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CHAPTER 1

INTRODUCTION

Currently, the problem of climate change and global warming has intensively
increased. It is a worldwide issue to focus on the causes of the problem, which is mainly
due to human activities such as combustion of fossil fuels leading to the amount of
carbon dioxide increase in the atmosphere (Cantucci et al., 2009). In Thailand, the main
sources of carbon dioxide that causes the most problems are fossil-fired power plant
and industries (EGAT, 2015).

1.1 Carbon dioxide (CO2) properties

Carbon dioxide is a chemical compound derived from the carbon element,
which is an important element in variety of organism. The composition of carbon can
be changed according to the conditions of the element itself. This is discussed in the
carbon in gas phase. That is called “Carbon dioxide (CO2)”. The advantages of CO. are
their applications and uses in multi-industry. CO> in solid and/or liquid form is used for
refrigeration and cooling, metals industry. CO> is used in the production of mold to
enhance hardness, manufacturing and construction. CO3 is used as a raw material in
chemical processes and oil wells for oil extraction in petroleum industry, CO gas is
used as a soft drink, liquid CO2 used to decaffeinate coffee and solid and liquid COz is

used to quick freezing, surface freezing and refrigeration in the transport of foods.

1.2 Source of CO2

Source of CO2 came from nature and human activities. The main sources of CO;
emissions can be divided into many sections: electricity and heat, transportation,
industry, residential, services and other sectors as shown in Figure 1.1(IEA, 2015). In
this case, 49 percent (IPCC, 2005) of the CO2 emission comes from fuel combustion

for power generation. As a result, the trend of CO release has been increasing.



Residential _,
6% )

Figure 1.1World CO2 emissions by sector in 2013 (IEA, 2015)
* Other includes agriculture/forestry, fishing, energy industries other than

electricity and heat generation, and other emissions not specified elsewhere.

In Thailand, multiple parties focus on the problems with government agencies
and the private sector together to find solutions of the problem by defining a national
strategic level. Currently, Thailand is likely to increase CO2 emissions by the growth
of the population, thus establishing Thailand Greenhouse Gas Management
Organization (TGO) as a guide to help reduce carbon dioxide and has a plan to reduce
carbon dioxide emissions (EGAT, 2015). It is found that mainly CO2 emission in
Thailand is caused by combustion of fuels such as coal and oil to produce energy. Mae
Moh power plant because of coal in large quantities. So it made CO2 emissions into the

atmosphere burns increased continuously in Figure 1.2.
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Figure 1.2 CO2 Emissions from Electricity Generating Authority of Thailand
(EGAT, 2015)

1.3 Carbon Capture and Storage Technology (CCS)

CCS is used to reduce the amount of CO2 emissions from these sources. CCS
can capture and store CO> approximately 85-95 percent of the CO- from total quantity
emitted into the atmosphere (IPCC, 2005).

CCS technology is a process separated the CO. from the gas stream emitted
from industrial processes or power generation. After separation COz is compressed and
transported to storage into the reservoir. CCS is an effective way of reducing emissions
of CO> to the atmosphere. CCS process has 3 steps: capture, transportation and storage.

Capture

Current technology can be modified to capture CO> for about 85-95 percent of
the total amount of CO2 being released into the atmosphere (IPCC, 2005). The model
in the capture of CO, has post combustion, pre combustion and oxyfuel combustion.
Therefore, concentration, pressure and type of fuel used in the combustion are the

parameters used to select the format for trapping carbon dioxide.

Transportation
Transportation of CO> mainly transports through pipeline because CO can be

transported in large quantity and the distance between the reservoir and capture plant is



very far. Transportation of CO- to the ocean may use ships. However, this is considering

the method storage of transport that has a significant economic value.

Storage
This research is focusing on CO: storage especially in depleted oil field.
Nowadays, there are 3 storage methods such as geological storage, ocean storage and

mineral storage respectively (IPCC, 2005).

Geological storage is the storage of CO: in geological formation such as oil and
gas wells, unmineable coal seams and deep saline formation as shown in Figure 1.3.
CO: injection into geological layer involves various technologies such as survey, oil
and gas production, drilling technology and injection technology. Furthermore,
simulation and monitoring program to follow the migration have been developed for
different types of geological storage as show below:

1. Depleted oil and gas reservoirs: this method injects CO> into the depleted
oil and gas reservoirs. The originally accumulated traps don’t leak. They
are selected from geological structural and physical properties for oil and
gas reservoirs. Simulation model is used to predict the movement,
displacement behavior and trapping.

2. Enhanced oil recovery: this method injects CO- to enhance oil recovery
(EOR). 5-40 percent of all is usually recovered by conventional primary
production . Generally, reservoir depth is more than 600 m (IPCC,
2005).

3. Deep saline aquifer: the method selects deep sedimentary rock structure
to inject CO like the Sleipner project in the North Sea for saline
formation storage. It is the first commercial project dedicated to
geological storage by injects CO2 in underground about 600-1000 m
(IPCC, 2005).

4. Unmineable coal seams: this method injects CO- into unmineable coal
seams for CO; storage.

5. Enhanced coal bed methane recovery: it method injects CO> into low
affinity coal to produce methane to increase coal bed methane recovery.



CO:2 has been injected successfully at the Allison project in the Alberta
Basin, Canada (Gunter et al., 2005).

6. Other suggested options (basalts, oil shale, cavities): this method is only
injected CO..

Geological Storage Options forcO,
1 Depleted oil and gas reservoirs e Injected CO,
2 Use of CO, in enhanced oil recovery ESENEE stored CO,
3 Deep unused saline water-saturated reservoir rocks

4 Deep unmineable coal seams

5 Use of CO, in enhanced coal bed methane recovery

6 Other suggested options (basalts, oil shales, cavities)

Figure 1.3 Geological storage of CO2 (IPCC, 2005)

Ocean storage is to directly inject COz2 into the sea by pipeline or ship at the
level of 3 kilometer deep in water column and sea floor as presented in Figure 1.4.
However, CO> can reduce pH affecting the environment, marine organisms, surface
water are becoming more acidic, and there are chemical changes of the ocean.
Moreover, the cost of ocean is higher compared to other methods. In 2002, there’s a
demonstration to inject 5 tons of CO- into deep ocean of Norway but it’s opposed by
the environment group (CRS, 2013). Therefore, ocean storage is no longer considered
feasible (GreenFacts, 2015).
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Figure 1.4 Ocean storage of CO2 (IPCC, 2005)

Mineral storage is the process that CO. reacts with metal oxide such as
magnesium oxide, calcium oxide and sodium oxide to form stable carbonate
compounds as shown in Figure 1.5. The process occurs at very slow rate under ambient
temperature and pressure and the process needs more energy. This process is
demonstration. The Department Of Energy (DOE) did the survey for CO; storage at
Columbia River Plateau flood basalt in the Pacific Northwest (CRS, 2013).

Serpentinite,
Finaly i olivine + CO,
inely grou
serpentinite + olivine
Magnesite &
by-product

© CO2CRC

Figure 1.5 Mineral storage of CO, (CO2CRC, 2015)



Geological storage of CO2, both onshore and offshore, has been developed
starting from oil and gas industry. The recent development of storage in oil and gas
field, saline formation and existing CO> storage project is presented in Table 1.1.
Weyburn Project in Canada, Sleipner and Snohvit Projects in Norway and In Salah

Project in Algeria.

Table 1.1 Site of CO Storage

Approximate Total
) o ) Storage
Project Injection start | average daily | (planned) )
Country o reservoir
name (year) injection rate storage .
e
(tCO2day™) (tCO2) P
Weybum | Canada 2000 3000-5000 | 20000000 EOR
Sleipner | Norway 1996 3000 20000000 Saline
formation
) Saline
Snohvit | Norway 2006 2000 Unknown ]
formation
Gas field
In Salah | Algeria 2004 3000-4000 | 17000000

Geological storage has advantages that are prompt data and economic benefit
but it has disadvantage as well that it may is not worth efforts (IPCC, 2005). The good
point of ocean storage is that it's a large amount of storage for CO> that can be directly
injected into. But if it's injected less that 3 km, some of CO> will dissolve into sea water
and some will float to water surface, in contrary, if injected area is more than 3 km,
CO2 will sink and be stored in form of fluid which is depend on area's pressure and
temperature. For Mineral Storage, it's strong point is it's high stability but it's weakness
is that it needs high investment but gain low value. From these 3 storage methods, the

suitable method this CO; storage is Geological Storage.




1.4 Objectives of this research

The objective of the research is to study CO> storage in depleted oilfield at San
Sai oilfield, anticipate the movements of CO. in depleted oil field evaluate the
possibility. It is used as guidelines to develop methods and technology for CO> storage

in the future of Thailand.

