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Chapter 1

INTRODUCTION

In an information age, data has been generated at an amazing rate. It is
estimated that in the year 2009, nearly all sectors in US economy had at least an
average of 200 terabytes of stored data per company with more than 1000
employees [10]. A voluminous amount of data can be beneficial to analysts who can
utilize it. To extract information from the raw data, data mining techniques are used.

Cluster analysis plays an important role in a wide variety of fields: social
science, biology, statistic, pattern recognition, machine learning, and data mining. It
divides a dataset into groups that are meaningful. The clusters should capture the
structure of the dataset. In some cases, cluster analysis is a useful starting point for
other processes.

A concept of meaningful groups of instances that share the common
characteristics plays role in how people view and describe the world. Dividing objects
into groups has never been a problem for human. For example, one can easily group
people of the same age together. While grouping using computer is not so obvious.
Hence, a clustering algorithm using computer has been developed.

In many applications, the notion of a cluster is not well-defined and can be
related to other techniques that are used to divide a dataset into groups. For
example, a clustering algorithm can be regarded as a form of classification in that it
labels objects with class. However, it derives these labels only from the dataset
itself. In contrast, a classification is supervised learning that learn to label class
instances. For this reason, a clustering algorithm is referred to as an unsupervised

learning [2].



There are several clustering algorithms used by data scientists. They can be
categorized into four main types: hierarchical, partitioning, density based, and grid
based. Each type of clustering algorithms is explained next.

The first category is the hierarchical algorithm [13]. It builds a tree of clusters
based on a bottom-up and a top-down method. A bottom-up method starts with a
single point forming a cluster and merges two or more clusters to form a new one. A
top-down method starts with one cluster containing all instances then it splits into
several clusters according to some criteria. The process continues until a stopping
criterion is met. The algorithm has flexibility in the level of granularity and can work
on any attribute type. However, a user must set a parameter to control the result.

Next category is a partitioning based clustering algorithm, which divides a
dataset into several groups. K-means clustering algorithm [8] is one of the oldest and
widely used clustering algorithms. The objects that are close together are more
similar, hence they should be grouped into the same cluster. The K-means clustering
algorithm starts with K initial centroids, where K is a user-specified parameter. Each
instance is assigned to the closest centroid. The centroid of each cluster is then
updated based on all points assigned to the cluster until the centroid remains the
same. Due to the popularity of the K-means, it is used as the standard comparison
technique.

The third category is the density based method. The implementation of a
density based clustering algorithm is to partition finite set of instances using concept
of density, connectivity, and boundary. The most used density based clustering
algorithm is DBSCAN [5, 8]. It is a density-based clustering that locates region of high
density separated from one another by a region of low density. The density of any
point depends on the specific radius, eps. DBSCAN can be explained using the
following notations. A point is a core point if its neighbor exceeds a certain threshold,
MinPts. A border point has the number of neighbors less than MinPts, but falls within
the neighborhood of a core point. A noise point is any point that is neither a core
point nor a border point. Given the definitions of the core point, the border
point, and the noise point, DBSCAN algorithm can be described as follows. First, it

labels all points as core, border, or noise points by their definitions. Noise points



need to be eliminated. The core points that are connected with other core points
and border points are considered to be in the same group. It identifies a group of
connected core points or border points as a single cluster.

A g¢rid based algorithm as the last category deals with data using the
multirectangular segments [6]. It is a space partitioning method. A segment is a direct
cartesian product of the individual attribute sub-ranges as units. The instances that
are in units having similar density in their neighbor are considered to be in the same
group.

In this thesis, a new clustering algorithm Bi-orbital extreme pole clustering
algorithm is proposed (BOEP). BOEP is based on the extreme poles, which is also
used in the half-orbital extreme pole clustering algorithm (HOEP) [1]. HOEP was
proposed by Kaveelerdpotjana, et al. and used the fundamental idea from a multi-
attribute frame. The multi-attribute frame uses two furthest pair of instances in the
datasets (extreme poles) to build the core-vector. All instances in the dataset lie
within the frame created from the core-vector and the extreme poles. Using this
idea, HOEP partitions the dataset into bins and then creates a histogram based on
number of instances in each bin. The histogram is used to partition instances into
groups at a low frequency bin from the furthest end of the pole.

Research objective

The goal of the research is to create a new clustering algorithm based on the
extreme pole concept. The algorithm is named bi-orbital extreme pole clustering
algorithm (BOEP) from the usage of secondary dimension information. BOEP is
compared with other popular existing clustering algorithms using S,.. and H,,. as their

performance measures.



Thesis overview

The rest of the thesis is organized as follows. In chapter 2, notations, basic
knowledge, and background of clustering algorithm are explained. Also, some of the
popular clustering algorithms are shown. Next, the fundamental concepts used in the
bi-orbital and extreme pole clustering algorithm are shown in chapter 3. The result
on the simulated datasets and UC| datasets are on chapter 4. Lastly, the summaries

and discussion are in chapter 5.



Chapter 2

BACKGROUND KNOWLEDGE

This chapter covers the background knowledge for this thesis which is split
into three parts. First, the basic definitions are explained. Second, the clustering
concept and algorithms from literatures are explained. Third, the literature review on

HOEP that inspired the idea of this thesis is described.

