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1. Introduction 

Volunteer computing uses computers volunteered by general public to do 
distributed scientific computing[1]. This allows research projects to access large 
pool of computing power without investing in expensive computing infrastructure 
and operating cost. But, one drawback of joining a volunteer computing project is 
the decrease of performance in participating machines particularly processor 
performance. However, other resources such as memory and network bandwidth 
also play important roles in system performance. Our goal here is to avoid 
starvation of resources caused by volunteer computing application. In another 
word, we want to make volunteer computing application “nicer” to other 
processes in the system. However, as different resource type has different 
characteristics and constrain, thus requires different method preventing 
starvation. Figure 1 shows architecture of volunteer computing application. 

 
Figure 1: Volunteer Computing Architecture 
 

1.1 Objectives 

1. The system should be able to mitigate foreground task’s performance loss. 
2. The system should be able to work without direct knowledge of an 
application or without an elevated privilege. 
3. The system could be implemented without modification of an application 
and minimal modification to the operating system. 
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1.2 Scope 

1. The system only limits resources usage of the background processes, does 
not directly change scheduling policy of the operating system. 
2. In this project we only consider applications, both with constant and 
variable resources usage 
3. In this project we only consider starvation caused by background processes 
and we assume that application's resources requirements don't exceed 
system capacity. 

1.3 Organization of the Dissertation 

 This dissertation is organized as follows. In section 2, “Nicer Processing”, we 
developed a CPU allocation technique that can prevent CPU starvation from 
Background process usage. In section 3, “Nicer Protocol”, we investigated an 
upcoming transport layer protocol, the HTTP/2 and its effect on network contention 
due to multiple connection. We also include preliminary study on effects of memory 
performance from Background process in the appendix. We concluded our work in 
Section 4. We also include some technical background in the APPENDIX. 
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2. Nicer Processing 

In this section, we developed a CPU allocation technique to solve the problem 
of running volunteer application on a system with the Completely Fair 
Scheduler(CFS). Our allocation technique is based on adaptive reservation but works 
without requiring administrative privilege and can work across user boundaries. From 
the experiment, our method can maintain performance of foreground workload and 
can reclaim more CPU time compared to static allocation method. 

 
2.1 Background & Related works 

 

2.1.1 The Completely Fair Scheduler(CFS) 

Prior to the Linux kernel version 2.6.24, scheduler contains two scheduling 
classes, SCHED_RT and SCHED_NORMAL [2]. Tasks in SCHED_RT always run before 
tasks in another class. The rest belongs to SCHED_NORMAL class. Scheduler allocates 
CPU time according to nice value of each task. After kernel v2.6.24, the completely 
fair scheduler (CFS) was merged into the mainline kernel, replacing the existing 
SCHED_NORMAL scheduling class. The CFS is in a class of scheduler called Fair Share 
Scheduler[2]. The Fair Share Scheduler allocates CPU time proportional to number of 
share. The new design delivered weight-based scheduling of CPU bandwidth, 
enabling arbitrary partitioning. This allowed support for group scheduling to be added 
and managed using cgroups[3]. These are some features supported by the CFS. 
 

 Group Scheduling: In early version, the CFS only implements fairness between 
processes[4]. In order to deal with multi process resource hogging task, 
processes are grouped according to TTY [5] (Automatic process grouping) or 
Session ID [6] in later version. 

 Control Groups: Control groups allow resources to be allocated among user-
defined groups of tasks. Control groups are also hierarchical. For example, CPU 



 

 

4 

time is allocated according to ratio of share in each level in a top-down 
fashion[7]. 

In depth details about the CFS can be found in [8]. 
2.1.2 Analysis and Problems of the CFS 

Prior to the Linux kernel version 2.6.24, the nice value of a task was used as one 
of the tunable parameter in CPU time allocation. The nice value is then used to 
calculate the priority of the task. The priority was compared to one belonging to all 
other processes in the system and was used to determine CPU time for each 
processes. Non-privileged user can only monotonically drop his/her nice value to 
give up CPU time to another user. 

