CHAPTER 1I

QUANTUM CHEMICAL METHODS

The theoretical model discussed in this chapter is based on
molecular orbital (MO) theory. This treats the electron distribution and motion of
individual electrons using one-electron functions termed spin orbitals. The spin
orbitals are allowed to spread freely throughout the molecule. These orbitals are
then brought together to form a suitable many-electron wavefunction ¥ which is
the simplest MO approximation. It is described as the linear combination of
atomic orbitals (LCAO) approximation. The variational theorem is employed in
minimizing the total electronic energy from the many-electron wavefunction. This
results in the optimal energy which is as close as possible to the energy
corresponding to the exact values.

2.1 The Schrédinger Equation

It should be noted that any physically observable molecular
properties can be calculated quantum mechanically when such properties are
obtained by solving the Schrédinger partial differential equation (30),

HY = EY | [2.1],

where H is the Hamiltonian operator for a system. It is a sum of all possible
Coulombic energy operators and kinetic energy operators of both nuclei and
electrons, and ¥ is the wavefunction of the system. %

The only solutions of [2.1] that are physically acceptable are those
with the appropriate symmetry under interchange of identical particles. For
electrons, which are fermions, the wavefunction must be antisymmetric with
respect to the interchange of the coordinates of any pair of electrons. This is
termed the antisymmetric principle, which is a statement of the familiar Pauli
exclusion principle (31).



The total Hamiltonian in equation [2.1] is simplified and known as
the Born-Oppenheimer approximation (32). The approximation involves (i)
considering the repulsion between the nuclei as a constant and (ii) separating the
kinetic energy of the nuclei due to the much slower movement of the nuclei
relative to electrons.

In the framework of the Bormn-Oppenheimer approximation, the
molecular wavefunctton is writen as the product of a nuclear wavefunction and an
electronic wavefunction which depends on the nuclear coordinates, R. The many-
electrons wavefunction is obtained by solving the Schrédinger equation for
electrons in the field of fixed nuclei,

He pee (r R)  =E% (R)¥™*(r,R) [2.2].

Here, W is the electronic wavefunction, which depends on the electronic
coordinates, r, as well as on the nuclear coordinates. In atomic units, the
electronic Hamiltonian operator, H** , corresponds to motion of electrons only in
the field of fixed nuclei and is
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2.2 Molecular Orbital Theory

Molecular orbital theory is an approach to molecular quantum
mechanics which uses one-electron wavefunctions or orbitals to approximate the
full wavefunction. To describe the distribution of an electron completely, the
dependence on the spin coordinates also has to be included.” The complete
wavefunction for a single electron known as spin orbital is the product of a
molecular orbital and a spin wavefunction.

For a 2n-electron system in its ground state, with »n orbitals doubly
occupied, the simplest type of closed-shell wavefunction appropriate for the
description can be writen as a sum of products of spin orbitals of the form,



Wi ™ X CREATE. it X2, (20) [2.4],

or as the product of spatial wavefunctionsand spin wavefunctions of the form,
Vo™ . 0 (DDl 2)..... s ¢.(2n-1a(2n-1)@,(2n)B(2n) [2.5],

where xi(i) is the ith spin orbital of electron i, @;(j) is the ith spatial orbital of

electron j, and o(i) and B(j) are the spin-up and spin-down wavefunctions of
electron i and j, respectively. The spin orbitals may be arranged in a
determinantal wavefunction
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Such determinants of spin orbitals are referred to as a Slater determinant (33).

In practice, a further restriction is imposed, requiring that the
individual molecular orbitals be expressed as linear combinations of a finite set of
N prescribed one-electron functions known as basis functions. An individual
orbital ¢, can be writen as
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where c,; are the molecular orbital expansion coefficients.

In molecular orbital theory, atomic orbitals of'con~st_ituent atoms are
used as basis functions. This treatments is called as the linear combination of
atomic orbitals (LCAO) method (34). '

In carrying out numerical calculations with molecular orbitals, it is
necessary to have a convenient analytical form for the atomic orbitals of each type
of atom in the molecule. There are two types of atomic basis function popularly in



use. They are the Slater Type Orbital (STO) (35) and the Gaussian Type Orbital
(GTO) (36). The STO function has the form,

Ugim (7,0, 0) =[(20)IT(20)™ e*'Y, (6, 9) [2.8],

where a is the orbital exponent, n is the principle quantum number and Y, . (6,¢)
is a spherical harmonic. And the GTO's function is,

g(o,n,1,m)(r,6,p) = Nr*le o Y, .(0,0) [2.9].

In this form the electron-electron integrals can be evaluated more easily. Using
the GTO functions but omitting their angular part and locating the functions off-
center leads to the Gaussian Lobe Orbitais (GLO) which allow a simpie analyticai
integral calculation with sufficient accuracy for large systems (37,38).