Notations: Let

- R be a set of real numbers;

- N be the number of all instances in a dataset;

- x; = (222, .., x%) be the i instance, having d-dimension for all
i=12,..,N,

- S ={x4,x,,..., x5} be the set of all instances;

- E be the Euclidean space;

- D(x,y) be the distance function between instances x and y;

- py and p, be the farthest pair of S called extreme poles;

- q4(i) and g, (i) be the secondary extreme poles inside it" bin layer;

- cen be the centroid of a group of instances;

- C;be the i*" cluster;

- d be the multiplier of the length of connected centroids;

- bin(i) be the i*" bin layer of a histogram;

- MinPts be the integer value representing the minimum points for a core;

- NeighborPts be the integer value representing the points around an
interested point;

- Eps be the radius that instances that are within the range of Eps
considered as NeighborPts;

- K be a kernel in mean-shift clustering algorithm;



The notations above are used throughout this thesis. Next, the definitions of

necessary concepts are explained.

Vector space

A dataset is a collection of points, which are objects belonging to a space.
The components of the vector are commonly called coordinates of the represented
points.

A space for which we perform a cluster analysis has a distance measure,
which gives a distance between any two points in the space. A Euclidean structure
allows us to deal with metric notions such as orthogonally and length (or distance).
First, the Euclidean structure is defined on a vector space.

Definition: A real vector space E is a Euclidean space if and only if it is
equipped with a symmetric bilinear form @:E X E - R which is also positive
definite, where @ (u,u) > 0, for every u # 0.

More explicitly, ¢: E X E — R satisfies the following axioms:

Py + uy,v) = @(uyg, v) + @(uy, v),
o, vy +v2) = o(u,v1) + o(u, vy),
oA, v) = 1o(u,v),
o(u, Av) = 2p(u,v),
o, v) = p(v,u),
u # 0 implies that ¢ (u, u) > 0.

The common Euclidean distance is a function that satisfies the metric definition.

Metric

Comparing similarity between instances is done using a measurement
function. The distance between two instances x; and Xj, D(xi,xj), is called a metric
distance measure.

Definition: Let B be an arbitrary set in a Euclidean space. A function
D:R™ X R™ - R U {0} is a metric if the following conditions are satisfied for all
x,y,z € R".

1. Positiveness: D(x,y) > 0if x # y,and D(x,y) = 0if and only if x = y.

2. Symmetry: D(x,y) = D(y, x).



3. Triangle inequality: D(x,z) < D(x,y) + D(y,z)
A metric space is a set with a metric on it. In other words, a metric space is a

pair (B, D) where D is a metric on B. Elements of B are called instances.

D(x,y) is referred to the distance between instances x and y.

The most well-known is the Minkovski distance:

n
1
k k\a\g
D(x %) = O (xk = %P7
k=1
Throughout this thesis, this metric measurement is used and the value q is chosen as

2, or better known as the Euclidean distance.

Centroid

A centroid is a mean of positional coordinates of instances in a group. It is
considered as a representation of a group. Below is an example of centroid of a

dataset of four instances.

Table 2.1: Instances of four people showing their heights and weights

Name Height(cm) Weight(kg)
Chalee 181 70
Manee 150 a5
Meena 165 65
Sudjai 160 80

Table 2.1 shows the heights and the weights of four people. The centroid is a
vector of the mean heights and the mean of weights.

Table 2.2: Centroid of the dataset

Height(cm) Weight(kg)

Centroid 164 65




Below is the illustration of the dataset on two-dimensional space. The horizontal axis

represents the height and the vertical axis represents the weight. The dataset is

plotted in “*” and the centroid is in “0”.
™ I T T I I T
80 - * -
70 - *
O%
60 T
50 - T
Lo * L I RS R T R T Ly v o0 1y P M| ]
150 155 160 165 170 175 180
Figure 2.1: Illustration of centroid of four instances in the dataset
Linkage

The main decision to make when using hierarchical clustering [13] is the
distance criterion between groups. There are several ways to describe such distances.

Below are examples of description of distance between groups.
Single-linkage

The Single-linkage criterion: hierarchical clustering merges groups based on

the shortest distance over all possible pairs. That is

Dist-SingleLink (C;, ;) = minxqecixlecj, D(xgq, x1).



Complete-linkage

The complete-linkage criterion: Rather than choosing the shortest distance, in
complete-linkage clustering the distance between two groups is determined by the
largest distance over all possible pairs. That is

Dist-CompleteLink (C;, C;) = MaXy ecoxec; D(xgq, x1).
Average-linkage
The average-linkage criterion: Rather than using the smallest or largest

distance, when using the average-linkage criterion, we average over all possible pairs

between groups. That is

Dist-AverageLink (C;, ;) = 21:1 |q:|1 D(xg, x)).

Ic;lic|

Histogram

A histogram is a graphical representation of an estimated distribution of a
dataset. A histogram divides the entire range of values from a single numeric
attribute into a series of non-overlap adjacent intervals called “bin”, then it
determines the number of values within each interval. Usually, each bin has the
same size. The rectangle is constructed over the bin with the height proportional to
the number of cases in each bin.

The number of suitable bins depends solely on a user. However, some
statisticians have suggested the optimal number of bins. One of them is the Sturges’

formula.

Sturges’ formula

Herbert Sturges considered an idealized frequency histogram with k bins
where the it bin count is the binomial coefficient (kzl),i =01,..,k—1. As k
increases, this ideal frequency histogram approaches the shape of a normal

distribution. The total sample size is n = Z{-‘z_ol(klfl) = (14 1)kt =2%1 py the
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binomial expansion. So the number of classes to choose when constructing a

histogram from a normal data is k = 1 + log, n. This is called sturges’ rule [7].

