CHAPTER X

THE FELOCTTY OF ELECTROMAGNETIC WAVES

The meneral forms of Maxwell’s equations for electremagnetic

waves In any medium are

VXE = (R +bap®)
F . .13
V”E = ¢ ot ._,.,......-u--(l}
¥.D = hxp
va-ﬁ = Q

where H 1s magnetie field gtrength in electromagnetle units {e.m.u)

E 1is electric fleld strength in alentroptatic units {e.s.u)

B {3 magnetie flux density {c.m.u} ¢ B = pH, u 1s called
mognetic permenbility.

D 1s electrie flux density (c.s.u); D = €E, ¢ 1s called
diclectric constant.

¥ is volocity of charge {c.g.s)

£ 1s the charge density (c.s.u}

¢ iz s constant which equnl to the ratlo of the

electromognetic unit to the electrostetic : unit of charge,

10
from experiment o = 3 X 1O CofleSa

Bars over symbols dencte vectors.
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When the medium is ether . we have € = 1, 4 = 1 and the

system {1} beeomes

_ E 1
VxE = D5 Ry

- e _ 1 ol

WRE = "% 5 y eveeecon(2)
E’»E = l#-ﬂf

?.ﬁ- a0,

These are the forms of the equations for slectromegnetic waves
in the atmosphere where % and u are both close to unity. We

sball pay athtentien ¢o these forms letter.

In the ¢ase of free ether or therc 1s ne chorge, we

have f}" 0 , ond the system {2) becomes

= 1 3E )
WXH = - =
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The equations in (3) were first obtalned by Maxwell.

From the first equation of (3}, we have
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By using the second end the fourth equetions in {3}, we then obtain
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similarly we may show that _ DN
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the equations (4) and (5} may be replaced hy the joint equation

=
Voo o=l gt: rvernanean (6)

whore U represent  any component  of H and E in the directions
of the axes of a cortemeisn system of eo - eordinetes. The
equation {6) im the well -known equation of the wave motion. The

golution moy be written down Ly ilnepection. For try the form

Ufx, ¥, 2, t} = P {cox + By 4%z -~ ct) + G {ax+ By+ yz + at).

Substitutlon in the equation ghows that this 1s a2 solution 1f
the relation o + B° + ﬁz = 1 hold, no matter what

fupcticna F and G may be.  Note that the equation
tx + By + Hz = &

1s the equotlon of a plane at a perpendicular distance s from
the origin and the direction cosines of its normal are (H,E,g.}
If the time t increases from ¢ to t + £ t, &s must chenge from

s to 5 + ¢ At in order that the function F {a::-c + By + T2 - ct)
rereinseconstont. Thus u = F represents o plone wave moving. muay
from the crigin with & relocity ¢. In o simllor manner U = G
represents a plane wave approsching the origin. The genoral
solutdon U =F + ¢ of {6) represents the superpesition of m@x

an advancing ond a retrea®ing plane wave.
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Pc find the veloelty of electromagnetic waves in & reglon
where the ether contaling the charges or where_p?ﬁ ¢, we shall find
the integrals of the system (2), from which we can deduce the
valoglty of the wave.
By the fourth equation of (2), we can put
=V x4 semosvenpserraariosees (T
where A 1s a vector function of position gnd time.
Substituting this in the gecond equn‘.c.i-::n of {2} , we heve
wxE - -lgx(§)
or

1 b7y
B

E ) L 'D‘t

v X
Hence, there exists a sealar function @ of position snd time

guch that

ELLRoT0 reenniennne(8)

Substituting (7) and (8} in the first equation of (2), we obtain

=y 1 ¥h o .1 -
Ve (P a) = NGKGRS —;‘?{ é 5”“/—"-’
or
a. = - o —
VE-LGE = (VoRegg)-g v
We may impose the further conditicn
- 9
‘Q’“ ﬂ .}%‘a? = D. B X NN NN RN R (9]
Then we have
2_ 1 &A —
v A -EE EEE E-JE ll*]'t!o"'f P Y T r,:lD:}
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Bubstituting from (8} in the third equation of {2), wc have

