90	100	110
	10 2	0 30	40	50	1	CT		 CATTTA	 TATaCCaCAT	ACATTATGGN
3·A1F 5·A1R	NNNIANNNNN NNNNNNNNN	NNNNNNNNN N	NNNNNNNN N	INNNNNNNNN	NNNNTTGGGG	GTAAACTATG	CATAATCGTG	CATACATTTA	TATACCACAT	ACATTATGGT
	120 13	30 140	150	• 160	170	180				220
·A1F ·A1R	CACAGTAATA CATACTATA CACAGTAATA CATACTATA	r acgtactaaa C r acgtactaaa C	CCATTATAT C	TAGACCGAC	ATTACACTAT ATTACACTAT	CCTCCCCATT CCTCCCCATT	T-ATCCCCAC TTATCCCCAC	GTTCAACCAA GTTCAACCAA	TGCATGCTTC	CAG-ACATAA
MIK	230 24	40 250	260	270	280	290	300	310	320	330
3.A1F	CACCTACACt TACCTATTCC CACCTACACt TACCCATTCC	C CTGCTCÀCAN A	ACCCACAAG	CACCTAACT	ATGAATGGTC	ACAGGACATA	ACGTTCATAT ACGTTCATAT	TACAGCTCTT TACAGCTCTT	CCCCATTTGG CCCCATTTGG	TTATGCTCGA TTATGCTCGA
5 · A1R		50 360	370	380					430	440
3.A1F	CGTACCAGAT GGATTTATT	 G ATCGTACACC T	CACGAGAGA	TCAGCAACCC	CTGCCtGTAA	TGTACTTCAT	GACTAGCTTC	AGGCCCATTC	TTTAANNNNN	NNNNNNNNN

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

eparea2	2 3/26/01 14:23 10 20 30 40 50 60 70 80 90 100 110
3 · A2R	NNNNNNNNN NNNNNNNN NNNNNNNN NNNNNNNN NNNN
3·A2F	TCTCATCCAtATACCACAT ACATTATGGT
	120 130 140 150 160 170 180 190 200 210 220
· A2R	CACAGTAATA CATACTATAT ACGTACTAAA CCCATTATAT GTAGACGGAC ATTACACTAT CCTCCCCATT TATCCCCACG TTCAACCAAT GCATGCTTCC AGACATAAGA
·A2F	CACAGTAATA CATACTATAT ACGTACTAAA CCCATTATAT GTAGACGGAC ATTACACTAT CCTCCCCATT TATCCCCACG TTCAACCAAT GCATGCTTCC AGACATAAGA
	230 240 250 260 270 280 290 300 310 320 330
· A2R	CCTACACCTA CCNATTCCCT GCTCACAGAA CCCACAAGTC ACCTAACTAT GAATGGTCAC AGGACATAAC GTTCATATTA CAGCTCTTCC CCATTTGGTT ATGCTCGACG
·A2F	CCTACACCTA CCTATTCCCT GCTCACAGAA CCCACAAGTC ACCTAACTAT GAATGGTCAC AGGACATAAC GTTCATATTA CAGCTCTTCC CCATTTGGTT ATGCTCGACG
	340 350 360 370 380 390 400 410 420 430 44
200	
· A2R	TACCAGAtGG ATTTATTGAT CGtACACCTC ACGAGAGAtC AGCAACCCCT GCCCGtaATG -ACT-CA
A2F	TACCAGATGG ATTTATTGAT CGTACACCTC ACGAGAGATC AGCAACCCCT GCCCGTAATG TACTTCATGA CTAGCTTCAG GCCATTTCTT TANNNNNNNN NNNNNNNNNN
	450 460 470 480 490 500 510 520 530 540 550
A2R	
· A2F	NNNNNNNN NN

ompareA3	3/26/01 14:24
	10 20 30 40 50 60 70 80 90 100 110
A5 · A3F	CATTTATATA CCACATACAT TATGGTCACA GTAATACATA CTATATACGT ACTAAACCCA TTATATGTAG ACGGACATTA CACTATCCTC CCCATTTATC CCCACGTTCA
A7·A3R	CATTTATATA CCACATACAT TATGGTCACA GTAATACATA CTATATACGT ACTAAACCCA TTATATGTAG ACGGACATTA CACTATCCTC CCCATTTATC CCCACGTTCA
	120 130 140 150 160 170 180 190 200 210 220
A5·A3F	ACCAATGCAT GCTTCCAGAC ATAANACCTA CACNTACCTA TTCCCTGCTC ACANAACCCA CAAGtCACCT AACTATGAAT GGTCACAGGA CATAACGTTC ATATTACAGC
A7·A3R	ACCAATGCAT GCT+CCAGAC ATAANACCTA CACNTACCCA TTCCCTGCTC ACANAACCCA CAAGTCACCT AACTATGAAT GGTCACAGGA CATAACGTTC ATATTACAGC
	230 240 250 260 270 280 290 300 310 320 330
A5·A3F	TCTTCCCCAT TTGGTTATGC TCGACGTACC AGATGGATTT ATTGATCGTA CACCTCACGA GAGATCAGCA ACCCCTGCCL GTAATG
A7·A3R	TCTTCCCCAT TTGGTTATGC TCGACGTACC AGAtGGATTT ATTGATCGTA CACCTCACGA GAGAtCAGCA ACCCCTGCCt GtAATG

