CHAPTER 1

PATH ALGEBRAS AND PATH PROBLEMS

This chapter first present the definition of a path algebra and some examples of
path algebras. We then consider digraphs over the path algebras and illustrate some
path problems. ‘

1.1 Path Algebras
A path algebra is a semiring (P, ®, ®) which has the following properties.

(i) The operation @ is idempotent and commutative
a®a=a for all a € P,
a®b=b®a foralla beP.

(ii) The set P contains a zero 0 and a unit e such that for each a € P,
0®a=a,
e®a=a=a® e and
a®0=0=0Q® a.

For convenience, the operations ® and ® are called the addition and
multiplication of the path algebra.

From now on, the set of real numbers is denoted by R, the set of positive
integers is denoted by N and the set of non-negative integers is denoted by No'

Ten concrete examples of path algebras [3] are given as follows.

Example 1.1.1 The two-element Boolean algebra is clearly a path algebra.

Example 1.1.2 Let P2 be R U {e}. The addition is defined by

x-® y = min{x, y} for all x, y € R,
XD oo =X =o' X forallxePz,
and the multiplication is defined by

X®y=x+y for all x, y € R,

X ® co =00 =00 ® X forallxePz.

Thus, (P2, @, ®) forms a path algebra with zero « and unit 0.



Example 1.1.3 Let P, be R U {-.¢}. The addition is defined by

x ® y = max{x, y} for all x, y € R,
X @ (-o) =x =(-0) ® x forallxePB,
and the multiplication is defined by

X®y=x+y for all x, y € R,
X ® (-0) = -00 = (-0) ® x for all x € Psa

Thus, (Ps’ @, ®) forms a path algebra with zero - and unit 0.
Example 1.1.4 Let P, be {xe R/0<x<1}. The addition is defined by
x ® y = max{x, y} for all x, y € P4,
and the multiplication is defined by
X®y=xXy forallx,yeP4.
Thus, (P4, ®, ®) forms a path algebra with zero 0 and unit 1:
Example 1.1.5 Let Ps be {x € R/ x 20} U {e}. The addition is defined by
vx®y=max{x,y} forall x, ye {xe R/ x =0},
X ® 0 =00=00®@ X forallxePs,
and the multiplication is defined by

x®y=min{x,y} for all x, ye {xe R/ x >0},

X ® oo =X =00 ®X forallxePs.'

Thus, (Ps’ ®, ®) forms a path algebra with zero 0 and unit oo,

The following algebras are derived from the lingﬁistic concepts.

Example 1.1.6 An alphabet is a finite set 2 of symbols and the elements of ¥

are called letters. A word over an alphabet X is a finite sequence of zero or more

letters from 2. The sequence of zero letters is called the empty word, denoted by A.

2 * *
The set of all words over an alphabet Y is denoted by X , and the subsets of X are

called languages over the alphabet J.

> *
Let s and t be any words in ¥ . The concatenation ¢ of s and t is defined

as follows.

Set =s5,...8 tt..t ifs = $,8,---8 s t=tt ...t
te X =X et=t,
. . . - *
Then the concatenation e is an associative binary operation on Y .



*
Let P be the power set of ¥ . The addition is defined by
XeY=XuUY ' for all X, Y € P,

and the multiplication is defined by
X®Y={aepB/aeXandBe Y} forallX,Ye P

where o o B is the concatenation of the words a and B. Using the associativity of
*

the concatenation e on Y , hence (P6, ®) is a semigroup and (P6, ®, ®) forms a path

algebra with zero &, the null language, and unit, the language {A}.

Example 1.1.7 Let X be any alphabet. A word w is said to be ;imple if no letter

of X appears in w more than once. Let S be the set of all simple words over ¥ and

let P, be the power set of S. The addition is defined by

X®Y =Xu¥ for all X, Y € P,
and the multiplication is defined by

X®Y ={aoeBeS/ae XandP € Y} forall X, Y e P..

where o » B is the concatenation of the words a and B. Thus, (P7, ®, ®) forms

a path algebra with zero &, the null set, and unit, the language {X}.