Kernel

The mean-shift clustering algorithm [2] is @ mode-seeking process on a surface
constructed with a kernel. Hence, the definition and notation of the kernel is
explained in this section.

Definition: Let E be the n-dimensional Euclidean space, R™. Denote its ith
component of x € E by x%. The norm of x € E is a nonnegative number ||x|| such
that ||x||? = ?=1|xi|2. The inner product of x and y in E is {x,y) = Y%, x y. A
function K: E = R is said to be a kernel if there exists a profile w: [0, 0] = R, such

that
K(x) = w(llx|})?
and

1. w is nonnegative
2. w is non-increasing: w(a) = w(b) ifa < b
3. w is piecewise continuous and fooow(r)dr < oo

Kernel example: the unit Gaussian kernel

G(x) = e W%,
The two dimensional unit Gaussian kernel is illustrated in Figure 2.2.

Figure 2.2: the unit Gaussian kernel
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Extreme poles and the core-vector

The idea of extreme poles came from the multi-attributed frame, which is
proposed in the “Network intrusion detection by using multi-attributed frame
decision tree” [12]. This paper suggests the new approach of a decision tree which is
one of algorithms in classification. It uses an idea of the farthest pair, which is a pair
of two instances that have the maximum distance, to limit the considered region.
The first step is finding the farthest pair which is called the extreme poles. After
finding the farthest pair, the vector core is created from this pair. Consequently, there
are two lines perpendicular with the vector core at the poles and the region of
instances is partitioned into three sub regions: right region, middle region, and left

region in figure 2.3.

Middle region

Left region Right region

Figure 2.3: Three sub regions

Since the vector core is generated from the two extreme poles that have the
largest distance, this guarantee that all instances lie in the middle region. After that,

all instances are projected onto this core. Hence, an instance is represented by a



12

single value, and then the splitting point is found so that all instances in the middle
region will be divided into specified class and unspecified class. The algorithm is
conducted recursively with the unspecified class until the stopping criteria are met.
The concept of the farthest pair of the same class represents the border of
this class along the core-vector. For example, a dataset with two target classes called
positive and negative has both poles as positive. Then no positive instance lies in the
richt and the left regions: all instances in the right and the left regions are negative
instances. On the other hand, if both poles are negative, there is also no negative
instance that lies in the right and the left regions. Moreover, if the target classes of
two extreme poles are different, the target class in the right and the left regions can
be still guaranteed. By the properties of the farthest pair, the target class of instances
in the right region is not the same as the target class of the right pole. Similarly, the
target class of instances in the left region is not the same as the target class of the
left pole. In other words, we can always guarantee the target class of all instances in
the right and the left regions. So there is only the middle region left to be

considered.

Clustering algorithm

In this subsection, well-known clustering algorithms of each type are

explained.

Hierarchical clustering algorithm

In data mining, an hierarchical clustering algorithm [13] is a method of cluster
analysis that builds hierarchy of clusters. Generally, there are two approaches.

Agglomerative: A bottom up approach starts in its own cluster and pairs of
clusters are merged.

Divisive: A top down approach starts with one single cluster then divides into

several clusters using the splitting criteria.
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Simple hierarchical agglomerative clustering algorithm pseudo code:
INPUT: S ={x,x3,..,xy} 1S the set of real vector,x; be the
it" instance, Group-wise distance Dist(G,G").
OUTPUT: Clusters of instances: (;,C,,...,Ck

1A=0 >Active set starts out empty

2 for n=1,..,N do

3 A=AUS >Add each instances as its own
cluster

4 end for

5 while |4| >1 do

6 G;,G; = argmin Dist(Gy,G,) >Choose a pair in A with

best distance
7 A = (A\{GiD\{G;} >remove each from active set
8 A=AU{GuG;} >add union from active cup
9 end while

K-means clustering algorithm

K-means clustering algorithm [7] aims to group instances based on attributes
into k number of groups. k is a positive integer input by a user. The grouping is done
by minimizing the sum of square of the distance between instances and the
corresponding cluster centroid. The objective of K-means clustering is to minimize
the total intra-cluster variance, or, the squared error function:

kK N
Sef = Z Z D(xl.(]), cen;)?

j=11i=1

where k is the total number of clusters, N is the number of instances, cen; is the

centroid for the cluster C;.
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K-means Pseudo code:

INPUT: S ={x,x3,..,xy} 1S the set of real vector,x; be the
it" instance,k is the number of pre-determined number of
cluster.

OUTPUT: Clusters of instances: C,,Cs,...,Ck

1 Clusters the data into k groups where k 1is predefined.

2 Select k points at random as cluster centers.

3 Assign objects to their closest cluster center
according to the Euclidean distance function.

4 Calculate the centroid or mean of all objects in each
cluster.

5 Repeat steps 2, 3 and 4 until the same points are
assigned to each cluster in consecutive rounds.

K-Means algorithm is relatively an efficient method. However, a user needs to
specify the number of clusters in advance and the final results are sensitive to
initialization and often terminates at a local optimum. Unfortunately there is no
global theoretical method to find the optimal number of clusters. A practical
approach is to compare the outcomes of multiple runs by varying k and chooses the
best one based on a predefined measure. In general, a large k probably decreases

the error but increases the risk of over fitting.
Example of K-means

In this example, k-means algorithm uses 3 random centroids. In the first
round, instances are assigned to the closest centroids. After instances are assigned to
a centroid, the centroid is updated. In the second round, instances are assigned to

the updated centroids, and the centroids are updated again.

