chapter il

CALCULATION PrOCEDURES

Let $\left\{X_{n}\right\},\left\{Y_{n}\right\}$ be any two finite records,

$\left\{X_{n}\right\}=\left\{X_{n} / X_{n}=X\left(t_{0}+n \Delta t\right), n=1,2, \ldots, N\right.$, and
t_{0} is arbitrary time not included in the record Δt is the sampling time: interval\}
$\left\{Y_{n}\right\}$ is defined similar to $\left\{X_{n}\right\}$

The transformed recoul $\left\{x_{n}\right\}$ is defined by

$$
\left\{x_{n}\right\}=\left\{x_{n}-\bar{x} / \bar{x}=\frac{1}{N} \sum_{n \cdot 1}^{N} x_{n}\right\}
$$

Calculation of the mean square valuc

The sample mean square value is giver by \vec{x}_{n}^{2}

$$
\bar{x}_{n}^{2}=\frac{1}{N} \sum_{n=1}^{N} x_{n}^{2}
$$

The standard deviation s, can be calculated from the mean square value bey the equation

$$
s=\left\{\frac{N}{N-1} \bar{x}^{2}\right\}^{\frac{1}{2}}
$$

Calculation of probability density and distribution function

Let $[a, b]$ be the interval for the value of $\left\{x_{n}\right\}$ which is interested k be the cless intervals in which $\{a, b\}$ is divided c be the ineorats
then $\quad c=\frac{b-a}{k}$
Define $\quad d_{i}=a+(i-1) c, i=1,2, \ldots, k+1$
N_{1} be the number of $X_{n} \not X_{n} \leqslant d_{1}$
N_{i} be the number of $X_{n} \ngtr d_{i-1} \& X_{n} \leqslant d_{i}, i=2,3, \ldots, k+1$ $\mathrm{N}_{\mathrm{k}+2}$ be the number of $\mathrm{X}_{\mathrm{n}} \rightarrow \mathrm{X}_{\mathrm{n}}>\mathrm{d}_{\mathrm{k}+1}$
Note $\quad d_{1}=a$ $N=\sum_{i=1}^{k+2} N_{i}$

The value of $\mathrm{N}_{\mathrm{i}}, \mathrm{i}=1,2, \ldots, \mathrm{k}+1$, can be found by examing each $X_{h}, n=1,2, \ldots, N$ as follows,

1. If $X_{n} \leqslant d_{1}$, add the integer one to N_{1}
2. If $\mathrm{X}_{\mathrm{n}}>\mathrm{d}_{\mathrm{k}+1}$, add the integer one to $\mathrm{N}_{\mathrm{k}+2}$
3. If $d_{1}<X_{n 1} \leqslant d_{k+1}$, compute

$$
\mathrm{I}=\frac{\mathrm{X}_{\mathrm{n}}-\mathrm{d}_{1}}{\mathrm{c}}
$$

then add the integer one to N_{1} where i is the smallest integer that is greater than or equal to. It. 1
The sequence f_{i} of sample probability denstly function at the midpoint of the ith class interval in $\{a, b]$ defined by

$$
f_{i}=\frac{N_{i}}{c N} \quad i=2, \ldots, k+1
$$

The sequence F_{j} of sample probability distribution of the jth class interval in $[a, b]$ defined by

$$
\mathrm{F}_{\mathrm{j}}=\therefore \sum_{i=1}^{j} \frac{N_{i}}{N}
$$

Auto-corelation and power spanes calcalations

e. The auto-correlation function for random Jata describes the general dependence of values of the data at one time on the values at another time; cg., the discrete sample auto-correlation at lagr defined by $\hat{\mathrm{P}}_{\mathrm{X}}\left(\mathrm{r}\right.$) ${ }^{(1)}$ described the correlation of values of randorn data taken at times differing from each other by r sampling time intervals.

$$
\hat{R}_{X}(r)=\frac{1}{N-\sum_{n=1}^{-r} x_{n} X_{n+r} .}
$$

For a finite sample, the auto-correlation function of lag 0 up to $\operatorname{lag} \mathrm{m}, \mathrm{m}$ the maximum number of cerrelation las, is calculated. The maximum lag depends on the bandwilth of the power spectrum and the time interval of sampling.

The power spectrum of stationary data is the Fourier transform of the auto-correlation. Since the anto-corcclation is a rest and ever function: $\hat{R}_{X}\left(-r_{-}\right)=\hat{R}_{X}(n)$, only the cosine Fourier t ransform of ato-curelation will give the power spectrum.

Let $\hat{\mathrm{P}}_{\mathrm{X}}$ (f) dennte power spectrum estimate of sewies datai $\left\{\mathrm{X}_{n}\right\}$, then
f_{c}, the cutoff frequency, is dafincd so that $\frac{1}{f_{c}}$ is the smallest perind in record.