3L (T -V (V) = b

t

op
- g (V.3 v = g
Subatituting for '\7’ . & fpom condition (9), we obtain
la gg?g - WE@} 2 lh-rjﬂ
or .
Ve -§Z'§§’ e 77 TS PMPPRRNN ¢ 1

We thus have & new system of equations (9), (10} and {1l) which

is egquivalent to the system {2), H and F ome found from &
and gﬁ by meens of {7) and {8). ¢ 1s eslled the scnler potentlal,
A the vector potentinl, We have now to Integrate (10) and {1il)
sublect 4o the condition (9} when 72 and v are given as functions
of position and time.
Consider the eguation
vE 1 &u

w- "‘ =y ey Ee) "f ili--gtu‘-iqiitll(]-?j
3tZ

which hag the form of each eomponent in (10} , and of (11}. Ry
Fourier's theorem we mey represent f as a function of £ in the

following way 3

PR 1B{t-a)

f (i) _j‘ f [} e AdB  eees-eean (13}
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Similerly
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Wit} = é; 1, j‘”w a) ¢ 18(t-a) 408 veeeeas (LW
Hence, by {12}
L I [?'#{a) b B w(c: v e(o) ] e B i o

This equotion is sotisfied by
‘@Xw(a}+§zw(a} = - fla) R 8 )

or

,

l'i"ﬁ""‘ll“i!{]—ﬁ}
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T+ u

where k = E .
¢

We now require the Integral of this eguation. Such
integrol can be found by the fallewing way :§ consider its

reduced equation

TH + KR

s S vorencens [16)

If W is devended on v only, and not on & ond :p » the cquation

{(16) in epherical coordinateB besomes
42
%EE‘E {I"ﬁ') +k2H = 0

Thisz is eatiefled by

where r is the distance of the varlsble polnt froam a fixed
point P. This is true for any region not ineluding P.

Now, consider Green’s theorem

IV, - 9,56 ]ov = 1[4, 32 -9, 2]



% g T {ape Integral of (16} ), and @52 = W

Put @1 =
{requirelintegrol of {15 ) }» Since the quentities involved

in Green’s formula must be finite, the reglon of integration
must exclude ‘P, at which ﬁl = % KT is infinite.

We isolate P by deseribing o emsll sphere of redius ¢ with P

a5 center

| _r/ f:_:_'__ .
\- AT ”/ T

Substituting the obove values of ﬁ?l andg @2 in Grean’s formule,

we have

ole™ (oPua@ya = (LW Ll (3] as

v/ r sl r &1 an r ‘ 1

T _Iké W 1 _ike .
+£ [EE E];‘-”%]‘;(EE ]]dEE [ NN NN [:l?}
2

Where By Is the outer surface, Ba 1s the surface of ths
‘spheéere,  and v is the reglon between £y arnd B on sg,gﬁ = '%TE :
and dEE = ﬁedw where dw 1z the element of solid angle
subtended by ds_ at P. Henee the second integrel on the right

2
hopd side of {17} becomes,

ke
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Let §—>0, then ¥ —V, . the first and the third terms in

1k
the ebove integranl approsch zero, §’We' € d e —?lr-nh'p where

Hp 1s the value of W at the peint P, end in the limlt squation

(17} becomes

Yt ke (?zw + K20 dv

le
5] r

Now, let 5. be a gphere with P ns center and whose rodius

1
approackes infindty. Then 1f Wr tends to &8 finite constant in

M 2

such o way that 5 o tends to a8 finite constont as r —= &2,

the abeve surface integral approches zero sas 2 limit. it

follows thot

1

wpn~--{

oK {Vaw + K°W) dv .
i

e 10

According to equation {15/] , this becomes
W = 1 ,{ % E"ikr £ odx

This iz o particular integral of (15 ) and

W@ < EE [} s(a) av

i1s @ particular integroal of (15). Substituting this expression

in (14} and changing the order of integration we obtain

ip{t-L-a)

