

การจัดตารางหน่วยประมวลผลกลางและการจัดการความกว้างช่องสัญญาณส าหรับงานค านวนแบบ
อาสาสมัคร

นายกรกฤต สีมาคุปต์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต
สาขาวิชาวิศวกรรมคอมพิวเตอร์ ภาควิชาวิศวกรรมคอมพิวเตอร์

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
ปีการศึกษา 2558

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Nicer CPU Scheduling and Bandwidth Management for Volunteer Computing

Mr. Korakit Seemakhupt

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Engineering Program in Computer Engineering

Department of Computer Engineering
Faculty of Engineering

Chulalongkorn University
Academic Year 2015

Copyright of Chulalongkorn University

Thesis Title Nicer CPU Scheduling and Bandwidth
Management for Volunteer Computing

By Mr. Korakit Seemakhupt
Field of Study Computer Engineering
Thesis Advisor Assistant Professor Krerk Piromsopa, Ph.D.

 Accepted by the Faculty of Engineering, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Master's Degree

 Dean of the Faculty of Engineering

(Associate Professor Supot Teachavorasinskun, Ph.D.)

THESIS COMMITTEE

 Chairman

(Assistant Professor Natawut Nupairoj, Ph.D.)

 Thesis Advisor

(Assistant Professor Krerk Piromsopa, Ph.D.)

 Examiner

(Assistant Professor Veera Muangsin, Ph.D.)

 External Examiner

(Pongtawat Chippimolchai, Ph.D.)

 iv

THAI ABSTRACT

กรกฤต สีมาคุปต์ : การจัดตารางหน่วยประมวลผลกลางและการจัดการความกว้าง
ช่ อ งสัญญาณส าหรั บ งานค านวนแบบอาสาสมั คร (Nicer CPU Scheduling and
Bandwidth Management for Volunteer Computing) อ.ที่ปรึกษาวิทยานิพนธ์หลัก:
ผศ. ดร. เกริก ภิรมย์โสภา{, 35 หน้า.

ในงานวิจัยนี้ เราเสนอวิธีการลดปัญหาการเสียประสิทธิภาพของระบบคอมพิวเตอร์ขณะ
ท างานประมวลผลอาสาสมัคร ในส่วนแรก เราแก้ปัญหาการแบ่งเวลาบนระบบที่ใช้การจัดตารางแบบ
CFS เราใช้หลักการการจองเวลาแบบปรับตัวได้ในการรักษาเวลาท างานของหน่วยประมวลผลกลาง
ส าหรับงานหลัก เราแก้ปัญหาของการแบ่งกั้นระหว่างผู้ใช้งานด้วยการใช้สถิติรวมทั้งระบบ วิธีของเรา
สามารถรักษาไว้ซึ่งประสิทธิภาพของงานหลัก และสามารถดึงเอาเวลาของหน่วยประมวลผลกลางที่
สูญเสียไปคืนมาได้มากกว่าวิธีการจองเวลาแบบคงตัว ในส่วนที่สอง เราศึกษาโปรโตคอล HTTP/2 โดย
โปรโตคอล HTTP/1.1 ที่ใช้อยู่ก่อนหน้า แก้ปัญหาการใช้ความกว้างช่องสัญญาณด้วยการเปิดหลายๆ
การต่อเชื่อมพร้อมๆกัน แต่นั่นสามารถท าให้เกินการแย่งชิงความกว้างช่องสัญญาณได้ หาก
ช่องสัญญาณมีจ านวนจ ากัด ในงานนี้เราศึกษาการใช้งาน Multiplexed streams ในโปรโตคอล
HTTP/2 จากผลการทดลองของเรา Multiplexed stream สามารถถูกใช้ทดแทนการเปิดหลายๆการ
เชื่อมต่อได้ และยังไม่แย่งความกว้างช่องสัญญาณกับการเชื่อมต่ออ่ืนๆ

ภาควิชา วิศวกรรมคอมพิวเตอร์

สาขาวิชา วิศวกรรมคอมพิวเตอร์

ปีการศึกษา 2558

ลายมือชื่อนิสิต

ลายมือชื่อ อ.ที่ปรึกษาหลัก

 v

ENGLISH ABSTRACT

5770106421 : MAJOR COMPUTER ENGINEERING
KEYWORDS:

KORAKIT SEEMAKHUPT: Nicer CPU Scheduling and Bandwidth Management for
Volunteer Computing. ADVISOR: ASST. PROF. KRERK PIROMSOPA, Ph.D.{, 35 pp.