Since v2.6.24, the concept of Fair Share Scheduling was introduced with the CFS, 
nice value is only used as a scheduling parameter in the same group level or in the 
same TTY. This is done in order to enforce fairness among users and “improve 
interactivity”. The problem is, while in default policy, non-privileged user cannot 
decrease his/her nice value or increase shares, user also cannot change his/her 
shares relative to other users. The user can only change share between process 
groups under his/her own group. For example, in Figure 2, User B changes process 
group B1 to the minimum share of 1. Since CPU-time allocation is top-down, process 
group B1 receive CPU-time as much as process group A1 and A2 combined. Thus, 
increasing in the number of processes or process groups of a user does not translate 
into more CPU-time allocation. 
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Figure 2: Example of CPU-time allocation of SCHED_NORMAL 
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2.1.3 Current Solutions 
There are many solutions to alleviate the problem of background volunteering 

computing processes spending too much CPU time. 
1. Do nothing 

All users have same amount of CPU share, since a user cannot set his/her 
share. On the other hand, CPU time available to a user can be as low as 
1/number of users. 

2. Suspend background processes 
The controller of background (volunteering computing) processes monitors 

CPU time used by other applications. If other processes use CPU time more 
than a predetermined threshold, background processes will be suspended. This 
approach, while provides minimal performance impact to the foreground 
processes, leaves all remaining CPU time unused. This is the default approach 
used by the BOINC Client on Linux based operating system[9]. 

3. CPU Time Reservation 
By reserving a CPU time for maximum foreground processes (with timing 

constrain) utilization, service quality could be guaranteed at a cost of wasted 
CPU time. This technique has long been studied in [10] since system’s 
scheduler was primitive. In the CFS scheduler, the execution cap could be 
controlled through cgroups interface. 

4. Adaptive Reservation 
By using service quality of foreground process as an input of a controller, CPU 

time allocation of foreground processes could be controlled to optimize service 
quality while minimizing wasted CPU time. The implementation of Adaptive 
Reservation in Linux was purposed in[11]. However, if foreground and 
background applications are from different users, this method breaches user 
policy of isolation. 

Table 1 shows the comparison of current solutions. 
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Table 1: Comparision of Current Solutions 
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2.2 Our solution 

2.2.1 Design concept 

Our solution is based on an idea of feedback adaptive reservation. To ease 
explaining, Figure 3 shows architectural design of our solution. Since default user 
privilege policy does not allow feedback signal to be sent to another user, we use 
global monitoring tools to get amount of CPU time spend idling to detect CPU time 
starvation in another user’s process (foreground process). If a process is in starvation, 
it should use more available CPU time. If background process, however, could 
deplete all CPU time available, there will be no CPU time left for starvation 
detection. Our solution is to limit a background process so that there will always be 
CPU time left similar to PI controller. Eventually, other processes will consume 
reserved CPU time until meeting its requirement. (Unless the system is not 
overloaded by other processes.) In other words, trying to maintain idle CPU time 
serves 2 purposes: 1. background processes are “nicer” to other processes 2. 
absence of idle CPU time indicates CPU starvation. 

 

 
Figure 3: Architectural Design 
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2.2.2 How to detect Starvation 

Figure 4 shows the Starvation Detection Algorithm. 
 

 
Figure 4: Starvation Detection Algorithm 
  

initialize reserveBandMultiplier to minimumReserveBandMultiplier 
initialize overloadCount  to  0 
set backgroundQuotaFraction to 0.0 
forever do 
 get idleCPUFraction 
 if idleCPUFraction = 0 then 
  increment overloadCount 
  double reserveBandMultiplier but no more than 
maxReserveBandMultiplier 
 else 
  reset overloadCount to 0 
  decrement reserveBandMultiplier but no less than 
minimumReserveBandMultiplier 
 end if 
 if overloadCount > overloadThreshold then 
  reset overloadCount to 0   
  reset backgroundQuotaFraction to 0.0; 
  set reserveBandMultiplier to maxReserveBandMultiplier 
 else 
  set backgroundQuotaFraction to backgroundQuotaFraction + 
(idleCPUFraction - (reserveBandMultiplier*minimumReserveBand)) 
 end if 