: €7 aodp | dv .

w(8) = - [ {3n S [ fla) e

But in wiew of (13}, this equivelent to

1
O L LI Iy

J‘:"‘_Hr—_'_“'_
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Return to equations (7) and (B). Sinceiif}- r2 ona |E!. @

tend to a flnite constant as r ——y:m,{ 8 l « T and ﬁJr tend to a
finite constant. Thus, in view of the above result, the equations,
{10} and {11) give

ﬁ']

- 1
AP(t] = 3 £._;*h dv Y .15

I_[@l. dv cevnrrennness{19)

¢}{t}

where the sguare bracket Indlcaotes thet the value of the funcitlon
8 to be taken noet at the instant t, but for the prsvicus instant
£ - g - The functions of this naturc sre called retarded potentlals.

Further, the relation {§) is saptisfied by the above value of A

snd ¢ . TFor [ ]
- 130 1 pY] A [Py,
. At =: {[\7%“‘? e ]cw besensraaes (20)

wheriz T?P is the vector operator at the polnt P. We ghall use

X, ¥, z for the coordinates of P and Y, W, ¥ for those of Q.

Then
_ 3 3 —d
Ve Cruiasontrogn Uk
C T T d -3
T ‘qj[x—ﬁf)2+(y—ﬁ}a+{z~f}2.

By expangion, we have

< .77 77, (1% IR v IV ) PPN AV

P r

Since ]:!ﬁl_".'r"] iz the velue of P? at the point &, ?P' Lp v] = 0,



And ??[%:} e - {:1' } » Hence, we have
N VA7 S o~ B 1
7 f!?;ﬁ P9 v (1)

Applying the identity {21) to the right hand side of the lest

equation, we obtain

(9] . -y :] +%EQ [y?] bernnn cereees (22)
For the last integral of (20} , we have
S IO _.1 3P erearanas vee. {239
dt r r oot r ot
where ¥ = t- o

Substituting the values from {22} and (€3} in {20) , we have

gk + l? r+j [ \;QHL_ %E fp¥) +l§,£fj] e . (24)

0, the relation (24} becomes

_%'f(vq.[%?r]]dv

T Pt
Now, since /. {F?v )+ 5

d
T
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By applying divergence theorem, we have

T - 1 0%
VOA +55E =

Dy
|.r-—t;
-I-.—l
o
mi

Al ceveerens(25)

where & 1s the boundery surface of reglon v. We may transfomrm

the surface integral into integral token over o surface at infinity,

at which p¥ 1s assumed (on physical grounds ) to vanish. Hence

w1 o@
vPoﬂ+-§t - G-p
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We now bave the relatiens {18) end (19) as the sclutions
of the wave eguations (10} snd (1l) from which the values of H
and B ean be found by the relations (7) and (8).

Equation (19) has the following meaning ! The value of
the potentlal et the point P and the instant t, depends upen
the value of fﬂ (chegge density) ot the point &, not at this
instant, but st the previous Instant t - E y Where r = P4
that is, ot o time earlier by the interval required for its
influence to move from @ to P, Equations (18) and (19) thercfore
eipress the fact that clectromagnetic disturbanecs are preopagated

in ether with o velscity c.

The main oblect of what we have done is to deduce the
velogity of electromagnetic waves from Maxwell’s eguations, and
we have found that in ether it is equal to ¢, or 3 X lﬂlgcmﬁfﬁec.
This value agrees with the observed wveloeity of light in ether.
From this and a varlety of other ressons, light is identified
as consistency of such electromagnetic waves.

We have to reollse thst the experiments on which the
electromegnetic equations are_based are performed by an
observer at rest relatlve to the medium.. Whot we bhave called
the vieloeity of electromagnetic waves in ether is actually the
veloclty deduced by such an obscrver. The problem then arises as
to what value would be obtasinad by snother observer in motion

relative to the first.



CHAPTER II

TRANSFORMATION OF MAXWELL’'S EQUATIONS

BY THE GALILEAN TRANSFORMATION .