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

	10	20	30	40	50	60	70	80	90	100	110
11 · A4R 9 · A4F	NNNNNNNNN	NNNNNNNNN	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	 NNNNNNNTT TT	GCCCGGTAAA						
	120	130	1.40	150	160) 170	180	190	200	210	220
ll·A4R 9·A4F	CTATGCATAA	TCGTGCATAC	ATTTATATAC ATTTATATAC	CACATACATT CaCATACATT	ATGGTCACAG	TAATACATAC	TATATACGTA	CTAAACCCAT	TATATGTAGA	CGGACATTAC	ACTATCCTCC
	230										
ll·A4R)·A4F	CCATTTATCC CCATTTATCC	CCACGTTCAA CCACGTTCAA	CCAATGCATG CCAATGCATG	CTtCcagaca CTTCcAGACA	taanacCTAC TAANACCTAC	ACCTACCCAT ACCTACCTAT	TCCCTGCTCA TCCCTGCTCA	CANAACCCAC	AAGTCACCTA AAGTCACCTA	ACTATGAATG ACTATGAATG	GTCACAGGAC GTCACAGGAC
	340										
1·A4R •A4F	ATAACGTTCA ATAACGTTCA	TATTACAGCT TATTACAGCT	CTTCCCCATT CTTCCCCATT	TGGTTATGCT TGGTTATGCT	CGACGTACCA CGACGTACCA	GAtGGATTTA GATGGATTTA	TTGATCGtAC TTGATCGTAC	ACCTCACGAG	AGAtCAGCAA AGATCAGCAA	CCCCTGCCNG CCCCTGCCNG	tAAtGtACtT TAATGTACTT
1	450	1	470 	480	490	500	510	520	530	540	550
1·A4R ·A4F	CAt CATGACTAGC		TCNTTAANNN	NNNNNNNNN	NNNNNTNNNN	NNNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNTNNNNN	NNNNNNNNN	NNNNNANNN
1·A4R	560 	570	580 	590 	600	610	620	630 	640 	650 	660
·A4F	NNNNC										

· A5F	1		Ĵ	40	50 	60 	10	80	90 	100	110
· A5R	NNNNNNNNN	NNNNNNTTGG									
	120	13(140	150	160	170	180	190	200	210	220
·A5F ·A5R	GNGGTAAACT	ATGCATAATC	GTGGCATACA	TTTATATACC TTTATATACC	ACATACATTA ACATACATTA	TGGTCaCAGT TGGTCACAGT	AATACATACT AATACATACT	ATATACGTAC ATATACGTAC	TAAACCCATT TAAACCCATT	ATATGTAGAC ATATGTAGAC	GGACATTACA GGACATTACA
	230	240	250	260	270	280	290	390	310	320	330
• A5F • A5R	CTATCCTCCC CTATCCTCCC	CATTTATCCC CATTTATCCC	CACGTTCAAC CACGTTCAAC	CAATGCATGC CAATGCATGC	TTCCAGACAT TtCCAGACAT	AACACCTACA AACACCTACA	Cttacctatt Cttacccatt	CCCTGCTCAC CCCTGCTCAC	ACAACCCACA ACAACCCACA	AGtCACCTAA AGTCACCTAA	CTATGAATGG CTATGAATGG
	340	350	360	370	380	390	400	410	420	430	440
• A5F • A5R	TCACAGGACA	TAACGTTCAT TAACGTTCAT	ATTACAGCTC ATTACAGCTC	TTCCCCATTT TTCCCCATTT	GGTTATGCTC GGTTATGCTC	GACGTACCAG	ATGGATTTAT	TGATCGTACA TGATCGLACA	CCTCACGAGA CCTCACGAGA	GATCAGCAAC GAtCAGCAAC	CCCTGCCtGT CCCTGCCTGt
	450	460		480	490	500	510		1	1	-1-
• A5F • A5R	AATGTACTTC	ATGACTAGCT	TCAGGCCATT	TCTTTAANNN	NNNNNNNNN						
	560	570 	1	590	600	610	620	630	640	650	660
• A5F • A5R	NNNNNNNNN I							25			

2.2		Ţ	20			JŮ	60	10	80 	50	100	
10	>A6R GGGG	TAAACT	ATGCATAATC	GTGCATACAT	TTATATACCA	CATACATTAT	GGTCACAGTA	ATACATACTA	TATACGTACT	AAACCCATTA	TATGTAGACG	GACATTACAC
312	>A6FC	CT		-NGCATT	TTACTCACCA	CAtACaTTAT	GGTCACAGTA	ATACATACTA	TATACGTACT	AAACCCATTA	TATGTAGACG	GACATTACAC
		120	130	140	150	160	170	180	190	200	210	220
10	SACOMAMO	ICMCCCCC		ACCOMONACC	3 3 mcc 3 mccm		ACAGOMAGIA	0000000000	aamaamaaaaa	0110001010	0001000110	
12	SACE MANO		ATTAICCCC	ACGITCAACC	AATGCATGCT	TCCAGACATA	AGACCTACAC	CTACCTATTC	CCTGCTCACA	GAACCCACAA	GTCACCTAAC	TATGAATGGT
512	AOF TATC		ATTATCCCC	ACGITCAACC	AATGCATGCT	TCCAGACATA	AGACCTACAC	CTACCTATTC	CCTGCTCACA	GAACCCACAA	GTCACCTAAC	TATGAATGGT
		230	240	2.50	260	270	280	290	300	310	320	330
10	NEDONON	CCD CDD	3 3 C C C C C C C C C C C C C C C C C C									
							ACGTACCAGA					
12	>A6FICACA	GGACAT	AACGTTCATA	TTACAGCTCT	TCCCCATTTG	GTTATGCTCG	ACGTACCAGA	TGGATTTATT	GATCGTACAC	CTCACGAGAG	ATCAGCAACC	CCTGCCCGTA
		340	350	360	370	380	390	400	410	420	430	440
			1									
	>A6R ATGt		tin och sin kill till den sav om sigs sin									
312	>A6F ATGT	ACTTCA	TGACTAGCTT	AGGCCNTTTC	TTTANNNNNN	NNNNN						