We proposed methods dealing with performance reduction problem when
running volunteer computing application. First, we deal with CPU time allocation
problem on CFS-based system. We use adaptive reservation dealing with maintaining
CPU time for foreground process. We solved problem of user boundary using system's
global statistics. Our method can maintain foreground application's performance and
can reclaim more CPU time compared to that of static allocation method. In the
second part, we study new HTTP/2. The previous HTTP/1.1 solves problem of
unutilized bandwidth by opening multiple connection. However, this can cause
network bandwidth contention when bandwidth is limited. In this work, we focus our
study on the uses of multiplexed streams. Our result shows that the multiplexed
streams can replace multiple seperate connections and is more network friendly to
other applications.

Department: Computer Engineering
Field of Study: Computer Engineering
Academic Year: 2015

Student's Signature

Advisor's Signature

 vi

ACKNOWLEDGE MENTS

ACKNOWLEDGEMENTS

This work is supported by Department of Computer Engineering, Faculty of
Engineering, Chulalongkorn University.

I would also like to thank my thesis advisor, Dr. Krerk Piromsopa and thesis
committee, Dr. Natawut Nupairoj, Dr. Veera Muangsin and Dr. Pongtawat
Chippimolchai for their input for improving of my work.

CONTENTS
 Page

THAI ABSTRACT ... iv

ENGLISH ABSTRACT ...v

ACKNOWLEDGEMENTS ... vi

CONTENTS ... vii

List of Figures ... ix

List of Tables .. x

1. Introduction ... 1

1.1 Objectives ... 1

1.2 Scope ... 2

1.3 Organization of the Dissertation .. 2

2. Nicer Processing... 3

2.1 Background & Related works .. 3

2.1.1 The Completely Fair Scheduler(CFS) ... 3

2.1.2 Analysis and Problems of the CFS .. 4

2.2 Our solution ... 8

2.2.1 Design concept ... 8

2.2.2 How to detect Starvation ... 9

2.3 Implementation and Experiments ... 11

2.3.1 Implementation .. 11

2.3.2 The experiments ... 11

2.3.2.1 Experiment 1 .. 12

2.3.2.2 Experiment 2 .. 16

 viii

 Page

2.4 Section 2 Conclusion ... 17

3. Nicer Protocol .. 18

3.1 Background and Related works.. 18

3.1.1 The Hypertext Transfer Protocol Version 2(HTTP/2) 18

3.1.2 Previous works regarding HTTP/2 performance ... 20

3.1.3 Previous works regarding SPDY protocol performance................................. 21

3.1.4 Analysis ... 21

3.2 Experiment I : Stream-Connection equivalence ... 22

3.2.1 Experiment I Test setup .. 22

3.2.2 Experiment I Test result .. 23

3.3 Experiment II : HTTP/2, HTTP/1.1 co-running .. 27

3.3.1 Experiment II Test setup ... 27

3.3.2 Experiment II Test result ... 28

3.4 Section 3 Conclusion ... 30

4. Conclusion .. 31

REFERENCES ... 32

VITA .. 35

List of Figures

Figure 1: Volunteer Computing Architecture .. 1

Figure 2: Example of CPU-time allocation of SCHED_NORMAL ... 5

Figure 3: Architectural Design ... 8

Figure 4: Starvation Detection Algorithm ... 9

Figure 5: Starvation Detection Flowchart ... 10

Figure 6: Experiment I test1, LINPACK Benchmark ... 13

Figure 7: Experiment I test2, Apache Bench ... 14

Figure 8: Experiment I test3, H.264 Video Playback .. 15

Figure 9: Experiment 2, LINPACK background with H.264 running as a foreground 16

Figure 10: HTTP/1.1 Head of line blocking .. 19

Figure 11: HTTP/2 Multiplexed Streams .. 20

Figure 12: Experiment I test setup .. 22

Figure 13: Experiment I Payload transfer rate, 32 bytes payload 23

Figure 14: Experiment I Payload transfer rate, 1KiB payload ... 24

Figure 15: Experiment I payload transfer rate, 32 bytes payload, 1% loss 25

Figure 16: Experiment I payload transfer rate, 1KiB payload, 1% loss 26

Figure 17: Experiment II test setup ... 27

Figure 18: Experiment II Ratio of HTTP/2 and HTTP/1 bandwidth, 32 connections 28

Figure 19: Experiment II Ratio of HTTP/2 and HTTP/1 bandwidth, 32 inflight