Example 1.1.8 Let ¥ be any alphabet. An abbre'viation of a word w over Y is

any word which can be obtained by removing at least one (and possibly all) of

the letters of w (note that every word with at least one letter has the abbreviation).
Let 9(2*) be the power set of }_','* and let X € Q’(Z*). A word w in the language

X is basic to X if X does not contain any abbreviation of w. The basis b(X) of X

" is the set of all basic words of X. If b(X) = X then X is called a basic language;

in particular, the null set & and the set {A} are both basic languages.

Let P, be the set of all basic languages over 3. The addition is defined by

X &Y. =X . Y) forallX,YePs,

and the multiplication is defined by

X®Y ={aeB/ae XandP e Y} forallX,YePs,

where o ¢ B is the concatenation of the words o and B. Thus, Py ©, ®) forms

a path algebra with zero &, the null set, and unit, the language {A]}.



Example 1.1.9 Let ¥ be any alphabet and let S be any set o.f subsets of P38
A member M of S is a minimal member of S if S does not contain any proper
subsets of M. The reduction r(S) of S is the set of all minimal members of S.
If r(S) = S then S is called a reduced set of sets; in particular, the null sét @ and

the set {J} are both reduced sets of sets.

Let P9 be the set of all reduced sets of subsets of ¥. The addition is definéd by
X®Y =r({lauB/oaeXandBe Y}) forall X, Ye P9,
and the multiplication is defined by
X0®Y =X w.Y) forallX,YePg.
Thus, (P9, ®, ®) forms a path algebra with zero {J} and unit &.
Example 1.1.10 Let X be any alphabet and let w be any symbol which does not

belong to ¥. Let Q = {w), and let #AX) be the power set of X. Let P, be

A3y u {Q}. The addition is defined by

X®Y =XnY forall X, Y € A2),

XoQ=X=Q @&X forallXer,

and the multiplication is defined by
X ® Y =Xk for all X, Y. e KA2),

X9Q=Q2=0X forallXer.

Thus, (PIO’ @, ®) forms a path algebra with zero Q and unit &, the null set.

1.2 Path Problems
A directed graph or a digraph G is an ordered pair (X, U) such that X =
{1, 2, . . ., n} is a finite set of elements, called nodes and U is a set of ordered pairs
of nodes, called arcs.
A digraph has a pictorial representation \in which nodes is represented by dots
gnd each arc (i, j) by an arrow drawn from node i to node j. For convenience, we here
represent dots by small squares. A given pictorial representation uﬁiquely determines

a digraph.



As an illustration, Figure l.é.l represents the digraph G = (X, U) wherq
X ={1,2,..., 10} and
U= {1 1), (1 2), 2, 8,3, 2), 3, 6), 4 3), 4,5, (5, 6), (5, 10),
(6, 4), (7, 6), (7, 8), (7, 10),(8, 3), (9, 1), (9. 7), (9, 8), (10, 9)}.

Figure 1.2.1

For an arc (i, j), the nodes i and j are called the initial and terminal
endnodes respectively.
An arc whose endnodes are coincident is called a loop.

In a digraph G, a directed path or a dipath of order r from node i  to

node ir is a sequence of r consecutive arcs of the form

pe=Cgei0i). . . G, 1)

r

The nodes iy and i_are called the initial and terminal nodes of the dipath

respectively.

A null dipath is a dipath of order zero which the initial and terminal nodes are
the same.

A digraph G = (X, U) is connected if for any two distinct nodes i and j in X,
there is a dipath from node i to node j.

A dipath is simple if all the arcs on the dipath are distinct.

A dipath is elementary if all the nodes on the dipath are distinct.

A cycle is a dipath such that the initial and terminal nodes of the dipath
coincide.

An acyclic digraph is a digraph which does not contain any cycles.



Let i and j be any nodes of a digraph G = (X, U). An (i, j)-separating arc
set is a subset W of U such that every dipath from node i to node j contains at least
one arc of W. A proper (i, j)-separating arc set is an (i, j)-scparating arc set W
such that no proper subsets of W have this property.

An (i, j)-separating node sets is a set V of nodes, not containing i and j,
such that every dipath from node i to node j contains at least one node of: V.
A proper (i, j)-separating node set is an (i, j)-separating node set V such that
no proper subsets of V have this property.

An arc' u = (i,-j) -is called a bridgé if in the digraph obtained from G
by removing u, there is not a dipath from node i to node j.

An (i, j)-separating node is a node k such that every dipath from node i to
node j contains k.