1.5 Scope of this research

Study CO> storage in depleted oilfield at San Sai oilfield, Fang basin base on

only one well.

1.6 Contribution of this research

This research is aimed to the simulate CO> storage in oilfield in order to reduce
CO2 emission to the atmosphere. It can be used as a guideline to develop this technology
in the future. Furthermore, it can be used to other application like oil and gas reservoir,
and coal bed methane to increase project value.

The rest of the thesis will be presented in the next sections.

Chapter 2 explains theory about thermodynamic, rock properties, pressure,
reservoir seals, storage capacity and literature review. General geology in the study area
and reservoir simulation is illustrated in Chapter 3. The results and discussions are
described about maximum pressure, storage capacity, and simulation results in Chapter

4. Chapter 5 presents the conclusions of this research.



CHAPTER 2

THEORY AND LITERATURE REVIEW

2.1 Theory

2.1.1 Thermodynamic properties of CO>

Phase diagram shows the properties of temperature and pressure conditions at

the various phases include: vapor, liquid and supercritical as show in Figure 2.1.

Supercritical Fluids are the area above critical point that has an unusual

combination of liquid-like and gas-like properties: liquid like density, gas-like viscosity

and diffusivity part way between the two.

COs- is found in state of supercritical with temperature of 31°C and the pressure

of 73.8 bar on the critical point.

Carbon dioxide: Temperature - pressure diagram
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|
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g ship nline * rdtical Point| 900 M
2 i SaturS : 500 m
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& 100+
Triple Point Captured CO,
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Leak in the atmosphere
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Figure 2.1CO>: Temperature-pressure diagram (Wilcox, 2011)
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2.1.2 Rock properties
2.1.2.1. Porosity

Porosity is the ratio of the volume of the space to total volume. The porosity is
different in each rock. The porosity in the rock layer is controlled by the size of the
shape and size distribution. High porosity, caused by deposition of ore with shape and
size of grains about the same, but these sediments has cement between grains making
porosity is decreased or sand layer is poor sorting, silt or clay included. It will replace
the space between the grains. The porosity decreased as well. Normally, sandstones

have porosity is 10-20 percent (Prakiat & Jeemsantia, 2011).

2.1.2.2. Permeability

Permeability is ability to allow water to percolate the rock. In addition, depend
on porosity of rock, space and continuity between spaces.
= ‘{“p (2.)
A(M)
X

When Viscosity (Pas)

Length (m)

Volumetric floe rate (m®/s)
Area (m?)

Pressure (Pa)

TS SO \ G T i

2.1.2.3. Density

Density is meaning the ratio between mass per volume of the substance itself.

The symbol of density is p (kg/m®).

2.1.2.4. Compressibility

Compressibility is meaning when fluid pressed or extruded cause cumulative
elastic energy and smaller volume of compressed and back to the original volume.
When the force or pressure exerted by compression used to be a symbol ¢ with the unit

of psit.
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2.1.2.5. Darcy’s law

Darcy’s law is describing the flow of fluid in reservoir. The discharge is
proportional to area, head difference and inversely proportional to length. Darcy’s law
applies to steady state and laminar flow but not compatible with turbulent flow

(size/font) and gas flow at very high or very low.

_kogA(h, —h,)
H- (22)

Q=

When Q = volumetric flow rate (m%/s)
k = permeability (m?)
p = fluid density (Kg/m?)
g = gravitational acceleration (m/s?)
A = cross section area (m?)
i = fluid viscosity (Pa-s)
ha = hydraulic head at point a (m)
hy = hydraulic head at point b (m)
L = length (m)

Immiscible fluid is that the fluid is unable to melt in the other flow and mix.

CO- and brine are immiscible fluid.

2.1.2.6. Multi-phase flow

Injection pressure is an important part because the damage of storage can be
avoided from the maximum pressure of injection. The maximum pressure of each
formation depends on geological, depth and temperature etc. Limited pressure of
injection is 90 percent of fracture pressure. The more injection pressure, the higher

opportunities to break the caprock.
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2.1.2.7. Geothermal gradient

dt
When the depth increases, temperature increase respectively and & ~25°C

to 30°C/km
tdT dT
T(2)=T,+|—dz=T,+—z2 2.3
(2) ! - - (2.3)
When Ts mean annual ground surface temperature (°C) ~14.7°C
z depth below ground surface (m)

2.1.3. Pressure
2.1.3.1. Fracture pressure

The fracture pressure formation must be calculated and set by using empirical
relationships. Since the fracture pressure is affected by pore pressure served as a method
or application the correlation of fracture pressure. Commonly used equations and the
relationships include pressure fracture; the Hubbert and Willis equation, introducing

basic principles are widely used at present. (Bourgoyne et al., 1986):

iy (1+ EJ (2.4)
3 D
When Fmin ~ Maximum pressure

P/D  Pore pressure gradient (psi/ft)
= 0.465 psi/ft (Normal Pore Pressure gradient)

2.1.3.2. Pressure buildup

When the pressure increases along with the function of time, usually it is
observed after a shutin well or the rate of production declines. In general, the pressure
buildup to measured at or near the bottom of the hole.

The parameters used to calculate are initial reservoir pressure (P), reservoir
temperature (T), thickness (b), permeability (k), porosity (@), compressibility (ct),

flowrate of CO (Q) and radius of injection well (rw)
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Pressure buildup during CO: injection depends on flow in both the

multiphase and single phase regions

CO,

H,0 H;0

Multiphase phase flow Single phase flow

Pressure buildup in the single phase region can be calculated with the

this equation

r f r
LT A - S I L Y UL LR || Y
dxmxkxb  2xmxkxb r K re—r, r,

w co,

When b Reservoir thickness (m)
Ct Total compressibility (Pa™t)
k Permeability (m?)
Q Injection rate (m%/s)
e Radius to the front (m)
Mw Well radius (m)
t Time (s)
[0} Porosity

Ky Viscosity of water (Pas)

The radius of influence can be used to estimate the extent of pressure
buildup due to CO: injection

Pressure buildup in the multiphase region can be calculated from the

multiphase extension of Darcy’s law combined with the Buckley-

Leverett solution

2.1.3.3. Radial Geometry for Injection Pressure

Injection pressure
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Injection pressure is an important factor to avoid the damage storage for CO>
storage which depend on geological characteristic, depth and etc., in the injection ration
determination and hole estimation. Over abundantly pressure will cause the caprock

penetration.

&

Storage reservoir

Figure 2.2 Radial geometry for injection pressure

ct= cr+cr(Pat)
ci=1/p dp/dp = 4x101° Pal
cr=1/¢ d@/dp = 10 to 10° Pa!



When we inject CO>

Well (Q)
b k~ Uw, G
7
b k: IJ'\\': c[
b k~ “w: ct

Figure 2.3 Growing plume multi-phase flow

Assume:
— The liquid can be compressed very little.
— Independent of pressure on k, pcoz, Hw, K, density, ct.
— Properties of the rocks as a uniform.
— The flow in radial direction in only a vertical direction.
— Infiltrate of CO> at constant thickness (h) throughout.
— Boundary conditions
o The illumination is an infinite.
o Boundary on top and bottom with impermeable layers.
o Line source.
o Rate of inject is fixed: t>0.

o Initial pressure is same everywhere pi.

2.1.4. Reservoir seals (caprocks)
1. Seals are needs to retain CO2 underground; CO2 requires a seal to remain
underground:

Density water is greater than CO2: pw >pco2

15
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CO:2 is subject to buoyant forces that will drive it towards the ground
surface:
Buoyancy force = Volume X (pw- pco2) X g
A seal is needed to prevent upward migration
2. The properties of seals have two key
Permeability barrier
Capillary barrier (Membrane allows water flow but not CO)
3. Capillary pressure is the difference between the pressure in the wetting and non-
wetting phases
4. Fine textured sedimentary rocks with small pores (rpore << 1pm) have high
capillary pressures
5. Capillary pressure can be accessed from the thickness of the CO2 column in the
storage reservoir

6. Capillary entry pressure >>capillary pressure to provide an effective seal

Aquifer

[ T=11

Figure 2.4 CO; trapping mechanisms of seals

2.1.5 Storage capacity
Storage capacity can be calculated for the area of CO> storage in each layer.
When CO: injection into storage layer.

Storage Capacity = @ApcozhE (2.6)

When ¢ Porosity
A Area
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h Thickness

pco2 Density of CO>

E Efficiency

Gorecki et al. (2009) explain three potential storage systems such as open

system, close system and semiclosed system. The 3D model is applied to forecast the
CO:z injectivity in the geological formation and monitor CO2> movement over the long
period of time. Furthermore, the local grid refinement is applied to simulate to obtain
the results with more accuracy. Also, many assumptions have been made to simplify
and modify the unavailable data of the reservoir such as storage capacity and types of
formation. This research is assumed to be open-system formation.