requests .. 29

 x

List of Tables

Table 1: Comparision of Current Solutions .. 7

Table 2: Summary of Experiment I tests ... 12

1. Introduction

Volunteer computing uses computers volunteered by general public to do
distributed scientific computing[1]. This allows research projects to access large
pool of computing power without investing in expensive computing infrastructure
and operating cost. But, one drawback of joining a volunteer computing project is
the decrease of performance in participating machines particularly processor
performance. However, other resources such as memory and network bandwidth
also play important roles in system performance. Our goal here is to avoid
starvation of resources caused by volunteer computing application. In another
word, we want to make volunteer computing application “nicer” to other
processes in the system. However, as different resource type has different
characteristics and constrain, thus requires different method preventing
starvation. Figure 1 shows architecture of volunteer computing application.

Figure 1: Volunteer Computing Architecture

1.1 Objectives

1. The system should be able to mitigate foreground task’s performance loss.
2. The system should be able to work without direct knowledge of an
application or without an elevated privilege.
3. The system could be implemented without modification of an application
and minimal modification to the operating system.

2

1.2 Scope

1. The system only limits resources usage of the background processes, does
not directly change scheduling policy of the operating system.
2. In this project we only consider applications, both with constant and
variable resources usage
3. In this project we only consider starvation caused by background processes
and we assume that application's resources requirements don't exceed
system capacity.

1.3 Organization of the Dissertation

 This dissertation is organized as follows. In section 2, “Nicer Processing”, we
developed a CPU allocation technique that can prevent CPU starvation from
Background process usage. In section 3, “Nicer Protocol”, we investigated an
upcoming transport layer protocol, the HTTP/2 and its effect on network contention
due to multiple connection. We also include preliminary study on effects of memory
performance from Background process in the appendix. We concluded our work in
Section 4. We also include some technical background in the APPENDIX.

3

2. Nicer Processing

In this section, we developed a CPU allocation technique to solve the problem
of running volunteer application on a system with the Completely Fair
Scheduler(CFS). Our allocation technique is based on adaptive reservation but works
without requiring administrative privilege and can work across user boundaries. From
the experiment, our method can maintain performance of foreground workload and
can reclaim more CPU time compared to static allocation method.

2.1 Background & Related works

2.1.1 The Completely Fair Scheduler(CFS)

Prior to the Linux kernel version 2.6.24, scheduler contains two scheduling
classes, SCHED_RT and SCHED_NORMAL [2]. Tasks in SCHED_RT always run before
tasks in another class. The rest belongs to SCHED_NORMAL class. Scheduler allocates
CPU time according to nice value of each task. After kernel v2.6.24, the completely
fair scheduler (CFS) was merged into the mainline kernel, replacing the existing
SCHED_NORMAL scheduling class. The CFS is in a class of scheduler called Fair Share
Scheduler[2]. The Fair Share Scheduler allocates CPU time proportional to number of
share. The new design delivered weight-based scheduling of CPU bandwidth,
enabling arbitrary partitioning. This allowed support for group scheduling to be added
and managed using cgroups[3]. These are some features supported by the CFS.