สถ่าบันวิทย์บริการ จุฬาลงกรณ์มหาวิทยาลัย

omparea7 3/26/01 14:0	05									
10	20	30	40	50	60	70	80	90 	100	110
C1>A7F NC					CTA-GCA		ATTT-TC	TACCACaTAC	ATTATGGTCA	CAGTAATACA
B12>A7R NNNNNNNN										CAGTAATACA
. 120	130	140	150	160	170	180) 190	200	210	220
C1>A7F TACTATATAC	GTACTAAACC	CATTATATGT	AGACGGACAT	TACACTATCC	TCCCCATTTA	TCCCCACGTT	CAACCAATGC	ATGCTTCCAG	ACATAAGACC	TACACCTACC
B12>A7R TACTATATAC			AGACGGACAT	TACACTATCC	TCCCCATTTA	TCCCCACGTT	CAACCAATGC	ATGCTTCCAG	ACATAAGACC	TACACCTACC
230	240	2.50	260	270	280	290	300	310	320	330
C1>A7F TATTCCCTGC	TCACAGAACC	CACAAGTCAC	CTAACTATGA	ATGGTCACAG	GACATAACGT	TCATATTACA	GCTCTTCCCC	ATTTGGTTAT	GCTCGACGTA	CCAGATGGAT
B12>A7R TATTCCCTGC	TCACAGAACC	CACAAGTCAC	CTAACTATGA	ATGGTCACAG	GACATAACGT	TCATATTACA	GCTCTTCCCC	ATTTGGTTAT	GCTCGACGTA	CCAGATGGAT
340	350	360	370	380	390	400	410	420	430	440
C1>A7F TTATTGATCG	TACACCTCAC	GAGAGATCAG	CAACCCCTGC	CCGTAATGTA	CTTCATGACT	AGCTTAGGCC	NNTTCTTTAN	NNNNNNNN		
B12>A7R TTATTGATCG	TACACCTCAC	GAGAGatCAG	CAACCCCTGC	CCGTA	T	NG-TNA	-NTT	NCNAG		

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

nparea8 3	/26/01 14:	20	3,0	40	50	60	70	80	90	100	110
	T I	1	1		1			C-TAN	AAT-	C-tTT-TCTA	CCACaTACaT
C3>A8F C1>A8R	NNNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNNN	NNNTGGGGG	TAACATGCAN	ATCGTGCATA	CATTLATATA	CCACATACAT
	120	130	140	150	160	170	180	190	200	210	220
C3>A8F	TATGGTCACA TATGGTCACA	GTAATACATA GTAATACATA	CTATATACGT CTATATACGT	ACTAAACCCA ACTAAACCCA	TTATATGTAG TTATATGTAG	ACGGACATTA ACGGACATTA	CACTATCTTC CACTATCTTC	CCCATTTATC CCCATTTATC	CCCACGTTCA CCCACGTTCA	ACCAATGCAT ACCAATGCAT	ACTCCTAGAC ACTCCTAGAC
	230	240	250	2 60	270	280	290	300	310) 320	330
C3>A8F	ATAACACCTA ATAACACCTA	TACTTACCCA TACTTACCCA	TTCCCTGCTC TTCCCTGCTC	CCACAACCCA CCACAACCCA	CAAGCCACCT CAAGCCACCT	AACTATGAAT AACTATGAAT	GGTCACAGGA GGTCACAGGA	CATAACGTTC CATAACGTTC	ATATTACAGC ATATTACAGC	TCTCCCCCAT TCTCCCCCAT	TTGGTTATGC TTGGTTATGC
	340	350	360	370	380	390	400	410) 420) 430	440
C3>A8F	TCGACGTATC TCGACGTATC	AGATGGATTT AGATGGATTT	ATTGATCGTA ATTGATCGTA	CACCTCACGA CACCTCACGA	GAGATCAGCA GAGATCAGCA	ACCCCTGCCT	GTAATGTACT GTA-TGTATT	TATGACTAGC TC	TTAGGCCATT CTAG	TCTTTANNNN	NNNNNNNNN
CI>ROIC	450	460	o 471			500	510			540 1	550
C3>A8F C1>A8R	1 Martin State of the second se										

