CHAPTER II

THE SUMS OF BASIC SEQUENCES AND THEIR PERIODS

First we consider any infinite sequence of binary digits

$$H = h_1 h_2 h_3 h_4 h_5 h_6 h_7 h_8 h_9 h_10 \cdots$$

We may divide it into equal sets of consecutive digits. For example, H may be divided into sets containing three consecutive digits each thus :

$$H = h_1 h_2 h_3 ; h_4 h_5 h_6 ; h_7 h_8 h_9 ; ...$$

We shall write

Then

H(1)(3)	$= h_1 h_2 h_3,$	
_H (2)(3)	$= h_4 h_5 h_6$	
_H (3)(3)	= $h_7 h_8 h_9$, and so on.	
н	$_{\rm H}$ (1)(3) $_{\rm H}$ (2)(3) $_{\rm H}$ (3)(3)	•••

In general, when the sequence H is divided into sets containing n consecutive digits each, we shall represent the math set by the symbol $H^{(m)(n)}$. Thus we may write

$$H = H^{(1)(n)} H^{(2)(n)} H^{(3)(n)}$$
.

<u>Definition</u> A sequence H has period n if there exists a least positive integer n auch that

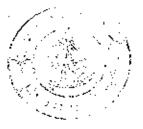
 $H^{(1)(n)} = H^{(2)(n)} = H^{(3)(n)} = \cdots = H^{(m)(n)} = \cdots$

for all positive integers m.

Definition H* is defined to be the sequence obtained from H by replacing all O's by l's and all l's by O's. H* will be called the complement of H.

Derine

0	. #	000000000
I	. 4	
A	1 =	0101010101
A	2 *	001100110011
A	3 =	000111000111
A	4 ≞	0000111100001111
A	5 =	00000111110000011111
A	6 =	000000111110000000111111
•	••	



Definition The sequences A_k shall be called basic sequences. Define 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0.

This definition of the operation denoted by the symbol + makes {0, 1; +} an Abelian group.

Let H and K be two sequences

$$K = k_1 k_2 k_3 \cdots k_1 \cdots$$

$$K = k_1 k_2 k_3 \cdots k_1 \cdots$$

Then we define

$$\mathbf{H} + \mathbf{K} = \mathbf{h}_{1} + \mathbf{k}_{1}, \mathbf{h}_{2} + \mathbf{k}_{2}, \mathbf{h}_{3} + \mathbf{k}_{3}, \dots, \mathbf{h}_{1} + \mathbf{k}_{1}, \dots, \mathbf{h}_{n}$$

where $h_i + k_i$ is computed as above.

In theorems 1 to 6 we give the basic properties of the + operation,

Theorem 1 If H and K are any two sequences of binary digits, then

$$H + K = K + H$$
.
Proof Case 1 For all i, if $h_i = 0$, and $k_i = 0$, then
 $h_i + k_i = 0 + 0 = 0 = 0 + 0 = k_i + h_i$.
Case 2 For all i, if $h_i = 0$, and $k_i = 1$, then
 $h_i + k_i = 0 + 1 = 1 = 1 + 0 = k_i + h_i$.
Case 3 For all i, if $h_i = 1$, and $k_i = 0$, then
 $h_i + k_i = 1 + 0 = 1 = 0 + 1 = k_i + h_i$.
Case 4 For all i, if $h_i = 1$, and $k_i = 1$, then
 $h_i + k_i = 1 + 1 = 0 = 1 + 1 = k_i + h_i$.
Hence
 $H + K = K + H$.
Q.E.D.

Note that this commutative law is a result of the fact that $\{0, 1, +\}$ is an Abelian group.

<u>Theorem 2</u> If H, K and R are any three sequences of binary digits, then H + (K + R) = (H + K) + R. <u>Proof</u> <u>Case 1</u> For all i, if $h_i = 0$, $k_i = 0$, $r_i = 0$, then $h_i + (k_i + r_i) = 0 + (0 + 0) = 0 = (0+0)+0 = (h_i + k_i) + r_i$. Case 2 For all i, if $h_i = 0$, $k_i = 0$, $r_i = 1$, then

 $h_{i} + (k_{i} + r_{i}) = 0 + (0+1) = 1 = (0+0) + 1 = (h_{i} + k_{i}) + r_{i}$

<u>Case 3</u> For all 1, if $h_1 = 0$, $k_1 = 1$, $r_1 = 0$, then

 $h_{i}+(k_{i}+r_{i})=0+(1+0)=1=(0+1)+0=(h_{i}+k_{i})+r_{i}$

<u>Case 4</u> For all i, if $h_i = 0$, $k_i = 1$, $r_i = 1$, then $h_i + (k_i + r_i) = 0 + (1+1) = 0 = (0+1) + 1 = (h_i + k_i) + r_i$.