 Group Scheduling: In early version, the CFS only implements fairness between
processes[4]. In order to deal with multi process resource hogging task,
processes are grouped according to TTY [5] (Automatic process grouping) or
Session ID [6] in later version.

 Control Groups: Control groups allow resources to be allocated among user-
defined groups of tasks. Control groups are also hierarchical. For example, CPU

4

time is allocated according to ratio of share in each level in a top-down
fashion[7].

In depth details about the CFS can be found in [8].
2.1.2 Analysis and Problems of the CFS

Prior to the Linux kernel version 2.6.24, the nice value of a task was used as one
of the tunable parameter in CPU time allocation. The nice value is then used to
calculate the priority of the task. The priority was compared to one belonging to all
other processes in the system and was used to determine CPU time for each
processes. Non-privileged user can only monotonically drop his/her nice value to
give up CPU time to another user.

Since v2.6.24, the concept of Fair Share Scheduling was introduced with the CFS,
nice value is only used as a scheduling parameter in the same group level or in the
same TTY. This is done in order to enforce fairness among users and “improve
interactivity”. The problem is, while in default policy, non-privileged user cannot
decrease his/her nice value or increase shares, user also cannot change his/her
shares relative to other users. The user can only change share between process
groups under his/her own group. For example, in Figure 2, User B changes process
group B1 to the minimum share of 1. Since CPU-time allocation is top-down, process
group B1 receive CPU-time as much as process group A1 and A2 combined. Thus,
increasing in the number of processes or process groups of a user does not translate
into more CPU-time allocation.

5

Figure 2: Example of CPU-time allocation of SCHED_NORMAL

6

2.1.3 Current Solutions
There are many solutions to alleviate the problem of background volunteering

computing processes spending too much CPU time.
1. Do nothing

All users have same amount of CPU share, since a user cannot set his/her
share. On the other hand, CPU time available to a user can be as low as
1/number of users.

2. Suspend background processes
The controller of background (volunteering computing) processes monitors

CPU time used by other applications. If other processes use CPU time more
than a predetermined threshold, background processes will be suspended. This
approach, while provides minimal performance impact to the foreground
processes, leaves all remaining CPU time unused. This is the default approach
used by the BOINC Client on Linux based operating system[9].

3. CPU Time Reservation
By reserving a CPU time for maximum foreground processes (with timing

constrain) utilization, service quality could be guaranteed at a cost of wasted
CPU time. This technique has long been studied in [10] since system’s
scheduler was primitive. In the CFS scheduler, the execution cap could be
controlled through cgroups interface.

4. Adaptive Reservation
By using service quality of foreground process as an input of a controller, CPU

time allocation of foreground processes could be controlled to optimize service
quality while minimizing wasted CPU time. The implementation of Adaptive
Reservation in Linux was purposed in[11]. However, if foreground and
background applications are from different users, this method breaches user
policy of isolation.

Table 1 shows the comparison of current solutions.

7

Table 1: Comparision of Current Solutions

8

2.2 Our solution

2.2.1 Design concept

Our solution is based on an idea of feedback adaptive reservation. To ease
explaining, Figure 3 shows architectural design of our solution. Since default user
privilege policy does not allow feedback signal to be sent to another user, we use
global monitoring tools to get amount of CPU time spend idling to detect CPU time
starvation in another user’s process (foreground process). If a process is in starvation,
it should use more available CPU time. If background process, however, could
deplete all CPU time available, there will be no CPU time left for starvation
detection. Our solution is to limit a background process so that there will always be
CPU time left similar to PI controller. Eventually, other processes will consume
reserved CPU time until meeting its requirement. (Unless the system is not
overloaded by other processes.) In other words, trying to maintain idle CPU time
serves 2 purposes: 1. background processes are “nicer” to other processes 2.
absence of idle CPU time indicates CPU starvation.

Figure 3: Architectural Design

9

2.2.2 How to detect Starvation

Figure 4 shows the Starvation Detection Algorithm.