1
see Relerences no. 1

The values of the function \hat{P}_{x}（f）can be calculated only at the $m+1$ special discrete frequency value

$$
f=\frac{k f_{c}}{m} \quad k=0,1, \ldots, m
$$

At these discrete frequency points，

$$
\begin{aligned}
\hat{\mathrm{P}}_{k} & =\hat{\mathrm{P}}_{\mathrm{X}}\left(\frac{\mathrm{kf}}{\mathrm{~m}},\right. \\
& =2 \Delta t\left[\hat{R}_{0}+2 \cdot \sum_{r=1}^{m-1} \hat{R}_{r} \cos \left(\frac{\pi r k}{m}\right)+(-1)^{k_{\hat{R}_{m}}}\right]
\end{aligned}
$$

k is the index called the harmonic number
$\widehat{p}_{\mathbf{k}}$ is the estimate of the power spectral density function at hat－ manic k ，corresponding to the frequency $f=\frac{k f_{c}}{m}$ ．

Cross－correlation and cross－power spectra calculation

＊The cross－correlation function for two sets of random data les－ cribes the general dependence of the value of one set of dad．on the other．

The estimates for the sample cross－correlaticn function at lag number $r=0,1,2, \ldots, m$ are defined by $R_{X Y}(r)$ and $R_{Y X}(r)^{(3)}$

$$
\begin{aligned}
& \hat{R}_{X Y}(r)=\frac{1}{N-r} \sum_{n=1}^{N-r} X_{n 1} Y_{n-r} \quad r \geqslant 0 \\
& \hat{\mathrm{R}}_{Y X}(r)=\frac{1}{N-r} \sum_{r 1=1}^{N-r} Y_{n} X_{n-r} \quad r \geqslant 0
\end{aligned}
$$

The cross－pows spectrum＇s defined by

$$
\hat{\mathrm{P}}_{X Y}(r)=\hat{\mathrm{C}}_{X Y}(\dot{r})+i \hat{Q}_{X Y}(r)
$$

The real part of cross spectrum is called co-specitum power spa !
The imaginary part of cross-spectrum is called quadrature spectrum

Let

$$
\begin{aligned}
\hat{A}_{r} & =\hat{A}_{X Y}(r) \\
& \left.=\frac{1}{2} \hat{R}_{X Y}(r)+\hat{R}_{Y} X^{(r)}\right] \\
\hat{B}_{r} & =\hat{B}_{X Y}(r): \\
& =\frac{1}{2}\left[\hat{R}_{X Y}(r)-\hat{R}_{Y}(r)\right]
\end{aligned}
$$

then $\hat{C}_{X Y}$ (f) and $\hat{Q}_{X Y}(i)$ car be calculated from

$$
\begin{aligned}
& \hat{C}_{X Y}(f)=2 a t\left[\hat{A}_{0}+2 \sum_{\Gamma=1}^{m-1} \hat{A}_{r} \operatorname{Cos}\left(\frac{\operatorname{irf}}{f_{c}}\right)+\hat{A}_{\mathrm{I}} \operatorname{Cos}\left(\frac{\pi m f}{f_{c}}\right)\right] \\
& \hat{Q}_{X Y}(f)=2 a t\left[2 \sum_{r=1}^{m} \hat{B}_{r} \sin \left(\frac{\pi r f}{f_{c}}\right)+\hat{B}_{m} \sin \left(\frac{\pi m i}{\hat{I}_{c}}\right)\right]
\end{aligned}
$$

As power spectrum, these function may be calculated only at the $m+1$ special discrete frequency for harmonic number k, where

$$
\mathbf{f}=\frac{k f^{2}}{\mathrm{~m}} \quad \mathbf{k}:=0,1,2, \ldots, \mathrm{~m}
$$

At these discrete frequency points

$$
\begin{aligned}
\hat{C}_{k} & =\hat{C}_{X Y}\left(\frac{k f c}{m}\right) \\
& =2 \Delta t\left[\hat{A}_{0}+2 \sum_{r=1}^{n-1} \hat{A}_{r} \cos \left(\frac{\pi r k}{m}\right)+(-1)^{k} \hat{A}_{m j}\right\} \\
\hat{Q}_{k} & =\hat{Q}_{X Y}\left(\frac{k f_{c}}{n t}\right)=4 \Delta \sum_{r=1}^{m-1} \hat{H}_{r} \sin \left(\frac{\pi r k}{m}\right)
\end{aligned}
$$

Notes 1. The auto-cerrelation, power spectrum, cross-correnation and cross-power spectrum calculations will be later referred to spectral analysis.
2. The spectrum calculation from the above procedure is
called raw spectrum. The smooth spectrum $\sum_{k}^{*}(4)$ can be calculated from

$$
\begin{aligned}
& S_{1}^{*}=\frac{1}{2}\left(S_{1}+S_{2}\right) \\
& S_{m}^{*}=\frac{1}{2}\left(S_{m-1}+S_{n}\right) \\
& S_{k}^{*}=0.25 S_{k-1}+0.5 S_{k}+0.25 S_{k+1}, k=2, \ldots, m-1
\end{aligned}
$$

where m is the maximum lag number.
$S_{\mathbf{k}}$ is the raw spectrum
3. In spectral analysis, it is assumed that the mean value of each sample record is zero. It the mean value of any sample record is not zero, the sample record should de transformed before it. is analysed.

4
see References no. 3

