การเกิดโค้กบนตัวเร่งปฏิกิริยาดีไฮโดรจีเนชัน

นายสมศักดิ์ อมรฉันทนากร

วิทยานิพนธ์นี้ เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขา เทคโนโลยีปิโตร เคมี

บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

พ.ศ. 2535

ISBN 974-581-358-3

ลิบสิทธิ์บองบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

Coke Formation on Dehydrogenation Catalysts

Mr. Somsak Amornchanthanakorn

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering

Program of Petrochemical Technology

Graduate School

Chulalongkorn University

1992

ISBN 974-581-358-3

Copyright of the Graduate School, Chulalongkorn University

Thesis Title

Coke Formation on Dehydrogenation Catalysts

Ву

Somsak Amornchanthanakorn

Program

Petrochemical Technology

Thesis Advisor

Professor Piyasan Praserthdam, Dr. Ing.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master's Degree.

Thavon Vojiashaya. Dean of Graduate School (Professor Thavorn Vajrabhaya, Ph.D.)

Thesis Committee

tathy Farend .. Chairman

(Associate Professor Pattarapan Prasassarakich, Ph.D.)

... Protel Thesis Advisor

(Professor Piyasan Praserthdam, Dr. Ing.)

Sasithon Boon-Long . Member

(Assistant Professor Sasithorn Boon-Long, Dr. 3e cycle)

FED. Chieff = Member

(Mr. Pailin Chuchottaworn, Ph.D.)

พิมพ์ตับอารักบทถัดย่อวิทยานิพนธ์กายในกรอบสีเปียวนี้เพียวแผ่นเดียว

สมศักดิ์ อมรฉันทนากร : การเกิดโค้กบนตัวเร่งปฏิกิริยาดีไฮโดรจีเนชัน (COKE FORMATION ON DEHYDROGENATION CATALYSTS) อ. ที่ปรึกษา : ศาสตราจารย์ ดร. ปิยะสาร ประเสริฐธรรม, 128 หน้า. ISBN 974-581-358-3

ในงานวิจัยนี้ มีจุดประสงค์เพื่อศึกษาการเสื่อมสภาพของตัวเร่งปฏิกิริยาดีไฮโดรจีเนชัน ที่เตรียม ขึ้นเพื่อใช้กับปฏิกิริยาดีไฮโดรจีเนชันของโพรเพน และศึกษาถึงลักษณะของโค้กที่เกิดขึ้นบนตัวเร่งปฏิกิริยา ตัวเร่งปฏิกิริยาที่เตรียมขึ้นได้แก่ (0.3 wt.%)Pt/Al $_2$ O $_3$, (0.3 wt.%)Pt-(0.3 wt.%)Sn/Al $_2$ O $_3$, (0.3 wt.%)Pt-(0.3 wt.%)Sn-(0.6 wt.%)Li/Al $_2$ O $_3$, และ (0.3 wt.%)Pt-(0.3 wt.%)Re-(0.6 wt.%)Li/Al $_2$ O $_3$,

เมื่อเปรียบเทียบการเปลี่ยนของโพรเพนตอนเริ่มต้นของปฏิกิริยาพบว่า ตัวเร่งปฏิกิริยา
Pt-Sn/Al₂O₃ และ Pt-Sn-Li/Al₂O₃ ให้การเปลี่ยนของโพรเพนสูงกว่า Pt/Al₂O₃ ส่วน
Pt-Re/Al₂O₃ และ Pt-Re-Li/Al₂O₃ ให้การเปลี่ยนของโพรเพนต่ำกว่า Pt/Al₂O₃ การเติมโลหะดีบุก เข้าไปในตัวเร่งปฏิกิริยาพื้นฐาน Pt/Al₂O₃ ข่วยส่งเสริมให้ได้การเลือกเกิดของโพรพิลีนดีขึ้น ส่วนการ เติมรีเนียมเข้าไปในตัวเร่งปฏิกิริยาข่วยส่งเสริมให้ได้การเลือกเกิดของแก๊สมีเทน, อีเทน และเอทิลีนดีขึ้น

เมื่อเปรียบเทียบปริมาณอิร์รีเวอร์ซิบัลโค้ก (irreversible coke) ซึ่งเป็นตัวที่บ่งบอกถึงการ สูญเสียแหล่งกัมมันต์ในระยะยาวแล้วพบว่า ปริมาณที่สะสมอยู่บนแหล่งกัมมันต์ชนิดโลหะของตัวเร่งปฏิกิริยา Pt/Al₂O₃, Pt-Sn/Al₂O₃, และ Pt-Sn-Li/Al₂O₃สามารถเรียงลำดับจากมากไปหาน้อยได้ดังนี้ Pt-Sn/Al₂O₃ > Pt/Al₂O₃ > Pt-Sn-Li/Al₂O₃ และพบว่าตัวเร่งปฏิกิริยาที่มีอิร์รีเวอร์ซิบัลโค้กสูง จะมีอิร์รีเวอร์ซิบัลโค้กบนโลหะของตัวเร่งปฏิกิริยาสูงด้วย การเติมลิเธียมเข้าไปเป็นองค์ประกอบที่สามข่วย ลดการเกิดอิร์รีเวอร์ซิบัลโค้ก