In round 2, 3, and 4, which are shown in Figure 2.4 (b),(c),(d) respectively, one
centroid move from the top cluster to the lower right one. K-means algorithm
terminated in Figure 2.4 (d), because no more change occur, the centroids have

identified the grouping of instances.
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Figure 2.4: K-means algorithm finds three clusters in sample dataset

DBSCAN

The DBSCAN algorithm was introduced by Ester, et al [5], and relies on a
density-based notion of clusters. Clusters are identified by investigating the density of
instances. The region with high density of instances depicts the existence of clusters
whereas the region with low density of instances indicates noises or outliers. The
algorithm is suited to deal with noises and is able to identify clusters with difference
sizes and shapes.

In DBSCAN, the density of instances depends on a specific radius. For
example, if the radius is too large then all points will have a density of N, which is
the total number of instances in the dataset. If the radius is too small then all points
will have the density of 1.

The approach of DBSCAN needs the following definitions describing each type

of instances.
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Core points: An instance is a core point if the number of points within a given
neighborhood around the point as determined by the distance function and a user
specific distance parameter, Eps, and the number of points exceeds a certain
threshold, MinPts, which is also a user input parameter.

Border points: A border point is not a core point but fall within the
neighborhood of a core point.

Noise points: A noise point is any point that is neither a core point nor a

border point.

Noise point

Core point

Figure 2.5: Noise point, Border point, and Core point

DBSCAN Pseudocode:

INPUT: S ={x;,x, ..,xy} 1s the set of real vector,x; be the it"
instance, eps, MinPts.
OUTPUT: Clusters of instances: (;,C,,...,Ck
1 DBSCAN(S, eps, MinPts)
2 C=20
3 for each unvisited point P in dataset D mark P as
visited
4 NeighborPts = regionQuery(P, eps)
5 if sizeof(NeighborPts) < MinPts
omark P as NOISE
7 else
8 C = next cluster
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Half-orbital extreme poles clustering algorithm

The half-orbital extreme poles clustering algorithm (HOEP) [1] is a clustering
algorithm that utilized the extreme poles and the core-vector. HOEP divides the
core-vector into bins and counts the number of instances inside each bin to create a
histogram. Based on the histogram, HOEP uses the user input parameter y to
determine the splitting location. If there is a histogram bin that has lower value than
¥, HOEP will mark instances from the selected pole to the splitting bin as a cluster.

The algorithm iterates until there is no non-clustered instances.

Pseudo code

INPUT: D = {x;,x;,..,xy} 1S the set of real vector,x; be the i"
instance, parameter y.
OUTPUT: Clusters of instances: (;,C,,...,Ck

1S=D, k=0and ¢, =0

2 Create distance matrix

3 Find extreme poles p,and p,in S

4 Construct a vector core v, calculate the number of
intervals n, and divide it into n intervals

5 Set ¢ = p,as the center of the balls

6 Fori=1,..,n. determine fiand f.

7 If there exists an interval j such that f/ <y andf’; >
y and £ > y for
all r<j create splitting point
® o
® ®
P,
™ o
& ® O
P, @ ° Extreme pole

Extreme pole . ®
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Figure 2.6: HOEP algorithm

Mean-shift smoothing algorithm

The mean-shift smoothing algorithm [2] is designed to reduce noises of data.
However, the technique can be used as a clustering algorithm as well. In this thesis,
an one dimensional mean-shift clustering algorithm is used to find the clusters within
each bin. The mean-shift clustering algorithm is a clustering technique that does not
constrain the shape of the clusters. The algorithm uses iterative process to shift each
instance to the average of its neighborhood. Because the dataset is segmented into
bins, they can be viewed as the one-dimensional data using the one-dimensional
mean-shift smoothing algorithm. The kernel used is a normal distributed kernel. The

kernel density estimator is as follow

fG) = tE KED.

“h
where, h, is the radius of the kernel.
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.
U LY

Figure 2.7: Illustration of the kernel density estimator on the one-dimensional space.
The mean-shift algorithm can be thought of as a fixed-point iteration:

1 Compute the mean-shift vector:
E?’=1_xik’ xxi)®
m(x; (1)) = — ([[_gi |2| )— X
s, -w(5)
2 Translate the density estimation window: x;(z+1) =
x;(7) + m(x;(7)) .
3 Iterate step 1, 2 until convergence.




21

Figure 2.8: Mean shift procedure. Starting at the data point x;, the mean shift
procedure is executed to find the stationary points of the density function. Subscripts
denote the mean shift iterations, the shaded and the black dots denote the input
data points and the successive window centers, respectively, and the dotted circles

denote the density estimation windows.
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Chapter 3

BI-ORBITAL EXTREME POLE CLUSTERING ALGORITHM

The name bi-orbital came from the usage of two hierarchies of the extreme
poles. The first hierarchy is the primary extreme poles, which are two furthest pair of
instances in a dataset. The second hierarchy is the second dimension in the form of
mean-shift clusters in each bin. In this chapter, the main algorithm of BOEP is

described.