Figure 4: Starvation Detection Algorithm

initialize reserveBandMultiplier to minimumReserveBandMultiplier
initialize overloadCount to 0
set backgroundQuotaFraction to 0.0
forever do
 get idleCPUFraction
 if idleCPUFraction = 0 then
 increment overloadCount
 double reserveBandMultiplier but no more than
maxReserveBandMultiplier
 else
 reset overloadCount to 0
 decrement reserveBandMultiplier but no less than
minimumReserveBandMultiplier
 end if
 if overloadCount > overloadThreshold then
 reset overloadCount to 0
 reset backgroundQuotaFraction to 0.0;
 set reserveBandMultiplier to maxReserveBandMultiplier
 else
 set backgroundQuotaFraction to backgroundQuotaFraction +
(idleCPUFraction - (reserveBandMultiplier*minimumReserveBand))
 end if

wait until next scheduling round
end

10

Our Starvation Detection Algorithm can be separated into 3 parts. First part
tries to maintain small CPU idle time(reserveBand) to detect and prevent starvation.
Second part manages with fluctuating workloads by detecting overloading and
multiplicatively increase reserve band. However, if workload is constant, reserveBand
decay linearly to the minimum level. The last part deals with instantaneous
workload. When detecting multiple consecutive overloading, background process
CPU time is reduced to the minimum. Figure 5 shows a Flowchart of second and last
part of the algorithm.

Figure 5: Starvation Detection Flowchart

no idling time?

Initialize

overloadCount++
double reserveBand

overloadCount = 0
decrement reserveBand

overloadCount >
threshold?

overloadCount = 0
set reserveBand to
maximum
backgroundQuota = 0

backgroundQuota =
backgroundQuotaFractio
n + (idleCPUFraction -
(reserveBandMultiplier
* reserveBand))

Yes, detecting
fluctuating
workload

Yes, detecting
instantaneous
workload

No, assume
constant workload

No

11

2.3 Implementation and Experiments

2.3.1 Implementation

We implemented our algorithm on Linux based operating systems. Our
implementation does not require any modification to kernel or administration
privilege except for enabling cgroups file-system interface. The idleCPUFraction was
extracted from /proc/stat. The backgroundQuotaFraction was set through file-system
interface of cgroups. We conducted experiments on Ubuntu Desktop 14.04 with
cgroup installed.

2.3.2 The experiments

We evaluated our implementation by using two sets of experiments. The goal of
the first experiment is to evaluate performance loss of foreground workload. The
second experiment measured the performance of background workload in order to
evaluate allocation efficiency of our allocation method against that of static
allocation method.

Parameters used in Starvation Detection Algorithm in this experiment are
• minimumReserveBandMultiplier = 1
• maxReserveBandMultiplier = 16
• overloadThreshold = 4

We acquired parameters by hand-tuning and can be different according to
resources in the system.

12

2.3.2.1 Experiment 1

In this experiment, we measured the performance of foreground processes while
running CPU hogging processes as a background. The background workload could
fully utilize both cores of the processor. Foreground processes and background
processes were grouped with the same type. Background processes group is
controlled by our allocation technique. We compared the result against a run
without background processes CPU allocation control (w/o control) and a run
without background processes running (no). In this experiment, we use multiple
instances of “md5sum /dev/zero” as background workload. Table 2 shows summary
of experiment 1 tests.

Table 2: Summary of Experiment I tests

Test Case Workload Description Foreground Workload
1 Compute-heavy LINPACK Benchmark

2 Latency-sensitive Apache Bench

3 Soft real-time H.264 Video Playback

13

Test 1: LINPACK Benchmark
LINPACK is a library for solving linear algebra. LINPACK benchmark is used to

measure floating point performance of the computer. This test represents compute-
heavy workloads without timing constrain. Since foreground workload is easily
predictable, we can see in Figure 6 that background workload has no significant
impact on foreground process.

