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Nitrogenous disinfection by-products (N-DBPs) have become an issue of concern in
water treatment plant (WTP) since they have more toxicity more than carbonaceous disinfection
by-products (C-DBPs) such as trihalomethanes. Dissolved organic nitrogen (DON) in natural
water source is known as precursors of nitrogenous disinfection by-products (N-DBPs). This
study investigated the fate of total dissolved nitrogen (TDN), dissolved inorganic nitrogen,
DON, and biodegradable DON (BDON) along the water treatment trains of Khon Kaen
Municipality (Kota WTP (KWTP) and TapraWTP (TWTP), and Khon Kaen University (KKU
Water Treatment plant (KKUWTP)). Occurrence and formation potential of four
haloacetonitriles (HANS) including monochloroacetonitrile (MCAN), dichloroacetonitrile
(DCAN), trichloroacetonitrile (TCAN), and dibromoacetonitrile (DBAN) were determined. In
addition, the effect of ozonation on HAN formation potential (HANFP) was studied. The result
shows that DON concentrations of KWTP, TWTP, and KKUWTP ranged from 0.44 to 0.66
mg-N/L. DON at this level was not effectively removed by conventional water treatment plants.
BDON accounted for approximately 50% of DON pool and contributed to HANFP formation
based on the formation potential test of three water treatment plants (R? of 0.34-0.74).
Ozonation increased the BDON and HANFP of water samples. Total HANS concentration in
finished waters ranged between 4 to 15 pg/L. Among HANs being measured, DCAN was the
most abundant HAN species contributing more than 50% in samples. The finding of this
research reveals that BDON was an important organic fraction to the HAN formation. Removal
of BDON would also reduce the HAN concentrations. Water utilities might find this

information useful for controlling N-BDPs in drinking water.
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CHAPTER |

INTRODUCTION

1.1 Motivations

Dissolved organic nitrogen (DON) is a major form of organic nitrogen in the
natural water and treated water (Wadhawan et al., 2014). DON is a complex mixture of
amino acids (composed of 16-50% of DON), amides, protein, peptide, pyrimidine, and
heterocyclic nitrogen (Chen et al., 2009). DON may come from allochthonous and
autochthonous sources, which include terrestrial runoff, leaching from soil into river,
and effluent organic matter(Mash and Westerhoff, 2002; Wantae, 2005)Microbial
activities (e.g. nitrification) may act as a source of DON and also increasing of the DON
concentration in water body (Chen et al., 2009). Bioavailable dissolved organic
nitrogen was reported to be a main portion of DON in freshwater (Halis et al., 2012).
The amount of bioavailable DON in water can be quantified as bioavailable dissolved
organic nitrogen BDON by batch incubation test using an acclaimed mixed bacterial
culture (Halis et al., 2013; Wadhawan et al., 2014). DON and BDON in the water
treatment plant has become concerned issue in water reclamation plant and drinking
water treatment plant (DWTP) because of its reaction with disinfectants (e.g. chlorine,
chloramine) to form nitrogen disinfection by product (N-DBP). For example,
haloacetonitriles (HANS), N-nitrosodimethylamine (NDMA), halonitomethane (HNM)
which are more carcinogenicity and toxicity than carbonaceous DBPs (C-DBPs)(Bull,
2003; Dotson et al., 2009). From previous researchers, to control DBPs level in drinking
water, water treatment utilities need to understand how characteristics of organic

precursors and treatment processes play role in DBPs formation. There were many



factors that have been considered for predicting and controlling C-DBPs and N-DBPs
formation they include , dissolved organic carbon (DOC), dissolved organic nitrogen
(DON), ultraviolet absorbance at wavelength 254 nm (UV2s4), bromide, pH, chlorine
dose, temperature, reaction time, and fluorescence properties (Chuang et al., 2013;
Yang et al., 2012). Although the fate of DON and BDON in water treatment plants have
been monitored in USA and United Kingdom (UK) (Chen et al., 2009; Halis et al.,
2013; Leenheer et al., 2007; Simsek, Kasi, et al., 2013; Wadhawan et al., 2014), such
data has never been reported for water treatment plants in Thailand. In addition, the role
of BDON on the formation of N-DBP has never been investigated. With this
information, plant operators or regulatory agencies can use them for improving the
water quality of water plant or setting up new standards. This work aims to investigate
the fate of DON in the conventional treatment process including raw water,
sedimentation, filtration, chlorination, and additional treatment (ozonation process) in
Kota Water Treatment Plant (KWTP), Thapra Water Treatment Plant (TWTP) of Khon
Kaen Metropolitan, and Khon Kaen University Water Treatment Plant (KKUWTP),
Khon Kaen, Thailand. The HAN formation potential (HANFP) in each treatment
process was also studied. To assess the role of BDON to HANFP, the water samples
from all treatment processes were tested for BDON. The relationship between DON,
BDON, and other parameters such as DOC and UV2ss with HANFP will also be

examined.



1.2 Objective

1. To investigate the occurrence and fate of DON and BDON in conventional

water treatment processes and ozonation process.

2. To determine the relationship between DON and BDON with specific
haloacetonitrile formation potential (HANFP) for conventional water treatment

processes and ozonation process.

1.3 Scope of the study

1. Water samples were taken from water treatment plants of Khon Kaen

Metropolitan and Khon Kaen University.

2. Four different species of haloacetonitrile including monochloroacetonitrile
(MCAN), trichloroacetonitrile  (TCAN), dichloroacetonitrile (DCAN), and
dibromoacetonitrile (DBAN) were investigated.

3. Ozonation experiment was conducted only for samples after sedimentation
basin.

1.4 Hypotheses

1. The high of DON and BDON concentration in water led to more in the HANSs
formation during chlorination.

2. The DOC concentration, and SUVA are correlated with HAN formation in
water treatment systems.

3. Ozonation increases the BDON concentration.



CHAPTER I

LITERATURE REVIEW

2.1. Natural organic matter (NOM)

2.1.1 Source of NOM

Natural organic matter (NOM) contains a mixture of dissolved organic matter
(DOM), nitrogen, oxygen, hydrogen, sulfur, and derived from decomposing living
matter (Berman and Bronk, 2003; Xu et al., 2010). The characteristic of NOM depends
on its origin. Source of NOM in aquatic system can be attributed to two main sources
which are allochthonous and autochthonous NOM source. (Bond et al., 2014;

Kornegay, 2000)

2.1.1.1 Allochthonous NOM

Allochthonous NOM (with in a soil profile) is derived from aquatic biota
and/or from degradation of terrestrial biomass directly or through soil leaching. The
component of allochthonous NOM is a mixture of acidic organic compounds of
medium to high molecular weight, originated from the leaching of decaying terrestrial
plant and animal material in a catchment and contains more aromatic with high humic

acid(Tipping et al., 2010).

2.1.1.2 Autochthonous NOM

Autochthonous NOM (within a water body) comes from the internal
aquatic system from excretion or decay product of photosynthesis organism such as
microbial product, and algal organic matter (AOM). The discharge of wastewater

treatment plant as effluent organic matter (EfOM)is also a source of autochthonous



NOM (Fabris et al., 2008). It is predominantly phenolic and carboxylic in nature,
containing amino acids, hydrocarbons, carbohydrates, sterols, and low molecular acids.
NOM derived from these sources is typically enriched in aliphatic carbon and organic

nitrogen (Boyer et al., 2008).

2.2 The composition of natural organic matter (NOM)
The main composition of NOM are heterotrophic mixture of hydrophobic and
hydrophilic organic compound including non-homogenic organic compound such as

humic substance, sugar, aliphatic, and aromatic acid.

Natural organic matter (NOM) can be divided into two groups (Figure 2.1)
including humic and non-humic substances. Humic substance (HS) is non-polar or
hydrophobic character. While non-humic substance (non-HS) is polar or hydrophilic-

like compounds (T. Bond et al., 2014)

Natural organic

matter
Humicsubstance Non- humicsubstance
(hvdrophobic) (hydrophilic)
| | l I | |
Acids Neutrals & Bases Acids Neutrals & Bases
| | | |
Humic acid Hydrocarbons Carboxylic acid Amino acids
Fulvic acid Tannins Polyuronic acid Sugar
Aromatic Peptides
Amines Carbohydrate

Figure 2.1 Classification of NOM (modified from Leenheer and Croue, 2003)



2.2.1 Humic substance
Humic substance (HS) or hydrophobic compounds are major component
of NOM (Westerhoff et al., 2004). Humic substance could divided into 3 groups based
on acidity and chemical composition including humic acid (HA), fulvic acid (FA) and
humin. In aquatic system, HS contains only HA and FA. HA composes of a mixture of
weak aliphatic and aromatic acid which are not soluble in the water under acid condition
(Zularisam et al., 2011). FA comprises of polycarboxylates with various degrees of
aromaticity and molecular mass. Their abundance in DOC makes fulvic material the
largest source of mobile organic carbon on the earth (Filella, 2014; Kim and Yu, 2005)
Humic matter is a precursor of chloroform formed by chlorination of natural
waters which can cause harmful to human and biota in aquatic(Frimmel, 2005). HS
mainly act as a precursor for the formation of carcinogenic disinfection by products
(DBPs) during the chlorination process (Uyguner-Demirel and Bekbolet, 2011). HS are
hydrophobic fraction in NOM that are described as heterogeneous polyfunctional
polymers formed through the breakdown of plant and animal tissues (Kim and Yu,
2005). Therefore, the molecular structure of HS has play role on the formation of DBP

during reaction with disinfection.

2.2.2 Non-humic substance

Non-humic substance (non-HS) or hydrophilic compounds are contain
of protein, amino acids, sugar, carbohydrates, hydrophilic acid and polysaccharides
(Bin et al., 2011). The dominant of non-HS are biodegradable which often referred as

biodegradable organic matter (BOM) (Bond et al., 2014)



2.3 Characterization and quantification parameters of NOM

Identification of NOM characteristics is a tool to understanding the functionality

and influences of NOM in an aquatic or engineered system.

The characterization tools can be divided into four types including: preliminary
characterization, size characterization, chemical identification, and spectral signature
(Peuravuori and Pihlaja, 1997). Preliminary analysis of NOM is usually represented by
the measurement of total organic carbon (TOC), DOC, UV2s4, which does not required
sophisticated sample treatment or analytical equipment (Table 2.1). Whereas the
complex nature of NOM are required more sophisticated analytical technique which
differentiate upon physio-chemical properties. Typical NOM characterization methods

are described in the following section.