Case 5 For all i, if $h_i = 1$, $k_i = 0$, $r_i = 0$, then

 $\begin{aligned} h_{i} + (k_{i} + r_{i}) &= 1 + (0 + 0) = 1 = (1 + 0) + 0 = (h_{i} + k_{i}) + r_{i} \\ \underline{Case \ 6} & \text{For all 1, if } h_{i} = 1, \ k_{i} = 0, \ k_{i} = 0, \ r_{i} = 1, \ \text{then} \\ h_{i} + (k_{i} + r_{i}) &= 1 + (0 + 1) = 0 = (1 + 0) + 1 = (h_{i} + k_{i}) + r_{i} \end{aligned}$

<u>Case 7</u> For all i, if $h_i = 1$, $k_i = 1$, $r_i = 0$, then

 $h_{i} + (k_{i} + r_{i}) + 1 + (1 + 0) = 0 = (1 + 1) + 0 = (h_{i} + k_{i}) + r_{i}.$ Case 8 For all i, if $h_{i} = 1$, $k_{i} = 1$, $r_{i} = 1$, then $h_{i} + (k_{i} + r_{i}) = 1 + (1 + 1) = 1 = (1 + 1) + 1 = (h_{i} + k_{i}) + r_{i}.$

Hence H + (K + R) = (H + K) + R,

Q.E.D.

Note that the associative law is a consequence of the fact that $\{0, 1, +\}$ is a group.

Theorem 3 For any sequence H,
$$H + O = H$$
.
Proof For all i, if $h_i = 0$, then $h_i + O_i = 0 + 0 = 0 = h_i$,
and if $h_i = 1$, then $h_i + O_i = 1 + 0 = 1 = h_i$.

Hence H + O = H.

Q.E.D.

Note that the sequence O is the additive identity. <u>Theorem 4</u> If H is any sequence, then H + H = 0. <u>Proof</u> For all i, if $h_i = 0$, then $h_i + h_i = 0 + 0 = 0 = 0_i$, and if $h_i = 1$, then $h_i + h_i = 1 + 1 = 0 = 0_i$. Hence H + H = 0.

Note that the sequence H is the additive inverse of itself. <u>Theorem 5</u> If H* is the complement of the sequence H, then $H + H^* = I$. <u>Proof</u> For all 1, if $h_i = 0$, $h_i^* = 1$, then $h_i^* + h_i^* = 0 + 1 \pm 1 = i_i$,

and if $h_i = 1$, $h_i^* = 0$, then $h_i + h_i = 1 + 0 = 1 = i_i$. Hence $H + H^* = I_*$.

Q.E.D.

Q.E.D.

<u>Theorem 6</u> If H* and K* are the complements of the sequences H and K respectively, then $H + K = H^* + K^*$. <u>Proof</u> Since H + K = H + K + O + O, by theorem 3, $= (H + K) + (H^* + H^*) + (K^* + K^*)$, by theorem 4, $= (H + H^*) + (K + K^*) + (H^* + K^*)$, by theorem 2, $= I + I + (H^* + K^*)$, by theorem 5, $= O + H^* + K^*$, by theorem 4, Hence $H + K = H^* + K^*$, by theorem 3. Q-E.D. We shall now examine the periods of the sums of basic sequences, and give general methods of finding these periods in theorems 7 and 8.

Consider the addition of any two different basic sequences. Table I is a list of all the sums $H_{1,j} \approx A_j + A_j$ and their periods for $i \neq j; i, j \leq 6$.

Table I the sequences $H_{i,j}$ and their periods for $i \neq j$; i, $j \leq 6$.

		Sequence	Period
^н 1,2	3	0110,01100110	4
H1.3	Ŧ	010,010010	3
^A 1.4	5	01011010,0101101001011010	8
H1.5	=	01010,0101001010,	5
H _{1.6}	=	010101101010,01010110101001010101010	12
н _{2,3}	F	001011110100,001011110100001011110100	12
H _{2,4}	÷	00111100,0011110000111100	8
н. Н _{2,5}	=	00110100111100101100,00110100111100101100,	20
^H 3,4	=	00010011011111011001000,000100110111111	24
H-3.5	÷	000100111011000 ,000100111011000	15
^H 3.6	=	000111111000,00011111000	12
^H 4,5	=	00001000110011101110111001100010000,00001	40
^H 4,6	=	00001100111111100110000,000011001111111	24
^н 5,6	÷	00000100001100011101111111101111011100111	1
		000110000100000,000001000011000	60
^H 2,6	=	001100,001100001100	6

Let I be the set of all positive integers.

