CHAPTER III

THE MONTE CARLO METHOD

Monte Carlo techniques have attracted significant attention because
they are suitable for optimization problems of a very large scale. One such
method, known as simulated annealing, it has effectively "sclved" the famous
traveling salesman problem of finding the shortest cyclical itinerary for a traveling
salesman who must visit each of N cities in turn. Amazingly, the implementation
of the algorithm is quite simple. This is an example of combinatorial
minimization. There is an objective function to be minimized, as usual, but the
space over which that function varies is not simply the N-dimensional space of N
continuously variable parameters. Rather, it is a discrete, but very large,
configuration space, like the set of possible sequences of cities. The number of
elements in the configuration space is factorially large, so that they cannot be
explored exhaustively. Further more, since the set is discrete, we are deprived of
any notion of continuing downhill in a favorable direction. The concept of
direction may not have any meaning in the configuration space.

Monte Carlo techniques are generally used to evaluate numerically,
by means of random sampling, multidimensional integrals which are too difficult
to solve with analytical methods. These methods can also be appiied to study
properties of condensed matter, where the thermodynamical averages obtained
over probability distributions are of interest and a common goal is to study the
microscopic properties of the substance, such as the. structural and energetic
properties, based on a knowledge of the potential functions, e.g., how a sclute
influences the solvent structure or how a solute is solvated by solvent molecules in
the solution. Such structural and energetic information is very difficult to obtain
experimentally (e.g., by spectroscopic measurements) because of the structures'
instability, or a high degree of dilution.
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31 Basic Principles of the Monte Carlo Method

Monte Carlo calculations are based on pair potential functions. The
simplest way to use such functions is under the assumption of linear additivity,
i.e., the total configurational energy E(v) of the system can be written as a sum of

pairwise interaction energies between the individual particles E;(v) of the

systems,

E(U)=ZEU(U) [3.1],

i>j
where v represent the configurational coordinates of the particles in the system.
In order to calculate the properties of the system, a canonical
ensemble with N particles in a volume ¥ at a constant temperature T must be
considered. The average of any quantity of interest < F > can be written as

¥ J...] F(v)exp(~E(v)/KT)d v

[...] exp(-=E(v)/KT)dv [3:2],

<F>

where dv is a volume element in the multi-dimensional configuration space and K
denotes Boltzmann constant. If the starting configuration is generated randomly in
three dimensional space, integration over many orders of magnitude of
exp(—E(v)/KT) is needed. This is the main principle of the crude Monte Carlo
method, which, however, is not practicable.

The above algorithm was modified by Metropolis et al. (1) based on
the idea of importance sampling. A finite number M of possible configurations
are not generated randomly, but they are chosen and weighted according to a
probability P(v). After sampling a large number of space points M, Eq. [3.2] can
be approximated by the sum Rl

-

iF(v)P(U)" exp(—E(v)/KT)
= [3.3].
Y P(v)™” exp(—E(v)/KT)

i=1

n
eot)
]

<F>
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The simplest and most natural possibility is the Metropolis Monte
Carlo method, in which P(v) is chosen to be a Boltzmann factor,

P(v) = exp(-AE(v)/KT) [3.4].
Then Eq. [3.3] will be reduced to a simple summation of the type

F LS 3.5
-ﬁigll [’]’

where F, is the value of the property F of the system after the ith configurational
changes and M is a large number of space points.

3.2 Conditions for the Calculations

To perform the Monte Carlo simulations, the following conditions
are necessarily required, and have to be properly satisfied.

3.2.1 The cube size

A cubic box has been often used for holding all investigated particles
The length of the cube side, L(A), for m species, and N, particles with the
atomic/molecular weight of M, for each species p, is calculated by

2NM,

P = B : [3.6],
0.602D

where D is the experimental density of the solution,.in g/em3, at the temperature
and pressure which the simulations take place.