Open System EERC CG34579.COR

Closed System
Cap Rock

FROa? 00

Figure 2.5 Diagram representing the three potential storage systems (Gorecki et al.,
2009)

2.2 Literature Review

Benson (2010) explained in “Carbon Dioxide Capture and Storage in

Underground Geologic Formations” hundreds of years ago, increasing trend of CO2



18

concentration in atmospheric now increased to 370 ppm from the pre-industrial level
of 280 ppm and the majority come from burning coal, oil and natural gas for electrical
generation, transportation and industrial. Nowadays, worldwide have more than 20
billion tons of CO> emissions. Increased CO2 will cause climate change. CCS in
underground geologic formation is one of the options for decreasing CO> emissions.
The idea CCS technology was developed in the last 1970. The last 1980 get the attention
of scientists and engineers to reduce CO2 emissions to the atmosphere. CCS technology
has 4 step processes: capture, compression, pipeline transport and Underground
injection respectively. CO. Capture has 3 type such as post-combustion, pre-
combustion and oxygen-combustion that has different advantages and disadvantages.
Compression and transport of CO- as the technology currently in use enhanced oil
recovery, beverage carbonation, and fire suppression. CO> can be injected underground
and stored in sedimentary basins. Sedimentary basins have tens of thousands feet
thickness. The sandstone layers, that reservoir with high permeation, allow injection of
COz. The shale or evaporites layers have very low permeability and seals protect CO-
leak to surface quickly. The technology to inject underground is used in CO> enhanced
oil recovery projects. CCS technology is significant benefits invaluable resources and
developed over more than half a century by the oil and gas industry. The current and
planned CCS projects such as Sleipner, North Sea (Statoil), Weyburn, Canada
(Encana), In Salah, Algeria (BP), Gorgon, Australia (ChevronTexaco), Snohvit, Off-
shore Norway (Statoil) and San Juan Basin, New Mexico (Burlington) respectively.
Torp and Gale (2004) studied Demonstrating storage of CO2 in geological
reservoirs: the sleipner and SACS projects. The studying is about the different scientific
in the project: geology, geochemistry, geophysics and reservoir engineering/simulation.
The project in the North Sea, was injected wuth CO: into a sand layer “Utsira
formation”. In 1996, they started inject nearly 5 million ton of CO2 and the project is
the first commercial application of CO, storage in deep saline aquifers in the world.
The project is called "The Saline Aquifer CO, Storage (SACS) project. The monitor
used 3D seismic surveying in Utsira formation and repeat seismic surveys that can see
the image the movement of CO> within the reservoir. Reservoir model is describing the

storage of CO2 movement in the reservoir and comparison seismic with itself.
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Zakkour and Haines (2007) studied permitting issues for CO> capture, transport
and geological storage: A review of Europe, USA, Canada and Australia. Discussing
the environmental, health and safety issues by permitting regulatory action integrated.
Review regulation at EU, North USA and Australia to evaluate the relevance to CCS
and identified the ways to regulatory.

Bouc et al. (2009) studied determining safety criteria for CO2 geological
storage. The development of a methodology realised under the CRISCO: project, study
of risk and objectives by using the model to evaluate the risk. This project's objective
is to determine safety for geological storage. Using the basic methodology for
determining impose various requirements and development of tools to identified risk,
represent various rick events and assess the uncertainty of parameter and distribution
of COz in the format. Experiment at Paris basin for test the effect of safety criteria. The
CRISCO2 project is funds CO, capture and storage program of French National
Research Agency (ANR).

Methods for Estimating CO. Storage in Saline Reservoirs were written by
Frailey (2009). He explains; estimate CO- is an important for site selection of CO>
geologic sequestration. The methods for estimating subsurface volumes in porous and
permeable geologic formations are applied in oil and gas, ground water and
underground natural gas storage. In general, these methods can be divided into two
categories: static and dynamic. The static methods are volumetric and compressibility
that require only rock and fluid properties. The dynamic methods are decline curve
analyses, mass (or volumetric) balance, and reservoir simulation, and require
information about active injection such as injection volumes and reservoir pressures.
The different methods have advantages and disadvantages. Some methods are
acceptable, depending on the data quality, data quantity, and geologic heterogeneity.
The methods can be apply to basin-scale and specific site-scale storage estimates are
discussed.

Dobossy et al. (2011) studied an efficient software framework for performing
industrial risk assessment of leakage for geological storage of CO2. This project is
technology for geological storage of CO> emissions. Geological storage of CO2 has
inherent risks. Two major concerns have been recognized: first leakage of CO> through

the caprock and incomplete and second; Eliminate brine resulting in contamination of
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drinking water sources. CO2 and brine leakage have been identified to have three
mechanisms: leakage through the faults and fractures in the caprock, leakage through
man-made such as abandoned wells from oil and gas exploration and finally, diffuse
leakage through the caprock. This paper describes a software for manage risk assessors
and planners alike. The demonstrated through a case study of hypothetical injection site
in the Alberta Basin show in Figure 18 is a 50 km by 50 km region. The area is a
sediment sedimentary basin interest for the CO. store. The borehole exploration has
resulted in over 1100 leave and active wells which a risk of unintended CO- leakage
and brine displacement. The model used to describe using the extensive data describing
the rock properties within the geological. This study data is regarding the location and
depth of existing wells. The depth has related data related to stratigraphic data to assign
an end formation for each well. There are two scenarios represent the two cases: know
that the permeability of the hole and some research to reduce uncertainty. These results
would be beneficial to risk assessors and planners. Case study useful in risk assessment
and planning has three steps. First, the distribution of the leakage to formation can be
used as a part of a cost assessment. Second, evaluate the reduction of CO2 emissions by
moving to deeper formation. Finally, conclusions information gives to the analysis.

Model is a tool that can make an effective risk assessment of geological storage
of CO; a safe, reliable, and reduce emissions of CO». A case study assessment leakage
of CO2 and displacement of brine for a hypothetical injection in the Alberta Basin show
useful information on software expectations and demonstrate knowledge and
understanding of the scope of the risk assessment that can be performed.

Eiken et al. (2011) studied lessons learned from 14 years of CCS operations:
Sleipner, In Salah and Snohvit. This paper share operational experience from three
locations: Sleipner (14 years of injection), In Salah (6 years) and Snghvit (2 years).
These three locations have disposed 16 Mt of CO2 by 2010. Three locations are
contrasting in many respects. The surface conditions of Sleipner field be locate the
Barents Sea in subsea development at ~330m water depth and storage depths ~700 m.
below seafloor, In Salah field be locate the Sahara desert at ~470m water depth and
storage depths ~1700 m. below surface and Snghvit field be locate North Sea at ~80m
water depth and storage depths ~2400 m. below seafloor. All these reservoirs are

sandstones and used repeat 3D/4D seismic surveys to collect data to see the moving of
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CO2. Reservoir has development of CO. storage that occurs is controlled by
geophysical monitoring, which some geological invisible. Snghvit and Sleipner used
4D seismic monitoring is of sufficient quality to confirm the leakage into the
overburden.

Goerke et al, (2011) studied “Numerical Simulation of Multiphase
Hydromechanical Processes Induced by CO: Injection into Deep Saline Aquifers”.
They explain the concept modeling and numerical simulation of two-phase flow during
CO: injection into deep saline aquifers. In 2005, the IPCC has published special report
of the long term storage CO- in the underground. Three type of geological formation
are important for storage of CO such as depleted hydrocarbon reservoirs, deep saline
aquifers and unminable coal seams. The depleted hydrocarbon reservoirs and deep
saline aquifers are injected CO. in a denes form into porous rock formation. The deep
saline aquifers have the largest storage capacity and are located near the power plant.
The current, most CO; storage as a basis for simulation developed into oil, gas and
geothermal energy produced by software. The case study utilizes the numerical
methods to analyze the stress deformity. To this purpose, that set concept injection
model. The two-phase flow process of CO2 and brine, and deformity process near deep
saline aquifer. Nowadays, deformity the flow and deformation of a simulation of the
function of the base on the standard Galerkin finite element method. In this paper, it
can be summarized as follows: The conceptual model and the numerical algorithm for
the simulation of isothermal two phase flow in deformable porous media. The study is
development of the theoretical and numerical framework for the solution of Thermo-
Hydro-Mechanical-Chemical (THMC) coupled problems related to CO storage in
geological formations.