A digraph over a path algebra (P, ®, ®) is a triple G = (X, U, v) such that
(X, U) is a digraph and v:U — P is a function.

Let S be the set of all dipaths in the digraph G. Then the function v can be

extended to S by for each p € S,

6 if p is a null dipath,
v(p) = ; '
vii, i) @ N, L8 . i@V i) A6, 1) )
L is a non-null dipath,

where e is the unit of P.
To establish the connection between path algebras and path problems,
we introduce the following notation kL)

Let I be any finite index set. Then a formal sum @2)& in a path algebra
iel :

(P, ®, ®) is a well defined element of P which satisfies the following pfoperties.



(i) If1=0 then ®XX, =0, where 0 is the zero of P.
iel

(i) IfI= (i) then ®Xx =x.
jel
(i) ifI=(1,2,...,n) then ®Xx, =x ®x, & ...® x_ (1.2.1)
iel
(iv) Ifl= UIj is a disjoint partition of I, then @in =@, (62’&).

jel iel jel i€l

(v) z(®2x )= ®Lzx and (OXx )z= ®Xxz forall z € P.
iel iel iel iel
Let "G = (X, U, v) bea digraph over a path algebra (P, ®, ®) and for any
i, jeX, he No and k € N, let T?j = {u / p is a dipath of orderr, 0 < r < h, from

node i to node j in G} and ij = {n / p is a dipath of orderr, 1 < r < k, from node i
to node j in G}. Then by a path problem' we mean either the determination of

92‘:‘(”) or GDZVlEu) for some i, j € X, he Njandk € N.
pe Tj; pe Wi;
Some path problems [3] are given as follows.

In a digraph G = (X, U, v) over a path algebra (P, ®, ®), let i and j be

any nodes in X. Then the formal sum 62‘;‘(”) for some h € N0 and the formal sum
peT;;

@ZV(%) for some k € N, can be interpreted as follows.
pe Wi
(1) The détermination of existence of dipaths from node i to node j
if (P, ®, ®) is a path algebra in Example 1.1.1.
2) The determination of shortest dipaths from node i to node j
if (P, ®, ®) is a path algebra in Example 1.1.2.
(3) The determination of longest dipaths- from node i to node j

if the digraph G is acyclic and (P, ®, ®) is a path algebra in Example 1.1.3.



(4) The determination of most reliable dipathé from node i to node j
if (P, ®, ®) is a path algebra in Example 1.1.4.
(5) The determination of maximal capacity dipaths from node i to
node j if (P, ®, ®) is a path algebra in Example 1.1.5.
(6) The enumeration of dipaths from node i to node j if the digraph
G is acyclic and (P, ®, ®) is a path algebra in Example 1.1.6.
(7) The enumeration of simple dipaths from node i to node j
if (P, ®, ®) is a path algebra in Example 1.1.7.
(8) The enumeration of elementary dibaths from node i to node j
if (P, ®, ®) is a path algebra in Example 1.1.8.
(9) The enumeration of proper (i, j)-separating arc (node) sets
if (P, ®, ®) is a path algebra in Examplé 1918,
(10) The enumeration of bridges ((i, j)-separating nodes) if (P, ®, ®)
is a path algebra in Example 1.1.10. ‘
To illustrate some path problems in details, the following examples are selected
from the above.
Example 1.2.1 Determination of shortest dipaths between two given nodes.
Let G = (X, U, v) be a digraph over the path. algebra (Pz’ ®, ®) in
Example 1.1.2 and for each arc (i, j), we represent v(i, j) as the arc (i, j) length.
To determine the shortest dipaths from node i»to node j, we mean that the shortest

length of dipaths from node i to node j is sought and it is given by the formal sum
min{v(p) /pe Ty) - ifT#0

X v(n) -

e Ty

oo if T, = 9,
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where
P
0 if p is a null dipath,
v(n) = 9
v(io, il) B v(il, i2) + ...+ v(ir_l, ir) ifu= (io, il)(il’ i2) o (ir-l’ ir)
L \ is a non-null dipath,

v(W) is represented as the length of p, qis the maximum order of simple dipaths from

node i to node j in G, and T?j = {u / W is a dipath of orderr, 0 £ r £ q, from node i to

node j in G}.
‘ Let us consider a digraph G = (X, U, v) over P2 of Figure 1.2.1. By inspection,

all simple dipaths from node 9 to node 3 and their lengths are

K, =09, 7)., 6)(6, 2)(2, 3), v(p,) = 25.5,
B, = (9, 10)(10, 6)(6, 2)(2, 3), v{p,) =27.1,
H,= (9. 7)(7, 11)(11, 10)(10, 6)(6, 2)(2, 3), v(p,) = 44.3.