wait until next scheduling round 
end 
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Our Starvation Detection Algorithm can be separated into 3 parts. First part 
tries to maintain small CPU idle time(reserveBand) to detect and prevent starvation. 
Second part manages with fluctuating workloads by detecting overloading and 
multiplicatively increase reserve band. However, if workload is constant, reserveBand 
decay linearly to the minimum level. The last part deals with instantaneous 
workload. When detecting multiple consecutive overloading, background process 
CPU time is reduced to the minimum. Figure 5 shows a Flowchart of second and last 
part of the algorithm. 

 
Figure 5: Starvation Detection Flowchart 

no idling time? 

Initialize 

overloadCount++ 
double reserveBand 

overloadCount = 0 
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overloadCount > 
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backgroundQuota = 
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Yes, detecting 
fluctuating 
workload 

Yes, detecting 
instantaneous 
workload 

No, assume 
constant workload 
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2.3 Implementation and Experiments 

2.3.1 Implementation 

We implemented our algorithm on Linux based operating systems. Our 
implementation does not require any modification to kernel or administration 
privilege except for enabling cgroups file-system interface. The idleCPUFraction was 
extracted from /proc/stat. The backgroundQuotaFraction was set through file-system 
interface of cgroups. We conducted experiments on Ubuntu Desktop 14.04 with 
cgroup installed. 

2.3.2 The experiments 

We evaluated our implementation by using two sets of experiments. The goal of 
the first experiment is to evaluate performance loss of foreground workload. The 
second experiment measured the performance of background workload in order to 
evaluate allocation efficiency of our allocation method against that of static 
allocation method. 

Parameters used in Starvation Detection Algorithm in this experiment are 
• minimumReserveBandMultiplier = 1 
• maxReserveBandMultiplier = 16 
• overloadThreshold = 4 

We acquired parameters by hand-tuning and can be different according to 
resources in the system. 
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2.3.2.1 Experiment 1 

In this experiment, we measured the performance of foreground processes while 
running CPU hogging processes as a background. The background workload could 
fully utilize both cores of the processor. Foreground processes and background 
processes were grouped with the same type. Background processes group is 
controlled by our allocation technique. We compared the result against a run 
without background processes CPU allocation control (w/o control) and a run 
without background processes running (no). In this experiment, we use multiple 
instances of “md5sum /dev/zero” as background workload. Table 2 shows summary 
of experiment 1 tests. 

 
Table 2: Summary of Experiment I tests 

Test Case Workload Description Foreground Workload 
1 Compute-heavy LINPACK Benchmark 

2 Latency-sensitive Apache Bench 

3 Soft real-time H.264 Video Playback 
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Test 1: LINPACK Benchmark 
LINPACK is a library for solving linear algebra. LINPACK benchmark is used to 

measure floating point performance of the computer. This test represents compute-
heavy workloads without timing constrain. Since foreground workload is easily 
predictable, we can see in Figure 6 that background workload has no significant 
impact on foreground process. 

 
Figure 6: Experiment I test1, LINPACK Benchmark 
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Test 2: Apache Bench 
Apache is a widely used web server. The Apache Bench measures how many 

requests per second a given system can sustain when carrying out 1,000,000 requests 
with 100 requests being carried out concurrently [10]. While intensity of foreground 
workload is not high, it is highly sensitive to service latency. In Figure 7 we can see 
that even if background workload is controlled with our allocation technique, the 
performance of web server in this test could not be maintained. However, if we 
change parameter “minimumReserveBandMultiplier” to 8 (minBand>=8), 
performance degradation becomes acceptable. This is due to limited parallelism of 
100 concurrent requests. 

 
Figure 7: Experiment I test2, Apache Bench 
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Test 3: H.264 video playback 
In this test, we use VLC player 2.1.4 to play a variable bit-rate H.264 video of 

32 second length with average bit-rate of 70Mbit/s. Build-in FFmpeg decoder is used 
and adaptive decoding (Hurry-up option) is disabled. This test represents continuous 
soft real-time application with variable processor requirement. Since this foreground 
processes in this test cannot use half of total share in our test environment, we 
disable one of the processor core to decrease processing power available to the 
system. In Figure 8, we can see that, with our allocation technique, performance 
penalty of running CPU hogging processes is minimal. 