ADB (2013) has discussed CCS is a technology that reduces CO2 emissions
from fossil fuel in power plants and industrial. The energy consumption in Thailand has
increased during 2000-2010. That has offered a road map for development of CCS in
Thailand, which stage as follows: creation of CO2 emission sources, study of possible
storage sites and criteria for geological storage of capture CO,. In Thailand source of
CO:2 emissions in Thailand has four sectors as power, cement, natural gas processing
and oil and gas production. The largest emission source from lignite power plant

produces 18 Mt CO per year. The study identified theoretical CO- storage capacity in
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saline aquifer and rest in oil and gas fields. That study development of CO; storage is

below 1,000 m. of saline aquifer and oil and gas field.



CHAPTER 3

SIMULATION

The area of this study is Fang district, Chiang Mai, Thailand. The data derived
from Northern Petroleum Development Center, Energy Defense will study the Huai
Ngu sub-basin, San Sai structure, Fang basin. The drill hole data from FA-SS-35-04
(DED, 1992) as used to create simulation by CMG-GEM to study CO; storage in
depleted oilfield.

3.1 General Geology

Tertiary basin in Thailand

In Thailand, the age sedimentary basins in the Tertiary about 70 basins. That is
diffusion in the northern, central and southern regions of Thailand as shown in Figure
3.1. Most of the positions of basins are N-S trending axes and independent basins. The
structure of basins developed with EW direction has extensional stress in relation with
NW-SE and NE-SW strike-slip faults. Two tectonic plates are moving and make
developed of structure basins very complex. In the southern regions, offshore basins
formed during the Middle Oligocene and onshore in the northern and central regions
formed later in the Miocene. Normally, the Tertiary basins include alluvial fan deposit
in the lower and upper parts, whereas the middle part is of lacustrine environment
(Nuntajun, 2009).

3.2 General of Fang

The Fang basin is located in Fang intermountain basin northern Thailand,
latitude 19° 43" 00” N to 20° 04’ 41" N and longitude 89° 05’ 04" E to 99° 43’ 00" E as
show in Figure 3.1. It is about 150 kilometer of Chiang Mai or about 850 kilometer
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from Bangkok capital of Thailand. The surface area is around 670 km?. The basin lies
NE-SW with an elongated shape. The basin is about 500 m above mean sea level
(Morley and Racey, 2011) .

Geology and Structure of Fang basin

The basin is a Tertiary basin in the northern onshore part of Thailand. The rock
types include mudstone, sandstone, coal, oil shale and limestone depending on the
location of the deposition in the basin as presented in Figure 3.2. From Khanthaprab
and Kaewsaeng (1989) Fang basin is NNE-SSW trending and intracratonic basin. It is
formed in early Tertiary and compression in middle Tertiary (Zollner and Moller,
1996). Braun and Hahn (1976) survey found that the stone in the Fang basin between
Tertiary and Quaternary consist of silt, shale, sandstone, conglomerate, sedimentary
rock and gravel. The basin is half graben structure and there will be increased depth to
the SN of the basin will found major boundary fault cause deposit sediment basin in the
Fang basin at the age of Oligocene to Resent composed of sedimentary type
(Rodjanapo, 1998b). The Fang basin began to form deposition of coarse clastic
sediments which later was followed by the deposition of fluvial and lacustrine
sediments and changed to fluvial and alluvial in the Quaternary (Settakul, 1985).

Settakul (1984, 1985) and Belay (1992) explain around the Fang basin about
most mountain range from 250 m up and the rock spread Precambrian Era to Quaternary
Period.

From Water Resource Engineering CO. (1997) the survey, geological mapping
in the northern side of the basin has found that the rocks are Ordovician to Triassic age.
In the eastern side of the basin, it has found the rocks are Triassic to Jurassic age. In the
western side of the basin it has found the rocks are Cambrian to Permian age and in the
southern side of basin it has found the rocks are Carboniferous age.

The structure of the Fang basin has influenced the plate tectonic of the north for
Triassic age. From Srihiran (1986), the Fang basin is an asymmetrical that has about
35° and explained by drilling around Pong Nok oil field found basement inclined from

east to west about 15° and key bed almost parallel, dip about 15°.
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Source Rocks Reservoir Rocks

Top Unit 3 = Coal Unit 2 Sands in Pong Nok Oil Field
Basement

Top Unit 1 = Organic Shale + Coal
in Pong Nok Oil Field

Unit 5 Sands in Mae Soon
and San Sai Oil Field

Figure 3.3 Cross section at Fang basin (ThaiDefenseEnergy & Schlumberger, 2013)

Seismic results of survey support depth of Fang basin have a depth to the west and the
east shallow.

Settakul (1985) structure of Fang basin is a half-graben and dip to eastern. The
basin can separate in three sub-basins such as Huai Pasang, Huai Ngu and Pa Ngew
sub-basins. It separate by saddle formed by older rocks as shown in Figure 3.2. The
deepest part of the Fang basin in the central Huai Ngu sub-basin is a sedimentary about
3000 meters.

PCR (1988) has studied geological area to find evidence in the petroleum and
created a relationship between the sedimentary and the evolution of tectonics of the
Fang basin. The Fang basin can be divided into 3 extensional sub-basins which are as
follows Huai Pa Sang sub-basin, Huai Ngu sub-basin and Pa Ngew sab-basin from
north to south, respectively.

Rodjanapo (1998a) studied and found the Fang basin caused by subsidence of
the crust. Chiang Saen fault cuts through the basin margin in the western side. It was

making the western has collapsed over the eastern. The area of interest is in parts of



28

Huai Ngu sub-basin. The Huai Ngu sub-basin have 6 structure as Ban Thi, Mae Soon,

Nong Yao, Pong Nok, Sam Jang and San Sai structure.

Lithostratigraphy

Settakul (1984),(1985) has classified the sedimentary in Fang basin into 2
formations from top to bottom such as Mae Fang formation and Mae Sod formation. In
1984, the report can separate Mae Sot formation into 3 sub-formations such as Lower
Mae Sot, Middle Mae Sot and Upper Mas Sot by electric log data.

Chumkratoke (2004) has classified sedimentary in Fang basin into 4 formations
such as Lower syn-rift sequence (Lower Mae Sot), Middle syn-rift sequence (Upper
Mae Sot), Upper syn-rift sequence (Lower Mae Fang) and Post-rift sequence (Upper
Mae Fang) which consistent with the classified formation by Settakul (1984).

Geology and Structure of San Sai Oil field

The San Sai structure is located in the east of the Fang basin and half graben as
shown in Figure 3.3. Nuntajun (2009) did geophysics survey began in 1961 by gravity
and magnetic survey, 1985 and 1992 2D seismic survey. The environment of
sedimentation occurs in the Tertiary-Quaternary. The San Sai structure is a monocline
and dips about 10°-20° in the central of Fang basin. It has two major faults in eastern of
the structure that trap oil (Settakul, 1985).

Lithostratigraphy

Stratigraphy of San Sai structure is based on seismic data, well logs and drill
cutting. CORELABORATORIES (1992) does survey and analysis of the data by
wireline log and seismic section of FA-SS-35-04 well and it can be divided into 2

formations follows;
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Figure 3.4 Three sub-basins in Fang basin (Nuntajun, 2009)

Mae Fang formation occurs in the Pleistocene-Resent. This formation depth to
4500 ft. (approximate 1370 m.) comes from seismic data and finds a lot of coarse sand-
very coarse sand, clay and sedimentary coming from fluvial deposition environment.

Mae Sod formation occurs in the late Eocene-Pliocene. This formation separates
into 3 ranges. First, upper Mae Sod formation occurring in the late Miocene-Pliocene
depth to 2500-4500 ft. (approximate 762-1370 m.) to include sandstone
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thickness 5-30 ft. (estimate 1.5-9 m.) insert shale and lacustrine depositional
environment. Second, middle Mae Sod formation occurs in the Oligocene-Miocene
depth to 4500-6700 ft. (approximate 1370-2040 m.) This layer has lot of shale and
inserts sandstone, silt, part of thin coal, fluvial and continental deposition environment
and some part lacustrine depositional environment. This layer is harder than upper Mae
Sod formation. Third, lower Mae Sod formation occurs in the late Eocene depth ranging
from 6700 ft. (approximate 2040m.) until basement. The upper of this layer is coal bed
thickness approximate 100 ft. (about 30 m.) rang 6800-6900 ft. (about 2070-2100 m.)