2.3.1 Total organic carbon (TOC) and dissolved organic carbon (DOC)

Total organic carbon (TOC) is the sum of the particulate and dissolved organic
carbon (DOC) (Matilainen etal., 2011). An important of TOC and DOC in water system
is used to assess NOM characterization. DOC is used as surrogate parameter to estimate

a precursor of DBPs such as THM, HAA, and HANSs.

Ultraviolet absorbance at 254 nm (UV2s4 is generally used for quantitative
determination of solutions of unsaturated carbon bonds (C=C, C=C), and aromatic

carbon in water samples (Matilainen et al., 2011).

2.3.2 Specific UV-absorbance (SUVA)
Specific UV-absorbance (SUVA) is defined as the UV absorbance of a given
sample at 254 nm divided by the DOC concentration (Eq. 2.1) (Ates et al., 2007,

Matilainen et al., 2011)


http://www.wikipedia.org/wiki/Quantitative_analysis

SUVA ) UV(-)x100(™) e
Gawd = DOC(™) '

The SUVA value was found to be good representative for hydrophobic,
aromatic, humic acid, and fulvic acid. (Fleck et al., 2004). Water with SUVA >4
L/mg.m contains mainly hydrophobic and aromatic material, while the SUVA <2
L/mg.m indicates hydrophilic NOM (Matilainen et al., 2011). In addition, SUVA is a
good correlation with trihalomethane (THM) formation potential (Jung and Son, 2008)

and other DBPs precursors (Ates et al., 2007)



Table 2.1 Preliminary method (bulk parameter) for NOM characterization.

Method  Detected features Positive Negative

TOC Total organic carbon - - Easy to use.

content in water .
- Not too expensive.

- Can be used as on- Give only
line method information on
quantity of NOM
DOC Dissolved organic - Easy to use

carbon in water, after
filtration through 0.45

- Not too expensive.

pum filters

SUVA  High SUVA value > 4

is hydrophobic,
Easy to determine,  High nitrate content
<2 is hydrophilic

analytical in low DOC waters
equipment Not too may interfere
UVas4 Identified as a T
sophisticated measurement

potential surrogate

measure for DOC

Source : Adopted from Matilainen et al. (2011)

2.4 The impact of NOM on water treatment plants

The allochthonous NOM contain a humic substance, about 50 % of hydrophobic
compounds, which can affect to physical and chemical properties of water body.
Especially, the reaction of humic substance on the formation potential of DBPs such as
THM and HAA. Therefore, an appropriate technique (e.g. coagulation and granular

activated carbon (GAC)) for remaining aromatic compounds in raw water should be
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applied. Because aromatic fraction can acts as a precursors of DBPs (Chuang et al.,

2013).

2.5 Dissolved organic nitrogen (DON)

Dissolved organic nitrogen (DON) is an emerging concerned pollutant for the
water treatment plant since it is a precursor of N-DBPs which are more toxic than C-
DBPs (THM and HAA) (Lee and Wasterhoff, 2005). Sources of DON in natural water
may come from the effluent organic matter (EfOM) from wastewater treatment plant
and algal organic matter (AOM). DON is a complex mixture of compounds. The
component of DON includes amino acids (16 — 50% of DON), amides, heterocyclic-N
(e.g., pyrimidine, imidazole, purine), and characterized compounds (Mash and
Westerhoff, 2002; Xu et al., 2010). The dominant isamino acid groups which contain
high concentration of protein and tryptophan (Mash and Westerhoff, 2002). Previous
research had reported that the median DON concentrations in surface water, shallow
and deep ground water were 0.31, 0.24, and 0.18 mg/L as N, respectively (Wantae,

2005).

2.5.1 Source of dissolved organic nitrogen (DON)

Sources of DON may come from terrestrial and agricultural runoff, leaching
from plant debris and soil into water body, eutrophication and atmospheric
decomposition (Berman and Bronk, 2003; Mash and Westerhoff, 2002).
Autochthonous source may come from bacteria, algal, zooplankton grazing, cell death,
and waste matter. The effluent organic matter (EfOM) from wastewater treatment plant
contains the soluble microbial product (SMP). SMP was produced from bacteria growth

and released during the lysis and degradation of microorganisms. SMP has organic
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nitrogen with high concentration of macromolecular protein and amino acids (Mash

and Westerhoff, 2002; Wantae, 2005)

2.5.2 Biodegradable dissolved organic nitrogen (BDON)
BDON is a part of DON that can mineralized by an acclimated mixed bacterial

culture (Eq. 2.2) (Halis et al., 2012)

DON = BDON + Non-BDON (2.2)
BDON can serve as a nitrogen source of microbial growth in water system. It
may be a precursor of N-DBPs like DON because it is a main part of DON.(Wadhawan
et al., 2014). To better understand the role of DON on the formation of N-DBPs,
measurement of BDON and Non-BDON (NBDON) are important. The information
could be helpful to control N-DBPs precursor and to achieve complete removal of

BDON in water treatment plant (Khan et al., 2009)

Method for BDON determination was adopted from Khan and co-workers
(2009). The principle was the ability of bacteria to ammonify BDON. BDON was
quantified from initial DON concentration (DON;) subtracting by DON after incubation
in the period of incubation time at 20 °C (DONs) (Eq. 2.3). The inoculum used was the

mixed liquor suspended solids (MLSS).

BDON = (DON; — DONy) — (DONb; — DONDby) (2.3)
Where,

DON; and DON;s are DON before and after incubation

DONpi and DONys are DON before and after incubation of blank
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2.5.3 Quantification of dissolved organic nitrogen

Quantification of DON are still challenging for water with high concentration
of dissolved inorganic nitrogen (DIN) relative to total dissolved nitrogen (TDN) (Lee
and Wasterhoff, 2005). This is because the concentration of DON cannot be measured
directly. It is calculated by subtracting the sum of dissolved inorganic nitrogen (DIN)
(nitrite, nitrate, and ammonium/ammonia) from total dissolved nitrogen (TDN) (Eq. 2.4
and Eq. 2.5). DIN species can be quantified by several methods as summarized in table

2.2 (Mash and Westerhoff, 2002)

DON = TDN - Y'DIN (2.4)

DON = TDN — [NOz ] — [NOs ] — [NH4*] (2.5)

TDN consists of two main fractions: inorganic fraction (ammonia, nitrate,
nitrite) and organic According to (Bronk et al., 2000; Mash and Westerhoff, 2002)

fraction (e.g. DON). There are three analytical methods to measure TDN including;

Q) Alkalinepersulfate (peroxodisulphate) oxidation. This method
converts all TDN to NOs and then measurement of NOs
concentration. There have three options for persulfate oxidation
method. First, autoclave digestion under alkaline condition in the
presence of S2Og". The limitation of this method is that N=N bonds in
urea and some protein are uncleaved, which become problematic.
Second, microwave digestion under alkaline condition in the
presence of S>Og". The limitation in this option is non-quantifiable of

antipyrine. Third, UV digestion under alkaline condition in the
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presence of S;Og.The limitation of this method is heterocyclic
compounds show low recovery.

(i) High temperature oxidation (HTO). TDN is determined by NO
concentration and possibly with NO, and N2 concentration by high
temperature oxidation at 680 °C in the presence of a catalysis
(typically Pt, CuO or CoO). There are several limitation of HTO. For
example, urea may be recalcitrant, methyl orange, sulfathiazole and
antipyrine (N-N) is non-quantify.

(iii) UV oxidation, TDN is converted to NOs™ by UV-oxidation in the
presence of an oxidizing agent (S2Og’or H>O>) or catalyst (TiO2 or

TiO2/PY).

As mentioned previously DON is measured from the difference between
TDN and DIN. Therefore, it could add up the error when subtracting several terms. The
DON measurement accuracy is depend on DIN:TDN ratio (Lee, 2005). The lower of
DIN:TDN ratio is the higher accuracy of DON measurement. Typically, the DIN:TDN
ratioshould not exceed 0.60 mg-N/mg-N. (Bronk et al., 2000; Vandenbruwane et al.,
2007; Xu et al., 2010). For water samples that have high DIN:TDN ratio, pretreatment

such as dialysis is needed to reduce DIN before measurement of DON concentration.



Table 2.2 Analytical methods for inorganic nitrogen

14

Inorganic ) o
) Method of analysis Detection limit
species

NOs lon chromatography 0.1 mg NOs'N/L

Cadmium reduction Depends upon NO2
method

Second derivative - <5 pg NOs'N/L
spectroscopy
(V1) reduction to NO 2-3 ug NOs'N/L
Spongy cadmium reduction 5-1,000 pg NOs'N/L

NO2 V(111) reduction to NO 2-3 pg NO2'N/L
Colorimetric determination 1.46-1.89 pug NO2
using sulfanilamide and N-(1- N/L
naphthyl)ethylenediamine
lon chromatography with 0.1 mg NO2’N/L
conductivity detection

NH3"/NH4* Phenate method 0.05-2.0 mg N/L

Titration (methyl red/methy-
lene blue endpoint)

lon selective electrode

1 mg N/L

0.02-0.08 mg N/L

Source : Westerhoff and Mash (2002)



15

2.5.4 Dissolved organic nitrogen (DON) in water treatment plant and drinking

water

DON as a part of dissolved organic matter (DOM) has become important
concern in water treatment plant (WTP) and drinking water because of its reaction with
disinfectant (e.g. chlorine, chloramine) to form N-DBPs (Bull, 2003; Dotson et al.,
2009). The control of DON level cause in the reduction of N-DBPs formation during
chlorination process. The concentration of DON was high in treated wastewater (1.1 to
2.1 mg/L as N) (Khan et al, 2009). In secondary treated effluent, the DON level ranged
from 1 to 5 mg/L as N (Halis et al., 2012). Summary of DON concentrations in WTP

and drinking water treatment plants (DWTP) were presented in table 2.3.

Table 2.3 Average DON concentrations in WTP and DWTP.

Average DON Reference
Locations concentration
(mg-N/L)

Yangshupu DWTP
- Raw water 0.34 Xuetal., 2011
- Treated water 0.21
Moorhead WTP
- Raw water 0.33 Wadhawan et al., 2014
- Treated water 0.23
Zhejiang WTP
- Raw water 0.52 Xue et al., 2014
- Treated water 0.38
28 raw water of

0.19 Lee et al., 2006

DWTP in U.S.
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2.5.5 The relationship between DON and water quality parameter

Previous studies shown that common water parameters such as DOC/DON ratio
and SUVA may serve as indicator for source of DON. Low DOC/DON ratio (range
from 4 to 14) indicated that the NOM source comprises of nitrogen-rich compounds
(autochthonous DON sources) which are less hydrophobic and more marcromolecule
biopolymer produced from microbial activity, eutrophication and photoproductivity.
On the other hand, high DOC/DON (range from 15 to 56) ratio represents a high
allochthonous DON source (Lee and Wasterhoff, 2005; Mash and Westerhoff, 2002;

Nissinen et al., 2001).