'
E =
[ ¥
5 &
L
___'p 7
/a "“/ * A

Censlder tws observers § An observer O is at rest at
the origin of the systom of coordinates s, and he deseribes
any event by a setl of numbers {xi ¥r 2, t). Another ohserver
G’is ot regt et the origln of the system 52 and he therefore
deseribes any event by the set of numbers (x, ¥, 2, £ }. The
system s meves with uniform veloelty u in the positive
x - direstion with respect 4o the system s. When t = t = O,
the orlgins of the iwo systems coincide. And thelr axes are
always parallel.

The observers ¢ and o ohzerve the game electromognetlc
waves. Suppose that the observatdons of O for the electrie
field moke E = {Ex, Ey, Ez } and for the magnaetic field

make H = (Hx, Hy, Hz }, while the observations of O for
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the same electromagnetic fleld make 'f! = {E;, E&, E% 1 and
-

H = (mx, Hy, HZz ).

The re¢lations  betwoen E and H in the system s are

e

VXH = %[g%]+hﬂfﬂ?}
= 1 8H
VXE = -Zg

I

/. E b oxp
V,ﬁ= a

!

If weput ¥ = E + il where 1 = -1, thep the system (1)

heaomes,

VX ¥

H
0 s
——
Ll
1
+
=
=
T
=
e
o

<

Are they Imvardiant under the Galilean transformation ¥ I

they are, the form ¢f the equationg after transformation

ghould be
TxE = 1 g%: + np¥)
-
VRE - -1 g
“\7;* - lmf
V.E = o0

wr
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where t?‘ = 1 3

-0

s

— 3
+k6£,,

Equaticns (1 ) may be written as

i o + Q;‘? -
- ?:{ 2 (] +
Jx
O, ¥y .
T ox é}
3%y , ¥
3x * ajry
e
Since
BWQH _ %
“ox T Bx
?ﬁ—'r a Ix’
¥ By
a¥ ax”
5 3
® ¥y ax’
& (ot

where & can be replaced by x, ¥ or Z,

the Galllean tronsfermatlon

#

t =t, glves

|
]
]
Tl

3y’ 02’ E-i;
3% ox  ox
dy” SE=dte
3y oy oy
a}'! ag{ aEJ
3z Jz Oz
3y a7 of
ot ot At

b

-

#

s X
1 0 a
8] 1 8]
o ) 1
-1 O O

= Ln I(,wx

o

= L|':I'l: 0]
!

i
e 2 J-Hrtl.DvZ
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Sutstibution the values from (2) in the Tirst and fourth cquations

o~
of l‘:l/} . we have

oY AV i AW oy i
0+ _,§§§ - -BEEE - E ( =1 "—-é + —é£§ ) = E l‘-‘]‘[rlfi’:‘\?x -----{5}
Yy Jy Y.
_—— —d g = PR 4
ax” dy” az” 4 bnp (8}
AW,
Elimineting 5 from (3) end {4) , we obtein
x
3 W 1 dJ 1, 13y
0+5. ¥y - 2BET = (Y TEhY ) -5 -5
- % fmlp {-.rx- ul

This has the same form as the first equation in {14'} if we put

Yo = Yy ‘
- {'_‘:I'i‘!'jﬂl :—? w% = ‘!kf‘? + (-i: u {,.z | »
S v, = \yz-%u"f}, .
U;c = ¥y - u )




Now, from y/ =

From these and (5) , we have

equations.
)
Wx = Wy
i
\y; = W, +gu¥y
! .
Yz = ¥y -g®
ra
W = w - U
x ¥
v =y
¥ ¥
y.
W el W
2 z
Again, substitvting the wvelues from {2) in the
&
of (1), we obtain
_?EE; +G+§}i£ - E{_u§u‘_
o’ 3z e X
3 3y
- o .3 . o¥y
NG (W, -5 u¥) +0- 3
If we put ¢
Wy = ﬁIIJ’-Jr;u:
/
¥y = Yy
4 — —_ o F
L& =V, % hwﬁ}
v;' = Vy

y,z=2, ¢
&’ _ 4y _
at” dt

dz”  dz -
at” dt

—

=t , we have the prelations

praneres (8)

seqond equation

Y

e

53 :] lln‘ﬂ v&’
oWy _ X
"ot ) lm‘fr v?