Figure 1.2.1

We note that the maximum order of simple dipaths from node 9 to node 3 is 6.

Thus, the shortest length of dipaths from node 9 to node 3 is

®ZV(5) = min{v(u) / B € Tgs)
ne Tos

]

min{v(L ), v(n,), v(i,)}

]

min{25.5, 27.1, 44.3}

25.5.

I
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Clearly, there is only one null dipath from node 8 to node 8, then the shortest length

of dipaths from node 8 to node 8 is @Zv(y) = min{v(p) / L € Ty} = min(0} = 0.
ne Tgg

Also, a dipath from node 5 to node 8 does not exist for all order q € No’ then

the shortest length of dipaths from node 5 to node 8 is 62"(‘5") =oo forallge N
ne Tsg

Example 1.2.2 Enumeration of simple dipaths between two given nodes.

Let G = (X, U) be a digraph and let i and j be any nodes in X. The algebraic
structure which turns out to be aﬁpropriate for describing the simple dipaths from
node i to node j, is a path algebra (P, ®, ®) in Example 1.1.7. The reasoning here
is based on the fact that a simple dipath from node i to node j is a dipath from node i
to node j, which contains distinct arcs. This implicit description of simple dipaths
from node i to node j leads naturally to an algebraic formulation in terms of the

simple dipaths. Let X be the set of distinct names of arcs of G. We define a function

v:U — P7 by for each arc @%—)-e—t-
v(i', j) = (0
where ni,j, is the name of the arc (i, j'). Let p be any simple dipath for node i0 to

node ir such that i0 =i and ir ='j. . Then the 1abel of | is

( {A} if w is a null dipath,
v(p) = 4 ‘
v(io, il) ® v(il, i2) Q- L v(ir_l, ir) it = (io, il)(il, i2) g (i:-l’ ir)
L is a non-null dipath,

where A is an empty word and

)}

m+2

vi i Y@ v(i_ i J=(aeBeS/aevi_, i) andBe v(i_ i
o ® B is the concatenation of o and B, and m =0, 1, 2, . .., r- 2. Therefore, v(u)

is a set of the name corresponding to the simple dipath p and so the set of names of

all non-null simple dipaths from node i to node j is given by the formal sum
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Uv(n)
e W if Wi, # @,
OLv(n) _ )
He ij
e if Wi, = @,

where q is the maximum order of simple dipaths from node i to node j in G, and W?j =

{n / p is a dipath of orderr, 1 < r < q, from node i to node j in G}.
Consider a digraph G = (X, U) of Figure 1.2.2(a), whose arcs have distinct

names from X = {a, b, . . . ,w}, Figure 1.2.2(b) shows a digraph G = (X, U, v)

over P7.

Figure 1.2.2(b)

By inspection, all simple dipaths from node 1 to node 3 and their labels are

=1, 250 3), v(p,) = (ab},
i, = (1, 2)(2. 3)(3, 4)(4, 5)(5, 3), v(w,) = (abedw), -
W, = (1, 2)(2, 7)(7, 11)(11, 10)(10, 6)(6, 2)(2, 3), v(i,) = {anpgqrb},

B, = (1, 2)(2, 7)(7, 6)(6, 2)(2, 3), v(u,) = {anorb}.
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We note that the maximum order of simple dipaths from node 1 to node 3 is 7. Thus,
the set of names of all non-null simple dipaths from node 1 to node 3 is

®Zv7(u) - D
ne Wy ‘He Wi,

{ab} U {abcdw} U {anpggrb} U {anorb}
= {ab, abcdw, anpgqrb, anorb}.
Clearly, a dipath from node 3 to node 8 does not exist for all order q € No'

Therefore, the set of names of all non-null simple dipaths from node 3 to node 8 is

@ZV(H) = @ for all q € N.
HE Wis

Example 1.2.3 Determination of proper (i, j)-separating arc sets.