For any two different basic sequences A_j and A_j with periods 2i and 2j respectively, where i,j are in N. let L_{ij} be the least common multiple of 21 and 2j,

and let $H_{i,j} = A_{i+}A_{j}$.

If we divide the sequences A_1 and A_j into sets containing $L_{1j}/2$ consecutive digits, then we have,

 $if \quad q = L_{1j}/2,$ $A_{1} = A_{1}^{(1)(q)} A_{1}^{(2)(q)} A_{1}^{(3)(q)} \cdots,$ $A_{j} = A_{j}^{(1)(q)} A_{j}^{(2)(q)} A_{j}^{(3)(q)} \cdots,$ $H_{i,j} = H_{i,j}^{(1)(q)} H_{i,j}^{(2)(q)} H_{i,j}^{(3)(q)} \cdots,$ where $H_{i,j}^{(m)(q)} = A_{1}^{(m)(q)} + A_{j}^{(m)(q)}$, for all m in N.

From table 1 we can see that the sequence $H_{i,j}$ has period either $P_{ij} = L_{ij}/2$ or $P_{ij} = L_{ij}$ determined as follows :

Let
$$q = L_{ij}/2$$

(1) If both $(A_i^{(m)}(q))^* = A_i^{(m+1)}(q)$ and
 $(A_j^{(m)}(q))^* = A_j^{(m+1)}(q)$, for all m in N,

then $P_{ij} = L_{ij}/2$. (2) If either $(A_i^{(m)(q)})^* \neq A_i^{(m+1)(q)}$ or $(A_j^{(m)(q)})^* \neq A_j^{(m+1)(q)}$, for all m in

N, then $P_{ij} = L_{ij}$.

These results are consistent with the next theorem.

<u>Theorem 7</u> The period of H = $\Lambda_i + \lambda_j$, where i, j are in M, i,j = $\lambda_i + \lambda_j$, where i, j are in M, and i $\neq j$, is given as follows :

Let
$$q = L_{ij}/2$$

(1) If both $(A_i^{(m)}(q)) = A_i^{(m+1)}(q)$ and $(A_j^{(m)}(q)) = A_j^{(m+1)}(q)$, for all m in N,

then $P_{ij} \leq L_{ij}/2$. (2) If either $(\lambda_i^{(m)(q)}) \neq \lambda_i^{(m+1)(q)}$ or $(\lambda_j^{(m)(q)}) \neq \lambda_j^{(m+1)(q)}$, for all m

in N, then $P_{ij} \neq L_{ij}$.

Proof of (1) By the hypothesis we have

$$\Delta_{i}^{(m+1)(q)} + \Delta_{j}^{(m+1)(q)} = (\Delta_{1}^{(m)(q)})^{*} + (\Delta_{j}^{(m)(q)})^{*},$$

for all m in N.

and by theorem 6, the right hand side is equal to

Proof of (2) By the hypothesis we have

$$\overset{(m+1)(q)}{i} + \overset{(m+1)(q)}{j} \neq (\overset{(m)(q)}{i})^{*} + (\overset{(m)(q)}{j})^{*}$$

for all m in H.

And by theorem 6, the right hand side is equal to

$$A_{i}^{(m)(q)} + A_{j}^{(m)(q)}, \text{ for all } m \text{ in } N.$$

We have $H_{i,j}^{(m+1)(q)} \neq H_{i,j}^{(m)(q)}$, for all m in N. But $A_{i}^{(m+1)(q)} = A_{i}^{(m)(q)}$, for all m in N. and $A_{j}^{(m+1)(q)} = \frac{A_{i}^{(m)(q)}}{j}$, for all m in N. Therefore $A_{i}^{(m+1)(q)} + A_{j}^{(m+1)(q)} = A_{i}^{(m)(q)} + A_{j}^{(m)(q)}$, for all m in N, and $H^{(m+1)(q)} = H^{(m)(q)}$, for all m in N. Hence $P_{ij} \leq L_{ij}$.

Q.E.D.

In all the examples listed above the equalities hold, and it seems likely that the equalities hold in general.

10

Consider the addition of any three or more different basic sequences. Table 2 is a list of all the sums $A_j + A_j + \dots + A_k$ and their periods for $i \neq j \neq \dots \neq k$, $i, j, \dots, k \leq 6$.

Table 2 The sequences H i, j, ..., k and their periods for $i \neq ... \neq k$, i, ..., $k \leq 6$.