3.3 Reservoir simulation

The CMG software from Computer Modeling Group Ltd. is used to create the
reservoir simulation. The software simulates hydrocarbon reservoir by inserting the
reservoir data. CMG includes 3 reservoir simulation applications. IMEX is a three-
phase black oil reservoir simulator forecasts the primary, secondary, enhanced oil
recovery and models production from conventional sandstone and carbonate reservoirs.
GEM is the reservoir simulation software for compositional and unconventional model
that simulates the flow of three-phase and multi-component fluids. STAR is a thermal,
k-value compositional, chemical reaction, and geomechanism reservoir simulator used
for model recovery processes (CMG, 2011). In this thesis, CMG (2011) is selected for
creating reservoir simulation model for CO: injection into geological formation and
monitor CO2 movement over the long period of time because the GEM model is
specifically for storage of CO2. A 3D model is set up using the formation characteristics
as shown in Table 3.1 creating of reservoir simulation. Cartesian grid reservoir
simulation is constructed by using GEM. The components of GEM simulation consist
of reservoir, components, rock property, initial conditions and well. The methodology
on produce of this study is presented in Figure 3.4. The detail of reservoir simulation is
shown in Appendix A. Furthermore, the local grid refinement is applied to obtain the
results with more accuracy. Also, many assumptions have been made to simplify and
modify to calculate the unavailable research data such as storage capacity (Gorecki et
al., 2009).
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Figure 3.6 Diagram of methodology of this study
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Initially, the information in the model must be set in the order to calculate grid
block. It will still be under the limitations of the academic license which has less than
10000 grids. The model requires parameters such as; cartesian grid, reservoir
properties, component, rock fluid, initial conditions and well and recurrent. In this
study, the model will be divided into 3 cases to determine the behavior for different
formations as shown in Table 3.1 and Figure 3.5-3.6. Also rich property such as relation
permeability in presented in Table 3.2 and Figure 3.7-3.8. The data of San Sai structure
comes from the Northern Petroleum Development Center. The simulation is
homogeneous model. The fracture pressure is important to run simulation in CO>
storage. If the pressure is over fracture, pressure will break the caprock and let CO- leak
into the surface. The fracture pressure is calculated base on equation (2.4) for Hubbert
and Willis equation. The maximum values will be shown in each case study.

Rock properties are set depending on the different types of rocks and related
information. In this case it will be set to rock fluid type is show in Table 3.2 and Figure
3.7-3.8. The keyword include; *ROCKFLUID, *SWT, and *SGT.



Table 3.1 Case study detail to set up in GEM

34

Parameters Value Unit
Grid block 35x35x8 grid (m)
Depth; 2" layer | 2119.88-2161.03
4" layer | 2340.86-2369.82 m
6" layer | 2465.83-2535.94
Thickness; 2" layer 41.15
4™ layer 28.96 m
6" layer 70.10
Density of CO,; 2™ layer 434
4™ layer 444 kg/m?
6" layer 450
Formation Sand -
Porosity 23.6 %
Permeability 110-190 mD
Temperature; 2" layer
119.53
4™ layer
128.67 °C
6" layer
135.93
Bottom Hold Pressure;
2" layer 20681.45
kPa
4™ layer 22669.79
6" layer 24251.76
Maximum pressure; 2™ layer 27763.38
4™ layer 30657.47 kPa
6™ layer 32294.14
Flow rate 1,000, 2,000, 4,000 | tons/day
o 99.99% CO»,
Gas injection -
0.01% CHa4
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Table 3.2 Relative permeability of Gas-Liquid (Gas saturation)

Sg K Krog Sw Kow Krow
0.005 0 0 0.16 0 0
0.04 0.005 0 0.2 0.002 0
0.08 0.013 0 0.24 0.01 0
0.12 0.026 0 0.28 0.02 0
0.16 0.04 0 0.32 0.033 0
0.2 0.058 0 0.36 0.049 0
0.24 0.078 0 0.4 0.066 0
0.28 0.1 0 0.44 0.09 0
0.32 0.126 0 0.48 0.119 0
0.36 0.156 0 0.52 0.15 0
0.4 0.187 0 0.56 0.186 0
0.44 0.222 0 0.6 0.227 0
0.48 0.26 0 0.64 0.277 0
0.52 0.3 0 0.68 0.33 0
0.56 0.348 0 0.72 0.39 0
0.6 0.4 0 0.76 0.462 0
0.64 0.45 0 0.80 0.54 0
0.68 0.505 0 0.84 0.62 0
0.72 0.562 0 0.88 0.71 0
0.76 0.62 0 0.92 0.8 0
0.8 0.68 0 0.96 0.9 0
0.84 0.74 0 0.995 1 0
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The conditions and parameters that will be studied in the CMG-GEM simulation
as presented in Table 3.3. This research will be studied in the depth at 1800 to 2700 m.
in sand layer. By the rate of injection of 1000, 2000 and 4000 tons/day and set the
maximum pressure on each layer from the calculated of the 90 percent of equation (2.4).

When CO: injected into the each layer the pressure buildup will increase but less than
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maximum pressure. The simulation program will be shutin well to avoid broken of

caprock because of the pressure buildup over the maximum pressure.

Table 3.3 Detail condition and parameter to be study

Parameter Unit
Depth m
Flow rate ton/day
Pressure buildup kPa
Radius of migration m

2119.88-2161.03 m.

2340.86-2369.82 m.

2465.83-2535.94 m.

Figure 3.11 COz injection into second, fourth and sixth layer from top to bottom
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CHAPTER 4

RESULTS AND DISCUSSION

This chapter describes the effects of the parameters on CO: storage from
simulation of the injection rate at 1000, 2000 and 4000 ton/day and time storaging from
1,510, 20 to 50 years. The San Sai structure for this study is; FA-SS-35-04.

4.1 Maximum pressure

The data shown in Table 4.1 for information on each formation for the depth
800 to 3000 m., thickness from DED (1992), formation temperature is 77 °C
(Chumkratoke, 2004),

The bottom hole pressure is calculated from equation (4.1). The pressure
gradient is 9.5233 kPa/m (0.421 psi/ft) from DED (1992) and surface pressure is
101.3529 kPa (14.7 psi).

BHP = (pressure gradient xdepth)+ sueface pressure (4.1)

4.2 Storage capacity

The density is calculated from website (Peacesoftware, 2015). Storage capacity
is calculated in depleted oil, from equation (2.6) used in the calculation based on
porosity at 0.236 and 185000 m? for Fang area. Thickness is based on DED (1992) and
efficiency is based on 2.51 percent (Gorecki et al., 2009).

The temperature is calculate from equation (2.4) include; geothermal gradient
at FA-SS-35-04 is 0.024 °F/ft (DED, 1992) and surface temperature is 25 °C.

The facture pressure is calculated from equation (2.5). The facture pressure used
14.5518 kPa/m (0.6433 psi/ft). Fracture pressure and maximum pressure assume at 90
percent (Mathias and Roberts, 2013) to prevent the caprock cracking due to excessive

fracture pressure.
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4.3 Simulation result
4.3.1 Effect of injection rate and depth on pressure buildup

From Figure 4.1-4.4 the orange line represents the maximum pressure which is
90 percent of fracture pressure. When CO: injected underground, pressure in the
formation is buildup

Figure 4.1 illustrates the change in pressure buildup when CO: injected into the
depleted oilfield at the second layer with the injection rate from 1000-4000 tons/day.
The maximum pressure of this layer is 27.76 MPa which is used as criteria to stop the
injection. The initial pressure for this formation is 20.08 MPa. At 1000 tons/day
injection rate, the injection period is 46 years and that formation will be shutin with
shutin pressure of 26.69 MPa. Four more years will be observed for CO2 monitoring as
well as radius of migration until 50 years of this study. The final pressure at year 50"
is 26.76 MPa. For injection rate at 2000 tons/day, injection period is 20 years with 26.02
MPa shutin pressure and 30 more years for monitoring. The final pressure after 50 years
is 26.12 MPa. For injection rate at 4000 tons/day, the injection period takes 8 years and
42 years for monitoring. The shutin pressure and final pressure are 24.42 and 24.68

MPa, respectively as shown in Table 4.2.
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Table 4.2 The pressure buildup by period

Initial Maximum Injection Time/Pressure buildup
Layer Pressure Pressure 1000 2000 4000
(MPa) (MPa) tons/day tons/day tons/day
46 years 20 years 8 years
26.69 MPa | 26.02 MPa | 24.42 MPa
2 20.08 27.76
50 years 50 years 50 years
26.76 MPa | 26.12 MPa | 24.68 MPa
36 years 17 years 8 years
29.84 MPa | 29.46 MPa | 28.62 MPa
4 22.13 30.66
50 years 50 years 50 years
29.86 MPa | 29.52 MPa | 28.85 MPa
35 years 17 years 9 years
31.94 MPa | 31.66 MPa | 31.19 MPa
6 24.07 32.29
50 years 50 years 50 years
31.97 MPa | 31.76 MPa | 31.54 MPa
Table 4.3 The storage capacity when shutin well
Storage Capacity (Million ton)
Layer
1000 tons/day 2000 tons/day 4000 tons/day
2 16.98 15.16 12.41
4 13.33 12.78 11.69
6 12.78 12.97 13.15

43

The pressure buildup change at overall layers. This case can divides 7 layers

from top to bottom layer is shale switch sand respectively (Figure 3.9) and the

maximum pressures are 27.76, 30.66 and 32.39 MPa, respectively. When CO: is

injected into depleted oilfield will injection rate from 1000-4000 tons/day. The initial

pressure is 20.08, 22.13 and 24.07 MPa, respectively. Injection rate at 1000 tons/day,
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the injection pressure is 35 years and that formation will be shutin with shutin pressure

of 24.31 MPa in sixth layer. And then open the fourth layer, the final pressure at 50
years is 25.14 MPa.

