การเลือกสายพันธุ์และการเพาะเลี้ยง Dunaliella salina (CHLOROPHYCEAE) เพื่อผลผลิตเบตาคาโรทีน

นาย สรวิศ เผ่าทองศุข

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต ภาควิชาวิทยาศาสตร์ทางทะเล บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย พ.ศ. 2536

ISBN 974-583-373-2

ลิขสิทธิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

STRAIN SELECTION AND CULTURE OF <u>Dunaliella salina</u> (CHLOROPHYCEAE) FOR BETA-CAROTENE PRODUCTION

Mr.Sorawit Powtongsook

A Thesis Submitted in Partial Fulfillment of The Requirements

for the Degree of Master of Science

Department of Marine Science

Graduate School

Chulalongkorn University

1993

ISBN 974-583-373-2

Thesis Title Strain Selection and Culture of <u>Dunaliella</u>

salina (Chlorophyceae) for β -carotene

Production

By

Mr. Sorawit Powtongsook

Department

Marine Science

Thesis Advisor Professor Piamsak Menasveta, Ph.D.

Assistant Professor Suchana Wisessang, M.Sc.

Chulalongkorn School, Accepted by the Graduate University in Partial Fulfillment of the Requirements for the Master's Degree.

> Thanon Vojiastay. .. Dean of Graduate School

(Professor Thavorn Vajrabhaya, Ph.D.)

Thesis Committee

Milainar Horgant for. Chairman

(Assistant Professor Wilaiwan Utoomprurkporn, Ph.D.)

... Thesis Advisor

(Professor Piamsak Menesveta, Ph.D.)

State Mux

Suchana Wisessam Thesis Co-advisor

(Assistant Professor Suchana Wisessang, M.Sc.)

Somkiat Pryatiralitionales

(Assistant Professor Somkiat Piyatiratitivorakul, Ph.D.)

##C225607 :MAJOR MARINE BIOLOGY

KEY WORD: Dunaliella salina / STRAIN SELECTION / CULTURE / BETA-CAROTENE

SORAWIT POWTONGSOOK: STRAIN SELECTION AND CULTURE OF <u>Dunaliella salina</u> (CHLOROPHYCEAE) FOR BETA-CAROTENE PRODUCTION THESIS ADVISOR: PROF. PIAMSAK MENASVETA, Ph.D. THESIS CO-ADVISOR: ASST. PROF. SUCHANA WISESSANG, M.Sc. 121 p.: ISBN 974-582-373-2

The strain selection and culture of <u>Dunaliella</u> salina yielding high beta-carotene were carried out in four steps, i.e. [1] field survey and water sampling in Chon Buri, Chachoengsao, Chanthaburi and Samut-Songkhram province for the clone selection, [2] selection of the clones yielding high beta-carotene, [3] optimizing the culture condition for beta-carotene production in laboratory and [4] outdoor mass culture. It was found that nitrate and phosphate concentrations of salt pond water samples increased with increasing salinity and decreasing pH. The number of D. salina was highest (1.5x10 cel1/ml) at 300 ppt. Six clones of D. salina were isolated from salt ponds in Samut Songkhram by the single cell isolation technique and clonal culture were made in ESM medium. Thereafter, the selection process was conducted by culturing the cells in three levels of salinity, i.e. 10, 20 and 30% NaCl (w/v) in J/l medium at 20,000 lux light intensity. The isolated clone DS91008 was selected. This clone produced the highest carotenoid content (80.4 pg/cell in 30% NaC1).

Growth rates of <u>D</u>. <u>salina</u> were not different at three light intensities (5,000, 10,000 and 15,000 lux). The carotenoid contents increased with increasing light intensity and the cells colour changed from green to orange. The growth rate was reduced by the decreasing nitrate concentration. Increasing the light intensity and reducing nitrate concentration affected the rising carotenoid content which consisted merely beta-carotene (98%). At KNO₃ 0.1 g/1 (10% of J/1 medium) and 20,000 lux light intensity, <u>D</u>. <u>salina</u> could accumulate carotenoid up to 137.2 pg/cell or 12% beta-carotene (ash free dry weight (AFDW)). The phosphate concentration and initial pH affected growth rate but did not significantly change the carotenoid content.