SUVA value was found to have positive correlation with DOC/DON ratio. Low
SUVA result in low DOC/DON ratio which means water had high level of organic

nitrogen.

As mentioned earlier, aromatic amino acid including tryptophan and tyrosine
are main components of DON. Since amino acid absorb UV light around 220 nm, UV
spectroscopy are difficult to resolved nitro and other salt. Fluorescence spectroscopy
has been used to characterize aromatic amino acids in water and may be used as
surrogate for DON (Mash and Westerhoff, 2002). In addition, it could be used to

identify the different sources of NOM (Andrilli et al., 2013)

2.6. Disinfection process and disinfection by product (DBPs)

Disinfection is a process for destruction of pathogenic microorganism and
prevention of water diseases contaminated in drinking water and wastewater treatment
plant (Angeloudis et al., 2014). There are several disinfectants used in water treatment

such as chlorine, chloramine, chlorine dioxide, and ozone. Among them, chlorine is the
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most commonly used. During disinfection process, DBPs was formed. Different species
of DBPs formation was due to different types of disinfectant used in water treatment

process (Table 2.4) (Doederer et al., 2014).

Table 2.4 Identification of DBPs from different type of disinfectants.

Disinfectant Significant Significant Significant non-
organo-halogen inorganic halogenated products
product products

Chlorine THMs, HAAs,  Chlorate Aldehydes,cyanoalkanoic
HANSs, chloral

hydrate (mostly acids, alkanoic acids,

from benzene, carboxylic acids

chloropicrin, hypochlorite

chlorophenols,

. use)
N-chloramines,
halofuranones
Chlorine - chlorite, unknown
dioxide chlorate
Chloramine HANS, nitrate, aldehydes,
cyanogen nitrite, Ketones
chloride, chlorate,
U hydrazine
chloramines,
chloramino
acids,
Ozone bromoform, chlorate, aldehydes,
MBA, iodate, )
ketoacids,
DBA, DBAC, bromate,
ketones,
g?_/gpnoiggn hydrogen carboxylic acids
peroxide

Source : WHO (2000)
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2.6.1 Chlorination

Chlorination is a widely used for water disinfection. Chlorine is chemical
disinfectant was reacted with organic compounds in water to produce DBPs, which are
known to be carcinogenic and/or mutagenic substances. The most frequency found of
DBPs during chlorination are THMs and HAAs. Previous study reported that HANs
increased during the chlorination with high concentration of DON (Chuang et al.,

2013).

2.6.2 Chloramination

Chloramination is an alternative method of disinfection process.
Monochloramine (NH2Cl>) was used as a disinfectant. Chloramination usually provide
lower concentration of DBPs than chlorination (Boorman et al., 1999; Yang et al.,
2012). Similar to chlorination, chloramination can cause the formation of THMs, and
HAAs (Tchobanoglous et al., 2014). Moreover, it can promote the formation of NDMA,
and cyanogen halides. DCAN as HANSs species has been reported in chloramination
water at the concentration of 0.03 pg/L which lower than the concentration in

chlorination process (0.11 pg/l) (Lee and Wasterhoff, 2005).

2.6.3 Disinfection by product (DBPs)

Most of DBPS results from the use of chlorine as disinfectant. The
concentration of chlorinated DBPs produced form the reaction of chlorine and natural

organic matter is shown in Table 2.5
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Table 2.5Summary of chlorinated DBPs concentrations in drinking water from (ug/L)

DBPs Peterset Krasner Nieminski Kochet  Reckhow
al (1990) et et al. al. (1991) etal.
al.(1989)  (1983) (1990)
THMs 3.1-495 30.0-440 17.0-51.0 49.0-81.0 201-1280
HAAs <0.5-14.7 13.0-21.0 5.0-25.0 22.0-32.0 118-1230
HANSs 0.04-1.05 2.5-4.0 0.5-5.0 2.0-2.6 3.0-12.0
Haloketones - 0.9-1.8 0.2-1.6 1.0-2.0 4.8-25.3
Chlorophenols - - 0.5-1.0 - -
Chloralhydrate - 1.7-3.0 - - -
Chloropicrin - 0.1-0.16 <0.1-0.6 - -

Source: adopted from WHO (2008)

2.6.3.1 Haloacetonitrile

HANSs are nitrogenous disinfection by product (N-DBPs) of drinking
water treatment. HANs was produced from the reaction between organic nitrogen
compound (such as amino acid) and chorine, chloramines/bromine in the disinfection
processes (Ahmed et al., 1991; Prarat, 2011).The composition of HANs concentration
with THMs and HAAs was observed. The results found that the mass of HANS typically
represent around 10% of the THMs (Prarat et al., 2013). There are several HANs
species including chloroacetonitrile  (CAN), dichloroacetonitrile  (DCAN),
trichloroacetonitrile (TCAN), bromoacetonitrile (BAN), dibromoacetonitrile (DBAN),
bromochloroacetonitrile (BCAN), and iodoacetonitrile (IAN)(Muellner et al., 2007).

Figure 2.2 shows the chemical structure of HANs species. In drinking water, CAN,
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BAN, DCAN, BCAN, DBAN, TCAN, and DBCAN were found in US drinking water.

Among them, DCAN was the predominant species (Table 2.6) (Templeton et al., 2010).

Cl
H—C—CN

Cl

Dichloroacetonitrile

cl
I

Cl — C|:— CN
Cl

Trichloroacetonitrile

Cl —C—CN

Chlorodibromoacetonitrile

Br
H—C—CN

Cl

Bromochloroacetonitrile

Br

I
Ci— c|:— CN
cl

Bromodichloroacetonitrile

Br

Br
H—C—CN

Br

Dibromoacetonitrile

H

I
H —lc—CN
Cl

Monochloroacetonitrile

Br —C—CN

Tribromoacetonitrile

Figure 2.2 Molecular structure of HAN species
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Table 2.6 The concentration of HANs found in drinking water.

HANSs (ug/L)

Haloacetonitrile Templeton et al. Bougeard et al. Chuetal. 2011

2010 2010

CAN 0.9 - N.D.

BAN 0.2 - -
DCAN 12.0 3.0 8.5
BCAN 3.0 - N.D.
DBAN 2.0 0.2 N.D.
TCAN 0.4 0.1 N.D.
DBCAN 0.6 - -

2.6.3.2 Toxicity of HANs

HANshas been reported to be about 5000 times more cytotoxic and

genotoxic than C-DBPs such as THMs and HAAs (Huang et al., 2013; Rieder, 2007)

Figure 2.3shows the result of cytotoxicity and genotoxycity of Chinese
hamsters overly cells (CHO) for seven HANs. Based on the test of CHO cell density
and single cell gel genomic DNA damage, brominated and di- and tri-halogenated
HANSs were more toxic than chlorinated HANs. The order of genotoxic activity was

DBAN > BCAN > TCAN > DCAN > CAN.
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Figure 2.3 (a) Seven HANSs analyzed with CHO cell chronic cytotoxicity
concentration and (b) SCGE genotoxicity concentrations relative with seven HANSs
formation (Mueller et al. 2007)

2.6.3.3 Regulation of HANs
Recently, the regulation of HANs contamination in drinking water are
not available. However, The World Health Organization (WHO) has published drinking

water guidelines for two HANSs including a guideline of 70 pg/L for DBAN and 20

ug/L for DCAN based on sub chronic study in rat (WHO, 2008).

2.7. The relationship between water quality parameter and N-DBP precursor

2.7.1 Dissolved organic carbon (DOC) and UV absorbance at 254 nm

The absorbance of the natural water at UV wavelength 254 nm (UVa2s4) could
be used to predict the formation of DBPs. Increased DOC and UV2s4 leads to increased
of C-DBPs level. (Matilainenetal., 2011; Uyguner-Demirel et al. 2001, Bond et al.,
2014). High SUVA values represent the hydrophobicity (less nitrogen content). While
low SUVA values indicate more organic nitrogen content (e.g. DON) in water causing
the increment of N-DBPs (Uyguner-Demirel et al., 2011). High value of SUVA and
UV2s4 mean that the main NOM source was mainly composed of humic substance

(hydrophobic), resulting in the formation of C-DBPs during chlorination process.
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(Westerhoff et al., 2004). In contrast, the lower value of SUVA can indicated to NOM
source was non-humic substance (more nitrogen enriched), causing N-DBPs formation

which has more toxicity than C-DBPs. (Dotson et al, 2009).

However UVzs4, SUVA, and DOC had a correlation with C-DBP, but the
relationship with N-DBPs have not been fully investigate (Roccoro et al., 2011). Some
previous study reported a weak correlation between UV2s4 and HANFP with R?= 0.45.
Some studies found a strong correlation of UV2s4 and dihaloacetonitrile formation
potential (DHANFP). The correlation of UV2ss and HANFP (R? = 0.95) was depends
on properties of water.

2.7.2 Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON)

ratio

The DOC/DON ratio has correlation with SUVA trend. The DOC/DON ratio
and SUVA value were increased in nitrification process while decreased in
denitrification process. The DOC/DON ratio was used to predict the precursor of N-
DBPs. Low value of DOC/DON represents N-DBPs precursor. (Westerhoff and Mesh,
2002). However, the basic parameter (e.g. DOC, DON, UV2s4, and SUVA) could not
use to identify the precursor of N-DBPs such as amino acids. Thus, a fluorescence

properties was applied as an alternative parameter (Chen, 2007).
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2.7.3 Fluorescence spectroscopy
Fluorescence spectrophotometer based on excitation-emission matrix (EEM)
DBPs in NOM water. The difference in peak intensity was used to determine the

specific precursor profile was shows in table 2.7 (Roccaro et al., 2011).

Table 2.7 Fluorescence peak intensity with vary the Range of excitation and emission
(nm)

Peak Range of excitation = Range of emission
(nm) (nm)
Humic-like : Peak A 237-260 400-500
Humic-like : Peak C 300-370 400-500
Peak C: 320-340 410-430
Peak C, 370-390 460-480
Tyrosine-like : Peak B: 225-237 309-321
Peak B> 275 310
Tryptophan-like: Peak T 275 340
Peak T» 225-237 340-381
Humic (marine): Peak M 290-310 370-410

The composition of organic matter can be presented as a pattern of fluorescence
peak. It can be divided into 2 main part of natural fluorescence including 1) peak A and
C (defined as humic and fulvic- like) and 2) peak T and B, which defined as tryptophan
and tyrosine like (Bieroza et al., 2009). The model compounds such as tryptophan,
aspartic acid were used to study the HANFP since they are potential to be a precursor
of HANSs. The result from peak intensity show precursor of DCAN was in the peak T,

which indicative of amino acid like fraction. (Swietilk and Sikorska, 2004).
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Understanding of the impact of treatment process on the fluorescence of the
wastewater is require to determine the nature of residual fluorescence signal and used
the fluorescence result to predict the N-DBPs and used to monitoring tool of wastewater
treatment plants, for instance, the clarification process, has decrease T1and T intensity

similar to advance treatment process could be decrease of all intensity fluorescence.