ceaneeranas(T)
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Then the second equatlon of {1 ) is Invariant under the
transformation, Note that the transformation of the y -
component of Y in {7) is different from that in (6}, and
the other components sre unaltered.
Agaln, if we substitute the values from {E) in the

third equetion of {lé} , we have

W 3 ¥ 1 oY, AW :
-éig - _é§§ + 0 -2 (- HEE§ + -5E§} = 4x o
ar
3 4y 1 3 Y. 13y,
5o (¥, 3 v -51;%, O - F-ggf = Mnpv.

We obtain a new tronsformation for z - component of Hf » e

1y; L/ Ceenenanun vers [O)

z
While the other components arc the same as in (6)
The difference of the results (&) , {7} and {8) ,
imply that Moxwell’s eguations erc not invariant under the
Gelilean transformation. That 1s , we ceznnot have the relations
—_
Vel L v bap)
VAPVl b 0

under the Galilean trensformation. It follows then that the

It

1]

velocity of propagetion of clesctromagnetic waves deducod by
the cbserver G}{in the moving system ) is not equal e¢. This
disagrees with the results of Michelson and Morley experiment
which indlecated that the velocity of light (which are electro-
magnetic waves) is aluays constant ond equal to ¢ 1n all
systems (at rest or moving). These show the inapplicability of

the Galilesn transformation.



CHAPTER IIT

TRANSFORMATION OF MAXWELL'S EQUATIONS

BY THE LORFNTZ TRANSFORMATION

The transformatlon thet we shall next consider is the

Lorentz transformation.

ra

/0 PR
2

¥ hd

The Lorentz transformation from the system s to the system s

1z glven by the cqguations

¥ = B {x - ut)
v = ¥
2=z

= plt - uxgse®)

wherz f = l/-.'l - uE;’I:E .

Sins:e _ .
S Ve ~ |y o r 3Wy |
Sx - i 3
3V e - Yo
dy 3y oy oy oF a3y
3 Vg K 3y 3 I} Y,
3z bz d2 ¥z 5z 50’
3 ¥g & oy 2 3t Ve
3t J o3 oFf 3t "5¢7




the Lopentz tronsformation gives

- E!'u__,’ - - " ~ ]f a,'ya
-EQ = 4] 0 - - - ———=
5 B B 2 =

]
IV 0 1 0 0 —a-;Ji?
oF 3y

a W
Wy o o 1 0 ° Mg
dz az”
AV 3y,
o « Lt
t- ) ] Bu D D E' ) i &tf.’-
or N
E},‘{Q = B ?.‘1’.@ ad é.w.,)f!
E!Ix ax_/ CE at-
S¥g 2 W
abr a}r-, ?‘ 4y pa Frua { 1.}
3y _ Y
Z Bzﬂ
- P £ Wy
ot I 7

where @ con mreplaced by X, ¥ ©Or Z.

Substituting the valucs from (1) in the first and the

.
fourth equaticns of the system [lx] . chap. II, we have

dy, VW, 1 ¥ Ay 1
- S S SR - TR ¢ ok - -k
D + a}r az; o { E'u axr + E 31;:" } a ﬂfg v.‘l{.
3y Y Wy v,
X _ e = ——Z 0 = gt
{E ax_..a E' CE at..- ] + ay! + az + ﬂ"'f]
d
Eliminating ..,._J/E from these, we have




, J 1 2.,
G+§I'{ 4 ~£u"ﬁy}—ég,{_1£ +Eu‘¥z} 'ESE)(B"E‘EE }gx
= % hnﬁc {vx - ud
or
04 SAY, - Eay) S SAV L) - E Rl
3y Tz ) Ez ¥rovy ) -swlsk