2.3  Self-Consistent Field Procedure

This procedure allows molecular orbitals tc be derived from their
own effective potential. This involves the use of the variational method that may
be applied to determine optimum orbitals in single-determinant wavefunctions.
The variational equations are

oE'
dc

= 0 (allpi) [2.10].
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A procedure of successive approximation is described as follows:

(1) A guess is made for the set of molecular orbital expansion coefficients c,;

(as in equation 2.7) to construct a trail molecular orbitals.

(2) ‘The first matrix of the Fock operator, F, 1s constructed using the first guess
of ¢'s. The elements of the matrix, F,,, are
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Fu= HE + 33 Pyl(u0iio) - (udvo)] [2.15).
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The matrix of the elements of the core Hamiltonian, H}.°, contains the

elements for the core-electron Hamiltonian, H°"®(1), for electrons moving

in the field of nuclei:

- ol [ @& ()H=™(1)®,(1)dx,dv,dz, :
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where H™(l) = -=Vi - Y=~ [2.12].
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While the elements of one-electron density matrix, P, are defined as

P> LNE [2.13],

i=1
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the summation is over occupied molecular orbitals only. The quantities
(uv|Ao) appearing in [2.11] are two-electron repulsior. integrals:

(o) = [ BLD@ ()= 0,(2)0, (Ddndyidzdradyade, 12.14).
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From the first approximation of the Fock operator matrix F, the new matrix
of C can be obtained by solving the Roothaan-Hall equations (34,39) that
are
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Y Fo— ES)es = 0 (#=123,..,N) [2.16],
v=1

with the normalization conditions,

N N

ch;iswcui = 1 [2.17),

u=1 v=1

where S, are the elements of overlap matrix,

Sw = @)D, (1)dx,dydz, [2.18],

The Roothaan-Hall equations [2.16] can be written more compactly as the
single matrix equation ‘

FC = SCE [2.19],

which C is a NxN square matrix of the expansion coefficients c,; and E is a
diagonal matrix of the orbital energies €;.

The whole process is repeated until there is a consistency in the
coefficients C within a given limit, usually 10-7 Hartree. Since the effective
potential for every orbital change with every iteration. The effective field
corresponding to this cycle is called the self consisfent field for the orbital, and
this powerful method of tackling the many electron problem is called the Self-
Consistent Field procedure. :
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2.4  Mulliken Population Analysis

Using the final set of linear expansion coefficients, the electronic
distribution of constituent atoms can be analyzed. Here, we employed the
Mulliken population analysis (40) since all terms needed in the analysis have also
already been obtained from methods described earlier. The total number of
electrons in the system can be written as

2n z S o [2.21].

The quantity P, S , may be considered to represent the electronic population of the
atomic overlap distribution ®,®,, and diagonal terms such as P,S, may be
associated with the net electronic charges residing in the orbital ®,. An indication
of contributions to chemical binding is given by off-diagonal terms P,.S,, with ®,

and @, centered on different atoms.

2.5 Basis Set Superposition Error (BSSE)

In calculating the interaction energy for a complex system, the basis
set employed should be sufficiently large and correctly express the multipole
moments and the polarizability of the system. In the case that an insufficient basis
set is used, an artificial basis set improvement will take place in the supersystem,
leading to an error which is known as basis set superposition error. In a system
consisting of two molecules A and B which have the basis sets {a} and {B},
respectively, the error occurs when the basis set {oc} ‘contaminates {B} in
computing the energy of A or conversely, when {B} contaminates {a} in
computing the energy of B. This causes the interaction energy of the supersystem
to be overestimated.

The counterpoise (CP) method proposed by Boys and Bernardi (41)
was carried out to estimate this error. The method is based on the determination
of the subsystem energies using the same basis set as for the determination of the
supersystem energy and can be presented as follows. First, the energy of
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supermolecule AB with basis sets {a} and {B} is computed, yielding an energy
E(AB). Second, the computation of the energy of A with both {a} and {f},
disregarding the nuclear charge in B, is performed to obtain an energy E'(A). The
operation is repeated for B with {a} and {B} as basis set, yielding the energy
E'(B). The counterpoise correction, Ae, can be defined as

Ae = [E(A) - E(A)] + [E(B) - E'(B)] [2.22],

where E(A) and E(B) are energies of A and B resulted from the computations of A
with {a} alone and of B with {B} alone, respectively, and the counterpoise

corrected interaction energy is

AECP = AE + Ae [2.23],
where AE is the interaction energy calculated from the truncated basis set,
AE = E(AB)- E(A) - E(B) ' [2.24].
It should be mentioned, however, that this correction gives the upper
limit of a possible BSSE and hence cannot be regarded as an absolutely correct

value for the "real" BSSE occurring in the simulation of a specific supermolecule
system.
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