As mentioned earlier DON was a precursor of N-DBPs. Some previous studies
has been reposted the oxidation of DON to form N-DBPs (Table 2.8). It is could be

confirm that DON may a precursor of N-DBPs during chlorination process

Table 2.8 Oxidation of DON on formation of N-DBPs

Nitrogen component Oxidant DBPs
Purine and pyrimidines NaOClI HANs, HAA
Amino acids, proteins, NaOCI HANs, THMs
humic acids
Algae, Fulvic acid NaOCI DXANs, THMs
Humic and fulvic acid HOCI TOX, CHCI;3,

TCAA, DCAN

2.7.4 Factors influencing the formation of N-DBPs
2.7.4.1 pH

The effect of pH on the formation of DBPs is shown in table 2.9. For
example; the concentration of DCAN and CNCI was slightly reduced at pH range from

7.5-9. While a high level of them was observed at pH 5 (Bond et al., 2014)
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2.7.4.2 Bromide

Bromide plays an important role in the formation of N-DBPs. (bromide)
it can cause DCAN formation up to 95 % in autochthonous source. NOM source can
salter the function and structure of N-DBPs For example, the distribution of DHAN
was change from DCAN to BCAN. The formation of other bromine-containing DBPs
depend on the pH, contact time, and monobromamine or dibromamine dose (Yang et

al., 2012).

Table 2.9 Effect of pH on N-DBPs

N-DBPs group pH effect

Haloacetonitrile More stable at acidic pH.

Hydrolysis at high pH except DCAN.
Haloacetamides Uncertain but presumably hydrolysed at alkaline pH
Halonitromethanes Chloropicrin formation decrease with pH
Cyanogen halides  High formation at acidic condition.

Unstable in the present of chlorine.

Nitrosamines Chlorine enhances nitrosation, especially at neutral
pH.Nitrosation itself increase with pH but normally

lilted by formation of nitrosating agent.

Source : Bond et al. (2011)
2.7.4.3 The impact of treatment process
The removal of N-DBPs precursor has become important to control N-
DBPs formation in wastewater treatment plant and drinking water treatment plant. The
most composition of N-DBPs precursors was content nitrogen enrich in NOM source

(e.g. DON), which is hydrophilic function (Chang et al., 2013). Conventional treatment
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process such as coagulation filtration and disinfection has been ineffective to reducing
DON concentration (Chu et al., 2011). In addition, the SMP, source of DON requires

the biological treatment process to reduce SMP concentration.

The ozonation process was also correlated with the formation of N-DBPs
due to an increase in BDON (Wadhawan et al. 2014). A possible explanation is that
ozone cleaves larger algal and bacteria soluble into smaller part and increase in BDON

concentration (Bond et al. 2011; Chu et al., 2011)

Dotson et al. (2009) isolate NOM fraction from nitrogen rich sources and
test formation potential of N-DBPs. the result shows that DCAN was appeared high
concentration after chlorination process with highest yields from the most nitrogen rich
fraction (hydrophilic). DCAN and other haloacetonitrile are produce form the

chlorination of free amino precursor as well (Bond et al., 2012).

In conclusion, conventional treatment process such as coagulation and
filtration are ineffective for removing DON concentration and N-DBPs precursors.
Therefore, advance treatment process such as membrane, nano-filtration, and biological

treatment process are more appropriate to remove DON concentration.



28

CHAPTER 111

MATERIALS AND METHODS

3.1 An experiment framework

The experiment framework in this study is divided into 2 main parts. The first
part is the study of the characteristic of raw water and treated water in each process of
WTP in order to describe the properties of original water and the relationship with the
HANs formation potential. The second part is the investigated of BDON contributing
to HANs formation in filtrated water and ozonated water. The framework of this

research is shown in Figure 3.1
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3.2 Glassware
All glassware were washed with detergent, rinsed with tap water, kept in a 10%
v/v HCI bath overnight and finally rinsed with de-ionized (DI) water. The washed

glassware were dried overnight at 103-105 °C and then covered with aluminum foil.

3.3 Water treatment processes

Water samples were obtained from three water treatment plants, which are Kota
Water Treatment Plant (KWTP), Thapra Water Treatment Plant (TWTP) and Khon
Kaen University water treatment plant (KKUWTP) in Khon Kaen Province. KWTP and
TWTP plants produce water supply for Khon Kaen Metropolitan and KKUWTP
produces water supply for 50,000 campus population and all facilities in Khon Kaen
University. KWTP has a capacity of 139,200 m3day™. The plants used raw water from
Ubolratana dam. TWTP has a capacity of 48,000 m3day*and used raw water from the
Chi River. KKUWTP has a capacity of 8,000m®day®. All plants have the same
treatment process consist of raw water, coagulation and flocculation, sedimentation,
sand filtration and disinfection unit. A scheme of treatment process is shown in Figure

3.2

Polyaluminum chloride (PAC) was used as a coagulant for all plant.
Chlorination is applied for KWTP and TWTP while chlorine dioxide was used for

KKWUTP.

3.4 Water sample collection
Water samples from three plants were collected from four different processes
including 1) raw water, 2) after sedimentation, 3) after filtration, and 4) after

chlorination/chlorine dioxide disinfection along the conventional treatment process of
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KWTP, TWTP and KKUTP (Figure 3.2). All samples were filtered through a 0.2 um
cellulose acetate membrane within an hour after collection. The water sample has high
turbidity, sample was filtered through glass fiber filter (GF/C) before filtering by 0.2
pum membrane flitter. The filtrated water samples were used to determine DIN, DON,
and DOC. Sampling period of DOC, TDN, DON were from November 2014 to May
2015 which in dry season. For BDON, HAN and specific HANFP analyses, analytical
procedures were successfully developed at the latter stage of the research. Therefore,

the water samples were collected from April - May 2015.

—_— —]
— 1 , I —

w e Finished
water | water

Coagulation Flocculation Sedimentation ~ Filtration  Disinfection

Sampling location: 1,2,3,4
Figure 3.2 Conventional water treatment scheme.

3.5 Analytical methods.

3.5.1 DOC, TDN and UV2s4 analyses

Concentration of DOC and TDN were measured using an organic carbon
analyzer (TOC multi N/C 2100, Analytic Jena, Germany). UV absorbance at 254 nm

was measured with a UV-visible spectrophotometer (DR-6000, HACH, USA).

3.5.2 DIN and DON determination

DON was determined by subtracting TDN concentration with sum of DIN

(NHs-N + NO2-N + NOs-N) concentrations as shown in Eq 3.1.

DON (mg/L as N) = TDN — (NHz-N + NO,-N + NOs-N) (3.1)
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(1) Ammonia (NHs) was measured by phenate method and ammonium chloride
was used to prepare standard ammonia solutions (APHA et al., 2005). The procedure

was described following;

1) 25 mL of samples were used

2) Add 1 mL of phenol solution follow by 1 mL sodium nitroprusside.

3) Add 2.5 mL alkaline hypochlorite solution to the samples and leave it for 1

hour.

4) Measure UV absorbance at wavelength of 640 nm after 1 hour using

spectrophotometer (DR-3000, HACH, USA).

(i) Nitrite (NO2) in the samples was analyzed by a Standard Method 4500-

NO.,B colorimetric method (APHA et al., 2005)following;

1) 25 mL samples were add in Erlenmeyer flask.

2) Add2 mL color reagent was pipetted into a samples.

3) Incubated in the dark for 10 min.

4) Measure UV absorbance at wavelength of 540 nm after 1 hour using

spectrophotometer

5) Sodium nitrite was used for preparation of nitrite standard.

(iii) Nitrate (NO3") was analyzed by spongy cadmium reduction method (Jones,
1984)which modified and use to reduce NOs-N to NO2-N. Spongy cadmium was
prepared by stand zinc stick (Sigma Aldrich, USA) into a 20% (w/v) solution of

cadmium sulfate overnight. The cadmium deposited on the zinc sticks was scrapped
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and used for nitrate analysis. Spongy cadmium was kept in DI water before used.

Potassium nitrate was used as standard. The procedure was following below;

1) 25 mL of sample was added into 50 mL centrifuge tube

2) Add 5 mL of 0.7 M ammonium chloride was added follow by 1 g of wet

spongy cadmium.

3) The mixture was shaken at 200 rpm for 90 min at room temperature.

4) Pipetted samples 10 mL and add 2.5 mL of color reagent, incubated in the

dark for 10 min.

5) Measure UV absorbance at wavelength of 540 nm after 1 hour using

spectrophotometer

The value obtained in this step was the nitrite concentration (reduced from
nitrate plus original nitrite). The concentration of nitrate was subtracted with original

nitrite concentration that was determined separately.

Biodegradable dissolved organic nitrogen (BDON) was developed from Khan
et al. (2009).BDON is calculated from the difference between initial DON (DON;) and

final DON (DONYy) after incubation Eq. 3.2.

BDON = (DON; — DON) — (DONbi— DONy) (3.2)

Where, DON;j and DON;s are DON before and after incubation

DONbi and DONys are DONps before and after incubation of blank

Sample for BDON was prepared by filtrating through 0.2 um pore size cellulose

acetate. Two hundred milliliters of each filtrated were inoculated with 2 ml of 5% mixed
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liquor suspended solids (MLSS) obtain from WWTP. The mixture was incubated at
20°C in dark amber bottle 14 day after incubation were used to determined DON final
(DONT) during incubation periods (Figure 3.3), the solution in bottle was shaken to

aerate at least once a day to maintain aerobic conditions (Halis et al., 2012)

Water samples filtrate with 0.2 pm pore size

Initial DON measurement (DON;)

Add 200 ml of samples into 240 ml
incubation bottles

Incubate at 20 °C in

2 ml inoculum the periods of 14 days
of 5% MLSS and shake every day
b

\

After 14 days of incubation

v

DON measurement (DONfx)

Figure 3.3 BDON experiment procedure

3.6 Ozonation experiments

Ozone was generated from self-mode ozone generator based on the principles
of the photolysis of oxygen by UV at wavelength 185 nm. Ozonation was applied to
water samples after sedimentation processes. The location of water samples was chosen
based on practical application of ozone in water treatment plant that always between
after sedimentation basin and before filtration. Ozonation helps in removal of taste and
odor compounds and also increases the biodegradability of organics which later will be

removed in biologically active filter. Ozone dose 0.6 mgOs/ DOC was applied to 2 L



35

of sample through glass diffuser. After ozone dose was transfers in water samples,

ozonated samples were stored at 4 °C for no more than 24 hours before analysis.