Bi-orbital extreme pole clustering algorithm

The bi-orbital extreme pole clustering algorithm uses the extreme poles as a
basis. All instances are assigned into bins based on the distance from the extreme
poles. The algorithm then performs the one-dimensional mean-shift smoothing
algorithm to find the groups within each bin. The groups are linked together if they
are within the defined distance of other groups. The linked groups are considered to
be in the same cluster.

The input of BOEP is the dataset, unless a user specifies the split ratio.

INPUT: § = {x1, X3, ..., Xy } is the set of real vectors.

OUTPUT: k is the number of instance and {Cy, Cs, ..., Ci.} are Clusters of instances.
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Figure 3: From the distance matrix, two extreme poles p; and p, is found

First, BOEP runs on the input dataset, S. Next, a distance matrix is created
based on the Euclidean distance. The extreme poles are then identified as p; and
p2. The distance between the extreme poles is calculated and then divided into n
equally size bins using Sturges’ rule. After that, BOEP assigns each instance into bins
based on the distance from the poles. The distance of instances from the pole are
projected so that the algorithm gives out the same result whether starting from p; or

p2.
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Figure 3.1: BOEP bin section

Inside each bin, BOEP considered instances inside it as a one-dimensional
data using the one-dimensional mean-shift clustering algorithm to group data. Where,
the kernel estimator is f(x) = %Z?zl K(x — x;). In this thesis, the kernel is the
normal distributed kernel. Then BOEP performs the mean-shift algorithm by letting
my be the starting maximum, m;,; = m; +%Z?=1VK(x—xi) until m does not

change.

& @

Figure 3.2: 1-dimensional Mean-shift clustering algorithm with normal distributed

kernel estimator
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Figure 3.4: Linked centroids algorithm in BOEP from (a) to (f) working from the first bin
to the last

Figure 3.5: Instances that have their representative centroids too far apart are split

After the mean-shift algorithm is done, BOEP identifies the centroids of each
group. Next, BOEP assumes that the pole p; is the starting centroid of the first
cluster. After that, BOEP calculates the distance between all centroids in bin number
1 and the pole, p;. If the distance between p; and the centroids are less than the
width of the bin time d where d is the split ratio then merge all instances
correspond to those centroids with p;. The centroids that are not merged are
considered to be on a different cluster and are considered as starting centroids for
the new clusters. Next, BOEP calculates the distance between centroids in bin

number 2 and the centroids from the established clusters from the previous bin. If
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the centroids in the bin number 2 met the same criteria, then all instances
correspond to the centroids in the bin number 2 are merge with the original cluster.
BOEP works from the bin number 1 to the bin number n. The algorithm stops when
there is no merging happen or all centroids are assigned with their own cluster.

The split ratio, d indicates the distance that the user want to split groups of
instances. Although, the user can freely choose d the default number d in this thesis

is from the result in chapter 4, which is 1.4.

Pseudo code

Input: S ={x;,x,,..,xy} 1s the set of real vectors.
Parameter y is the ratio of the number of insignificant
instances by the total number of instances. (default 1is
set to 0.05).

Output: k is the number of clusters found and clusters of
instances: C,,C,,...,Cy

1: Create distance matrix M

2: k=1

3: Find primary extreme poles p,and p, from S,
compute D(p,,p,) = max_dis.

4: Calculate the number of intervals nusing Sturge’s
rule, and divide distance between poles into n intervals.

5: For i=1,..,n determine f;, where
fi = #instance in bin(i)/N

6: If there exists an interval j such that f; <y and
fisxa>y and f. >y for all r<j. Mark this bin as a
splitting interval.

7: Find the secondary extreme pole g¢;(1) and q;(2)

8: Perform step 4 and the mean-shift smoothing
algorithm.

9: From the grouped data in each bin, calculate the
centroid of instances as cen’ where p'™ is the group
number, " is the bin number.

10: For i=1,..,n—1 connect two adjacent centroids if
maxd5 £or all j in bin(i) and for all [ in

bin(i+1). Assign instances belonging to the connected

|cen{ —cenl,{| < d x
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centroids in C,. If there are centroids that are not
linked and have a small number of instances, then they
are marked as outliers.

11. Repeat until there is a disconnected component
then k=k+1. Perform until all centroids are either
connected or marked as outliers.

The split ratio d implicitly controls the number of clusters. If two centroids
have the distance greater than the ratio of d multiplied by the width of the primary

bins, then two groups represented by each centroid are not connected.
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Chapter 4

RESULTS

In order to compare the performance of our algorithm, two sets of the
datasets are used to compare BOEP with other algorithms. The first set is the
simulated dataset using the multivariate normal distribution. Each experiment runs
on 30 datasets. Each time, the dataset is re-randomized. The second datasets are the
UCI standard datasets, namely IRIS, WINE, and E-COLI. The performance measures

used in this thesis are introduced in this chapter as well.