The pressure build up for injection rate at 2000 and 4000 tons/day are present
in Table 4.4-4.5.
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Figure 4.4 FA-SS-35-04 overall layers

Table 4.4 The pressure buildup by period at overall layers

Initial Maximum Injection Time/Pressure buildup
Layer Pressure Pressure 1000 2000 4000
(MPa) (MPa) tons/day tons/day tons/day
50 years 50 years
2 20.08 27.76 -
27.61 MPa 27.60
50 years 36 years 16 years
4 22.13 30.66 Y y y
25.14 MPa | 26.71 MPa 26.62
35 years 18 years 9 years
6 24.07 32.29 y Y y
24.31 MPa | 24.37 MPa | 24.56 MPa




Table 4.5 The storage capacity when shutin well at overall layers

Layer Storage Capacity (Million ton)
1000 tons/day 2000 tons/day 4000 tons/day
2 - 30.32 28.18
4 17.92 26.04 24.76
6 12.76 13.39 13.75
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4.3.2 Radius of migration of CO, storage

The time period of CO> injection into 3 storage layers ranges from 1, 5, 10, 20
and 50 years at the injection rate from 1000 to 4000 tons/day. The results of radius of
migration as presents in Table 4.2-4.3 and Figure 4.1-4.4 for 2" layer, 4™ layer and 6"
layer and overall layers, respectively. At 4000 tons/day injection rate, the radius of
migration of the well FA-SS-35-04 will increase as pressure from injection increases.
Later, after shutting in well, it continues increasing until it reaches the maximum
pressure depending on depth and injection rate. Then, after year 10", the pressure
becomes lower, thus making radius of migration relatively smaller as well. In contrast,
at 1000 tons/day injection rate after shutting well, pressure keep increasing, as the
radius of migration. Therefore, the radius of migration after 50 years becomes layers.
The reason of the decrease of pressure and radius of migration is that the injection is
high and the formation has less time to reach equilibrium. When maximum pressure
has reached, the system adjusts itself to equilibrium for the whole formation. Therefore
the pressure is lower and the radius of migration becomes smaller. But for the ease for
lower injection rate, the system can adjust itself gradually. Consequently, the pressure

and the radius of migration keep increasing.
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Figure 4.7 FA-SS-35-04 in the sixth layer
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Furthermore This section parameters the simulation results of the effects of

parameters such as pressure buildup, injection rate, depth and radiuses of migration

with time changing with time 1, 2, 3, 4, 5, 10, 20 and 50 years as shown in Figure 4.9-

4.16 which are presented in 3D model and cross section view of FA-SS-35-04 area in

sixth layer at the rate of injection at 4000 tons/day. This model applies local grid

refinement (LGR) to shown more detail in layer of interest to the simulation model.

Migration of CO2 has changed clearly and in greater detail. Another results injection

rate will be shown in Appendix B.

Table 4.6 presents the radius of migration, area at the top layer and storage

capacity for each year for 2" layer as shown in Figure 4.9-4.16 for 1, 2, 3, 4, 5, 10, 20

and 50 years, respectively. In second layer, the expansion of the CO2 to the most

increases in the 10 years and after that, the expansion will decrease until 50 years.
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Table 4.6 The effects of parameters for second layer by period at injection rate 4000

tons/day
Storage
nt" _ _ CO; storage at
Radius (m) Area (m?) Capacity
Year . layer
(Million ton)
1 50.51 8034 1.46
2 84.07 22204.04 2.92
3 99 30790.75 4.38
4 111.44 39015.75 5.84
Top sublayer
5 121.18 46133.01 7.30
10 149.21 69943.24 12.41
20 148.3 69092.70 12.41
50 146.03 66993.71 12.41
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Table 4.7 presents the radius of migration, of area at top layer and storage
capacity for each year. In fourth layer, when the CO; injection starts, the expansion of
the CO; increases until year 10" after that the expansion will decrease until the end of
simulation at 50 years.

Table 4.7 The effects of parameters for fourth layer by period

Storage
nt" _ _ CO; storage at
Radius (m) Area (m?) Capacity
Year . layer
(Million ton)
1 53.3 8924.92 1.46
2 84 22167.08 2.92
3 103.47 33634.02 4.38
4 115.4 41837.09 5.84
Top sublayer
5 125.55 49520.3 7.30
10 152.09 79669.34 11.69
20 151.51 72116.14 11.69
50 150.05 70731.97 11.69
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Table 4.8 explains the radius of migration, of area at the 2" layer in 1% year and
at top layer in each year, storage capacity for sixth layer. Figure 4.25-4.32 as shown
CO2 migrations from injection for 1, 2, 3, 4, 5, 10, 20 and 50 years, respectively. The
sixth layer, when the CO- injection starts, the expansion of the CO; increases until year

20" after that the expansion will decrease until the end of simulation at 50 years.

Table 4.8 The effects of parameters for sixth layer by period

Storage
nt" _ _ CO; storage at
Radius (m) Area (m?) Capacity
Year . layer
(Million ton)
1 32.60 3338.76 1.46
2 43.84 6037.97 2.92
3 68.80 14870.54 4.38
4 83.00 21642.43 5.84
Top sublayer
5 93.55 27.493.97 7.30
10 126.44 50.224.87 13.15
20 130.29 53330.06 13.15
50 129.01 52287.35 13.15
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Table 4.9 presents the radius of migration, storage capacity for each year for
overall layer and of area at the top layer of 6" layer in 1, 2, 3, 4 and 5 years, at 4™ layer
in 10 years and in 20 and 50 years at 2" layer. In overall layer, when the CO; injection
starts, the expansion of the CO; increases until year 20" after that the expansion will

decrease until the end of simulation at 50 years.

Table 4.9 The effects of parameters for overall layer by period

Storage
nt" _ _ CO; storage at
Radius (m) Area (m?) Capacity
Year . layer
(Million ton)
1 24.58 1898.09 1.45 Top of 6™ layer
2 40.42 5132.66 2.90 Top of 6" layer
3 50.97 8161.67 4.35 Top of 6™ layer
4 59.24 11025.03 5.79 Top of 6™ layer
5 65.24 13371.43 7.24 Top of 6 layer
10 87.99 24322.96 14.29 Top of 4™ layer
20 89.06 24918.12 28.18 Top of 2" layer
50 86.11 23294.70 28.18 Top of 2" layer
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Figure 4.13 (a) 3D view, 5 year injection and (b) side view, 5 year injection
at 2465.83-2535.94 m.
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Figure 4.14 (a) 3D view, 10 year injection and (b) side view, 10 year injection
at 2465.83-2535.94 m.
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Figure 4.15 (a) 3D view, 20 year injection and (b) side view, 20 year injection
at 2465.83-2535.94 m.
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Figure 4.16 (a) 3D view, 50 year injection and (b) side view, 50 year injection
at 2465.83-2535.94 m.



CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

In this chapter, the effects of parameters for simulation of CO> storage in

depleted oil reservoir are concluded. The conclusions provide the possibilities of

CO:- storage by following conditions such as depth, injection rate, pressure buildup and

radius of migration to demonstrate the change in each layer. It divides the layer of

injection such as layer 2, 4, 6 and overall layers respectively. The conclusion and

recommendation can shown below;

5.1 Conclusions

When the depth increases the pressure, temperature and density are affected in
that these properties increase as depth increase because density increases and
volumes decreases.

Depth is related to the amount of CO; storage.

Fracture pressure indicates the highest value that doesn’t make caprock crack.
Maximum pressure indicates the maximum value that safety pressure at 90
percent of fracture pressure

Mostly, the trend of pressure buildup is going in the same direction during the
first injection for 2000 and 4000 tons/day injection rate. The pressure buildup
increased until the pressure buildup is near the maximum pressure and shutin
well. Then the pressure buildup is slightly increased. However, for 1000

tons/day injection rate pressure buildup will increase until 50 years.

The radius migration, the trend is same as the pressure buildup but the volume
in the each layer when CO- injection depends on the injection rate and pressure
buildup of storage layers.
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e In term of capacity and pressure buildup, the suitable inject rate is 1000
tons/day. However in term of number of working days on economic, 4000

tons/day is much better because it takes time less.