3.7 HANs formation potential

The HANFP experiments were conducted under an excess of chlorine dosage.
during reaction time of 24 hours, 25 °C at pH 7.0 (Figure 3.4) The water sample were
buffered using phosphate buffer. The reason why the formation potential test conducted
at 24 hours in this study. It was because the distribution systems in the real situation

that contributed the samples to consumers was about 1 days (24 hours).

Adjust pH of samples to 7.0+0.2

A\ 4

Add 5 ml phosphate buffer (pH 7)

A\ 4

Add chlorine dose
CI2 (mg/L) = 3 * DOC +7.6*NH3 + 10

A 4

Fill completely with the samples to 240 ml
bottles.

'

Incubate at 25 OCi2 for 24 hrs.
l After 24 hrs.

Ammonium chloride 0.2 ml

Figure 3.4 The formation potential test diagram

The chlorine dose added to samples was based on the DOC and ammonia
concentration plus 10 mg/L extra chlorine. This was to ensure that the final residual
chlorine of 3-5 mg/L remained in the samples after incubation periods of 24 hours

(Chen and Westerhoff, 2010) as show in the following equation 3.3:



36

Chlorine dose (mg/L) = (3 x DOC) + (7.6 x NH3-N) + 10 (3.3)

The chlorine dose was used in this study base on the DOC and NHs only one
water samples of raw water from KWTP and used the same chlorine dose to the
formation potential test which the chlorine dose of 25 mg/L. After incubation 24 hours
(similar to typical hydraulic retention time in distribution system), the samples were
quenched with ammonium chloride (NH4CI). Chlorine residue was tested with DPD
Ferrous Titrimetric method (4500-CI" F, APHA, 2005). In this study chlorine residue

of the water samples range from 4.25 to 4.60 mg/L.

3.8 HANSs analysis

The water samples were extracted using a liquid/liquid extraction method and
analyzed by a gas chromatograph (GC) equipped with an electron capture detector (GC-
ECD) system (Agilent 4890 D). The GC column used was a SPB-608 fused silica
capillary column (30m x 0.53 mm x 0.5 pum). Helium was a carrier gas (EPA 551.1).
The temperature program was started at 40 °C for 2.5 min, and then running up to 240
°C for 1 min at the rate 40 °C/min. Injection volume was 1.0 uL. The detection limit of
three HAN (TCAN, MCAN, DCAN) was 0.25 pg/L and DBAN was 0.1 pg/L. the
retention time for TCAN, MCAN, DCAN, and DBAN was 1.3, 1.8, 2.0, and 4.5
minutes. The HANFP was calculated from HAN divided by DON which defined as

specific HANFP (ug/mg).



RESULTS AND DISCUSSIONS

CHAPTER IV

4.1 Water quality characteristics

4.1.1 Source water quality parameters.
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The results of water quality parameters in raw water samples collected from

three water treatment plants of Khon Kaen Municipality including Kota water treatment

plants (KWTP), Thapra water treatment plants (TWTP) and Khon Kaen University

water treatment plants (KKUWTP) were presented in Table 4.1.

Table 4.1 Characteristics of raw water at KWTP, TWTP and KKUWTP

Parameters  Units KWTP TWTP KKUWTP n

Temperature °C 32.3+0.82 31.8+1.60 32.1+1.38 10
pH - 7.67+0.82 7.72+0.35 7.69+0.30 10
Alkalinity mg/L as CaCOs 92+12.27 98+5.96 93+7.96 10
Hardness mg/L as CaCOs 84+4.34 93+10.68 85+9.82 10
DOC mg-C/L 5.60+0.76 5.36+0.83 6.20+0.74 10
BDOC mg-C/L 2.23+0.23 1.78+0.09 1.40£0.37 4

UV2s4 cm? 0.111+0.01  0.0941+0.28  0.121+0.01 10
SUVA L/mg.m 2.01+0.32 1.80+0.42 2.04+0.28 10
TDN mg-N/L 0.94+0.1 0.72+0.1 0.84+0.1 10
DIN mg-N/L 0.36+0.10 0.124+0.05  0.34+0.13 10
DON mg-N/L 0.58+0.11 0.57+0.13 0.52+0.21 10
BDON mg-N/L 0.27+0.19 0.36+0.04 0.21+0.06 4

DOC/DON  mg/mg 10.72+3.6 10.05+2.53  12.4442.91 10

Average value * standard deviation, n = number of sample
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The surrogate water parameter such as dissolved organic carbon (DOC),
dissolved organic nitrogen (DON), UV2s: and SUVA were used to categorize the
natural organic matter (NOM) properties. There surrogates were able to predict a
precursor of DBPs in water treatment plants. DOC represents the amount of organic
carbon content in water. High level of DOC could lead to more formation of DBPs
during disinfection process. Typically, the concentration of DOC in surface water such as
rivers and lakes ranged from 2 to 15 mg/L (Degens, 1982). DOC concentrations of raw
water from these three water treatment plants were from river and ranged between 5-6
mg/L (Table 4.1). This level is considered to be moderate. When comparing of average
DOC concentrations of raw water of US and China (3.44 and 4.95 mg-C/L) (Lee, 2006;
Xue et al., 2014), the values of DOC from this study were little bit higher.

In this research, the UV2ss and SUVA were in the range of 0.094-0.121 cm™?,
and 1.80-2.04 L/mg.m, respectively. UV2s4 indicates the unsaturated carbon structure
including double carbon bond and aromatic as well as hydrophobicity. SUVA
represents the term of UV2s4 normalized with DOC of water sample. This is to be able
to compare the aromaticity of the water from different sources. The high SUVA (2-4)
indicated that the water sample contains humics substances and mixture of hydrophobic
and hydrophilic organic compounds (Edzwald and Tobiason, 1999). For this study, the
SUVA values were about 2 or less. The low SUVA values (<2) mean that organic
content is mainly consist of non-humics, low hydrophobicity, and low molecular weight

compounds (Edzward and Tobiason, 1999).
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DON concentrations of three raw waters were in the ranged of 0.52-0.58 mg-
N/L. These values were higher than an average DON concentration reported in US.
(0.186 mg-N/L) and China 0.34 mg-N/L)(Lee, 2006; Xue et al., 2014).DOC/DON
ratios of KWTP, TWTP and KKUWTP were 10.72, 10.05, and 12.44 mg/mg,
respectively.DOC/DON ratio serves as indicators of nitrogen content in water sample.
The United State Geological Survey’s database reported that water with the high ratio
of DOC/DON (15-56) has low nitrogen content. It implied that this kind of water source
has more hydrophobic content, which derived from plant, soil contribute to NOM
(allochthonous NOM source). However, low DOC/DON (4-14) ratio means water is
rich in nitrogen. The organic content with low DOC/DON water is derived from algae
or bacteria aquatic NOM (autochthonous) (Mash and Westerhoff, 2002; Xu et al., 2010;
Xue et al., 2014).The result of DOC and DON concentration in Khon Kaen water
treatment plants could implies that there are a significant amount of organic nitrogen
and organic carbon carried over to finish water and possible to form C-DBPs and N-
DBPs such as THMs, HAA or HANSs during chlorination process, thereby increasing

the number of health risk effect.

Although the seasonal variation could affect the composition of NOM in the
water system, the effect of seasonal may be minimum due to the sampling time during
in the study was the dry season which from November 2014 to May 2015. It might not
significantly change the effect of NOM properties such as DOC and DON concentration

in the water samples.
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4.2. Fate of dissolved organic carbon (DOC) and SUVA along treatment

processes

4.2.1 Dissolved organic carbon along treatment processes

Figure 4.1 (a-c) shows the average DOC concentration profiles of ten water
samples of raw water, after sedimentation, after filtration, and after chlorination of
KWTP, TWTP and KKUWTP, respectively. It was noticed that the reduction of DOC
concentrations were quite small in each step of water treatment process. Overall
removal efficiencies of DOC in finished water were 12.52%, 16.57% and 19.00% in
KWTP, TWTP and KKUWTP, respectively. These three plants used polyaluminium
chloride (PAC) as coagulant. Although, PAC is an effective and common coagulant
used in water treatment, low DOC removal efficiency could happen like in this study.
There are several factors influencing the DOC removal efficiency by coagulation
process. For example, PAC has been reported to be more effective at low temperature
of 10-15 °C (Minear and Any, 1995). In this work, the temperate of water was about
30-32 °C. Another important factor is the characteristic of NOM in water itself. Based
on the DOC concentrations and SUVA values (<2 L/mg.m), the organic content in
water was mainly non humics, hydrophilics, low molecular weight organic compounds.
This type of organic was reported to have poor removal by coagulation process.
Edzwald and Tobiason (1999) reported that less than 25% removal of DOC can be
achieved by alum for this type of water. Sand filtration also took part in DOC removal.
The DOC removal in sand filter might be due to the removal of colloidal organic or

biodegradable organic carbon. Again, the efficiency of sand filter was very minimum.



41

4.2.2 Specific UV-absorbance (SUVA) along water treatment processes

The values of SUVA was found to be good representative for hydrophobic,
aromatic acid and aromatic carbon (Czerwionka et al., 2012; Fleck et al., 2004). were
shown in Figure 4.2(a-c), respectively. Removal efficiencies of SUVA from raw water
to finished water of three plants were higher than DOC reduction (34.34% for KWTP,
26.43% for TWTP and 22.55% for KKUWTP). Note that substantial reduction of
SUVA occurred in coagulation and sedimentation steps. This suggested that the
unsaturated or aromatic carbon substances (e.g. primary UV absorbing compound)
were favorable to be removed by coagulation. Figure 4.2a, the large reduction of SUVA
was found in sample after chlorination of KWTP. This could imply that organic content

compose of SUVA was reactive to oxidant/disinfectant such as chlorine.
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4.3 Fate of inorganic nitrogen species (DIN), total dissolved nitrogen (TDN) and
dissolved organic nitrogen (DON) along treatment processes

4.3.1 Dissolved inorganic nitrogen (DIN) and TDN concentrations.

Figure 4.3, 4.4, 4.5 shows the fate of DIN and TDN along treatment train of
KWTP, TWTP, and KKUWTP, respectively. For KWTP, TWTP, and KKUWTP, the
DIN ranged from 0.23-0.36 mg-N/L, 0.09-0.19 mg-N/L, 0.15 - 0.35 mg-N/L,
respectively. The amount of DIN in KWTP, TWTP, and KKUWTP accounted for 15-
30%, 13-25%, and 17-29% of TDN, respectively. Dissolved inorganic nitrogen is made
of ammonia, nitrite and nitrate. From all three water plants, the concentrations of
ammonia, nitrite, and nitrate were in the ranges of 0.01-0.07, 0.001-0.01, 0.04-0.33 mg-

N/L, respectively. It was found that nitrate was the major component of DIN.