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

	10	20	30	40	50	60	70 	80 	90	100	
5>A9F	TTNNNCGA									-TCNAC	
3>A9R	ATNNNANANN	NNNNNNNNN	NNNNANNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNAN	NNNNNNNNN	NNNNNNNNT	GGGGGTAACT	ATGCATAATC	GTGCATACAT
	120					170				210	220
5>A9F	TTNG-TNCTT	-ATA-ATN	GGTCACAGTA	ATACATACTA	TATACGTACT	AAACCCATTA	TATGTAGACG	GACATTACAC	TATCTTCCCC	ATTTATCCCC	ACGTTCAACC
3>A9R	TTATATACCA	CATACATTAT	GGTCACAGTA	ATACATACTA	TATACGTACT	AAACCCATTA	TATGTAGACG	GACATTACAC	TATCTTCCCC	ATTTATCCCC	ACGTTCAACC
	230	240	250	260	270	280	290	300	310	320	330
5>A9F	AATGCATACT	CCTAGACATA	ACACCTATAC	TTACCCATTC	CCTGCTCCCA	CAACCCACAA	GCCACCTAAC	TATGAATGGT	CACAGGACAT	AACGTTCATA	TTACAGCTCT
3>A9R	AATGCATACT	CCTAGACATA	ACACCTATAC	TTACCCATTC	CCTGCTCCCA	CAACCCACAA	GCCACCTAAC	TATGAATGGT	CACAGGACAT	AACGTTCATA	TTACAGCTCT
	340	350	360	370	380	390	400	410	420	430	440
5>A9F	CCCCCATTTG	GTTATGCTCG	ACGTATCAGA	TGGA-TTTAT	TGA-TCGTAC	ACCTCACGAG	AGATCAGCAA	CCCCTGCC	TGTATGACTT	ATGACTAGCT	TAGGCCATTC
3>A9R	CCCCCATTTG	GTTATGCTCG	ACGTTACAGA	TGGAATTTAT	TGAATCGTAC	ACCTCACGA-	AGAAGGNT	CGGGCGTNNG	GGNGTNACA-	ATAACGCN	NATGATGC
	450	460	470	480	490	500	510	520	53	540	550
5>A9F	TTTANNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNN				<u> </u>	
3>A9R	GGTG					10. m of 10					

	10	20	30	40	50	60	70	80	90	100	110
	C7>A10F GNNCC								TANN	GATTTTTTA	CGTG-AC-CN
	C5>A10R NNNNNNNNNN	NNNNNNNNN	NNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	TGGGGGTANC	TATGCATAAT	CGTGCATACA
	120	130	140) 150	160	170	180	190	200	210	220
	C7>A10F ttATATCTT-	ATAATG	GTCACAGTAA	TACATACTAT	ATACGTACTA	AACCCATTAT	ATGTAGACGG	ACATTACACT	ATCTTCCCCA	TTTATCCCCA	CGTTCAACCA
	C5>A10R TTATATCCAC	ATACATTATG	GTCACAGTAA	TACATACTAT	ATACGTACTA	AACCCATTAT	ATGTAGACGG	ACATTACACT	ATCTTCCCCA	TTTATCCCCA	CGTTCAACCA
	230	240	2.50	260	270	280	290	300	310) 32C	330
	C7>A10F ATGCATACTC	CTAGACATAA	CACCTATACT	TACCCATTCC	CTGCTCCCAC	AACCCACAAG	CCACCTAACT	ATGAATGGTC	ACAGGACATA	ACGTTCATAT	TACAGCTCTC
(25>A10R ATGCATACTC	CTAGACATAA	CACCTATACT	TACCCATTCC	CTGCTCCCAC	AACCCACAAG	CCACCTAACT	ATGAATGGTC	ACAGGACATA	ACGTTCATAT	TACAGCTCTC
	340	350	360	370	380	390	400	410	420	0 430 I	440
	27>A10F CCCCATTTGG						Contraction of the second s				
	C5>A10R CCCCATTTGG	TTATGCTCGA	CGTATCAGAT	GGATTTATTG	ATCGTACACC	tCACGAGAGA	TCCAGCTAAG	GGGC-GNA	ACTG-TGA	CNAGTA	A
	450	460	470	480	490	500	510	520	530	540	550
	7>A10F NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNN	NNNNNNNNN					
	25>A10R NNTNGCGGTG										

สถาบนวทยบรการ จุฬาลงกรณ์มหาวิทยาลัย

	10	20	30	40	50	60	70	80 	90	100	11
9>A11F 7>A11R	NNNNNNNNN	NNNNNNNNN	NNNNNNNNNN	NNNNNNNNN	NNNNNNNN	NNNNNNNNN	NNNNNNNNNN	NNNNNNNNNN	NNNTGGGGGT	AAANATGCAN	ANCG
	120	130	140	150	160	170	180	190	200	210	22
9>A11F 7>A11R	-ATNTTTTAĆ CATTATATAC	CACATACATT CACATACATT	ATGGTCACAG ATGGTCACAG	TAATACATAC TAATACATAC	TATATACGTA TATATACGTA	CTAAACCCAT CTAAACCCAT	TATATGTAGA TATATGTAGA	CGGACATTAC CGGACATTAC	ACTATCTTCC ACTATCTTCC	CCATTTATCC CCATTTATCC	CCACGTTCAA CCACGTTCAA
	230	240	250	260	270	280	290	o <u>30</u> 0	310	320) 33
9>A11F 7>A11R	CCAATGCATA CCAATGCATA	CTCCTAGACA CTCCTAGACA	TAACACCTAT TAACACCTAT	ACTTACCCAT ACTTACCCAT	TCCCTGCTCC TCCCTGCTCC	CACAACCCAC CACAACCCAC	AAGCCACCTA AAGCCACCTA	ACTATGAATG ACTATGAATG	GTCACAGGAC GTCACAGGAC	ATAACGTTCA ATAACGTTCA	I TATTACAGCT TATTACAGCT
	340	350	360	370	380	390	400	410	420	430) 44
9>A11F 7>A11R	CTCCCCCATT CTCCCCCATT	TGGTTATGCT TGGTTATGCT	CGACGTATCA CGACGTATCA	GATGGATTTA GATGGATTTA	TTGATCGTAC TTGATCGTAC	ACCTCACGAG ACCtCACGAG	AGATCAGCAA AGatCAGCAA	CCCCTGCCTG CCCCTGCCTG	TATGACTTAT	GACTAGCTTA	GGCCTTTCTT
9>A11F 7>A11R	450 TAANNNNNNN TAANTTNCGN	460 NNNNNNNNN G	1	480 NNNNNNNNN	490 NNNNNNNNN	500 NNNNNNNNN	Ĩ	520 1	530 	54() 55(