The outdoor mass culture of \underline{D} . saling was conducted in 9.1 m² raceway pond with a paddle wheel for the water circulation. The cultivation provided specific growth rate of 0.15 or the doubling time of 4.62 days. The maximum biomass was 12.04 g-AFDW/m at day 22. Algal cells were harvested and dried by the freeze dry method and oven drying method (70°C). The freeze dried algal powder contained significantly higher beta-carotene content (5.9% /AFDW) than the oven dried method (1.9% /AFDW).

ภาควิชาวิทยาศาสตร์ทางทะเล	ลายมือชื่อนิสิต
สาขาวิชา ชีววิทยาทางทะเล	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา2535	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม 🗫 รักษณ์ 🤊

พิมพ์ตันฉบับบทคัดย่อวิทยานิพนธ์ภายในกรอบสีเขียวนี้เพียงแผ่นเดียว

สรวิศ เผ่าทองศุข : การเลือกสายพันธุ์และการเพาะเลี้ยง <u>Dunaliella salina</u> (CHLOROPHYCEAE) เพื่อผลผลิตแบตาคาโรทีน (STRAIN SELECTION AND CULTURE OF <u>Dunaliella salina</u> (CHLOROPHYCEAE) FOR BETA-CAROTENE PRODUCTION) อ.ที่ปรึกษา : ศ.ดร.เบี่ยมศักดิ์ เมนะเศวต อ.ที่ปรึกษาร่วม:ผศ.สุชนา วิเศษสังข์ 121 หน้า ISBN 974-582-373-2

การคักเลือกสายพันธุ์และการเพาะเลี้ยง <u>Dunaliella salina</u> ที่ให้ผลผลิตเบตาคาโรทีน สูงแบ่งออกเป็น 4 ชั้นตอนคือ (1) การสำรวจภาคสนามและเก็บตัวอย่างน้ำจากนาเกลือในจังหวัดชลบุรี ฉะเชิงเทรา จันทบุรี และสมุทรสงคราม (2) คักเลือกสายพันธุ์ที่ให้ผลผลิตเบตาคาโรทีนสูง (3) ทคลอง หาสภาวะการเพาะเลี้ยงที่เหมาะสมต่อการเจริญและการผลิตเบตาคาโรทีนในห้องปฏิบัติการ และ (4) การเพาะเลี้ยงมหมวลในบ่อกลางแจ้ง พบว่าเมื่อความเค็มในนาเกลือสูงชั้น ปริมาณในเตรทและฟอสเฟต ในน้ำจะเพิ่มขึ้นในขณะที่ pH ลดลง และจำนวนเซลล์ <u>D. salina</u> มีความหนาแน่นสูงสุด (1.5x10 cell/ml) ที่ความเค็ม 300 ppt จากการแยกสายพันธุ์ <u>D. salina</u> เพื่อการเพาะเลี้ยงจำนวน 6 สายพันธุ์จากน้ำนาเกลือจังหวัดสมุทรสงครามด้วยวิธี single cell isolation นำมาเพาะเลี้ยง แบบ monoclonal culture ในอาหารเลี้ยงเชื้อสูตร J/l ที่ 3 ระดับความเค็มคือ 10, 20 และ 30% NaCl (w/v) ความเช้มแสง 20,000 ลักซ์ พบว่าสายพันธุ์ DS91008 ให้ปริมาณคาโรทีนอยด์ สูงที่สุด 80.4 pg/cell ที่ความเค็ม 30% NaCl

การทดลองเลี้ยงสาหร่ายที่ความเข้มแสง 5,000, 10,000 และ 15,000 ลักซ์ พบว่า

<u>D. salina</u> มีอัตราการเจริญไม่แตกต่างกันแต่ปริมาณคาโรทีนอยด์จะเพิ่มขึ้นเมื่อความเข้มแสงสูงขึ้นและ
เซลล์จะเปลี่ยนเป็นสีส้ม ในขณะที่การลดปริมาณไนเตรทจะทำให้อัตราการเจริญลดลงและปริมาณคาโรทีนอยด์เพิ่มขึ้น วิเคราะห์พบว่าคาโรทีนอยค์เกือบทั้งหมด (98%) คือเบตาคาโรทีน ที่ระดับความเข้มข้นของ

KNO₃ 0.1 g/1 (10% ของสูตร J/1) และความเข้มแสง 20,000 ลักซ์ <u>D. salina</u> สามารถสะสม
คาโรทีนอยค์ได้ถึง 137.2 pg/cell หรือ 12% เบตาคาโรทีนต่อน้ำหนักแห้งที่ปราศจากเถ้า (ash

free dry weight (AFDW)) สำหรับปริมาณฟอสเฟตและ pH มีผลต่ออัตราการเจริญแต่ไม่มีผลต่อ

ทดลองเพาะเลี้ยง D. salina ในบ่อเลี้ยงสาหร่ายกลางแจ้งขนาด 9.1 m² ความลึก 20 ซม.มีใบพัดหมุนเวียนน้ำในบ่อให้มีสภาวะแวดล้อมสม่ำเสมอกัน ได้ค่าอัตราการเจริญจำเพาะของ สาหร่ายเท่ากับ 0.15 หรือใช้เวลา 4.62 วันในการแบ่งเซลล์เป็นสองเท่า ได้ผลผลิตสาหร่ายสูงสุด 12.04 กรัม/ตรม.ในวันที่ 22 ของการเพาะเลี้ยง และได้เปรียบเทียบวิธีการทำสาหร่ายแห้งด้วยวิธี freeze dry และวิธีนำไปอบที่ 70°C พบว่าสาหร่ายแห้งที่ผ่านการ freeze dry จะมีปริมาณเบตา คาโรทีน 5.9% (AFDW) ในขณะที่สาหร่ายที่อบแห้งมีปริมาณเบตาคาโรทีนเพียง 1.9% (AFDW)

222242	วิทยาศาสตร์ทางทะเล	ลายมือชื่อนิสิต คำไม่
11 161 1.D 1	· (i.e)A:.A:.A:.A:.A:.A:.A:.A:.A:.A:.A:.A:.A:.A	
สาขาวิชา	ชีววิทยาทางทะเล	ลายมือชื่ออาจารย์ที่ปรึกษา 🛧 🕬
		ลายมือชื่ออาจารย์ที่ปรึกษาร่วม 🔊 🗠 🕏 🗸
ปีการศึกษา	2535	ลายมอชออาจารยทบริกษารวม

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to my advisor Prof. Piamsak Menasveta and Asst. Prof. Suchana Wisessang for their advices and supports throughout this research, Dr. Somkiat Piyatiratitivorakul and Dr. Wilaiwan Utoomprurkporn kindly serve as the thesis committee.

My acknowledgment is also expressed to Dr. Aran Incharoensakdi, Dr. Sanha Panichjayakul, Dr. Padermsak Jarayabhand for their useful suggestions; Dr. Avigad Vonshak kindly gave me opportunity to attend the algal biotechnology training course in Israel; Prof. A. Ben-Amotz, Prof. R.W. Hoshaw, Dr. M.A. Borowitzka and Ms. Haydee Montoya kindly supplied me the information of <u>Dunaliella</u>.

I would like to thank you Mr. Supot Sophachai, Miss Jira Promjaroen, Miss Saranya Phunpruek, Miss Pouranee Limpisut, Miss Busaya Apichaisathaienchote and friends in Marine Science Department for their help in laboratory works and, moreover, Mr.Tui, Tum and saa, staff of Angsila Marine Biological Station for the mass culture work.

Last but not least, the greatest gratitude to my parents, father, mother and grandfather for their understanding and encouragement.

This research was supported by National Center for Genetic Engineering and Biotechnology, Ministry of Science, Technology and Environment.

TABLE OF CONTENTS

Page
Engligh Abstract iv
Thai Abstract
Acknowledgement v
List of Tables vii
List of Figures i
Chapters
I. Introduction
II. Materials and Methods 1
III. Results 2
IV. Discussions 7
V. Conclusion and recommendation 8
References 8
Appendix 9
Biographical data of author 11

LIST OF TABLES

Table	Pa	ige
1	Location and characteristics of water samples	30
2	Percent servival of the isolated <u>D</u> . <u>salina</u>	
	in different salinity of ESM medium	31
3	Some environmental parameters in salt ponds	
	at Samut Songkhram Province	34
4	Environmental condition during the outdoor	
	cultivation	64
5	Effect of drying methods on Beta-carotene	
	content in D. salina	69

LIST OF FIGURES

Figure	Page
1	Picture of <u>Dunaliella</u> spp 7
2	Postulated pathway of all-trans and 9-cis
	Beta-carotene biosynthesis in <u>D. bardawil</u> 11
3	Electron micrograph of a section through
	Beta-carotene-rich D. bardawil 12
4	Map of the study sites 20
5	Rotary shaker illuminated with 8 white
	fluorescent lamps, at 80 rpm shaking speed 23
6	Construction design of the outdoor raceway pond 27
7	Photomicrograph of orange D. salina cultured in
	20%NaCl J/1 medium, 20,000 lux light intensity 3
8	Greenish stage of D. salina cultured in 20% NaCl
	J/1 medium, 4,000 lux light intensity 32
9	D. viridis cultured in 20% NaCl J/1 medium at
	15,000 lux light intensity 33
10	Correlation between pH and salinity in salt
	ponds at Samut Songkhram Province 34
11	Bubble graph represent correlation between
	salinity, nitrate concentration and the number
	of <u>D</u> . <u>salina</u> in salt evaporation ponds 35
12	Correlation between salinity, phosphate
	concentration and number of \underline{D} . \underline{salina} in salt
	evaporation ponds
13	Specific growth rate of D. salina clones
	cultured in J/1 medium at salinity 10% NaCl 37

Figure	Page
14	Carotenoid content of \underline{D} . \underline{salina} clones
	cultured in J/1 medium at salinity 10% NaCl 37
15	Specific growth rate of <u>D</u> . <u>salina</u> clones
	cultured in J/1 medium at salinity 20% NaCl 38
16	Carotenoid content of <u>D</u> . <u>salina</u> clones
	cultured in J/1 medium at salinity 20% NaCl 38
17	Specific growth rate of <u>D</u> . <u>salina</u> clones
	cultured in J/1 medium at salinity 30% NaCl 39
18	Carotenoid content of <u>D</u> . <u>salina</u> clones
	cultured in J/1 medium at salinity 30% NaCl 39
19	Specific growth rate of <u>D</u> . <u>salina</u> cultured
	in three light intensities 41
20	Carotenoid, Beta-carotene and Chlorophyll-a
	content of <u>D</u> . <u>salina</u> cultured in three light
	intensities 41
21	Absorption spectra of <u>D</u> . <u>salina</u> cultured in
	different light intensities 42
22	HPLC overlay chromatogram of \underline{D} . \underline{salina} 43
23	HPLC chromatogram of β -carotene isomer separation
	of greenish stage <u>D</u> . <u>salina</u> 44
24	HPLC chromatogram of β -carotene isomer separation
	of orange stage <u>D</u> . <u>salina</u>
25	Discriminant analysis for cell length and width of
	D. salina cultured in four light intensities 47
26	Effect of KNO3 concentration in J/1 medium on
	specific growth rate of D. salina 48
27	Effect of KNO3 concentration in J/1 medium on
	carotenoid content of <u>D</u> . <u>salina</u> 49

Figure		Page
28	Effect of KNO ₃ concentration in J/1 medium on	
	chlorophyll-a content of \underline{D} . \underline{salina}	. 50
29	Effect of KNO3 concentration on carotenoid to	
	chlorophyll-a ratio	. 51
30	Effect of KH2PO4 concentration in J/1 medium on	
	specific growth rate of <u>D</u> . <u>salina</u>	. 53
31	Effect of KH2PO4 concentration on	
	carotenoid content of <u>D</u> . <u>salina</u>	. 54
32	Effect of KH2PO4 concentration on	
	chlorophyll-a content of <u>D</u> . <u>salina</u>	. 55
33	Effect of KH2PO4 concentration on carotenoid to	
	chlorophyll-a ratio	. 56
34	Effect of pH on specific growth rate of	
	D. salina	57
35	The pH variation throughout experiment	57
36	Effect of pH on carotenoid content of D. salina	58
37	Effect of pH on chlorophyll-a content of	
	D. salina	59
38	Effect of pH on carotenoid to chlorophyll-a ratio	io
	of <u>D</u> . <u>salina</u>	60
39	Correlation between cell number and AFDW	
	of <u>D</u> . <u>salina</u>	., 61
40	D. salina outdoor raceway pond	63
41	Four blade paddle wheel driven by moter and	
	reducing gear for the water circulation	63
42	Growth curve of <u>D</u> . <u>salina</u> outdoor cultivation	64
43	Scatter plot of culture medium temperature and	
	air temperature during the outdoor experiment	65

Figure	Pa	ige
44	Plotting between light intensity and dissolved	
	oxygen in algal culture pond	66
45	Green D. viridis (small cell) contaminated	
	in <u>D</u> . <u>salina</u> mass culture pond	68
46	$\underline{\mathbf{D}}$. salina was eaten by the protozoa. The algal	
	cell could be seen as an orange spot inside	
	the cell	68