When considering the concentration of DIN species, it was observed that
concentration of ammonia decreased along the treatment train (Figure 4.4-4.5 (a)). For
example, Ammonia concentrations of KWTP in raw water, samples after
sedimentation, filtration and effluent water averaged 0.014, 0.01, 0.007 and 0.001 mg-
N/L, respectively. It was noticed that about 92% of ammonia removal occurred during
coagulation and sedimentation. Similarly, TWTP and KKUWTP also were found to
have majority of ammonia removal (> 60%) in coagulation and sedimentation. The
removal of ammonia could be explained by nitrification process occurred in coagulation
and sedimentation basins. Some small change of ammonia concentrations was also
found after filtration and chlorination. The loss of ammonia could be from assimilation
by biomass attached to the filter medium.(W. Lee and Westerhoff, 2006). The reduction
of ammonia after chlorination could be from the reaction with chlorine used in

disinfection process as described in Eq. 4.1.
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NHz* + 4HOCI - 6H* + NOs™ + 4CI" + 3H,0 (4.)

Nitrate concentrations along the treatment train of three water plants exhibited
the interesting trends. Nitrate concentrations for KWTP and KKUWTP appeared to be
decreased substantially after coagulation and sedimentation by 33%, and 50%,
respectively (Figure 4.3b, and 4.5b). Since PAC was used as a coagulant, the removal
of nitrate resulted from the adsorption to the metal- hydroxide precipitates (Lacasa, et
al, 2011). However, TWTP, the nitrate concentration was relatively unchanged (Figure
4.4a). This might due to very low concentration of nitrate of raw water to be able to
sorbet by PAC floc. Small nitrate increased after filtration could be from nitrification
in the filter. However, it was interesting that nitrate concentrations increased after
chlorination. The increase of nitrate could not be from nitrification nor oxidation of
ammonia since the initial ammonia concentrations were much lower than nitrate
formed. Rather, it could be from the oxidation of DON by chlorine in which finally
yielded nitrate as an end product. Nitrite concentrations were very minimum and
remained quite stable along the treatment train. For TDN (Figure 4.3b-4.5b), there was
not much change of TDN concentration profile along the water treatment train. The
reduction of TDN of raw water comparing to finished water were 12%, 20%, and 16%
for KWTP, TWTP, and KKUWTP, respectively. Slight increase of TDN was found for
KWTP and TWTP after filtration. This was probably duo to the release of nitrogen
compound from biomass attached to the filter medium. For the fate of DIN, TDN and

DON the average concentration of ten times water sampling was determined.
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Figure 4.3(a) concentration of DIN and (b) TDN along treatment process trains of

KWTP (n=10).
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Figure 4.5 (a) concentration of DIN and (b) TDN along treatment process trains of

KKUWTP (n=8)
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4.3.2 Dissolved organic nitrogen (DON) concentrations.

Typically, concentration of DON in water cannot be determined directly. DON
was calculated by TDN —XDIN. Therefore, it might collect systematic errors from TDN
and all DIN analyses, particularly at low concentration of DON and high concentration
of DIN. To improve the accuracy for DON determination, DIN/TDN ratio was
recommended not to exceed 0.6 mg/mg (Xu et al., 2010). In this work, the accuracy
checked was performed. For KWTP, the DIN/TDN ratios in raw water, sedimentation,
filtration and chlorination were 0.38, 0.29, 0.26, and 0.42, respectively. Also the
DIN/TDN ratios of TWTP and KKUWTP along treatment train were in the range of
0.15-0.33 and 0.21-0.41, respectively. This indicated good accuracy of DON
determination and reliable DON data because DIN/TDN ratios were less than 0.6

mg/mg.

Figure 4.6 (a-c) shows the fate of DON along treatment trains from KWTP,
TWTP and KKUWTP. Overall, the profile of DON of three plants generally decreased.
For example, average DON concentrations of raw water and the effluent of
sedimentation, filtration and chlorination process at KWTP (were 0.58, 0.54, 0.66 and
0.44 mg-N/L, respectively (Figure 4.6 a). The removal efficiency of DON in comparing
between raw water and finished water of KWTP, TWTP, and KKUWTP were 24.1%,
31.5%, and 3.84%, respectively. Low removal of DON concentrations was observed
for all plants for coagulation and sedimentation processes. The coagulant used in both
plants was polyaluminum chloride (PACI). The result suggested that this type of
coagulant and/or coagulation plus sedimentation processes may not be effective for
removing organic nitrogen(Chu et al., 2011). It was noticed that after filtration process

of KWTP, TWTP, KKUWTP, there was small increase of DON concentrations. The
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explanation could be from microbial activities in the filter that produce soluble
microbial products which is a source of DON (Leenher and Croue 2003). After
chlorination, some reduction was observed. This could be from oxidation of DON by
chlorine which led to nitrate formation. The decreasing of DON concentration in Figure
4.6a of KWTP was approximately the same with the nitrate concentration formed
(Figure 4.3a). When comparing of median DON concentration of treated water (0.184
mg/L-N in US) (Lee, 2006) with treated from those three plant, the result showed the
comparable values of DON concentrations. These levels of DON suggested that there
were certain amount of organic nitrogen presented in finished waters and possible to
form N-DBPs such as HANSs during chlorination process. Consequently, it increases

the health risk effect of consumers.
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Figure 4.6 Concentration of DON in different treatment process in (a) KWTP (n=10),

(b) TWTP (n =10) and (c) KKUWTP (n =8)
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4.3.3 DON and TDN correlation

Figures 4.7 (a-c) show the ratio of DON/TDN of water samples along the
treatment train of KWTP, TWTP, and KKUWTP, respectively. Overall, the percentage
of DON ranged from 53% to 84% of TDN in water samples. This indicated that DON
was considered large portion of TDN pool in drinking water. As mentioned earlier,
DON is calculated based on the difference between TDN and sum of DIN. This means
there are several analyses to be performed to obtain DON value. Therefore, it increase
the sum of error associated with analytical methods. High percentage of DON in TDN
suggested that there might be a possibility to determine just TDN and used it to estimate
DON in drinking water. In addition, measurement of TDN is quite simple and reliable
using TOC/TN analyzer. In order to achieve this objective, linear regression between
DON and TDN concentrations were determined for the samples along the treatment
train (Table 4.2, Appendix B).The results showed that there were variations of
correlation coefficients (R?) among water samples from different stages of water
treatment plant. High correlation was found in water samples that had less DIN (Table
4.2). This suggested that the correlation of DON and TDN are depending on type of

water samples and water characteristics.

Table 4.2 Correlation coefficient (R?) values for linear relationship between DON and
TDN of all water samples in KWTP, TWTP, and KKUWTP.

Samples Raw water Sedimentation Filtration Chlorination

KWTP 0.43 0.52 0.34 0.23
TWTP 0.77 0.78 0.26 0.53
KWTP 0.55 0.43 0.53 0.84
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4.4 Biodegradable dissolved organic nitrogen (BDON) along water treatment

plants

Dissolved organic nitrogen in water samples composed of biodegradable DON
and non-Biodegradable DON (NBDON)(Sattayatewa et al., 2009; Simsek, Wadhawan,
et al., 2013; Wadhawan et al., 2014). Huo et al. (2013) also reported that about 28-70%
of effluent DON was bioavalible or biodegradable. To determine the concentration of
BDON and NBDON in the DON profiles,incubation with inoculum of 5% MLSS were
used. The concentration of DON before and after incubation was determined. The DON
level after incubation was referred as NBDON. BDON was calculated by subtracting
of DON before incubation with DON after incubation (NBDON) (Khan et al., 2009).
For the control of BDON test, glycine, dominant species of free amino acid (Wadhawan
etal., 2014), was used to determine bioavailability of DON. The bioavailability of DON
in this study was 78% of biodegradable, which is in a good agreement with the previous

study (Khan et al., 2009)

Figure 4.8 (a) shows the average of four water samples of BDON profiles from
KWTP along treatment trains. The BDON profile had a similar trend as that of DON
profile. Average BDON in raw water and three of water after sedimentation, filtration,
and chlorination were 0.27, 0.21, 0.31, and 0.19 mg-N/L, respectively. The removal
efficiency of BDON in finished water was 29% with BDON increased by 14% in
filtration process. The explanation, was the same for DON concentration increased in
filtration process due to the release of soluble microbial products from the filter. In
KWTP most portion of DON were biodegradable (about 53% in raw water, 56% in
sedimentation, 55% in filtration, and 51% in chlorination). This result had similar trend

with previous studies that BDON are main dominant of DON in water samples (Chen
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et al., 2011). The compound made up for BDON may contain of low molecular fraction
of DON such as aliphatic amino acid (e.g. glycine; MW = 57.05 Da, alanine; MW =
89.09, aspartic acid; MW = 133 Da). Approximately, another half of DON in KWTP
was NBDON. NBDON consists of unidentified DON or non-biodegradable organic
nitrogen that considered to be mainly in the unidentified high molecular weight organic
fraction or humic compounds. It is note that the non-bioavailable may also came from
the specific type of humic compounds or other type of aromatic amino acid and possibly
other high molecular weight nitrogen compounds(Dotson and Westerhoff, 2009; Tang

et al., 2012; Templeton et al., 2012; X. Yang et al., 2010).