		10	20	3	40	50	60	70 	80 	90 	100	110
					NNNNNNNNNN	NNNNNNNNN	NNNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNT	TGGNGGTAAA
10 > 211					0 150 ACATACATTA							
					ACATACATTA ACATACATTA							
		230	240	25	0 26	270	280	290	300	310	320	330
29>A12					TCCTAGACAT							TCACAGGACA
211>A1	2 CATTTATC	CC	CACGTTCAAC	CAATGCATAC	TCCTAGACAT	AACACCTATA	CTTACCCATT	CCCTGCTCCC	ACAACCCACA	AGCCACCTAA	CTATGAATGG	TCACAGGACA
		340	350	36	0 37	380	390	400	410	420	430	440
29>A12	FTAACGTTC	AT	ATTACAGNTC	TCCCCCATTI	GGTTATGCTC	GACGTATCAG	ATGGATTTAT	TGATCGTACA	CCTCACGAGA	GATCAGCAAC	CCCTGCCTGT	AATGTACTTA
211>A1	2 TAACGTTC	AT	ATTACAGCTC	TCCCCCATTI	GGTTATGCTC	GACGTATCAG	ATGGATTTAT	TGATCGTACA	CCTCACGAGA	GaTCAGCAAC	CCCTGCCTGT	part size days blue non only which hims which which
		450	460) 47 	0 480	490	500	510	520	530	540	550
					NNNNNNNNN							
211>A1	2 GA-TAG	!	TAA	NTT								NCNATG

ิลถาบนวทยบรการ งุฬาลงกรณ์มหาวิทยาลัย

	.0 	20 	30 	40	50 	60 	70 	80 	90 	100	1
2>A13FC 4>A13R NNNNNNNN		INNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNTGCNGG	TANCAATN TATCATGATA	T TCGTGCATAC
1	20	130	140	150	160) 170 	180	190	200	210	220
2>A13FTNTCTNA 4>A13R ATTATAT-A	C CACATAT	TTA'	ATGGTCACAG	TAATACATAC	TATATACGTA TATATACGTA	CTAAACCCAT CTAAACCCAT	TATATGTAGA TATATGTAGA	CGGACATTAC	ACTATCCTCC	CCATTTATCC	CCACGTTCAA
2 >A13F CCAATGCAT	30 	240	2.50	260	270	280	29(300	310	320	330
>A13F CCAATGCAT	A CTCCTAG A CTCCTAG	ACA	TAACACCTAT TAACACCTAT	ACTTACCCAT	TCCCTGCTTC TCCCTGCTTC	CACAACCCAC CACAACCCAC	AAGCCACCTA AAGCCACCTA	ACTATGAATG ACTATGAATG	GTCACAGGAC GTCACAGGAC	ATAACGTTCA ATAACGTTCA	TATTACAGNT TATTACAGCT
3	40	350	360	370	380	390	400	410	420	430	440
>A13F CTTCCCCAT	T TGGTTAT T TGGTTAT	GCT (CGACGTATCA CGACGTATCA	GATGGATTTA GATGGATTTA	TTGATCGTAC TTGATCGTAC	ACCTCACGAG ACCTCACGAG	AGATCAGCAA AGatCAGCAA	CCCCTGCCTG CCCCTGCCTG	TAATGTACTT TaATGTA	CATGACTAGC	TTAGGCCATT
	50	460	470	480	490	i activity of	1	1	- 1 -		550
>A13F CGTTAANNN >A13R	NNNNNNN	NNN I	NNNNNNNNN	NNNNNNN NTNCNAG							

1	0 2	30	40	50 	60	70 	80 	90	100	
6>A14F	NNNNNNNNN	N NNNNNNNNNN	NNNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN		GATNTT GGTAAACATG	
1.	0 1	30 14	0 150	160	170	180) 190 	200	210	220
5>A14F CACNTTA 8>A14R TACATTATA	ACCACATA-	TATGGTCAC A TTATGGTCAC	AGTAATACAT	ACTATATACG ACTATATACG	TACTAAACCC TACTAAACCC	ATTATATGTA ATTATATGTA	GACGGACATT GACGGACATT	ACACTATCTT ACACTATCTT	CCCCATTTAT CCCCATTTAT	CCCCACGTTC
2	2 2	40 25	0 260	270	280	290	300	310	320) 330
6>A14F AACCAATGC	A TACTCCTAG A TACTCCTAG	A CATAACACCI A CATAACACCI	ATACTTACCC	ATTCCCTGCT	CCCACAACCC CCCACAACCC	ACAAGCCACC	TAACTATGAA TAACTATGAA	TGGTCACAGG TGGTCACAGG	ACATAACGTT ACATAACGTT	CATATTACAG CATATTACAG
3	10 3	50 36	0 370	380	390	400	410	420	430) 440
6>A14F GTCTCCCCCC 8>A14R CTCTCCCCCC	A TTTGGTTAT A TTTGGTTAT	G CTCGACGTAI	CAGATGGATT CAGATGGATT	TATTGATCGT TATTGATCGT	ACACCTCACG ACACctCACG	AGAGATCAGC AGAGATCAGC	AACCCCTGCC AACCCCTGcC	TGTAATGACT TGTGa	TCATGACTAG -CATGTA-	CTTAGGCNAT
4		60 47				1000				
06>A14F TCNTTANNN				NNNNNNNNN		NNNNNNNNN	NNNNNNNNN	NNNNNNNNN NG	NNNN CGNG	

