CHAPTER II1-

THE FROOF OF MAXWELL’S BQUATIOMS FOR MON.ZERO CHARGE. DENSITIES

AND UNTFORM CURRENT DENSITIES,

Moxwell?s équations involving cheorze ond current densities

r and reapectively are
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Forition vector (x,y,z} ; © is & closed surfoce that encloses the
origin O, ond A 1s the unit vector normnl to the surface element
of area 48 directed cutwards.

Proof Surround 0 by a  small sphere sf of radius a thot lies
within 8, let 7T dencte the region bounded by S and s! Then by

the divergence theorem
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Lemmn The circulaticn integrol of the magnetic field E; around
ony closed curve e1 that goes round the x -~ nxiz once due to a

steady current on the x-axis 1s equal. to the clrculation lntegral
around o small eirele ¢ of padius o which is perpendioulnr to the

x-aKis, and .has its centre on the x—oxis.
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Congtruct a cross-cut Cq cornecting the ¢losed curve ¢, and
the small circle ¢,» Then the circuletion integral of the magnetic

o
field B prourd the simple closed curve ¢ consisting of CarCor—Cy

and — cl 28 shown in the figure is5 as follows
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By Stokes theorem

f B. ags = Jf (FxB) . s , cevreeans{2)
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where 5 15 n finite surface bounded by c.

S may be chosen so as not to cut the x-gxis.

3lnce the current on the x—axis 1s stendy the electric fileld E at

2ll peints in space off the x-axis is constant, Therefore by eguation
II,_. chapter 1I, ¥V X -E; =0 on 5 . Therefore by (2) the circulation
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Proor et A be the charge per unit length moving on the x-axis.

Then the magnetile field ot (x,¥,z) in spoce due to the small element

‘of chnrge J.dn-t ot X is
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We wish to caleulnte X B in terms of the current density.
Suppose the space 1s filled with unifarm ehorge density }‘? moving
with the same velogity v in the x—direction.

The circulation integral around any curve oy is equal to

Lo
c_i: » where 1 is the current through Cy glven by
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The equetion VX B =
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The eurl of mognetic field at any poldnt in space is divided
to two ports. One 1s the effect of the chonging of the electric
field ond the other one is the effect of the current density.
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We have proved it heye only for a uniform stesdy current throughout

—
space and a changing eleetric fleld E due to other charge movements

ot distinet points, It can be proved that the same equation holds for

non-unifarm steady currents,
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