5.2 Recommendations

e This research studies the homogenous simulation model but heterogeneous
simulation model might be more realistic.

e The depth that the author’s choosing in the range of 800-3000 m. When it's
applied to the simulation models, it should be deeper than 1000 m. because the
depth affects the amount of CO; storage, it the more depth will make the
reservoir storage increased.

e Site selection is important. Therefore geology study should study further.
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APPENDIX A

This section explains for reservoir model construction by the use of CMG-GEM
reservoir simulator. The parameter used to reservoir model in base case condition is

follows:

Table A.1 Setting of builder reservoir simulator

Simulator GEM
Working Units S
Porosity Single Porosity

Table A.2 Setting data for 2", 4™ 6™ layers

ol FA-SS-35-04
(2", 41 6" layers)
Grid Type Cartesian
K Direction Down
Number of blocks (i x j x k) 35x35x8
Block widths in | direction 35x 10
Block widths in J direction 35x 10
Table A.3 Setting data for overall layers
Detail FA-SS-35-04
(overall layers)
Grid Type Cartesian
K Direction Down
Number of blocks (i X j x k) 35x35x8
Block widths in | direction 35x10
Block widths in J direction 35x10




Reservoir-Array properties

Table A.4 The FA-SS-35-04 at 2" layer.

Grid Top Grid ) Perm-I

(m) Thickness (m) Parosity (md)
whole 0.236
Layer 1 | 1856.23 263.65 0.1
Layer2 | 2119.88 6.86 150
Layer 3 | 2126.74 6.86 190
Layer4 | 2133.60 6.86 130
Layer5 | 2140.46 6.86 160
Layer 6 | 2147.32 6.86 180
Layer 7 | 2154.18 6.85 190
Layer8 | 2161.03 179.83 0.1

Table A.5 The FA-SS-35-04 at 4" layer.
Grid Top Grid ] Perm-I

(m) Thickness (m) Porosity (md)
whole 0.236
Layer1l | 2161.03 179.83 0.1
Layer2 | 2340.86 4.83 120
Layer 3 | 2345.69 4.83 140
Layer4 | 2350.52 4.83 130
Layer5 | 2355.35 4.83 150
Layer 6 | 2360.18 4.83 160
Layer 7 | 2365.01 4.81 190
Layer 8 | 2369.82 96.01 0.1

68



Table A.6 The FA-SS-35-04 at 6'" layer.

Grid Top Grid ] Perm-I

(m) Thickness (m) Porsity (md)
whole 0.236
Layer 1 | 2369.82 96.01 0.1
Layer2 | 2465.83 11.68 130
Layer 3 | 2477.52 11.68 150
Layer4 | 2489.20 11.68 190
Layer5 | 2500.88 11.68 170
Layer 6 | 2512.56 11.68 120
Layer 7 | 2524.24 11.70 190
Layer 8 | 2535.94 124.05 0.1

Table A.7 The FA-SS-35-04 at overall layers.
Grid Top Grid ) Perm-I

(m) Thickness (m) Porosity (md)
whole 0.236
Layer1 | 1856.23 263.65 0.1
Layer2 | 2119.88 41.15 170
Layer 3 | 2161.03 179.83 0.1
Layer4 | 2340.86 28.96 190
Layer5 | 2369.82 96.01 0.1
Layer 6 | 2465.83 35.05 180
Layer 7 | 2500.88 35.05 190
Layer 8 | 2535.94 124.05 0.1
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This section explains the simulation results changing with time 1, 5, 10, 20 and
50 years. It presented in 3D model and cross section view of FA-SS-35-04 area in

second layer, fourth layer, sixth layer and overall layers at the rate of injection at 1000

and 2000 tons/day are follows.

Table B 1. The effects of parameters for second layer by period at injection rate 1000

APPENDIX B

tons/day
nt" _ CO; storage at
Vear Radius (m) Area (m?) layer
1 24.23 1844.41
5 74.9 17624.37
10 100.55 31762.45 Top sublayer
20 124.1 48383.07
50 157.8 78228.30

Table B 2. The effects of parameters for second layer by period at injection rate 2000

tons/day
nth _ CO; storage at
Vear Radius (m) Area (m?) layer
1 56.61 10067.84
5 96.1 29013.27
10 114.31 41050.49 Top sublayer
20 151.59 72191.32
50 153.01 73551.16
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Table B 3. The effects of parameters for fourth layer by period at injection rate 1000

tons/day

nth . CO; storage at

Radius (m) Area (m?)
Year layer

1 31.92 3200.93

5 81.09 20657.82

10 104.17 34090.64 Top sublayer

20 130.11 53182.80

50 153.7 74216.01

Table B 4. The effects of parameters for fourth layer by period at injection rate 2000

tons/day

nth _ CO; storage at

Radius (m) Area (m?)
Year layer

1 40.81 5232.19

5 102.7 33135.29

10 129.9 53011.27 Top sublayer

20 154 74506.01

50 152.88 73426.23
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Table B 5. The effects of parameters for fourth layer by period at injection rate 4000

tons/day

Table B 6. The effects of parameters for sixth layer by period at injection rate 1000

tons/day

nth . CO; storage at

Radius (m) Area (m?)
Year layer

1 53.3 8924.92

5 84 22167.08

10 103.47 33634.02 Top sublayer

20 1154 41837.09

50 125.55 49520.3

nt" _ CO; storage at
Radius (m) Area (m?)
Year layer
1 16.9 897.27 5t sublayer
5 55.53 9687.36
10 78.3 19260.76
Top sublayer
20 102.65 33103.03
50 126.58 50336.16




Table B 7. The effects of parameters for sixth layer by period at injection rate 2000

tons/day
nth . CO; storage at
Radius (m) Area (m?)
Year layer
1 23.2 1690.93 5t sublayer
5 73.06 16769.08
10 100.5 31730.87
Top sublayer
20 128.57 51931.30
50 127.68 512114.82

Table B 8. The effects of parameters for sixth layer by period at injection rate 4000

tons/day
nth _ CO; storage at
Radius (m) Area (m?)
Year layer
1 32.6 3338.76 5t sublayer
5 43.84 6037.97
10 68.8 14870.54
Top sublayer
20 83 21642.43
50 93.55 27493.97
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Table B 9. The effects of parameters for overall layer by period at injection rate 1000

tons/day

nth . CO; storage at
Radius (m) Area (m?)
Year layer
1 12.86 519.56 Top of 7" layer
5 37.23 4354.48 Top of 6" layer
10 52 8494.87 Top of 6 layer
20 70.17 15468.66 Top of 6" layer
50 95.59 28706.14 Top of 4™ layer

Table B 10. The effects of parameters for overall layer by period at injection rate 2000

tons/day

nth _ CO; storage at
Radius (m) Area (m?)
Year layer
1 18.21 1041.77 Top of 7" layer
5 50.36 7967.49 Top of 6" layer
10 69 14957.12 Top of 6" layer
20 89.12 24951.71 Top of 6" layer
50 91.95 26561.55 Top of 4" layer
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Table B 11. The effects of parameters for overall layer by period at injection rate 4000

tons/day

nth . CO; storage at
Radius (m) Area (m?)
Year layer
1 24.58 1898.08 Top of 7" layer
5 65.15 13334.56 Top of 6™ layer
10 87.99 24322.96 Top of 6 layer
20 89.06 24918.12 Top of 6" layer
50 86.11 23294.70 Top of 6™ layer




FA-SS-35-04 at the rate of injection at 1000 tons/day
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Figure B 3 (a) 3D view, 10 year injection and (b) side view, 10 year injection
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Figure B 4 (a) 3D view, 20 year injection and (b) side view, 20 year injection
at. 2119.88-2161.03 m.
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Figure B 5 (a) 3D view, 50 year injection and (b) side view, 50 year injection
at. 2119.88-2161.03 m.
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Figure B 7 (a) 3D view, 5 year injection and (b) side view, 5 year injection
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Figure B 8 (a) 3D view, 10 year injection and (b) side view, 10 year injection

at. 2340.86-2369.82 m.