	10	20	30	40	50	60	70	80	90
3>B1F		terr and will state plat four our term alon state	C	ATTTATATAC	CACATACATT	ATGGTCACAG	TATACATAC	TATATACCTA	CUNAACCON
S>BIR-	TGGGGGTAAA	CTATGCATAA	TCGTGCATAC	ATTTATATAC	CACATACATT	ATGGTCACAG	TAATACATAC	TATATACGTA	CTAAACCCAT
	100	110	120) 130	14(0 150	160	170	18
>B1F	TATATGTAGA	CGGACATTAC	ACTATCTTCC	CCATTTATCC	CCACCODCAA		OTO CTT A D CT		
>BIR-	TATATGTAGA	CGGACATTAC	ACTATCTTCC	CCATTTATCC	CCACGTTCAA	CCAATGCATA	CTCCTAGACA	TAACACCTAT	ACTTACCCAT
	190	200	210	220	230	240	250	260	27
>B1F	TCCCTGCTCC	CACAACCCAC	AAGCCACCTA	ACTATGAATG	GTCACAGGAC	ATTAACCTTCA	mammacacom	CIACOCCA	
>BIR-	TCCCTGCTCC	CACAACCCAC	AAGCCACCTA	ACTATGAATG	GTCACAGGAC	ATAACGTTCA	TATTACAGCT	CTCCCCCATT	TGGTTATGC
	280 	-1-		Ţ	- 1 -			350	36
>B1F	CGACGTATCA	GATGGATTTA	TTGATCGTAC	ACCTCACGAG	AGATCAGCAA	CCCCTGCCTG	TAATCTACT	1	
>BIR-	CGACGTATCA	GAtGGATTTA	TTGATCGTAC	ACCTCACGAG	AGATCAGCAA	CCCCTGCCTG	tAAtGtAcT		

ompareB2 3	/21/01 11:	2,0	3,0	40	50	60	70	80	90
A7>B2F	CTGAAGTCAT	 TACAGGCAGG	GGTTGCTGAT	CTCTCGTGAG	GTGTACGATC	AATAAATCCT	CTGATACGTC	GAGCATAACC	AAATGGGGGA
A9>B2R	CTGAAgTCAT	TaCAGGCAGG	GGTTGCTGAT	CTCTCGTGAG	GTGTaCGATC	AATAAATCCT	CTGATACGTC	GAGCATAACC	AAATGGGGGA
11	100	110	120	130	140	150	160	170	180
A7>B2F	GAGCTGTAAT	ATGAACGTTA	TGTCCTGTGA	CCATTCATAG	TTAGGTGGCT	TGTGGGTTGT	GGGAGCAGGG	AATGGGTAAG	TATAGGTGTT
A9>B2R	GAGCTGTAAT	ATGAACGTTA	TGTCCTGTGA	CCATTCATAG	TTAGGTGGCT	TGTGGGTTGT	GGGAGCAGGG	AATGGGTAAG	TATAGGTGTT
	190	200	210	220	230	240	250	260	27
A7>B2F	ATGTCTAGGA	GTATGCATTG	GTTGAACGTG	GGGATAAATG	GGGAAGATAG	TGTAATGTCC	GTCTACATAT	AATGGGTTTA	GTACGTATAT
A9>B2R	ATGTCTAGGA	GTATGCATTG	GTTGAACGTG	GGGATAAATG	GGGAAGATAG	TGTAATGTCC	GTCTACATAT	AATGGGTTTA	GTACGTATAT
	280	290	300	310	320	330	340	350	360
A7>B2F	AGTATGTATT	ACTGTGACCA	TAATGTATGT	GGTATATAAA	TGTATGCACG	ATTATGCATA	G	· · ·	
A9>B2R	AGTATGTATT	ACTGTGACCA	TAATGTATGT	GGTATATAAA	TGTATGCACG	ATTATGCATA	G		

	10	20	30	40	50	60	70	80	90	100	110
A11>B3F	N						CCTA	NCA-A	TNTTTTA	CCACATACAT	TATGGTCACA
A5>B3R	NNNNNNNNNN	NNNNNNNNNN	NNNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNTGGGGGTA	AACNTGCATA	ATCGTGCATA	CATTTATATA	CCACATACAT	TATGGTCACA
	120	130	140	150	160	170	180	190	200	210	220
11>B3F	GTAATACATA	CTATATACGT	ACTAAACCCA	TTATATGTAG	ACGGACATTA	CACTATCTTC	CCCATTTATC	CCCACGTTCA	ACCAATGCAT	ACTCCTAGAC	ATAACACCTA
		CTATATACGT									
	230	240	250	260	270	280	290	300	310	320	330
11>B3F	TACTTACCCA	TTCCCTGCTC	CCACAACCCA	CAAGCCACCT	AACTATGAAT	GGTCACAGGA	CATAACGTTC	ATATTACAGC	TCTCCCCCAT	TTGGTTATGC	TCGACGTATC
5>B3R	TACTTACCCA.	TTCCCTGCTC	CCACAACCCA	CAAGCCACCT	AACTATGAAT	GGTCACAGGA	CATAACGTTC	ATATTACAGC	TCTCCCCCAT	TTGGTTATGC	TCGACGTATC
	340	350	360	370	380	390	400	410	420	430	440
A11>B3F	AGATGGATTT	ATTGATCGTA	CACCTCACGA	GAGATCAGCA	ACCCCTGCCT	GTAATGTACT	TCATGACTAG	CTTAGGCCAT	TCTTTAANNN	NN	
45>B3R	AGATGGATTT	ATTGATCGTA	CACctCACGA	GAGATCAGCA	ACCCCTGCCT	GTAatGTA-t	TTNCCTAG				