3.2.2 The constant number of particle

The number of particles in the investigated system depends on the
computer efficiency. The simulation results will be more accurate whenever
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number of particles is increased. In addition, the CPU time has to be also
considered. It has been found that about 200 particles provide the best
compromise between accuracy and time cost.

3.2.3 The starting configuration

In the first step of the MC simulations, the starting coordinates of all
particles (atoms/molecules) have to be generated either randomly or as a crystal
lattice of the identical system. However, it is important that at the starting
configuration, particles should be distributed homogeneously. Therefore, the
shortest distance between particles, |, can be estimated by

L3
L\l .
- SME 3.7)

If the simulations are long enough, differences between the results
obtained from different starting configurations are found to be negligible.
However, the random one is more often used.

3.2.4 The periodic boundary condition

A key idea of this method is to enhance the ability of small systems
to simulate the behavior of large systems. This technique considers a certain basic
region, usually a cube, containing a certain number N of molecules. Then one
imagines that all space is filled by periodic images of this basic unit. In this way,
one can consider configurations of an infinite system (which must of course be
periodic) while only considering a limited number N of molecules. The great
advantage is to avoid surface effects, which can made the particles situated near to
the surface less solvated than the rest, which would otherwise be very large for
small N. Often one uses the nearest image distancé convention according to
which a given molecule i is supposed to interact only with the periodic image of
another molecule j which lies closest to i. In fact, if the range of the molecule
distances is less than half the edge of the cube, it is convenient to force this by
truncating the potential.

According to the periodic boundary condition, the cubic box is
replicated throughout space to form an infinite /attice. In the simulation, as a
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molecule moves in the original box, its periodic image in each of the neighboring
boxes moves in exactly the same way. Thus, as a molecule leaves the central box,
one of its images will enter through the opposite face. There are no walls at the
boundary of the central box, and no surface molecules. This box simply forms a
convenient axis system for measuring the coordinates of the N molecules. A two-
dimensional version of such a periodic system is shown in Figure 3.1. The
duplicate boxes are labelled A, B, C, etc. As particle 1 moves through a boundary,
its images, 1,5, 1p, etc. (where the subscript specifies which box the image lies in)
move across their corresponding boundaries. The number density in the central
box (and hence in the entire system) is conserved. It is not necessary to store the
coordinates of all images in a simulation (an infinite number), just that of the
molecules in the central box. When a molecule leaves the box by crossing a
boundary, attention may be switched to the image just entering. It is sometimes
useful to picture the basic simulation box (in the two dimensional example) as
being roiled up to form the surface of a three-dimensional torus or doughnut, so
there is no need to consider an infinite number of replicas of the system nor any
image particles. This correctly represents the topology of the system. A similar
analogy exist for a three-dimensional periodic system.
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Figure 3.1 A two-dimensional periodic system.
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3.2.5 The spherical cutoff

In the minimal image convention, the calculation of the potential
energy due to pairwise-additive interactions involves 2N(N-1) terms where N
denotes number of particles in the central box. This may still be a very substantial
calculation for a system of, for example, 1,000 partiéles. Since the largest
contribution to the potential comes from interactions with neighbors close to the
molecule of interest, known as short-range interactions, a spherical cutoff can be
applied. This means setting the pair potential u(r;) to zero for r; >r,, where r, is

the cutoff distance. The dashed circle in Figure 3.2 represents this cutoff, and in
this case molecules 2, 3 and 8 contribute to the interaction with 1, since their
centres lie inside the cutoff, whereas other molecules do not contribute. In a cubic
simulation box of side L, the number of neighbors explicitly considered is reduced
by a factor of approximately 4zr’/3L’, and this may be a substantial saving. The

introduction of a spherical cutoff is a perturbation, and the cutoff distance should
be sufficiently large to ensure that this perturbation is very small.