ภาควิชา สหสาขาวิชาปิโตรเคมี-โพลิเมอร์	ลายมือชื่อนิสิต	ก็มสาดั	อทรมุกม หาง งะ
สาขาวิชาเทคโนโลยีปิโตรเคมี	ลายมือชื่ออาจารย์	ที่ปรึกษา	שושל שויונל אה
ปีการศึกษา2534	ลายมือชื่ออาจารย์	ที่ปรึกษาร่วม	

ชิบผู้ตัวเอบับบทถัดย่อวิยเตมีอบเรื่องเป็นกรอบสีเป็น นี้เพียวแผ่นเดีย /

C105145 : MAJOR PETROCHEMICAL TECHNOLOGY

KEY WORD : COKE FORMATION/DEHYDROGENATION CATALYST/CARBONACEOUS

DEPOSITS/DEACTIVATION

SOMSAK AMORNCHANTHANAKORN: COKE FORMATION ON DEHYDROGENATION

CATALYSTS. THESIS ADVISOR: PROFESSOR PIYASAN PRASERTHDAM, Dr. Ing.

128 pp. ISBN 974-581-358-3

Comparison to the base Pt/Al_2O_3 catalyst, the $Pt-Sn/Al_2O_3$ and $Pt-Sn-Li/Al_2O_3$ have higher initial propane conversion. On the contrary, $Pt-Re/Al_2O_3$ and $Pt-Re-Li/Al_2O_3$ have lower initial propane conversion than the Pt/Al_2O_3 catalyst. An addition of tin to the base Pt/Al_2O_3 catalyst enhances the propylene selectivity. And addition of rhenium to Pt/Al_2O_3 promoted the methane, ethane, and ethylene selectivities of catalysts.

Comparison of irreversible coke responsible for long term deactivation of metal active sites, was done among the set of Pt/Al_2O_3 , $Pt-Sn/Al_2O_3$, and $Pt-Sn-Li/Al_2O_3$ catalysts. The amounts deposits could be arranged in the decreasing order as : $Pt-Sn/Al_2O_3 > Pt/Al_2O_3 > Pt-Sn-Li/Al_2O_3$. The amounts or irreversible coke deposited on the metal active sites of the catalyst was higher for the catalyst that had the higher amounts of total irreversible coke. The addition of lithium decreased the formation of the irreversible coke.

ภาควิชา	สหสาขาวิชาปิโตรเคมี	1-โพลิ	เมอร์	
สาขาวิชา	เทคโนโลยีปิโตรเคมี			
ปีการศึกษา	2534			

ลายมือชื่อนิสิต .	TNOTOS	GNAN	בחוממו
			mod snote
ลายมือชื่ออาจาร	ย์ที่ปรึกษาร่ว	ม	

ACKNOWLEDGEMENTS

The author would like to express his gratitude to Professor Dr. Piyasan Praserthdam, his advisor, for his kind supervision and valuable guidance of this study. He is also grateful to Associate Professor Dr. Pattarapan Prasassarakich, Ms. chairman, Assistant Professor Dr. Sasithorn Boon-Long, and Dr. Pailin Chuchottaworn, a member of the thesis committee.

His sincere thanks are given to Mr. Suphot Patanasri for providing the articles from many journals from Japan, Mr. Monsith Phadungsith, Mr. Sutin Prapaitrakool for their thoughtful discussion, Mr. Ketthat Suthitavil, Mr. Thawatchai Majitnapakul, Ms. Boonrat Wongprapinkul and the other people at the Catalysis Research Laboratory, Department of Chemical Engineering for their assistance.

Finally, the author would like to dedicate this thesis to his parents, who generously supported and encouraged him through the years spent on this study.

CONTENTS

an arm	บันวันลนา
1	13
2	(4)
The state of the s	THE TOWN
	PAGE

ABSTRACT (I	N ENGLISH)	
ABSTRACT (I	N THAI)	j
ACKNOWLEDGE	MENTS	ii
LIST OF TAB	BLES	٧
LIST OF FIG	GURES	vii.
CHAPTER		
I	INTRODUCTION	1
II	LITERATURE REVIEWS	4
III	THEORETICAL CONSIDERATIONS	10
	3.1 Catalytic dehydrogenation of gaseous	
	paraffins	11
	3.2 Characteristics of supported metallic	
	catalysts	14
	3.3 Important reactions	29
	3.4 Coking on moble metal catalysts	32
IV.	EXPERIMENT	47
	4.1 Preparation of catalysts	47
	4.1.1 Materials	47
	4.1.2 Apparatus	48
	4.1.3 Preparation of platinum catalyst	50
	4.2 Catalyst characterization	53
	4.2.1 Metal contents measurement	53
	1 2 2 Motal citas massurament	ΕΛ