Performance measure
Homogeneity and separation

Generally, the performance measure of a clustering algorithm is subjective as
it depends on the technique used. This thesis uses the cluster homogeneity and the
cluster separation, since they reflect the fundamental aspects of a good cluster, its
tightness and its separation. The two indices are implemented as suggested by
Shamir and Sharan [11]: homogeneity and separation. Homogeneity is calculated as
the average distance between each instance and the centroid of the cluster it

belongs to. That is,
1
Hype = Nz D(gir C(gi));
i

where g; is the it" instance and C(g;) is the centroid of the cluster that g; belongs
to; N is the total number of instances; D is the distance function.
Separation is calculated as the weighted average distances between cluster

centroids:
1

Sppe = N-.N-.D(g;,g;),
ave Zi:thCiNCj £ Ci*'C; (gl g])
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where C; and C; are the centroids of it" and j*™" clusters, and N¢, and NC]. are the
number of instances in the i*" and j& clusters. Thus Hgye reflects the compactness
of the clusters while S, reflects the overall distances between clusters. Decreasing

H e Or increasing Sgpe suggests the improvement in the clustering results.

Accuracy

In this thesis, the simulated datasets with the target is used to compare BOEP
against HOEP. So the accuracy measurement can be used. Accuracy is a statistical
measure of a binary classification. It is the proportion of correct cases and the total

number of cases tested.
#true positive + #true negative

accuracy =
Y #all cases

Paired t-tests

A paired t-test is used to compare two population means, where a user has a
sample with passing through two different treatments. The paired t-test is used to
verify that there is a statistical difference between the two results or not.

Procedure for carrying out a paired t-test

Suppose a sample of n students were given a diagnostic test before studying
a particular subject and then after completing the subject. The paired t-test
compares the result of before and after the teaching to see whether it has an
improvement. The paired t-test uses the results from the sample dataset to draw
conclusions about the impact of the effectiveness of the teaching.

Let x = test score before the teaching, y = test score after the teaching.

To test the null hypothesis that the true mean difference is zero, the
procedure is as follows:

1. Calculate the difference between two observations on each pair,
d; = Yi —X;.

2. Calculate the mean difference, d.
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3. Calculate the standard deviation of the difference, s4, and use this to

calculate the standard error of the mean difference, SE(CI) = 5—%.
4. Calculate the t-statistic, which is given by T = SEU(la). Under the null-

hypothesis, this statistic follows a t-distribution with n — 1 degrees of freedom.
5. Use the table of the t-distribution to compare the value for T to the ty_1
distribution. This will give the p-value for the paired t-test.

Simulated datasets

In order to test BOEP against HOEP, three sets of the multivariate normal
distribution datasets have been simulated. Each algorithm performs on 30 datasets.
After the dataset is clustered by both BOEP and HOEP, it is re-simulated.

To set the default value of the split ratio d, BOEP is performed on a two-
cluster datasets of 150 instances and varies the split ratio d to find the maximum

accuracy.

Example of dataset
An example of the simulated datasets of two clusters is presented as a three-
column table. The dataset is randomized on the first and the second attribute. The

third column shows a predetermined group number of instances or target.



150x3 Array{Float64,2}:

-0.0689604 1.14357 1
-0.0248324 0.51816 1
-0.18861 0.598494 1
-0.0842013 1.17624 1
-0.13386 -1.33394 1
0.0475169 0.776314 1
-0.181772 -0.329255 1
-0.0471964 -0.565142 1
0.0666232 -2.76184 1
-0.0567685 0.681248 1
0.0345231 0.208358 1
-0.00282261 -0.00360017 1
-0.0614223 -0.06004068 1
0.594595 -1.50892 2
0.684975 0.499665 2
0.93559 0.351138 2
0.653031 0.186264 2
0.742039 1.31565 2
0.758822 -0.789609 2
0.598095 1.14412 2
0.585074 -0.0970069 2
0.85951 -1.61091 2
0.673575 -0.0547816 2
0.82566 0.275523 2
0.726748 0.266445 2
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Figure 4.1: 2-dimensional plot of two-cluster dataset



Table 4.1: the accuracy value of BOEP after varying the split ratio

d accuracy
1 0.380000
1.1 0.366666
1.2 0.933333
1.3 0.900000
1.4 0.966666
1.5 0.800000
1.6 0.522222
1.7 0.500000
1.8 0.500000
1.9 0.500000
Accuracy
1.2
1
//\/\\
0.6 / N —— Accuracy
0.4
0.2

1 11 12 13 14 15 16 17 18 1.9

Figure 4.2: Accuracy plot after varying the split ratio
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The split ratio is an important parameter in BOEP; it controls how to combine
two groups according to their centroids distance. Nevertheless, there is one more
important parameter in BOEP that needs investigation. The ratio of the number of
insignificant instances by the total number of instances y is the significance level in
BOEP which is set as 0.05. However, the other significance levels can also be used
depending on the dataset. In BOEP, the significance level is used to determine if the
instances in bin is worthy of consideration. To test the effect of the significance level
and the accuracy of BOEP, the significance level y is varied and then following the

same testing procedure as the testing of splitting ratio.

Table 4.2: Accuracy value of BOEP after varying the significance level

14 accuracy
0.00 0.933333334
0.01 0.946666667
0.02 0.92
0.03 0.97066667
0.04 0.97333334
0.05 0.97333334
0.06 0.92
0.07 0.89333333
0.08 0.7
0.09 0.76666667
0.10 0.66666667
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Figure 4.3: Accuracy plot of each significance level

Figure 4.4: Example of BOEP setting significance level too high and it ignores too

many instances.

From table 4.2, the significance level does affect the accuracy in BOEP. If the
significance level is set too low, then BOEP will include some outliers into
consideration. If the significance level is set too high, then BOEP will ignore many
instances as seen in Figure 4.4. Hence, throughout this thesis, the significance level is

set at 0.05.
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After the split ratio d and y are acquired, three types of datasets are

simulated 30 times each for HOEP and BOEP to perform. The accuracy result is

shown in table 4.3.

Table 4.3: Accuracy result after performing HOEP and BOEP on three types of

datasets

Cluster HOEP BOEP

algorithm

Dataset Setl Set2 Set3 Setl Set2 Set3

Accuracy  1.00000 0.5 0.76666 0.98777 1.0000 0.8
1.00000 0.93333 0.76666 1.00000 1.0000 0.91111
1.00000 0.53333 0.75 0.96666 0.93333 0.96666
1.00000 0.51111 0.66666 1.00000 0.96666 0.89999
1.00000 0.5 0.7 0.98777 1.00000 1.00000
1.00000 0.5 0.66666 1.00000 1.00000 1.00000
1.00000 0.5 0.76666 0.96666 1.0000 091111
1.00000 0.5 0.5 1.00000 1.0000 0.76666
1.00000 1.00000 0.66666 1.00000 1.0000 0.8
1.00000 0.76666 0.66666 1.00000 091111 0.8
1.00000 0.66666 0.7 1.00000 1.00000 091111
1.00000 1.00000 0.66666 0.96666 1.00000 091111
1.00000 0.5 0.76666 1.00000 1.0000 0.96666
1.00000 0.5 0.5 1.00000 1.0000 0.89999
1.00000 0.5 0.5 1.00000 1.0000 1.00000
1.00000 0.56666 0.76666 1.00000 0.9333 091111
1.00000 0.56666 0.75 0.98777 091111 0.96666
1.00000 0.5 0.76666 0.98777 091111 0.89999
1.00000 0.5 0.76666 1.00000 1.0000 1.00000
1.00000 1.0000 0.76666 0.96666 1.0000 091111
1.00000 1.00000 0.5 1.00000 1.0000 0.96666



1.00000 1.00000
1.00000 0.93333
1.00000 0.96666
1.00000 0.96666
1.00000 0.5
1.00000 0.5

1.00000 1.00000
1.00000 0.5

1.00000 0.93333
1.00000 0.96666

0.5
0.76666
0.5
0.5
0.66666
0.7
0.66666
0.76666
0.76666
0.5

0.98777
1.00000
0.98777
1.00000
0.96666
1.00000
1.00000
0.96666
1.00000
0.98777

0.9333
091111
0.91111
1.00000
1.0000
1.0000
0.9333
091111
0.91111
0.91111

0.89999
1.00000
1.00000
0.91111
0.76666
0.8

0.8

091111
1.00000
1.00000
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From the table 4.3, Setl is the one-cluster dataset, Set2 is the two-cluster

dataset, and Set3 is the three-cluster dataset. The accuracy results are analyzed

using the paired t-tests. The paired t-test results are shown next.

One-cluster simulation

Mean

Variance

Observations

Pearson Correlation

Hypothesized Mean

Difference

Df

t Stat

P(T<=t) one-tail
t Critical one-tail
P(T<=t) two-tail

t Critical two-tail

1
0
30

#DIV/0!

0

29
3.634223
0.000577
1.703288
0.001155

2.051831

0.990672

0.000184

30




Two-cluster simulation

Mean
Variance
Observations

Pearson Correlation
Hypothesized Mean

Difference

df

t Stat

P(T<=t) one-tail
t Critical one-tail
P(T<=t) two-tail

t Critical two-tail

0.693252 0.970234

0.050904 0.001537

30 30

-0.09338

0

29

-6.30174

4.8E-07

1.703288

9.59E-07

2.051831

39
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Three-cluster simulation

Mean 0.666663 0.910314
Variance 0.011172 0.005605
Observations 30 30
Pearson Correlation 0.091887

Hypothesized Mean

Difference 0
Df 29
t Stat -10.4153
P(T<=t) one-tail 2.94E-11
t Critical one-tail 1.703288
P(T<=t) two-tail 5.89E-11
t Critical two-tail 2.051831

The paired t-tests show that in Setl, there is no statistical difference between
the results of BOEP and HOEP. In Set2 and Set3, the paired t-test confirms the

significant improvement of the results of BOEP over HOEP.

Table 4.4: Accuracy of HOEP and BOEP on the set of one, two, and three clusters

Algorithm Setl SD Set2 SD Set3 SD
BOEP 0.990572 0.013348 097126  0.038895 0.90651  0.07632
HOEP 1 0 0.686588 0.22444  0.670111 0.105443

From table 4.4, BOEP recognizes all target clusters perfectly while HOEP
misclassifies some instances. Figure 4.5 is the case that HOEP fails to detect the

linear separation between clusters while BOEP succeeds.
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Figure 4.5: Example of simulated two-cluster dataset that HOEP fails to detect the

cluster separation.

UCI dataset

The UCI dataset is used to compare the performance of four algorithms.
Three datasets are chosen which are IRIS, WINE, and E-COLI. All datasets are chosen
for their continuous attributes. The RIS dataset is used for its popularity as a
common dataset. The WINE dataset is chosen for its 13 attributes. Lastly, the E-COLI
dataset is chosen for its outliers in order to see the impact of outliers on each
clustering algorithm.

HOEP, DBSCAN, and BOEP detect their own number of clusters from a
dataset. However, k-means needs the user to input the number of clusters. In order
to compare these algorithms fairly, the number of clusters used is from HOEP best
detected.

Next, the detail information of IRIS, WINE, and E-COLI datasets are shown.
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IRIS dataset
Table 4.5: IRIS dataset information
Data Set Multivariate  Number of 150 Area: Life
Characteristics: Instances:
Attribute Real Number of a4 Date 1988-07-
Characteristics: Attributes: Donated 01
Associated Tasks: Classification  Missing No Number of 1003372
Values? Web Hits:
WINE dataset
Table 4.6: WINE dataset information
Data Set Multivariate ~ Number of 178 Area: Physical
Characteristics: Instances:
Attribute Integer, Real Number of 13 Date 1991-07-
Characteristics: Attributes: Donated 01
Associated Tasks: Classification  Missing No Number of 545707
Values? Web Hits:
E-COLI dataset
Table 4.7: E-COLI dataset information
Data Set Multivariate  Number of 336 Area: Life
Characteristics: Instances:
Attribute Real Number of 8 Date 1996-
Characteristics: Attributes: Donated 09-01
Associated Tasks: Classification  Missing No Number of 109970

Values?

Web Hits:
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From table 4.8, BOEP has better cluster homogeneity than other clustering

algorithms as shown in the values of H,.. However, the cluster seperation of BOEP is

slightly worst than HOEP. Nevertheless, the cluster seperation of BOEP still better

than both DBSCAN and K-means. The bar chart comparison is shown in the next

section.

Table 4.8: Performance comparison on the UCI dataset

Algorithm  BOEP HOEP DBSCAN K-means

#cluster
Dataset Hype Save Have Save Have Save Have Save
Iris 0.6351 38708 0.8460 39488 0.7124 37072 0.6488 3.1362 3
Wine 248.58 0.00 260.56 0.00 255.63 0.00 260.56 0.00 1
E-coli 0.2899 0.5677 0.2952 0.5757 0.3853 0.5687 0.2963 0.4553 2

Figure 4.6 to 4.8 show the comparison of cluster homogeneity of BOEP, HOEP,
DBSCAN, and K-means on RIS, WINE, and E-COLI datasets. From the three graphs, the

homogeneity value, H,., of BOEP is the lowest. This indicates that the clusters from

BEOP are tighter than that of other algorithms.

0.9

H

ave

0.8

BOEP

HOEP

DBSCAN

0.7
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0.2
0.1
0 T T T !
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Figure 4.6: Bar graph shows the H,,. value of each clustering algorithm on IRIS dataset
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Figure 4.7: Bar graph shows the H,,. value of each clustering algorithm on WINE

dataset
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Figure 4.8: Bar graph shows the H,,. value of each clustering algorithm on E-COLI

dataset

Figure 4.9 to 4.10 show the comparison of cluster separation of BOEP, HOEP,

DBSCAN, and K-means. In the case of separation, the higher number indicates the
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better cluster separation. From the graph, BOEP, HOEP, and DBSCAN have similar
values of cluster separation. Nevertheless, HOEP has the best cluster separation out

of all algorithms tested, with BOEP as the second best.

Save

4.5

4
3.5

| RIS

3
2.5

2 T T T 1

BOEP HOEP DBSCAN K-MEANS

Figure 4.9: Bar graph shows the S, value of each clustering algorithm on IRIS dataset
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Figure 4.10: Bar graph shows the S, value of each clustering algorithm on E-COLI

dataset
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Figure 4.11 shows clusters of IRIS dataset. BOEP rejects some instances that
are too far from the connected centroids and the numbers of data in each bin are
too small. Because of that, the BOEP has better performance than k-means in both

homogeneity and cluster separation.
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Figure 4.11: Plot between 1st and 2nd attribute of the Iris dataset. (Top) K-means
clustered. (Bottom) BOEP clustered. The outliers that detected by BOEP are in the

circles.
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Chapter 5

CONCLUSION AND DISCUSSION

The bi-orbital extreme pole clustering algorithm based on the concept of the
extreme poles similar to the half-orbital extreme pole clustering algorithm adds the
second dimension. By including the second dimension, it allows the algorithm to
identify nonconvex clusters and performs homogeneity better than HOEP. The
improvement of BOEP over HOEP is tested using the simulated datasets of one, two,
and three clusters. The results are verified using the paired t-test to show the
statistical difference of the pair results. In the one-cluster case, there is no statistical
improvement between the two algorithms. Both algorithms detect one-cluster
multivariate normal distribution equally well. However, in the two-cluster case and
the three-cluster case, BOEP has the statistical improvement result over HOEP. This
shows that BOEP is able to detect two and three clusters better than HOEP.

In addition, the spliting ratio d that combines the centroids lowers the
homogeneity value, which means that clusters assigsned by BOEP are tighter than that
of other algorithms. Moreover, the mean-shift algorithm in the second dimension is
able to pick out outliers, so the performance improvement can be seen in the result
section with the UC| datasets.

The secondary dimension in BOEP is flexible since it does not rely on the

core-vector. This approach is similar to DBSCAN but using less computation.
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Future work

BOEP is able to detect the clusters better than HOEP. Overall cluster
homogeneity and cluster separation is also improved over other algorithms.
However, the BOEP still needs the user input parameters. In the future, the needs of
the user input parameter could be eliminated. Additionally, assigning instances into
bins is suitable for distributed work load. Since, the distributed algorithm can assign

each bin to an individual computing core.
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