Sequence		Period
H1,2,3	= 011110100001,0111101000010	12
H1,2,4	= 01101001,01101001	8
H1,2,5	= 01100001101001111001,01100001101	20
^H 1,2,6	= 011001,01100101	6
^H 1,3,4	= 01000110001010110011101,0100011	24
^H 1,3,5	= 01001110111001010100010001101,0100	30
^H 1,3,6	= 010010101101,010010101101	12
^H 1,4,5	= 0101110110011010101000100100100101,010111	40
н 1,4,6	= 010110011010100101,0101100	24
^{1,4,6} ^H 1,5,6	= 010100010110010010101000101010101010001101100101	60
H2,3,4	» 001000001001101111011,00100000	24
^H 2,3,5	= 0010100010000011000001000101010111001111	60
^H 2,3,6	= 001011,001011	6
^H 2,4,5	= 00111011111101100110001000000000100011,001110	40
^H 2,4,6	= 0011111110011000000011.001111111	24
^H 2,5,6	= 001101110000001011111100010011,00110	30

		Sequences	Period
H3,4,5	Ħ	00010100101111100110000110111010000111001111	
		1001111000110000001011010111,	120
^H 3,4,6	÷	0001000010001101110111,00010000	24
^H 3,5,6	2	000110000100000000000000000000000000000	60
^H 4,5,6	-	000010110011101100000001100000011011110011010	
		1111000111111100100001100101111	120
H1.2.3.4	=	0111010100010101010101,	24
^H 1,2,3,5	Ŧ	013111011101010000010000010000100010101101	60
^H 1,2,3,6	=	011110,011110011110	6
^H 1,2,4,5	=	0110111010100010011001010101010101010100	40
^H 1,2,4,6	=	011010100110010101010,	24
^H 1,2,5,6	=	011000100101011101010000110,	30
H1,3,4,5	=	0100000111101010010110110110100011010000	
,		100010111001011010010101110000010,	120
^H 1,3,4,6	=	01000101110110100010,	24
^H 1,3,5,6	=	0100110100010101011010010110100001010000	60
^H 1,4,5,6	=	01011110011010110010101001001011010101000101	
		0110100101010011101011001111010,	120

Sequence		Period	
^H 2,3,4,5	=	00100111100011000000101101011100010100101	
		01000111010100000011000111100100,	120
^H 2,3,4,6	Ŧ	0010001110111000100,	24
^H 2,3,5,6	=	0010101100110011010100,	30
^H 2,4,5,6	=	001110000001101111001101000011110100110000	
		0010111100001011001101000000011100,	120
^H 3.4.5.6	=	0001011101001111000001110110110010010001111	
^H 3,4,5,6		100100110111000001111001011101000,	120
H1,2,3,4,5	=	01110010110110010101111000001001000001111	
		1111101101111100001010110010010110001,	120
H1,2,3,4,6	=	0111011010100010001,	24
H1,2,3,5,6	=	01111110001001101110000001,	30
^H 1,2,4,5,6	Ŧ	01101101010100010100101010000110010100011010	
		11110100101111001101010101001001,	120
^H 1,3,4,5,6	=		1.00
· • ·	_	111000110001110110101010001111011101, 0010010cc11111000011010001011111010001011000001111	120
^R 2,3,4,5,6	-	1110100000010111010001110000011101010101	120
		0111000100101010100001000010101110010110000	
^H 1,2,3,4,5,6	5 ~	11101010000100001010000010000110,	120

1.1

<u>Theorem 5</u> Let λ_{j} , λ_{j} , \dots λ_{k} , $\lambda_{\tilde{r}}$, ..., be different basic sequences with periods 21, 2j,..., 2k, 2r,... respectively, where i, j, ..., k, r, ... are in N

Let $H_{i,j,...,k} = A_i + A_j + \cdots + A_k$ and let $P_{ij,...,k}$ be the period of the sequence $H_{i,j,...,k}$ i Let $L_{ij,...,kr}$ be the least common multiple of $P_{ij,...,k}$ and 2r. The period of the sequence $H_{i,j,...,k}$ is given as follows : Let $q = L_{ij,...,kr/2}$ (1) If both $(H_{i,j,...,k}^{(m)}) = H_{i,j,...,k}^{(m+1)}(q)$ and $(A_r^{(m)}(q)) = A_r^{(m+1)}(q)$ for all m in N, then $P_{ij,...,kr} \leq L_{ij,...,kr}/2$. (2) If either $(H_{i,j,...,k}^{(m+1)}(q) + H_{i,j,...,kr}^{(m+1)}(q)$ or $(A_r^{(m)}(q)) \leq \neq A_r^{(m+1)}(q)$ for all m in N, then $P_{ij,...,kr} \leq L_{ij,...,kr}$.

As before we make the conjecture that the equalities hold in all cases,