118

119

LIST OF TABLES

TABLE		PAGI
3.1	Properties of platinum crystals of different	
	sizes with regular faces	16
3.2	Reaction site requirements on platinum	
	crystallites	19
4.1	Operating conditions of TCD gas detector	54
4.2	Operating conditions of gas chromatograph.	
	(GC - 14 A)	62
4.3	Operating conditions of gas chromatograph.	
	(GC - 8 A)	65
5.1	Designed metal loading of catalysts prepared in	
	this research	71
5.2	The metal content of catalysts prepared in this	
	research	71
5.3	The metal site of catalyssts measured by	
	CO adsorption	72
5.4	The BET surface area of catalysts	73
5.5	Weight of coke deposits on surface of catalyst	
	measured by DTG	79
5.6	The hydrogen/carbon ratio of coke deposits on	
	catalysts calculated by using results from TPO	83
5.7	The hydrogen/carbon ratio of various hydrocarbons	
	petroleum cuts, coal liquids, and coals	84
5.8	The amounts of metal sites covered by irreversible	

	coke deposition and the percentage coverage of	
	Pt/Al ₂ 0 ₃ catalyst	85
5.9	The amounts of metal sites covered by irreversible	
	coke deposition and the percentage coverage of	
	Pt-Sn/Al ₂ O ₃ catalyst	86
5.10	The amounts of metal sites covered by irreversible	
	coke deposition and the percentage coverage of	
	Pt-Sn-Li/Al ₂ O ₃ catalyst	87
6.1	The initial rate of deactivation, n	93
6.2	The amounts of metal sites covered by irreversible	
	coke deposition and the percentage coverage at	
	5 min. of time on stream of Pt/Al ₂ O ₃ , Pt-Sn/Al ₂ O ₃ ,	
	and Pt-Sn-Li/Al ₂ O ₃ catalysts	99
B.1	The amounts of metal active sites converted to	
	platinum oxide in regeneration method.	116
C.1	Specification of alumina support (KNH-3)	117

LIST OF FIGURES

F	IGURE		PAGE
	2 1	Durance of collection and modulation course	
	3.1	Process of calcination and reduction causes	
		formation of metallic crystallites	15
	3.2	Factors affecting the ensemble effect in	
		bimetallic catalysis	27
	3.3	Schematic illustrating the stabilization of	
		the catalytic activity of Pt-Re catalysts in	
		the presence of sulfur	29
	3.4	Model for the production of carbon on platinum	34
	3.5	Typical evolution of carbon deposit on catalyst	
		during reforming of naphtha	36
	3.6	Effect of coke on dehydrogenation activity	38
	3.7	The evolution of the relative activity	39
	3.8	Rate of coke deposit for platinum and platinum-	
	ė.	promoted catalysts	40
	3.9	Fraction of irrecersible coke on the metal sites	44
	3.10	Effect of pure helium cycle on activity recovery	45
	3.11	Mechanism of coking and hydrogen cleaning of a	
		Pt crystallite	45
	4.1	Unit for grinding and sereening support	48
	4.2	Unit for impregnation	49
	4.3	Flow diagram of the CO adsorption apparatus	55
	4.4	Flow diagram of the BET surface area measurement.	57
	15	Flow diagram of the propage dehydrogenation	

	system	60
4.6	Photograph of the Differential Thermal Analyser	
	system	64
4.7	Flow diagram of Temperature Programmed Oxidation.	66
5.1	Propane conversion curve of studied catalysts	74
5.2	Methane selectivity curve of studied catalysts	75
5.3	Ethane-ethylene selectivity curve of studied	
	catalysts	76
5.4	Propylene selectivity curve of studied catalysts	77
5.5	Propylene space time yield curve of studied	
	catalysts	78
5.6	Temperature Programmed Oxidation of various	
	coked catalysts	81
5.7	Scanning Electron Micrograph (SEM) of fresh	
	Pt/Al ₂ O ₃ catalyst and coked Pt/Al ₂ O ₃ catalyst	88
5.8	Scanning Electron Micrograph (SEM) of fresh	
	Pt-Sn/Al ₂ O ₃ catalyst and coked Pt-Sn/Al ₂ O ₃	
	catalyst	89
5.9	Scanning Electron Micrograph (SEM) of fresh	
	Pt-Sn-Li/Al ₂ O ₃ and coked Pt-Sn-Li/Al ₂ O ₃ catalyst.	89
6.1	The chromatograms of feed and products stream	
	after flowing throught the reactor with no	
	catalyst bed at 500 $^{\circ}\text{C}$ and atmospheric pressure .	91
6.2	Deactivation pattern of studied catalysts	94
6.3	The chromatograms of feed and products stream	
	after flowing throught the reactor with contained	
	alumina support at 500 °C and atmospheric	
	pressure	98
D.1	Sample of chromatogram	118