Figure 6: Experiment I test1, LINPACK Benchmark

0

5

10

15

20

25

30

35

40

45

no w/o control w/control

Th
ro

u
gh

p
u

t(
G

FL
O

P
S)

Background workload

14

Test 2: Apache Bench
Apache is a widely used web server. The Apache Bench measures how many

requests per second a given system can sustain when carrying out 1,000,000 requests
with 100 requests being carried out concurrently [10]. While intensity of foreground
workload is not high, it is highly sensitive to service latency. In Figure 7 we can see
that even if background workload is controlled with our allocation technique, the
performance of web server in this test could not be maintained. However, if we
change parameter “minimumReserveBandMultiplier” to 8 (minBand>=8),
performance degradation becomes acceptable. This is due to limited parallelism of
100 concurrent requests.

Figure 7: Experiment I test2, Apache Bench

0

2000

4000

6000

8000

10000

12000

14000

16000

no w/o control w/control minBand>=8

Th
ro

u
gh

p
u

t
(r

e
q

u
e

st
s/

se
c)

Background workload

15

Test 3: H.264 video playback
In this test, we use VLC player 2.1.4 to play a variable bit-rate H.264 video of

32 second length with average bit-rate of 70Mbit/s. Build-in FFmpeg decoder is used
and adaptive decoding (Hurry-up option) is disabled. This test represents continuous
soft real-time application with variable processor requirement. Since this foreground
processes in this test cannot use half of total share in our test environment, we
disable one of the processor core to decrease processing power available to the
system. In Figure 8, we can see that, with our allocation technique, performance
penalty of running CPU hogging processes is minimal.

Figure 8: Experiment I test3, H.264 Video Playback

0

100

200

300

400

500

600

700

800

900

no w/o control w/control

D
is

p
la

ye
d

 f
ra

m
e

s

Background workload

16

2.3.2.2 Experiment 2

In this experiment, we used VLC player to play H.264 video with average bit-rate
of 50 Mbit/s as a foreground workload and LINPACK benchmark as a background
workload. The background workload was controlled using worst case static allocation
method (static) and our allocation method (dynamic). We measured performance of
background workload to compare the performance loss of each allocation method.
The comparison is shown in Figure 9. We can see that our allocation can reclaim
more performance compared to the static allocation method. Also, suspending
method used by BOINC client in Linux-based system does not background workload
of foreground workload reach certain threshold.

Figure 9: Experiment 2, LINPACK background with H.264 running as a foreground

0

2

4

6

8

10

12

14

16

18

static dynamic suspend

Th
ro

u
gp

u
t(

G
FL

O
P

S)

Background workload allocation method

17

2.4 Section 2 Conclusion

Our CPU allocation technique for volunteer computing application based on
Adaptive Reservation can solve the problem of performance degradation when
running a volunteer application as a background process on a system with
Completely Fair Scheduler. We solved the problem of feedback signal across user
boundary by replacing it with the idle CPU statistics from system monitoring tools.
The idle CPU statistics is used for our Starvation Detection Algorithm to both keep
track of CPU usage requirement and to control background processes to be nice to
other processes in the system. The implementation was done on a Linux-based
system with CFS. The impact was evaluated with several types of foreground
applications. With compute-heavy workload without timing constrain as a foreground
workload, performance degradation from background workload is negligible in our
allocation technique. In low intensity, latency sensitive web server test, tuning of
parameters is necessary to maintain good performance. While in video playback test,
performance drop is acceptable. In another experiment, we found that our allocation
method improves background workload CPU idle time. It can reclaim 50 percent CPU
time without the loss of foreground performance.

18

3. Nicer Protocol

As bandwidth of a link continues to increase, link latency is constrained by
physical limits. So called “latency-bandwidth product” becomes too large to be
easily utilized. This is especially true in current mobile networking technology such as
LTE where link speed could exceed 1 Gbit/s but with Round-Trip-Time as high as 30
ms[12]. Also, the size of content being delivered is growing. In February 2016, average
size of a web page is around 2200 kB and is delivered over the average of 100
requests [13]. Current application-layer protocol, HTTP/1.1, is not able to benefit
from this situation. Therefore, the HTTP/2 protocol was created. From our survey,
HTTP/2’s benefits over its predecessor is studied in several literatures but is far from
covering all aspects. In this section, we investigated factors that impact HTTP/2’s
performance compared to that of the HTTP/1.1. We focused our study on the effects
of the multiplexed stream.