83



Gas Saturation 2035-01-01

Flke: 2015 05 31_SS04_3535%3 |
User: Wi 3 Pro
Dak: 111265

2 101

Gas Saturation 2035-01-01  J layer: 18

1.00

0.90

0.s0

070

060

Flle: 2015 03 31_5504_35358
User Wn3P
Date: 111258

Scale 12408
ZX:1.001

|Axis Units- m

T T T LML [ B L |
B (] 100 200 300 T
= N

. s
-5 E_
E o i
r W I - | I I Y P O 7
- 4
B 31000%et .
L 10000meters |

N — )

r 0 100 200 300 b
& | BN I [ £ | I (N . I S ] T ] I o LI P ] T e BN Y | I { Y DA N0 Y O Y T L | I 1 I O O TG IR D s [ I =

Figure B 9 (a) 3D view, 20 year injection and (b) side view, 20 year injection

at. 2340.86-2369.82 m.
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Figure B 11 (a) 3D view, 1 year injection and (b) side view, 1 year injection

at. 2465.83-2535.94 m.
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Figure B 12 (a) 3D view, 5 year injection and (b) side view, 5 year injection

at. 2465.83-2535.94 m.
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Figure B 13 (a) 3D view, 10 year injection and (b) side view, 10 year injection

at. 2465.83-2535.94 m.
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Figure B 14 (a) 3D view, 20 year injection and (b) side view, 20 year injection

at. 2465.83-2535.94 m.
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Gas Saturation 2020-01-01
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Gas Saturation 2025-01-01
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Gas Saturation 2035-01-01

Flie: 2015 03 27 _35355_ 10001y
Usger: Wi 8Pro
Dak: 1712658

2 101

Gas Saturation 2035-01-01  J layer: 18

1.00

0.90

0.s0

070

060

0.50

0.30

0.20

0.00

o5

o'z

1114

o'z

(11564

o'z

lﬂl”llll}!‘llll]ﬂl
l

(11554

e

IIIIIIIIlll|I|IIIIllIll|IIIIIlllI|IIIIIIIIl]lIIIIllIIIIIIIIIIlllllIIIIIIlllllllllllll”lllllllll

=300 -200 -100 Q 100 200 300 am 500
1 1 1 1

#
8
i

250 2,400 270 220 2,10 2pm 180 140

250

¥R FETTRTERTI RATRITRTE FERRTRATN] FARTRRITN FRTERTNRTI RUTRTTRTTE FARATRETN FRTATRITNI RUTERARRAINT

Figure B 19 (a) 3D view, 20 year injection and (b) side view, 20 year injection

at. all layer

Flle: 2015 05 27_35355_1000%
User Win3Pr
Date: 111258

[Scale 16350
2% 1.001

|Axis Units- m

1.00

0.0

0.80

0.50

‘-

0.40

0.20

0.20

0.00

94



Gas Saturation 2065-01-01
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FA-SS-35-04 at the rate of injection at 2000 tons/day
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Gas Saturation 2025-01-01
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Figure B 23 (a) 3D view, 10 year injection and (b) side view, 10 year injection

at. 2119.88-2161.03 m.
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Gas Saturation 2035-01-01
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Figure B 24 (a) 3D view, 20 year injection and (b) side view, 20 year injection

at. 2119.88-2161.03 m.

AR I L N R R RN R RN R R e
- -100 [ 100 200 30 400 o |user wnseo  ~ ]
F " N e

E ] [see 1388

= J [zx 1001

c J |assvarsm

B8 ]

B L

Lo 8 1

T 5o

E4 ]

- 8

. 8]

g 2500 oz G

E 7500 15000mesers |

= W) -

= -100 0 100 200 300 40 50 ]
—lI|I[ll||IIlllI|IIlI||||lllI|IIlll|||IlI|||Illl|IIIll|||lll||||[ll||||llll—

99



100

Gas Saturation 2065-01-01

Toud] Flke: 2015 05 31_SS04_3535%3 |
User: Wi 3 Pro
Dak: 111265

2 101

1.00

0.90

0.s0

070

060

Gas Saturation 2065-01-01  J layer: 18

A L RN R R RS R RN R | eeerrrrrponpes
- -100 [ 100 200 30 400 o |user wnseo  ~ ]
- " N e

E ] [see 1388

= J [zx 1001

F ] [aesvarem

& &

B L

Lo 8 1

T 5o

: ED AEIENENNEEE SEEEEEENNEE o :

£ &l

- 8

g g

g 2500 oz G

E 7500 15000mesers |

= W) -

E -100 0 100 200 300 40 50 ]
—IIIIlll||IIlllI|IIlI||||lllI|IIllll||IlI|||Illl|IIIll|||lll||||[ll||||llll—

Figure B 25 (a) 3D view, 50 year injection and (b) side view, 50 year injection
at. 2119.88-2161.03 m.
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Figure B 26 (a) 3D view, 1 year injection and (b) side view, 1 year injection
at. 2340.86-2369.82 m.
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Figure B 27 (a) 3D view, 5 year injection and (b) side view, 5 year injection

at. 2340.86-2369.82 m.

Flle: 2015 03 31_5504_35358
User Wn3P
Date: 111258

Scale 12409
ZX:1.001

|Axis Units- m

102



Gas Saturation 2025-01-01
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Figure B 28 (a) 3D view, 10 year injection and (b) side view, 10 year injection

at. 2340.86-2369.82 m.
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Figure B 29 (a) 3D view, 20 year injection and (b) side view, 20 year injection
at. 2340.86-2369.82 m.
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Figure B 30 (a) 3D view, 50 year injection and (b) side view, 50 year injection

at. 2340.86-2369.82 m.
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Gas Saturation 2016-01-01
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Figure B 31 (a) 3D view, 1 year injection and (b) side view, 1 year injection

at. 2465.83-2535.94 m.
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Figure B 32 (a) 3D view, 5 year injection and (b) side view, 5 year injection

at. 2465.83-2535.94 m.
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Figure B 33 (a) 3D view, 10 year injection and (b) side view, 10 year injection
at. 2465.83-2535.94 m.
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Figure B 34 (a) 3D view, 20 year injection and (b) side view, 20 year injection
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Figure B 35 (a) 3D view, 50 year injection and (b) side view, 50 year injection
at. 2465.83-2535.94 m.
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Figure B 36 (a) 3D view, 1 year injection and (b) side view, 1 year injection
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Figure B 38 (a) 3D view, 10 year injection and (b) side view, 10 year injection
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Figure B 39 (a) 3D view, 20 year injection and (b) side view, 20 year injection

at. all layer
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Gas Saturation 2065-01-01
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FA-SS-35-04 at the rate of injection at 4000 tons/day
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Figure B 41 (a) 3D view, 1 year injection and (b) side view, 1 year injection
at. 2119.88-2161.03 m.
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Figure B 42 (a) 3D view, 5 year injection and (b) side view, 5 year injection

at. 2119.88-2161.03 m.
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Figure B 43 (a) 3D view, 10 year injection and (b) side view, 10 year injection
at. 2119.88-2161.03 m.



Gas Saturation 2035-01-01

Flke: 2015 05 31_SS04_3535%3 |

User: Wi 3 Pro
Dat: 111268
2o 1m0t
1.00
0.90
0.80
070
0.60
0.50
0.40
0.30
0.20
0.10
0.00
Gas Saturation 2035-01-01  J layer: 18
FTTTTTTTT IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII]IIIIIIIII TTTH Flle- 20150831 SS04 35358,
- -100 [ 100 200 300 400 o |user wnseo  ~ ]
e NY - |D=te 111258
E ] [see 1388
= J [zx 1001
|- - |Ads Units:m
B8 ]
B L
- !: =] :
T o
: i eI NN :
E4 ]
8 8
. &
g 2500 19000 %et E—_
= 7500 15000mesers |
= W) -
E -100 0 100 200 300 40 50 &
—l f i o e B I B S I VEN B e B o o B B | I J S I N BN B B o s I { E I B ) N BN | I ¥l o i B I ) S I I B B B S B T | lI BN BN B B B i I (LA I—

Figure B 44 (a) 3D view, 20 year injection and (b) side view, 20 year injection

at. 2119.88-2161.03 m.

119



Gas Saturation 2065-01-01

Flke: 2015 05 31_SS04_3535%3 |

Gas Saturation 2065-01-01  J layer: 18

User: Wi 3 Pro

Dak: 1712658

2 101
1.00
0.90
0.s0
070

060

Figure B 45 (a) 3D view, 50 year injection and (b) side view, 50 year injection

at. 2119.88-2161.03 m.
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Figure B 46 (a) 3D view, 1 year injection and (b) side view, 1 year injection

at. 2340.86-2369.82 m.
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Figure B 47 (a) 3D view, 5 year injection and (b) side view, 5 year injection

at. 2340.86-2369.82 m.
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Figure B 49 (a) 3D view, 20 year injection and (b) side view, 20 year injection
at. 2340.86-2369.82 m.
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Figure B 50 (a) 3D view, 50 year injection and (b) side view, 50 year injection
at. 2340.86-2369.82 m.
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Figure B 51 (a) 3D view, 1 year injection and (b) side view, 1 year injection

at. all layer.
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Figure B 52 (a) 3D view, 5 year injection and (b) side view, 5 year injection

at. all layer
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Figure B 53 (a) 3D view, 10 year injection and (b) side view, 10 year injection

at. all layer
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Figure B 54 (a) 3D view, 20 year injection and (b) side view, 20 year injection
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