 
Figure 8: Experiment I test3, H.264 Video Playback 
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2.3.2.2 Experiment 2 

In this experiment, we used VLC player to play H.264 video with average bit-rate 
of 50 Mbit/s as a foreground workload and LINPACK benchmark as a background 
workload. The background workload was controlled using worst case static allocation 
method (static) and our allocation method (dynamic). We measured performance of 
background workload to compare the performance loss of each allocation method. 
The comparison is shown in Figure 9. We can see that our allocation can reclaim 
more performance compared to the static allocation method. Also, suspending 
method used by BOINC client in Linux-based system does not background workload 
of foreground workload reach certain threshold. 

 
Figure 9: Experiment 2, LINPACK background with H.264 running as a foreground 
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2.4 Section 2 Conclusion 

Our CPU allocation technique for volunteer computing application based on 
Adaptive Reservation can solve the problem of performance degradation when 
running a volunteer application as a background process on a system with 
Completely Fair Scheduler. We solved the problem of feedback signal across user 
boundary by replacing it with the idle CPU statistics from system monitoring tools. 
The idle CPU statistics is used for our Starvation Detection Algorithm to both keep 
track of CPU usage requirement and to control background processes to be nice to 
other processes in the system. The implementation was done on a Linux-based 
system with CFS. The impact was evaluated with several types of foreground 
applications. With compute-heavy workload without timing constrain as a foreground 
workload, performance degradation from background workload is negligible in our 
allocation technique. In low intensity, latency sensitive web server test, tuning of 
parameters is necessary to maintain good performance. While in video playback test, 
performance drop is acceptable. In another experiment, we found that our allocation 
method improves background workload CPU idle time. It can reclaim 50 percent CPU 
time without the loss of foreground performance. 
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3. Nicer Protocol 

As bandwidth of a link continues to increase, link latency is constrained by 
physical limits. So called “latency-bandwidth product” becomes too large to be 
easily utilized. This is especially true in current mobile networking technology such as 
LTE where link speed could exceed 1 Gbit/s but with Round-Trip-Time as high as 30 
ms[12]. Also, the size of content being delivered is growing. In February 2016, average 
size of a web page is around 2200 kB and is delivered over the average of 100 
requests [13]. Current application-layer protocol, HTTP/1.1, is not able to benefit 
from this situation. Therefore, the HTTP/2 protocol was created. From our survey, 
HTTP/2’s benefits over its predecessor is studied in several literatures but is far from 
covering all aspects. In this section, we investigated factors that impact HTTP/2’s 
performance compared to that of the HTTP/1.1. We focused our study on the effects 
of the multiplexed stream. 

 
3.1 Background and Related works 

3.1.1 The Hypertext Transfer Protocol Version 2(HTTP/2) 

The HTTP/2 was proposed to mitigate problems of the previous HTTP/1.1 and its 
underlying transport protocols. In the original HTTP/1.0, each connection can serve 
only one request. Persistence connection was later added but not included in 
HTTP/1.0 standard. Persistence connection allows reuse of connection by multiple 
requests, therefore reducing overhead of creating new TCP connection, but still 
limited to single simultaneous request. In HTTP/1.1, Pipelining was added and 
Persistence connection became standard. Pipelining allows multiple inflight requests 
over single connection. However, requests Pipelining in HTTP/1.1 needs to be served 
in order. This creates head-of-line blocking problem as illustrated in Figure 10 and 
Figure 11. Therefore, it was not widely implemented by popular web browsers [14, 
15]. Common workaround is to interleave requests over multiple TCP connections 
simultaneously. However, creating multiple connections have several drawbacks 
including TCP slow start and may pollute other traffics on the network. Many 
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application-layer protocols were proposed as a supplemental or an alternative to the 
HTTP/1.1. One of them is Google’s SPDY [16] protocol which was later used as a 
basis for HTTP/2. In May 2015, Internet Engineering Task Force(IETF) proposed 
RFC7540 as a standard that defines HTTP/2. The HTTP/2 solves these issues by 1) 
allowing multiplexing of multiple requests and response messages over single 
connection, 2) using compression for HTTP header fields to save header space, 3) 
changing from textual to binary message framing to simplify parsing and 4) server 
push to hide request latency [17]. 