สถาบนวิทยบริการ งุฬาลงกรณ์มหาวิทยาลัย

	10	20	30	40	50	60	70	8,0	9,0	100	<u>88</u> 110
A11>B4R1 32>B4F	NNNNNNNN N	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNTG	GGGGTAACTA	TGCATAATCG	TGCATACATT	TATATACCAC T-TCTACCAC	ATATATTATG ATaTaTTATG	GTCACAGTAA GTCACAGTAA
	120	130	140	150	160	170	180	190	200	210	22
A11>B4R 32>B4F	ГАСАТАСТАТ ГАСАТАСТАТ	ATACGTACTA ATACGTACTA	AACCCATTAT AACCCATTAT	ATGTAGACGG	ACATTACACT	ATCCTCCCCA	TTTATCCCCA	CGTTCAACCA	ATGCATACTC ATGCATACTC	СТА GACA ТАА СТА GACA ТАА	CACCTATACT CACCTATACT
	230	240	250	260	270	280	290	300	310	320	331
11>B4R	FACCCATTCC	CTGCTTCCAC	AACCCACAAG							TTATCCTCCA	CGTATCACAT
2>B4F	FACCCATTCC	CTGCTTCCAC	AACCCACAAG	CCACCTAACT	ATGAATGGTC	ACAGGACATA	ACGTTCATAT	TACAGCTCTT	CCCCATTTGG	TTATGCTCGA	CGTATCAGAT
	340	350	360	370	380	390	400	410	420	430	440
11>B4R(GATTTATTG	ATCGTACACC	TCACGAGAGa	tCAGCAACCC	CTGCCTGTAT		AGTAACTTN-	-CNAG		I.	
02/D4r	GATTTATTG	ATCGTACACC	TCACGAGAGA	TUAGCAACCC	CTGCCTGTAT	GTACTTCATG	ACTAGCTTAG	GCNTT			

	1,0	20	30	40	50	60	70	80	90	100	110
B2>B5R B4>B5F	N THE R THOMAS	NNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	TGGGGGGTAAC	TATGCATAAT	CGTGCATACA	TTTATATACC TTTaTGG-CC	ACATAC-ATT aCaTACTATT	ATGGTCACAG AtGGTCACAG
	120	130	140	150	160	170	180	190	200	210	220
B2>B5R B4>B5F	TAATACATAC TAATACATAC	TATATACGTA TATATACGTA	CTAAACCCAT CTAAACCCAT	TATATGTAGA TATATGTAGA	CGGACATTAC CGGACATTAC	ACTATCTTCC ACTATCTTCC	CCATTTATCC CCATTTATCC	CCACGTTCAA CCACGTTCAA	CCAATGCATA CCAATGCATA	CTCCTAGACA CTCCTAGACA	TAACACCTAT TAACACCTAT
	230	240	250	260	270	280	290	300	310	320	330
B2>B5R B4>B5F	ACTTACCCAT	TCCCTGCTCC TCCCTGCTCC	CACAACCCAC CACAACCCAC	AAGCCACCTA AAGCCACCTA	ACTATGAATG ACTATGAATG	GTCACAGGAC GTCACAGGAC	ATAACGTTCA ATAACGTTCA	TATTACAGCT TATTACAGCT	CTCCCCCATT CTCCCCCATT	TGGTTATGCT TGGTTATGCT	CGACGTATCA CGACGTATCA
	340	350	360	370	380	390	400	410	420	430	440
			ACCTCACGAG ACCTCACGAG								- 11

สถาบนวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

	10	2.0	30	40	50	60	70	80	9,0	100	<u>90</u>
B4>B6R B6>B6F	NNNNNNNNNN	NNNNNNNNN	NNNNNNNNNN	NNNNNNNGG	GNNNNANNAN	NNNTGGGGTA -TTTTN	ACTATGCATA CCNACG	ATCGTGCATA ATC-TTC	CATTATATCC TNTGNCC	ACAT-ACATT ACatTACaTT	ATGGTCACAG ATGGTCACAG
•	120				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1122010				-1-	-1
84>B6R 86>B6F	TAATACATAC TAATACATAC	TATATACGTA TATATACGTA	CTAAACCCAT CTAAACCCAT	TATATGTAGA TATATGTAGA	CGGACATTAC CGGACATTAC	ACTATCTTCC ACTATCTTCC	CCATTTATCC CCATTTATCC	CCACGTTCAA CCACGTTCAA	CCAATGCATA CCAATGCATA	CTCCTAGACA CTCCTAGACA	TAACACCTAT TAACACCTAT
	230	240	250	260	270	280	290	300	310	320	33
84>B6R 86>B6F	ACTTACCCAT ACTTACCCAT	TCCCTGCTCC	CACAACCCAC	AAGCCACCTA AAGCCACCTA	ACTATGAATG ACTATGAATG	GTCACAGGAC GTCACAGGAC	ATAACGTTCA ATAACGTTCA	TATTACAGCT TATTACAGCT	CTCCCCCATT CTCCCCCATT	TGGTTATGCT TGGTTATGCT	CGTACGTATC CG-ACGTATC
	340	350	360	370	380	390	400	410	420	430	44(
34>B6R	AGATGGATTT	ATTGATCGTA	CACCTCACGG	AGAAGTANCN	AGCNAANGGN	TGG	ACTGG-TGAC	NAGCAN	TTAG	CNGTGA	
36>B6F	AGATGGATTT	ATTGATCGTA	CACCTCACG-	AGAGAt-C-A	GC-AACCCCT	GCCTGTATGA	CTTCATGACT	AGCTTAGGCC	ATTCTTTACT	NCTNANGC	