Figure 4.8 (b) illustrated the BDON profile along treatment process of TWTP.
The BDON concentration of raw water and effluents samples from sedimentation,
filtration, and chlorination were 0.36, 0.27, 0.14, and 0.22 mg-N/L corresponding to
38% removal in finished water. Substantial reduction of BDON in water samples after
filtration suggested that there were biological activities in the filter of TWTP or BDON
fractions of TWTP was ready bioavailable compare to other water plants. Slight
increase of BDON after chlorination could be due to partial oxidation of DON by

chlorine to make DON become more biodegradable

In KKUWTP, average BDON in raw water and three of effluent from
sedimentation, filtration, and chlorination were 0.21, 0.31, 0.24, and 0.15 mg-N/L,
respectively (Figure 4.8 (c)). The removal efficiency of BDON in finished water
comparing to raw water was 28%. The possible explain why non-biodegradable were
high portion of DON was that the raw water may contain aromatic nitrogen than

aliphatic nitrogen. The key factors that appeared to affect bioavailability of DON by
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bacteria and algae or increase non-biodegradable organic nitrogen may come from two
possible reasons: 1) the effect of pH and salinity in water receiving DON, which
increase nitrogen containing humic substance (contain aromaticity) and 2) effect of
physical and chemical interactions of nitrogen species due to water chemistry (Stensel,

2008)

Overall, most of DON in water treatment plants are biodegradable range from
35-60%, which similar with previous study that reported the BDON accounted for 40-
60% (Halis et al., 2012; Khan et al., 2009; Wadhawan et al., 2014). Some water plants
had NBDON portion more than BDON. This depended on water characteristics. The
remaining of DON portion in water system in WTP may be oxidized in chlorination
process to form nitrogenous disinfection by product (N-DBP) such as HANSs, which are

more toxic and carcinogenic than regulated DBP (Chen, 2007)
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4.5. Effect of ozone on DON and BDON

Ozonation is usually practiced either at the headwork of a conventional
treatment plants or after chemical coagulation and sedimentation (Minear and Any,
1995). In this study, ozone was applied to water samples after sedimentation process
for KWTP, TWTP and KKUWTP in order to evaluate the change of DON and BDON.
Ozone was generated from self-made ozone generator based on the principle of the
photolysis of oxygen by UV at wavelength 185 nm. The average concentration of DON
and BDON was from four water samples. The applied ozone dosage was 0.6 mgOs/mg
DOC which was in the typical range of ozone dosage for drinking water plant (0.6 —
1.0 mgOs/mg TOC) (Collins and Vaughan, 1996). Figure 4.9 a shows the DON
concentration of water samples before and after ozonation. The results showed that
ozonation of settled waters increased, the average DON concentration in KWTP and
TWTP by 4.16 % and 3.63%, respectively. However, DON concentration of KKUWTP
decreased from 0.59 to 0.55 mg-N/L (6.77%) after ozonation. (Bin et al., 2011) found
that average DON concentration increased 15% after the ozonation process. In contrast,
Wadhawan et al. (2014) reported that the average DON concentrations before and after
ozonation were relatively unchanged. The results suggested that DON from different
location may have different susceptibility to ozone. Increasing of DON concentration
in KWTP and TWTP could be explained that ozone breaks down the organic nitrogen
associated with particles such as bacteria and algae to become dissolved constituent.
On the other hand, the decrease of DON in KKUWTP after ozonation might be due to
the composition of DON of KKUWTP was easily oxidized by ozone to become

inorganic nitrogen.
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For BDON concentration, ozonation increased BDON of KWTP and TWTP by
47% and 8.0%, respectively (Figure 4.9b). However, the BDON concentration of
ozonated KKUWTP decreased by 9.6%. Another study also reported the BDON
increased 147% in ozonation process (Wadhawan et al., 2014). The different train was

observed in KKUWTP, the BDON concentration was decreased by 9.6%.

Increasing of BDON in KWTP and TWTP by ozonation was because of the
conversion of aromatic DON into aliphatic DON. Aromatic compound breaks down to
aliphatic compound via oxidation reaction of ozone. The product compounds are
believed to be more readily biodegradable, which may increase the BDON
concentration (Hua and Reckhow, 2013; Tchobanoglous et al., 2014; Wadhawan et al.,
2014; Wert and Rosario-Ortiz, 2011). It is noticed that ozone could modify organic
structure and characteristic significantly. However, it could not reduce the amount of
NOM significantly (Collins and Vaughan, 1996). For KKUWTP, the BDON
concentration decreased. It might be suggest that water samples in KKUWTP are

contain DON compounds that both bioavailable and readily oxidized by ozone.
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4.6 Haloacetonitrile (HANS) profile and specific haloacetonitrile formation
potential (HANFP) along treatment process

4.6.1 HANSs profile

In natural water resources, the organic in water was mainly from allochothonous
and autochotounous sources. The organic precursors may produce by-products after the
disinfection by chlorine or chloramines, which increased effect to human health and
toxicity in treated water. Disinfection by-products in water treatment plants composed
of regulated disinfection by product (DBP) such as thihalomethanes (THMs) and
haloacetic acid (HAAs) and non-regulated DBPs such as N-DBPs (e.g.
haloacetonitriles; HANs). Nowadays the non-regulated DBP (N-DBPs) had become
emerging contaminants of concern in water treatment plants because they have more

toxicity and carcinogenic than regulated DBPs(Wadhawan et al., 2014)

In this study, four HANSs species including monochloacetonitrile (MCAN),
dichloroacetonitrile (DCAN), trichloroacetonitrile (TCAN), and,dibromoacetonitrile
(DBAN) were measured. HANs profiles in water treatment plants were presented in
Figure 4.10 (a-c). Note that the concentration of each species was average values of

four sampling periods.

The results showed that in raw waters, HANs were also present at relatively low
concentration. The total HAN concentrations in raw water of KWTP, TWTP, and
KKUWTP were 1.21, 1.2, and 0.5 pg/L, respectively. As water pass along the treatment
process, the concentrations of HANs increased Figure 4.10 (a-c). After chlorination, the
HAN concentrations increased dramatically. The sum of four HAN concentrations of
KWTP, TWTP, and KKUWTP were 7.67, 14.7, and, 4.93 pg/L. This is not surprised

since reaction of chlorine and DON is known to produce HAN. Among three plants,
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TWTP had the highest total HANs concentrations. This could be explained by several
reasons including characteristics of NOM, pH, and disinfectant (chlorine/chlorine
dioxide dosage. At the time of study, all parameters of raw water for three plants seem
to be comparable (Table 4.1). The only two different characteristics of TWTP from
other plants are the SUVA and BDON. It was noticed that raw water of TWTP has
lowest SUVA and highest BDON values. This suggested that the organic compounds
in TWTP were more hydrophilic and readily reactive with chlorine to form HANSs. Low
HANs concentration for KKUWTP could be from different disinfectants used. At
KKUWTP chlorine dioxide was applied. Since chlorine dioxide has electrochemical
oxidation potential (E° = 0.84 V) less than free chlorine (E° = 1.48 V) (Tang et al.,
2012), therefore this could yield less HANs concentration. Interesting trend of HAN
concentrations in raw water and water after filtration process which found the HAN
concentration. It was from the pre-chlorination of raw water before adding the
coagulants in TWTP leading to increase HANs concentration. Another increase of
HAN after filtration process was because chlorinated water was used in backwash
process of three plants. This chlorinated water used to backwash may contain the
chlorine residue from disinfection process and possible to react with the organic
nitrogen in the filter to form HANs. For HAN speciation, DCAN was the highest of
HAN species being analyzed and accounted for about 50% of chlorinated samples.
Except that KKUTWP that MCAN become the highest fraction in HANs being
analyzed. Again, this could be from either characteristic of NOM or type of disinfectant

that was chlorine dioxide.

Based on previous studies of HAN concentrations, there were a variation of

HANSs found in chlorinated water. In US, it was reported that the median and maximum
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of sum of HANs species including dichloroacetonitrile (DCAN)
bromochloroacetonitrile (BCAN), trichloroacetonitrile (TCAN), and
dibromoacetonitrile (DBAN) was about 4.0 and 14.0 pg/L, respectively (Kranser et al.,
2007). . In Australia high HANSs level of 36 pg/L was detected while low concentration
was observed in Scotland with median concentration at 1 pg/L (Bond et al., 2011). In
Khon Kaen, Thailand, The average of total of four HANs species after disinfection
process in water treatment plants of Khon Kaen Municipality and Khon Kaen
Univerisity ranged from 4 to 15 pg/L. This range of HANs was relatively high
comparing to the HAN fount in US and Scotland. Although the sum of HANSs
concentration in this study seem to be high, the values were below recommend
guidelineof single HAN compound for drinking water. For example, the guideline for

DCAN and DBAN were 20, and 70 pg/L, respectively (WHO, 2000).
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4.6.2 Specific HANFP along treatment process before and after incubation

As water pass through treatment plant, water has undergone different unit
operations to remove constituents from water. In this study, specific HANFP at
different stage of water treatment was determined. This was to evaluate whether or not
such a treatment unit could remove precursor of HANs. Also the biodegradation
experiment was performed with the samples by incubating with MLSS to determine the
effect of biodegradable organic fraction associated with the formation of HANS.

Figure 4.11, 4.12, and 4.13 illustrated the individual specific HANFP species of
water samples along the treatment train before and after incubation for KWTP, TWTP,
KKUWTP, respectively. Also Figure 4.14 presents the sum of four specific HANFP of
water samples. Specific HANFP was calculated from HAN divided by DON. The
increasing of specific HANFP after a treatment process implied that such unit process
could generate HANs or precursor of HANs. For example, after chlorination, all
samples from three plants had an increase of specific HANFP substantially. This was
because HAN was already formed by chlorination in the water plant. Also some of
organic was oxidized and reacted with chlorine again during the formation potential
test. Another example of increase of specific HANFP was filtration. Water sample after
filtration of TWTP had large increase in the formation potential of MCAN, DCAN, and
DBAN. This could be from a release of soluble microbial products (SMPs) from biofilm

in the filter. This SMPs was reported to be a precursor of N-DBPs (Liu et al., 2014).

When comparing the specific HANFP between before DON incubation and
after incubation, the result showed the decrease of all specific HANFP species after
incubation. For example, 63%, 73.5%, 62% reduction of specific DCANFP was

observed in water after sedimentation of KWTP, TWTP, and KKUWTP, respectively.
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This elucidated that some part of HAN precursors had been biodegraded during the
incubation period of 14 days. This finding suggested that biodegradation could be the

treatment unit for removing the precursor of HAN.
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Figure 4.11 Formation potential of individual HAN in samples before and after
incubation along treatment process of KWTP
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Figure 4.14 Formation of total HANSs in before and after incubation from (a) KWTP,

(b) TWTP, and (c) KKUWTP
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4.6.3 Correlation between DON concentrations or biodegradability of DON
(BDON/DON) and total specific HANFP.