 

 
Figure 10: HTTP/1.1 Head of line blocking 
 
 

Client Server 

Request GET 2 finished before GET 1 
but blocked 



 

 

20 

 
Figure 11: HTTP/2 Multiplexed Streams 
 

3.1.2 Previous works regarding HTTP/2 performance 

There are several works related to HTTP/2’s performance as follows: 

 Is HTTP/2 Really Faster Than HTTP/1.1?[18] 
This work studied the impact of number of requests, link latency and packet 
loss on Page Load Time. It concludes that HTTP/2 has significantly faster page 
load time for websites with great number of requests. However, it is less 
advatageous with the presence of packet loss compared to the HTTP/1.1. 

 To HTTP/2, or Not To HTTP/2, That Is The Question[19] 
This work studied the implementation of HTTP/2 in several websites and also 
Page Load Time under various network condition. It concludes that HTTP/1.1 
suffers more penalty in Page Load Time than HTTP/2 under high latency or 
with packet loss. Also, HTTP/2’s penalty can be further reduced by domain 
sharding. 

 The upcoming new standard HTTP/2 and its impact on multi-domain 
websites[20] 
This work compares the Page Load Time of several websites with both 
HTTP/1.1 and  HTTP/2 on wired and wireless network. The study concludes 

Client Server 

Not blocked 
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that HTTP/2 may cause slowdown on site that contains small number of 
resouces in some cases. 

 
3.1.3 Previous works regarding SPDY protocol performance 

In addition to HTTP/2, there exist works related to SPDY’s performance, which is a 
proprietary protocol designed by Google to solve similar issues. We include works 
regarding SPDY because it was better studied. The SPDY protocol also has 
multiplexed stream which is our interest here. 

 Can SPDY Really Make the Web Faster?[21]  
The work studied the effects of latency, packet loss, shading and multiplexed 
stream on Time on Wire(measured on the network interface) in both real sites 
and controlled environment. They found that penalty and benefits of SPDY’s 
multiplexed streams can vary from site to site. For example, Twitter site with 
less resources count gains less reduction in time of wait with SPDY compared 
to that of HTTPS in YouTube site with high resources count. 

 How Speedy is SPDY?[22]  
This work studied the effects of link bandwidth, latency, number and size of 
object in the webpage on Page Load Time and comparison to the HTTP/1.1. 
They conclude that the benefits of SPDY multiplexed stream is limited by 
dependencies in webpages. 

 
3.1.4 Analysis 

From our survey, one thing in common from those studies is the use of sampled 
web page as a test payload and the use of Page Load Time as performance metric. 
However, we want to study sustain performance of the HTTP/2 that is important in 
some applications such as streaming and effects of latency, packet loss compared to 
that of the HTTP/1.1. We also want to study HTTP/2 performance under highly 
congested network. 
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3.2 Experiment I : Stream-Connection equivalence 

In this experiment, we measure payload transfer rate while varying number of 
inflight requests and payload size. We want to prove that HTTP/2.0’s stream is 
equivalent to multiple separate connection when the network is not under 
bandwidth limited condition. We also want to see whether using multiplexed stream 
helps to mitigate effect of lossy connection. 

3.2.1 Experiment I Test setup 

In this test, we setup 2 machines, one as a server, another as a client. The 
machines were connected together through an Ethernet link with latency of 5ms 
and bandwidth of 100Mbit/s. We used Apache 2.4.18[23] as a web server, h2load 
[24] as an HTTP/2 client and ApacheBench as HTTP/1.1 client. Figure 12 shows 
test setup of this experiment. We enabled keep-alive in HTTP/1.1 but not 
pipelining because it not was not widely implemented in popular browsers. We 
varied number of inflight requests from 10 to 100. In HTTP/2 case, we fixed 
number of streams in each connection to 1 and 10. We used the number of 
streams multiplied by the number of connection as a number of inflight requests. 
The payload size we used in this experiment is 32 B and 1 KB. Round trip time 
between server and client was 5 milliseconds. We tested with and without 
packet loss rate of 1%. We compared Payload Transfer Rate from each type of 
connection. We have verified that both Web Server and Client are not CPU-
bounded in this experiment. 

