CHAPTER I

INTRODUCTION

Currently available text books on Differential Equations give the Existence Theorem for solutions of the Ordinary Differential Equations by the Cauchy - Lipschitz method only for single equations of the form $\frac{dy}{dx} = f(x, y)$, which has a solution of the form y = F(x) that reduces to y_0 for $x = x_0$.

In this work we extend this theorem to the system of two simultaneous ordinary differential equations of the form

$$\frac{d\mathbf{u}}{d\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}, \mathbf{v})$$

$$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{x}} = \mathbf{g}(\mathbf{x}, \mathbf{u}, \mathbf{v})$$

of which the solution is specified by equations of the form u = F(x), v = G(x) reducing to u_0 and v_0 for $x = x_0$.