The cutoff distance must be no greater than L/2 for consistency with
the minimal image convention, and it is applicable only to rapidly decreasing
potential terms, e.g., 1/16 or exponential terms.
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Figure 3.2 The minimum image convention in a two-dimensional system.
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3.2.6 Long-range interactions

A long-range interaction is defined as one in which the spatial
interaction falls off no faster than r-d where d is the dimensionality of the system.
In another meaning, a long-range interaction is one in which all the particles lying
outside the cutoff sphere of a given particle is not taken into consideration. The
charge-charge, charge-dipole, dipole-dipole and charge-quadrupole interactions
are exami)les of strong interactions. Long-range interactions are a serious problem
for the computer simulation, since their range is greater than half the box length.
So far, the Ewald sum (42) and the reaction field method (43) have been two
widely used methods which can be employed to handle the problem of long-range
interactions. The Ewald sum procedure, which is perfectly consistent with
periodic boundary conditions, is a technique for efficiently summing the
interaction between a particle and all its periodic images. The reaction field
method introduced without the assumption of the periodicity is to treat all
molecules beyond the cutoff sphere of radius from a centre as forming a
continuum with a given dielectric constant. Therefore, any charge lying inside the
cutoff sphere will polarize the continuum and create a reaction field at the centre.

3.3  Steps of Calculations

Assuming N particles in a given configuration and in a given volume
at temperature 7, the Monte Carlo algorithm consists essentially of the following
steps (Figure 3.3):

5 Place the N particles in any configurations (v).
y 4 Calculate the interaction energy, E(v), based on the pair potential.
3. Move the system from a state » to any one.of its'neighboring states

V' with equal probability. An arbitrary definition of a neighboring

state is illustrated in Figure 3.4. This diagram shows six atoms in a

state V; to construct a neighboring state v' one atom (i) is chosen

randomly and displaced from its position r” to any random position

v

r” inside the square R that would be a small cube. The

maximum displacement is an adjustable parameter that governs the
size of the region R.
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Figure 3.3 The calculating steps of the Monte Carlo simulations.
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Figure 3.4 State v' is generated from state v by displacing atom i from r” to ri"'.

4.

Calculate the new configuration energy, E'(v), and the change in the
energy of the system, AE=E'(v)-E(v), which is caused by the move.

The next step in the MC move is to analyze AE. Two possibilities have to

be considered:

54

Sb.

If the move is downhill in energy ( AE < 0 ), then the probability of
state L is greater than state V' and would bring the system to a state

of lower energy, and the new configuration is accepted.
If the move is uphill in energy ( AE > 0 ), the move is accepted with
a probability P(v), where

Pv) =  exp(-AE/KT) [3.8],
and K is the Boltzman constant.

To accept the move with the probability of P(v), a random number {

between 0 and 1 is generated. This random number is, then,
compared with P(v). If { is less than P(v) the move is accepted.

This procedure is illustrated in Figure 3.5.

During the run, suppose that a particular uphill move, AE is
attempted. If at that point the random number {; is chosen (see
Figure 3.5), the move is accepted. If Ci is chosen the move is
rejected.
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If the uphill move is rejected, the system remains in state v in
accord, the atom is retained at its old position and the old
configuration is recounted as a new state in the chain.

P(v) =exp(-A E/KT)
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Figure 3.5 Accepting uphill moves in the MC simulation.

3.4  Radial distribution functions and running integration numbers

The most common way to analyze the structure of the solution is to
employ the radial distribution functions g(r) and the corresponding running
integration number n(r). This function, representing the average distribution of
distances between N, particles of type y and N, particles of type x can be
calculated as:

N(r)

3.9],
pdrridr 13.9]

8 (1)

where N(r) is the average number of particles of the other type in a spherical shell
of width dr at a radial distance r from the central particle, and p is the number
density of the pairs, NyN,/V, in the cubic volume V.
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The average number of particle of type y within a sphere of a given
radius r,,, from the particle x can be determined by:

m
n(r) = pylg, (D4nrid [3.10],
0

where 1, is often chosen as the distance up to the first or second minimum of
8xy(r) and py, is number density of particle y, Ny/V.
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