Let G = (X, U) be a digraph and let i and j be any nodes in X. The algebraic
structure which turns out to be appropriate for describing the prdper (i, j)-separating
arc sets of G, is a path algebra (P9, ®, ®) in Example 1.1.9. The reasoning here is
based on the fact that a proper (i, j)-separating arc set is a minimal set of arcs such
that every dipath from node i to node j contains at least one arc in it. This implicit
description of proper (i, j)-separating arc sets leads naturally to an algebraic

formulation in terms of the simple dipaths. Let X be the set of distinct names of arcs

of G. We define a function v:U — P9 by for each arc (i', j') € U,
v, j = {(n. . 1)
where n. is the name of the arc (i', j'). Let p be any simple dipath for node i0 to

node ir such that io =1i and ir = j. Then the label of p is

~

@ : if p is a null dipath,
v(p) =
Vi, i) @ v, i) ® ... v(_ i) ifp=(,i).8). . G .i)
L is a ﬁon-null dipath,
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where

v(im, im+l) ® v(imﬂ, im+2) = r(v(im, im+1) v v(imﬂ, im+2))
form =0, 1, 2, . .., r - 2. Therefore, v(u) is simply the collection of sets
corresponding to the arcs of p. A non-null dipath from node 'i to node j must contain
at least one arc in a proper (i, j)-separating arc set, so each subset presented in v(u)
indicates a possible choice of a proper (i, j)-separating arc set. Since all non-null
dipaths from node i to node j contai.n at least one arc in a proper (i, j)-separating arc

set, thus the set of all proper (i, j)-separating arc sets is given by the formal sum

eZv(u) (1.2.2)

where for any two distinct dipaths p and p' in W§j, vip) & v(u') = 1({ec U B/
o € v(u) and B € v(u')}), q is the maximum order of simple dipaths from node i to
node j in G, and W?j = {u / p is a dipath of order r, 1 < r £ q, from node i to node j

iR @) oAt W?j # @. Since there is only one proper (i, j)-separating .arc set @

when W?j = @, then in case of W?j = @, we denote (1.2.2) by {@}.

Consider a digraph G = (X, U) of Figure 1.2.3(a) whose arcs have distinct

names  from .Y = 3. Bionaanlli FegWed.2:.3th) shows a digraph G = (X, Uv)

v 7
0 erP9

{{a}} =

{th}}

[C— ’é} @ ’I—%

Figure 1.2.3(a) : Figure 1.2.3(b)
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By inspection, all simple dipaths from node 4 to node 9 and their labels are

M, =4, 8)8, 9), i) = (1), fe}},
1, = (4, 5)(5, 6)(6, 9), v(w,) = ({k}, (n}, (d}},
4= (4, 5)(5, 8)(8. 9), v(w,) = ({K), {(m}, (e}).

We note that the maximum order of simple dipaths from node 4 to node 9 is 3.

Thus, the set of all proper (4, 9)-separating arc sets is given by the formal sum

®Zv3(u) = V(1) © V(1) ® v(u,)
ne Wy

= ({1}, {e}} ® {{k}, {n}, {d}} ® {{k}, {m}, {e}}
=r({{1} v {k} v (k}, {1} v {k} U {m}, {1} U {k} U {e},
(1} v {n} v {k}, 1} U {n} U {m}, {1} U {n} U {e},
{1} u {d} v {k}, {1} U {d} U {m}, {1} U {d} U (e},
{e} U (k) U [k}, (e} U [k} U {m}, (e} U (k} U (e},
{e} u {n} U {k}, {e} U {n} U {m}, {e} U {n} U {e},
fe} U {d} U {k}, {e} U {d} U {m]}, {e} U {d} U {e]}
= ({1, k}, {1, k, m}, {I, k, e},
fomakds flanymiaflom 8l
{1, d, k}, {1, d, m}, {1, d, e},
{e, k}, {e, k, m}, {e, k},
{e, n, k}, {e, n, m}, {e, n},
{e, 4, k}, {e, d, m}, {e, d}}

=1 kY fe, k) fen], tedi {1l n, m)-(1 dmli

Clearly, a dipath from node 9 to node 1 does not exist fo.r all order k € No'

Therefore, thé set of all prdper (9,1)-separating arc sets is @’Z"f“) ={D}
e Wy,

for all k € N.
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