The correlation between DON concentrations and DON biodegradability
(BDON/DON) to specific HANFP in separate water samples of all treatment plants was
shows in Figure 4.15 (a), and (b), respectively. There were moderate correlation
between DON concentration and raw water (R? = 0.69), sedimentation (R?= 0.61), and
chlorination (R?= 0.73) but there was poor correlation between DON and effluent from
filtration process (R? = 0.34). Based on previous research, the relationship between
HAN and DON were varied depending upon the source of waters. (Hohner, 2009) found
good correlation of HAN and total organic nitrogen (R? = 0.83), which indicated
organic nitrogen moieties as precursor of N-DBPs. In contrast, (Kransner et al., 2012)
has reported no correlation between DON and HAN concentration (R?= 0.24). The good
correlation between DON and specific HANFP could be explained that the portion of
DON contained high portion of biodegradable DON, which consist of low molecular
weight DON such as low MW of amino acids. Previous study reported low MW amino
acid such as aspartic acid, alanine can form the dihalogenated HAN during chlorination
and chloramination process (Bond et al., 2014; X. Yang et al., 2010). HAN could be
formed though amine in their amino groups during chlorination process (Xu et al.,
2010).The relationship between specific HANFP on the biodegradability were shown
in Figure 4.15 (b). There were moderate correlation between biodegradability and
HANFP in raw water (R?= 0.55), sedimentation (R?>= 0.64), and chlorination (R? =
0.73) effluents of three water treatment plants and after filtration process was low
correlation (R?=0.15). This suggested that the biodegradable of DON led to formation

of HANS, due to the increase in the N- containing biodegradable during the formation
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potential test. This result could be confirm that the BDON or biodegradable portion

could be increase in the formation of HANs. (Templeton et al., 2010).
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Figure 4.15 (a) Correlation between DON and specific total HANFP, (b) corrlation
between DON biodegradability (BDON/DON) and specific total HANFP in all

treatment plants.
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4.6.4 Effect of ozone to specific HANFP.

Figure 4.16 (a-c) present the effect of ozonation on the formation potential of
total HANSs. The results compared three formation of HAN including specific HANFP
in samples before ozonation, after ozonation, and samples of ozonation after incubation.
It was found that specific HANFP increased after ozonation and decrease to
approximately the same level as before ozonation after incubation (biodegradation)
except for KKUWTP. For KWTP, specific HANFP of three water samples were 75,
144, and 83 pg/mg, respectively (Figure 4.16 (a). The sample of TWTP also had similar
trend. Similar finding was reported the increase of the HAN concentration of six water
treatment plants in UK (Templeton et al., 2012). It might be due to ozone can oxidize
some of hydrophobic NOM to become more hydrophilic NOM. Also ozone attacks
double bonds and amino groups to small aliphatic compounds, which may increase the
N-DBP precursors and enhance the reactivity of NOM with chlorine (Qin et al., 2015).
Another studies found that ozone increased the formation of DBPs on hydrophilic
fraction than hydrophobic fraction (Xu et al., 2007). Difference trend was presented in
KKUWTP (Figure 4.16 (c)). Ozonation reduced the specific HANFP from 63 pg/mg to
50 pg/mg, and 42 pg/mg for after ozonation, and 42 pg/mg, respectively. This result
suggested that the ability of ozone to destroy HAN precursors depended on the

precursors properties and water qualities (Hua and Reckhow, 2013).
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Figure 4.16 Effect of ozonation in HANFP of (a) KWTP (n=4), (b) TWTP (n=4), and
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4.7 Correlation between specific HANFP and DOC or SUVA

DOC and SUVA are two common parameters used in drinking water treatment.
In the past, DOC and SUVA was successfully used to predict the formation of other C-
DBP such as THM (Sadiq and Rodriquez, 2004). This section presents the correlation
between specific HANFP and DOC or SUVA of all water samples in different plants
Figures 4.17 (a-c) and 4.18 (a-c) show the plot of DOC versus specific HANFP and
SUVA versus specific HANFP of KWTP, TWTP, and KKUWTP, respectively. It was
noticed that HANs had the no correlation between DOC and specific HANFP of all
water samples from three plants (R? range from 0.09 to 0.30) and also not found the
correlation with SUVA (R? range from 0.03 to 0.41). No correlation of DOC or SUVA
with HANFP were not surprising because the DOC and SUVA were used as a
hydrophobic organic compound indicator while the precursors of HAN are more
hydrophilic than hydrophobic organic compounds (Bin et al., 2011; Chuang et al., 2013;
Xue et al., 2014). Thus, DOC and SUV A might not be used as a surrogate for estimated

HANSs formation potential.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE
WORK

5.1 Conclusions

This study investigated the water quality parameters along the water treatment
plants of Khon Kaen Municipality and Khon Kaen University, Thailand. It is for the
first time the concentration of HANSs, which are the emerging unregulated carcinogenic
N-DBPs, has been reported in Thailand. Also relationship of water quality parameters
to the formation of fours HANs (MCAN, TCAN, DCAN, and DBAN) was determined.

Thus, the following conclusions were presented.

5.1.1 Water qualities along treatment process
1) Raw water characteristics of KWTP, TWTP, and KKUWTP indicated
the NOM sources contain high amount of organic nitrogen (SUVA less than 2 and low
DOC/DON ratio < 15). High contain of organic nitrogen should be effect to form N-

DBPs during chlorination process

2) DOC and UVa2s4, representing organic compounds in water treatment
plants, were not well to remove by conventional treatment processes including
coagulation, sedimentation, and filtration. This got carried over to disinfection process

and would lead to formation of HANS.

3) DON and BDON along treatment process were presented high
concentration when compare with previous studies (raw water 0.34 mg-N/L and treated

water 0.184 mg-N/L). The composition of DON could be divided in to two part: 1)
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biodegradable DON (BDON) and 2) non-biodegradable DON. The result from KWTP
and TWTP show dominant portion of DON was BDON, which contain amount of 53%
and 56% in treated water of KWTP and TWTP, respectively. While the BDON was

lower than non-biodegradable in KKUWTP.

5.1.2 HAN profiles and HAN formation potential

HAN profiles along three water plants show an increase of HAN concentrations
along the treatment train. The range of HAN concentrations was between 4-15 ng/L
which below the recommended HANs levels for drinking water (WHO). DCAN was
the most abundant and accounted for more 50% of HAN species. Formation of HAN
depends on NOM characteristics and type of disinfectants. Chlorine dioxide was found
to produce less HANs comparing to free chlorine. The specific HANFP of water
samples in before and after incubation indicated that some precursor of HANs were

biodegradable. .

5.1.3 Effect of ozone in DON, BDON and specific HANFP
1) Increasing of DON and BDON after ozonation present in KWTP and
TWTP. This indicated that ozone can convert aromatic DON into aliphatic DON. The
resulting compounds are believed to be more readily biodegradable, which may
increase the BDON concentration. While KKUWTP DON and BDON were reduce.
The water samples in KKUWTP are contain higher aromatic or large organic

compounds than those of two plants, which are not biodegradable compound

2) Formation potential of HAN after ozonation in DON before

ozonation, which may indicated as biodegradable was higher than samples after
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incubation. The result confirms with previous section that the biodegradable DON may
increase the HAN formation.
5.1.4 Correlation of DON, and common water parameters with specific
HANFP
1) Fairly high correlation were presented in DON before incubation and
HANFP (R?= 0.73 in treated water) but very low correlation was presented in DON
after incubation (R? = 0.01). The result may concluded that the formation of HAN

produced from the biodegradable DON, which are the main portion of DON

2) Low correlation of DOC or SUVA with HANFP were observed.

Therefore, DOC and SUVA might not be appropriate to predict the formation of HANS.

5.2 Recommendations for future work
1) The composition DON in before and after incubation should be determined

such as type amino acid and protein, which might be main component of DON.

2) Biodegradable DON influences the formation of HAN. More study on
biodegradation process in drinking water for removal of HANs or other N-DBPs

precursor should be investigated

3) Effect of disinfectant concentration and contact of HAN formation should be

investigated and

4) Effect of seasonal variation should be studies.
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APPENDIX A

Chemical analysis

1. Haloacetonitrile analysis
1.1 Haloacetonitrile preparation

A stock solution of MCAN, TCAN, DCAN, and DBAN were prepare from
initial concentration of 10,000 mg/L. this solution was dilute in MTBE for 10 ml of mix
HANSs solution. The stock solution was dilute to 1, 5, 25, 50, 75, and 100 mg/L in
distillation water. The area and HANs peak detected from GC-ECD were shown in table

A.1. The standard curve of four HAN species were presented in Figure A.1

Table A.1 Peak area of HANS species.

HANS MCAN TCAN DCAN DBAN

(mg/L) Area Area Area Area
1 51.99 54.06 120.08 108.88
5 101.25 197.82 20032  308.272
25 672.31 80432  1108.93  1109.2
50

1154.72 1401.43 1987.67 2697.43

75 169509  2200.982 2985349 4011

100 2176119  2619.14  4218.26  4894.154
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Figure A.1 Standard curve of four HANSs species
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APPENDIX B

Linear regression between DON and TDN
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Figure B.1 linear regression between DON and TDN of KWTP
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Figure B.3 linear regression between DON and TDN of KKUWTP
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APPENDIX C

Characteristics of raw water.
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APPENDIX H

Effect of ozone to DON, BDON and specific HANFP.

Table H.1 Effect of ozone to DON, BDON and specific HANFP before and after
incubation of KWTP

KWTP
Samples ID HANFP HANFP
DON BDON before after
incubation incubation
29/04/15 0.54 0.42 179.88 147.65
08/05/15 0.55 0.28 104.53 58.74
10/05/15 0.48 0.27 142.93 30.42
25/05/15 0.44 0.28 152.10 98.50
Average 0.50 0.31 144.86 83.83

S.D. 0.05 0.06 31.14 34.20
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Table H.2 Effect of ozone to DON, BDON and specific HANFP before and after
incubation of TWTP

TWTP
Samples 1D HANFP HANFP
DON BDON before after
incubation incubation
29/04/15 0.61 0.39 74.55 96.52
08/05/15 0.61 0.15 109.94 42.61
10/05/15 0.67 0.27 57.01 24.61
25/05/15 0.60 0.35 67.44 41.71
Average 0.62 0.29 77.23 51.36

S.D. 0.03 0.09 22.96 31.22
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Table H.3 Effect of ozone to DON, BDON and specific HANFP before and after
incubation of KKUWTP

TWTP
Samples ID HANFP HANFP
DON BDON before after
incubation incubation
29/04/15 0.42 0.42 62.70 68.98
08/05/15 0.49 0.24 44.86 13.72
10/05/15 0.53 0.05 45.76 7.05
25/05/15 0.60 0.18 49.19 31.13
Average 0.51 0.22 50.63 30.22

S.D. 0.07 0.13 8.26 27.76
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