 
Figure 12: Experiment I test setup 
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3.2.2 Experiment I Test result 

Without packet loss, we can see from Figure 13 that with the same number 
of inflight request, HTTP/2’s and HTTP/1.1’s payload transfer rates are roughly 
equal for both transfer size when there is less than 50 inflight requests. However, 
due to increased overhead of HTTP/2 protocol, there is small slowdown with 
more connection compared to the HTTP/1.1. 

 
Figure 13: Experiment I Payload transfer rate, 32 bytes payload 
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However, as shown in Figure 14, HTTP/2’s peak payload transfer rate is higher 
in 1KiB transfer size because our bandwidth limit is hit and there is less header space 
overhead from compressed header. 

 
Figure 14: Experiment I Payload transfer rate, 1KiB payload 
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With packet loss, in 32 bytes payload case, throughput of 10-stream 
connection grows significantly faster than HTTP/1.1 and HTTP/2 with single stream. 
This is due to faster TCP retransmission. 1-stream HTTP/2 connections also suffer 
more penalty from loss than HTTP/1.1 as shown in Figure 15. But from our 
experiment, the improvement is significant even with only 2 multiplexed streams. 

 
Figure 15: Experiment I payload transfer rate, 32 bytes payload, 1% loss 
  

0

50

100

150

200

250

300

350

400

450

500

10 20 30 40 50 60 70 80 90 100

Pa
yl

o
ad

 t
ra

n
sf

er
 r

at
e(

K
B

/s
)

Number of inflight requests

Payload transfer rate, 32 bytes payload, 1% loss

HTTP/1.1 H2 1 stream H2 10 streams



 

 

26 

The result in 1 KiB payload is similar but HTTP/2 with single stream achieves 
higher peak transfer rate than HTTP/1.1 due to the header compression. The result 
was shown in Figure 16. 

 
Figure 16: Experiment I payload transfer rate, 1KiB payload, 1% loss 
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3.3 Experiment II : HTTP/2, HTTP/1.1 co-running 

In this experiment, we want to compare HTTP/2 performance in highly congested 
network to that of the HTTP/1.1. We want to know whether STREAM-CONNECTION 
EQUAVALENCE holds true in highly congested network or not. 

3.3.1 Experiment II Test setup 

In this test, we setup 2 client machines connected to a server machine through a 
bottleneck link of 100 Mbit/s. Link latency between client machine and server 
machine was 5ms. To measure payload bandwidth under congestion, we assigned 
one of the client machine as a stress machine and another as a measured machine. 
The stress machine loaded the server with HTTP requests and we ran the test on 
measured machine as shown in Figure 17. However, it is important to note that we 
had verified that in this test, server’s CPU is not fully utilized, therefore there is no a 
performance bottleneck. As in previous experiment, we used Apache 2.4.18 as a web 
server on server machine, ApacheBench as HTTP/1.1 client and h2load as HTTP/2 
client. For each test, we ran HTTP/2 load on measured machine alongside HTTP/1.1 
on stress machine and vice versa. We varied payload size from 1KiB to 128KiB. Then 
we switched stress machine to HTTP/2 and measure machine to HTTP/1.1 such that 
we always measure the same machine to eliminate systematic error. We then 
compare the ratio of payload transfer rate between HTTP/1.1 and HTTP/2 both of 
the same number of connections and the same number of inflight requests. 

 
Figure 17: Experiment II test setup 
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3.3.2 Experiment II Test result 

From Figure 18, we can see that, with equal number of connection, ratio 
between HTTP/2 and HTTP/1.1 pay load throughput starts from ration between 
number of inflight requests and converges toward 1 in larger payload size. 