ิสถาบนวทยบรการ จุฬาลงกรณ์มหาวิทยาลัย

	10	20	30	40	50		70	80	90	100	
B8>B7F	CGTT					TTTTC	TGACCNCNTT	ACAATA-TGG	TN	CACAG	-TA
B6>B7R	ANNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNTGGGG	GGAACTANGG	ANAATNGTGG	ANACNTTTTA	ACCACANACN	TTANGGNTCA
	120) 130	140	150	160	170	180	190	200	210	220
B8>B7F	ATACATA	CTATATACGT	ACTAAACCCA	TTATATGTAG	ACGGACATTA	CACTATCTTC	CCCATTTATC	CCCACGTTCA	ACCAATGCAT	ACTCCTAGAC	ATAACACCTA
B6>B7R	GNNANACANN	CTANANACGG	NCTAAACCCN	TTATATGGAN	GCGGNCNNTA	CNCTATTTTC	CCCNTTTANC	CCCACGGTCA	ANCNANGGAA	ANTCCTANAC	ANNACNCCTA
	230					280		LA LOS AND			contention tel
B8>B7F	TACTTACCCA	TTCCCTGCTC	CCACAACCCA	CAAGCCACCT	AACTATGAAT	GGTCACAGGA	CATAACGTTC	ATATTACAGC	TCTCCCCCAT	TTGGTTATGC	TCG-ACGTAT
B6>B7R	AANTTANCCN	TTNCCTGGTN	CCNCAANCCN	CNANNCNCCT	AACTANGAAN	GGNNNCAGGA	CAAAACGGTN	ANAATACAGN	TTTNCCCCNT	TTGGNTAAGG	TTGGANGGAT
	340	350	360	370	380	390	400	410	420	430	440
B8>B7F	-CA-GATGG-	ATTTATTG-A	TCGTACACCT	-CACG-AGAG	ATCAGCA	ACCCCTGCCT	GTAATGTACT	TCATGACTAG	CTTAGGCNTT	TCTTTANNNN	NN
B6>B7R	ACANGATGGG	ATTTATTGGA	TTGGACCCCT	TCCCGGAGAG	AG-AGNNCCA	NNCAANGGGG	GGACTGT	TAA	NAGGAAAT	TCCG	NN

ี สถาบันวิทยบริการ งุฬาลงกรณ์มหาวิทยาลัย

	10	20	30	40	50	60	70	80	90	100	110
B10>B9F	TTTTTNCNCA	CGTNTCTTNN	1 200 201 - 111 - 112 201 201 201 201 201 201 201 201			CT	N-GCCNCTNC	TTCTT	ATA	AtGG	TCACAGTAAT
B8>B9R	NNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNNN	NNNNNNNNT	TGGGGTAACT	ATGCANATCG	TGCATACATT	ATATACCACA	TACATTATGG	TCACAGTAAT
	120									1	
B10>B9F	ACATACTATA	TACGTACTAA	ACCCATTATA	TGTAGACGGA	CATTACACTA	TCTTCCCCAT	TTATCCCCAC	GTTCAACCAA	TGCATACTCC	TAGACATAAC	ACCTATACTT
B8>B9R	ACATACTATA	tacgtactaa	ACCCATTATA	TGTAGACGGA	CATTACACTA	TCTTCCCCAT	TTATCCCCAC	GTTCAACCAA	TGCATACTCC	TAGACATAAC	ACCTATACTT
	230								1	1	
B10>B9F	ACCCATTCCC	TGCTCCCACA	ACCCACAAGC	CACCTAACTA	TGAATGGTCA	CAGGACATAA	CGTTCATATT	ACAGCTCTCC	CCCATTTGGT	TATGCTCGAC	GTATCAGATG
B8>B9R	ACCCATTCCC	TGCTCCCACA	ACCCACAAGC	CACCTAACTA	TGAATGGTCA	CAGGACATAA	CGTTCATATT	ACAGCTCTCC	CCCATTTGGT	TATGCTCGAC	GTATCAGATG
	340	350	360	370	380	390	0 400	410	420	430	440
B10>B9F	GATTTATTGA	TCGTACACCT	CACGAGAGAT	CAGCAACCCC	TGCCTGTAAT	GTACTTCATG	ACTAGCTTAG	GCCATTTCTT	TANNNNNNN	N	
B8>B9R	GATTTATTGA	TCGTACACCt	CACGAGAGAGat	CAGCTANGG-	-GGC-GTAA-	CTGTG	ACGANTAT	ATAGCGG	TG	-	

สถาบนวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Biography

Miss Pattra Plubcharoensook was born on 6th of April 1975 in Bangkok, Thailand. She graduated from bachelor' degree of Science in Biology in 1996 from Department of Biology, Faculty of Science, Silpakorn University, Prarajchawang Sanamchun Campus. She continued her gradiated study for Master' Degree of Science in Biotechnology program at Chulalongkorn University in 1977.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย