OHAPTER II

GROUP THEQRY

Deiinition of group

A set of elementa A, B, C, ete., is galled a group
under the operationsaif 1t satisflcs the following conditions:

(1) If 4 and B are elements of the set, then so 1s
A®B; e, thé.- set is closed under the operation .

_ {2) The asscciatlve law holds; that 1is,
At (Begc) = (A=B)"C.

‘(3) The set contalns an element E callcd the identity
euch that A * E = E ® A = A for every clement A of the
aet,

(4L} If A 15 in the set, then so is an element B such
thet A * B=B* A =E, The element B s called the inverse
of A, and 1s denoted by Aﬂ1.

Two elements A, B of & group are sald to commete with
each other 1f A # B =D * A, If all eclements of a group
commite witl one another the group 1s szid to be commutative

or abelian, The mirber of elements in a group is called the

order of the group. A group which eontzins a finite number

of elements is called the finite group.
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Lxamples

(1) The set of all positive and negatlve integers
1nc1ﬂding zero, In_this case, ordinary addition serves as
the group cperation. zero serves as the identity, snd - n ie
the inverse of n, -Clearly the set is cloaed, and the
aaaocliative law is cbeyed.

(2} Tet us consider the symmetrical Tigure formed by
three points at the corners of an eguilateral triangle, as in
Fimure 2, The operations which send this flgure inte 1ltselfl
are:

1. The identity operation E, whieh leaves each point
unce nanged,

2. Op?ration A, which 1s 8 reflection in the yz~plane

3. T - reflection in the plane passing through the

point B end perpendicular to the line joining a and S.

i, C - reflection in the plane passing through ¢ ard
perpendicular to the line joining a and b.

5, D ~ clockwise rotation through 120 abauf ﬂ‘iE’ Z-axis,

., T — counterclockwise rotation through 120 ﬂbﬂuf

'ﬂie Z —axts .



Figure 2. Symmeiry axes of
equilateral . triangle,
Other symmetry operations are presslble, but they are

all equivalent fo one of the operations given ahove, The
"successive apolication of any two of the operztions listed
ebove will be eauivalent to came single operation,

If we work ount mll possible products of two operations,
we obtain the following multiplication table, Tanle 1, wheres
the operation which is to be applied to the fipure Tirst is
written across the top of the tahiet The get of oporations
B, A, B, C, D and I forms a group, and Tsble 1, 1s Xnown as
the multiplication takhle for thils group. Here the order of

the group is 6,
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B A B C D P
E f m A B c D ¥
A A I D = B C
B B I E D C A
C o i) Ir E A B
e D C A j=] F I
r r B C A x b}

Tabhle 1. Multiplication table
Subproups

Let G be a group. If we select Tfrom the elements of
the group G e subset H and H is also a group, M is said to

be a subproup of the group G.

Isomorphism end homomcrpnisn

Tvi0 groups Gl, GE are called isomorphic 1f there
exists & one~to-one correspondence hetween the clementes ﬂq,

E1f saars. OF &, and those ﬂE, EE’ enessw O GE’ guch that

1

. Py & + " = o = . +
Ay 2, 4 implies A, B, = Gy nd vice versa, MHote that

two jroups having the samé multiplication table are lsomorpihic.

= G

TwWo groups G1, GE are called homomorphle i there
exists a correspondence between the elements of the two

groups of the sort A <— A; ' ﬁé s se--vs DBy Lhis we mean

that, if A * D = G, then the product of any ﬂ{ with any B£
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willl be a member of the set C In general, a homonorpiiism

!
ki
is a meny-to-one correspondence, as indicated here,

The gencrsl principles of group theory

The =set of opcrations which eand a Symmgtricél Tigure
into ltselt are said to form a group. |

.Lét-us consider example (2} above, we have three
diztinct typés of 0pera£ions: the identity aperatign E: the
reflections A, B, snd C: and the rotatlons D and ', Yie say
that each of thgse sets Dﬁ E;Ementa forms 4 clasa;_that 15;
E forms a class-by 1tgelf, A,B, and C form a elass, and D and
F form a class. Usuelly the gecmetrie consideratlons will
epable us to pick out the classes; more precisaly,_twa clepmants
P and @ which satisfy the relation X_1 FX =P or @, whera X
15 any element of the group and x"1 is 1tm reciprocal, are
eald to btelong to the sa2me ¢lass, If the group is Afjellan,

then X1 PYX = X~

YT =P for all X's and P's, Each element
of the group then forme a class by itself, and the number of

the claszsses is equal to the number of elements. ?The concept
of a class of operations hag the followlng gecretric meaning.
If two operations helong to the same clags, it in nosible +o
pidk out a new coordinate system in which one cperation is

replaced by the other.
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Representation of groups

Any get of elements which multiply according td the
group multiplication table iﬂ.ﬂﬂid to forn a ﬁefrésen%atiﬂn
T of the group. ,

Ffum_examnlc ﬁf}qgivan above, we see that the sets ol
maiber assigned to the various elements in the following way
form representations of the graﬁp;

E A B c ¥ T
(S R 1 4 1
< S [ B 1 1

The corresponding matrices will alsc form a Pepregen—
tation of the group 1f we replace ordinary rultiplication b
natrix multiplication, If we denote by I_i]], [A], [I]], [G], [Dl,
[ ].the watrices of the transformetions of coordinates
ascociated witii the cafrﬂépching cperations, we see that
these¢ matrices form a representotion of the grovp, That ls,
the product of, say, 4 and B 15 AB = D; tho product ﬂ#-ﬁhﬂ
matrices {J"..] and LBI mist thererfore be [JL] []3} = {D], IEQ
that the pstricez nultiply accordiﬂg to the grcup multiplicaT
tton table, We have theveTfore fouhd three matrix representae.

tions:
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E A i) ¢ P F
r,o1 11 1 J‘I 1 4 o
R 7
PE y -1 - -1
[l X .
{1 O}t of{ % —-—53- (% %‘3
=B e L
o 4110 A Al |2 =

Tehle 2, Matrix representation,

In.IB, the matrices [E] and [A] aan Le written down

cog O - gin ©:
immediately. Bﬂ anﬂ.[?] are obtained from
gin 9. cog 6

by inserting the proper value ol 0O; Iﬁ] and [b] can then be
found by means of the group multiplication tzble and the role

Tor matrix multiplication,

Group chnaractiers

The characters of a group aré the traces of the matrices
in the representations of the group., We remember that the trace
of & matrix is the sum of the disgonal elemente of the natrix,
and as it is unchanged by conjumation of the matrix it must be
the same for all the matrices of the same claoss in a given

representation,  The use of the symbol X for group characters

iz conventional, The charzcter of any onhe -~ dimensional
representation is, of course, the same as the representation

itself.

6023041
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Reducible and ilrreducible representations

f“

The transiormations of the type [ﬁf] = Ea] ﬁ L’i] EB]
are called similarity transfarmation. The matrix representaltion
wnich 1s reduced By .0 : similarity transformation is =said to be?
reducible, IT 1t is not poaﬁiblc to find a similarlity transfor-
mation which will further reduce all the mstrices of a given
representatlon, the representation 1s sald to be irreducible.
The representations P1,Ié,13 flven above are allirreduci-
ble. 3ince matrices representing transformetion of interest
to us are unitary, we may rcstirict ourselves to representations
which involve only unitary metrices and to similarity transfor-

matlons with unitary matrices.

T™wo irreducible representations which diff'er only by B

eimilarity transiormation are said to be equivalent. Since
the number of irreducible representations is equal to the
number of ¢lasses, . .°: the characters can he set out in a
sounre teble. It is convenient to di=zplay the clharacters of
the various répresentationa In a charactor table for any glven
group. The columns are labeled by the vyariocus classes. The
rows are 1abelﬂd by the irreducible representatlons. Thus,

from ®able 2., we have the character table:
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B 4,58,C D;F
T, 1 1 1
I, 1 -1 1
T o o —1

3

Table J.rliustrative charaoter
table,

We denote Pi (R} the matrix corresponding to the
operation R of the ith irreducible reprosentation, and by

ri{R}mn the mnth component of this matrix,

Theorens

1

(6,) The set of vectors J_}_
h

——

T T
i{R)mn forms an

ortaonornal set, that is

-..i.... T .
2 T, (R) Jir.m},,]_,i_
R j— T '_1_1"'" ;| m n h == ﬁij amm! ‘51_]:11' r ;-aau-(zolj

where 1i arndl 1j are the dimensions of the representations and
h is the order of the proup.
Before we bepgin the actual proof of the orthogonality

relations, we nced several preliminary theorems;

Theorer 1. I we have o sets of varisbles x; ,.=,x£ and

F{ ‘e yé , then every bilihear Torm

1Erring, Henry, ,Walter, John,,and Eimball, Georgs E.
_Quantum Chemigtry. {New York: John Wiley and Boens,Inoc., 1944 ),

FPe 371 —37¢.
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Fyl

m .
f = E E = .x-f :;rf -l.-'i‘!itl‘{EGE)
=1 g1 29179

of' these variables can be reduced to the normal form

r . .
f —_. E b -.ii-un:lIG(EIB}
gt KK

where r Sn, r» Sm, by a suitable linear transformation of

the variables x{ and yj'_-'.

Procf  The product

(5 y (.2 ) (2.1
e ( F ., x/) (2 c,. ¥ A 2.l
Ciaq 421 it 1 =1 "13 va
contain all the terms in I which involve either x_; or 3_’_1'* '
I we make the subotltutions
' n
= e— A &
x1 6—.__ _=11 ci-i xi Dlifillaolq(2a5)
A
g
¥ = e a i
1 . - !
.‘5'1—'1 =1 Uni
We may write T as
3 (2.6)
f - I:_.i" -+ E E di-xl FI L I R I EJE
A iap gmp 93T

W@ can, without loss of generalilly, assume that n< m.
After {n-1)} substitution of the type {2.5), we will have

ohtained the result
m

) E . . . o o
£ ﬁﬁ+%&+-“'*%ﬂym1*in%jﬁyj””w'
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e niow make the final subhatitutions
) m

x =x', vy =2 g . ¥v!,)y,=55{i>n)
j=n nj J Jd J

Tguatien f2.7} then reduces to

o S

f = E X. Fi -v-rncv=nai(2°8

which iz the desired resuvlt.

Tet us novr take a zet of variables x'1 e xé

whicn
T'orm a4 besis for an irrveducible Pcpresentatiﬂn_rx, ol a
group, We mlso take a set of variables y{ ceaw F& which
form a basis for an irreducible representation gy' of the

same group. oe have then

Theerem 2. Ir ¥_, and I&J,are two lrreducible represontation:.

e Ay gl

of a group there is no bilinear form of the varidsbles xi and

=F£ which ic always invarient when both the xj and the 35 are
subjected to some operation R of the group unless x I8

identioel with ;Ft .

Froof We sghall prove this theorem only for the type of

groups in whicli we have been interested, namely, those
representing transformations of coordinates. The correspond.-
ing matfix Pepresentatians Involve only wuniltary matrices,
fiecording to Theoren 1, any bilinear orm

n m

£ = Z Z c,, x! y! ererbereena (2.9)
11 g=1 ¥4
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can he reduced to the form

I -
f = E 3’ -q;qnnnq-r(gﬂloj’l
s k7K

by a suvitable transformation, We conelder that the mafrices
of the reprerentations qx* and PH' have been subjccted o

the sane translormation, so that we have obtained the
corresnonding new pepresentations Ex and Py which have the

x's and y's as their bases. We now require that £ be invoriant

when both the x's and the y's have Leen operated on by some

gperation R of the zroup.

n

= 3 T | (2.1
ka 3 x{n)sl{ xE * * 8 8 a0 {2 11)
5=1
m
. e T
Ry ,‘:‘:1 g (Rpp ¥y

I we operate on the x's only 1in equation {2.10),

we howre
I n .
Z T o X + . I'{p Y r,...+y F T

vy I T, 51@51“ xghee iy, 3 LR %,

iy

il

'-Fi-i"-bﬁi..{E:‘lEj
Arranging this according to the x's we have

I
f = x.1 i'lrx{l{}ﬂl{ Fk + 1 a % daan '+ xn }f "I' (R}Iﬁc :'rk -'.(E.ulﬁ}

When we operate on the y'z, equation (2.13) musi

reduce to equatlon (2,10}, This requires that

Z r 3 : = =
k___J‘ = (R)'ikﬂl.?' .!r'ri’ i -T sensnas It



which ia equivalent to the requirement that

T
R équx B % = ¥4
- r
or Ry, = 2T, (Ryp p» 1= Toouunr wena-(2,14)

For the real unitary matrix representations we have
Been conciderine, the mairix of the inverse transformation
ls obtzined from tihwe origlnal matrix by simply interchanging

rows and columns., By deflnition, theref' ore

m
R"1 :Fi = E F{R} i=r1 PRI || . iidl‘i{2115}

oy v ik Tk

Comparing {2.14) and (2.15), we seo that (2,10) will be
invariant only if m = r, By interchanging the order ol
operations, we could prove in the same way that (2.10) will be
invariant only if n = r,

Again comparing {2,15) ana (2,1h}, we see that (2,10)

is invariant only if
L (R); = lyiﬂjik for i, kK = 1......T,
Therefore equation (2.10) is invariant only if I and
;? are identical,
Theorem 3, If Px is not identical with Ty’ then
¢ (R)

b3 T
R X il
for 211 values of 1,]3,k,1.

(R)yy = O
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Froof rnn the definiltion of the direct prcdu¢t we aaa'

tHat tho mn functicng ¥ y form n hunis Tor a repreauntatiﬂn
I'x P;r af the group of dimenslon mn.,

If we denoto those mn functions by Zy,....s, (r = mn)
ind the corresponding I‘epr‘esunta"tion by

T = r r
Z2 . Xyt

then T(R) = T [R)ij y“‘”m

{i;jﬂqanapn.’ ]‘:jlﬂil -;-‘h;a Il'l),
If we now ﬂparaujmnza_ﬁy one of the operaticons R af

the group, we have

Ra, = E I‘(R) carsacenaas(2,16)

=1 gl

Sunming over all the opérationa R of the group,

= .
f = F g =3 EI‘(R) A tp'pccnl---(gtl?}
8 B L B ta t

It A be any operatlon of the group. Then

A = b ARz = .t E = fp
8 R B

elnca AR ie always an opsration of the gvoup and the operation
by A merely changes the order of summation. Kow £ is a Yineas
form of the e's, and honee a billinear form of the x's and y's.
Dut we have just seen that there 1s no such form £ whiah.is

invariant undér an operation of thée group.
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)

3ince AL = T, we must conclucte that £ is ideatlcally

zero, This pﬁﬁ_be true only if 3 Pz [Rjts ig ddentically

R
zero ffor all values of & and =,
Proof of (G,)
1
The function £ = & _ xkyk is invariznt. We operate on
| k=1
' with some operation R, sum over all ¢perations ol thwe groun,
ohtaining
s (R} ( )
I Rf =3 3 z B IR {R) X ¥y = I co0neat2.18
R R k=1 s5=1 t= AR the 757t |

The coefficient of xsyt muzt vanish if & £ t, so we

have tha relation

E 1 ]:‘ = O . L IR BRI B R T B ) r .\
2 l{n)sk {R)tk . s # % (2,19
Now 2 R £ = ® R ', since each operation is contained
R R
once apnd only once in both summations,
1 1 1 1
ZRE = 2272 =% X 2 3 Im) _ T(R), x Yy
R R R k=4 s=1 t=1 = -
wihiclh: pives ws the relation
T{m r = o y
% {_':]I{S {R}kt O! S ‘?é t a & ¥ & 5 7 o F'I(EQEGJ

Equation {2.18) is thus reduced to
1 1

IR = 2 2 3% TR
R k=1 j=1

I(n) X ¥y = he ce-aa{2.21)

Jk JE

This requires that
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3 % HR). TR, & h, (3% 4e.e.1) ...0i(2.22)
R ket ek

Considering the inverse transformation, we also obtain
E]{ kz=-1 Il{RJRj I'{R}kj h, (j = 1’-"- 01) bi»i.uf{EiE_}}
From (2.22) end (2.23), we see that 3 I(R)j T{(R) 5 '
R J
is Inmdependent of Tbith k and 3.
. 1
Sinee % (hy ) = h or 1h_ = h, then
Rt o

Z.R I‘(.Rj_jk ?{R)_j._k = lf

From Theorem 3.,

Ry HBhy = ©

2 T
R X

Therefore we have

3T (R). I =T ’ S :
R 1 (Rhan e J(R]m'n” Nfd %3 %m’ %m*

(&,) If there are ¢ Arrasducible representations, each of
‘. . o :
dimenzion 1,, then 2 -12: = h,
1 gt 1

Erool From (Gr,‘ Y, W& have

BT (R)n “J“—I%‘ Ty(R) e "i‘ = 8y Oy s

L
Hence X 11 = h
I=1 -
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| {Géj The set of vectors X (Rﬁg %ﬁl forms an orthonormal

set, where gp iz the number of elements in c¢lass o R is any

2
one of the operattons in this class, X.Uip) is the correspond-

ing character.

Proof" Irom (qu, we have

: e T
I (R 1 f__l _
h T )m \r_ﬂi, TR e R = %5 Gun’ O

Summing over m Trom 1 to li and over m’ from 1 1o 1j

fgives
' : 1 1,
. h 1 J
A, X (R) % (RY =— 6,. 3 X 5
[ i ] lj 13 n=1 = T

- hﬁ.. uailﬂwﬂniﬂ&{zlz}'i}

Since the characters of all matrices of a civen
feprcsentation_which correspond to coperatlions in the same
clasg are equal. Bguation (2.24) can be written as
X
Z RoJx (R = hd, ., where k is the number ol

x, { p) jlf P) 8, 5 47

L=
clasages

or 3 oxry) [Zo xmy [% :
jfh'i i ,D h :I p n--h-— = 513 i!fiiil!lﬂf(z'gb:}

fﬁu}- The number of non-equivalent irreducible representations

is equal to the number of classes,
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Eroof The normalized charoc ters xi(Rp) ’EE- are therefore
h .

the ceomponents of a set of orthoncrmal vectqrs in k~dimensional
gpace, Since there can be k such vectors, we see that the

number of irreducible rpepresentations iz equal to the number

of classes, -fﬂ;%z .

Decomposition of reducible representations N

Any reducible representation can be reduced to its
irreducible reprecentations by a sultauble similerity *ransCor-.
mation which leaves the character unchanged. Thus wo cin
write for the charscter of a matrix R of the reducikle

representetion the expression
. . .
x{rR) = = B Xy {R) : fernaaerell2.26)
J=
where a, is the number of times the jth irreduclble repreﬂen—

J

tation cccurs in the reducible representatilon,

From {2.24) we have o
2 x()x, (M) = 3. % a,x,(R) (R) = ha, «re....{2.27)

50 that the number of times the irreducible representation

Ti occurs in the reduecible representation is

a, = 4

, = I oxR) x®

p>
R
| 15 a)
= - lii‘ll"ii.‘l“ 2I2
orT a - .'IP X (RP) X3 (Rp) . {
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