 
Figure 18: Experiment II Ratio of HTTP/2 and HTTP/1 bandwidth, 32 connections 
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In Figure 19, we can see that ratio between HTTP/2 and HTTP/1.1 converges 
to the ratio of number of HTTP/2 connections and HTTP/1.1 connections. In 
other words, ratio of payload throughput is proportional to number of inflight 
requests in latency limited case and converges toward number of connection as 
payload size increases in bandwidth limited case. 

 
Figure 19: Experiment II Ratio of HTTP/2 and HTTP/1 bandwidth, 32 inflight requests 
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3.4 Section 3 Conclusion 

As shown from our experiments, the HTTP/2 multiplexed streams can be 
effectively used to replace multiple HTTP/1.1 connection, increasing service capacity 
on the server machine and improve bandwidth utilization. However, in highly 
congested network, from web users’ perspective, there is a penalty from using 
multiplexed stream especially in case of large payload size as transport layer 
protocol tries to balance bandwidth between each connection. On the other hand, 
from ISP and service providers’ perspective, using multiplexed streams is more 
friendly to other connections comparing to multiple connections. This also helps 
preventing bandwidth starvation. Therefore, web users may want to use multiplexed 
stream only if they have excess bandwidth or they don’t want to compete for 
bandwidth such as running a background job such as volunteer computing with 
networking requirements. However, service providers can greatly benefit from 
multiplexed stream because overhead from multiple connections can be significant. 
For volunteer computing application, using multiplexed streams can serve 2 
purposes: 1. It can fully utilize bandwidth without creating contention with other 
application. 2. It reduces connection overhead on the coordinator machine. 
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4. Conclusion 

In this work, we solved the problem of performance loss when running 
volunteer computing application. In the “Nicer Processing” section, we used idea of 
adaptive reservation to solve problem of share between users in CFS based system. 
We solved problem of violation of user boundary by using global statistics. Our 
method also does not require any modification to the operating system. In section 
“Nicer Protocol”, we studied the HTTP/2 multiplexed stream. We showed the 
equivalence between multiplexed stream and multiple separate connections. We 
also showed that the HTTP/2 multiplexed stream is more network friendly compared 
to multiple HTTP/1.1 connections. The implementation of HTTP/2 only require 
modification of web server, web page and web browser. 

Thus, we have demonstrated 2 different approaches dealing with 2 different 
resources important to volunteer computing applications. 

In “Nicer Processing", the of our work is to allow a person to continuously 
donate their processing power without interfering with their foreground usage. The 
principal in this work can also be adapt to other resource such as GPU. For example, 
processing time allocation for asynchronous physics simulation and graphic 
processing on the Graphic Processing Unit. However, one of the point that can be 
improved is the parameters in Starvation Detection Algorithm. In this work, we hand-
tuned the parameters. In order to tune parameters to suite wide range of application, 
an automated tuning is required. 

In “Nicer Protocol”, our intention in this study is to uncover another aspect of 
HTTP/2 performance characteristics and its potential in volunteer computing 
application. However, our study is far from being comprehensive. Though the HTTP/2 
standard was finalized, its implementation has yet to be solidified. Therefore, further 
studies are required. 
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APPENDIX 

Reservation-Based Scheduling(RBS) 
RBS allows user to specify processor requirement and controls allocation of 

processor time to the process in each period. It guarantees availability of the 
processor to the process by restricting processor admission and utilization of other 
processes. 
 
Adaptive Reservation (Feedback Scheduling) 
 RBS scheme that selects RBS’s parameter based on previous scheduling error. 

𝑒 = 𝑑 − 𝑡 
where e is scheduling error, d is scheduling deadline and t is task’s soft deadline. 
Adaptive Reservation tries to drive e towards 0. 
 
PID Controller 
 The PID algorithm is describe by 

              
where y is the measured process variable, r the reference variable, u is the control 
signal and e is the control error. The control signal is a sum of three terms: 
proportion term, integral term and derivative term. Since CPU time measuring range 
is limited, we only consider first and second term. 
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