= g 'I'I'T{ J(":} (VK— u:li
This hos the same form as the first equatien of {Iﬁ}, chap. I1I,

if we put

i
Er:.r l YY'F'U ,z E
P -3
v; = W -;u¥, }
/ }
Vx = ‘I."x-

Sinee, under the Lorentz transformation, the time t

le different fyrom t, whlle ¥ and £ arc unalterced, we have

y dy” dy
L - = ¥
y * 3 7T at ¥

dz” d

r 2
2 Tar P i TV

We shall find the transformation of y and z components of ¥
by the following procedure.
Substituting the values from (1) In the second equation

y
of [l/a » chap II, we have



IV a3y, Yy i IW 3y
- (p -Exz - B -2 ‘EE? }+0+ - E¥ -3 {- -a‘¥ + P '5-¥
i
= E ‘I'J".ITIFV:F
or
3 i a1 1A 1w
-ai,(‘ifz-au‘-l’y:] +0+EE,(5‘LH _E EE( + u?lr.‘ Z)
i 1
= E j'|-'I'El"--3-' {é VY}
How 1f we put
s 1 N
W x ~ B ¥
i
Y; = ‘*‘}rﬂ'au\yz
s o f § / F""""'“'[i}
Y, = da-gM H—y
v/ L] }V
y B ¥

£

we hove an equeation whieh hes the same form as the second

equation of {1#] , chap. 1I. the relations {3) are those

)
that make the form of the second equation of [l&j ; chap II

invardént, We note that the transformation of the
components of ¥ 1in {3) is the some as In (2).
rgain , if we substitute the values from (1) in the

y,
third equation of {17} , chap.II, we have
3 u SUJ an& 1

(B -53¥ - B 2 *3tr ) - Sy +0 -3 (- Ba -5=2 ‘5" )
= l-I- AR

or “fj z

3 1 " 3 3 i3 1 :

-é;/ ( l{(}r + 'E il 4“_‘_ Z} - 5}, [ E ‘irx} + 0 - z aE..r' |: Efz -z u \‘L}r}

2l.
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This indjcates that the third eguation of (1 )} , chap.Il is

In-sariant if we put

-l 5
Vi " 5 ¥
vy T Y,rtev¥,
i &""""".." (1‘-}
r
Vs = Y - g4 HIJ
1
v = E‘Iz

4150 note that the transformation of the components of :;F
in {4) 15 the same as in (2) and (3).
From (2}, {3) and (&), we obtain the transformetion

thot make Maxwell’s eguations invariant, as follows

7 1

Vi © B ¥x
; i
YF =‘g}r+au‘¥z
; > i
Vo '-‘1'?2*5“"&":;
s
v = W - il
x X
v o= L v
¥ B ¥
/ 1
Vz —EVZ-

Thesc arc deduced frem the Loroentz transformation.
The tresiment just given has shown thet Maxwell’s

cquations havc the sams form in both systems '[:at rest and

moving) if the spacc and time coordinates trensform sccording

ta the Lorentz transformatlion, that 1s in the system 51 we

have the reloations.

22,
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4 i ekl
x Y = = ( ggj + hﬂfﬂT.r'/}
vf; Tz _ 14.1-,[;.-::

for charged ether a5 o medium. In o similar manner, we can
show that Maxwell's equations for free ether (eontaining no
charge) eare inverilont under the Lorentz transformation but
are not invarisnt under the Galilean tronsformatlon, that
ig, for free ether we have the relations:

F— —
T i a‘LL-"
VXY = f

Ses
Viy = 0
equatlons

Becnuse of the Inveriance of Mﬂxwell’qﬂunder the Lorentz

1

transformation, it follows that the veleocity of elcetromagnetlc
¥aves deduced by the observers O and D/ must be the same
{equal to e¢. )} which agrees with the result of the Michelson
and Morley experiment {mentioned in chepter II). This shows

the ecoprectness of the Lorentz transfomation.
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