3.1 Background and Related works

3.1.1 The Hypertext Transfer Protocol Version 2(HTTP/2)

The HTTP/2 was proposed to mitigate problems of the previous HTTP/1.1 and its
underlying transport protocols. In the original HTTP/1.0, each connection can serve
only one request. Persistence connection was later added but not included in
HTTP/1.0 standard. Persistence connection allows reuse of connection by multiple
requests, therefore reducing overhead of creating new TCP connection, but still
limited to single simultaneous request. In HTTP/1.1, Pipelining was added and
Persistence connection became standard. Pipelining allows multiple inflight requests
over single connection. However, requests Pipelining in HTTP/1.1 needs to be served
in order. This creates head-of-line blocking problem as illustrated in Figure 10 and
Figure 11. Therefore, it was not widely implemented by popular web browsers [14,
15]. Common workaround is to interleave requests over multiple TCP connections
simultaneously. However, creating multiple connections have several drawbacks
including TCP slow start and may pollute other traffics on the network. Many

19

application-layer protocols were proposed as a supplemental or an alternative to the
HTTP/1.1. One of them is Google’s SPDY [16] protocol which was later used as a
basis for HTTP/2. In May 2015, Internet Engineering Task Force(IETF) proposed
RFC7540 as a standard that defines HTTP/2. The HTTP/2 solves these issues by 1)
allowing multiplexing of multiple requests and response messages over single
connection, 2) using compression for HTTP header fields to save header space, 3)
changing from textual to binary message framing to simplify parsing and 4) server
push to hide request latency [17].

Figure 10: HTTP/1.1 Head of line blocking

Client Server

Request GET 2 finished before GET 1
but blocked

20

Figure 11: HTTP/2 Multiplexed Streams

3.1.2 Previous works regarding HTTP/2 performance

There are several works related to HTTP/2’s performance as follows:

 Is HTTP/2 Really Faster Than HTTP/1.1?[18]
This work studied the impact of number of requests, link latency and packet
loss on Page Load Time. It concludes that HTTP/2 has significantly faster page
load time for websites with great number of requests. However, it is less
advatageous with the presence of packet loss compared to the HTTP/1.1.

 To HTTP/2, or Not To HTTP/2, That Is The Question[19]
This work studied the implementation of HTTP/2 in several websites and also
Page Load Time under various network condition. It concludes that HTTP/1.1
suffers more penalty in Page Load Time than HTTP/2 under high latency or
with packet loss. Also, HTTP/2’s penalty can be further reduced by domain
sharding.

 The upcoming new standard HTTP/2 and its impact on multi-domain
websites[20]
This work compares the Page Load Time of several websites with both
HTTP/1.1 and HTTP/2 on wired and wireless network. The study concludes

Client Server

Not blocked

21

that HTTP/2 may cause slowdown on site that contains small number of
resouces in some cases.

3.1.3 Previous works regarding SPDY protocol performance

In addition to HTTP/2, there exist works related to SPDY’s performance, which is a
proprietary protocol designed by Google to solve similar issues. We include works
regarding SPDY because it was better studied. The SPDY protocol also has
multiplexed stream which is our interest here.

 Can SPDY Really Make the Web Faster?[21]
The work studied the effects of latency, packet loss, shading and multiplexed
stream on Time on Wire(measured on the network interface) in both real sites
and controlled environment. They found that penalty and benefits of SPDY’s
multiplexed streams can vary from site to site. For example, Twitter site with
less resources count gains less reduction in time of wait with SPDY compared
to that of HTTPS in YouTube site with high resources count.

 How Speedy is SPDY?[22]
This work studied the effects of link bandwidth, latency, number and size of
object in the webpage on Page Load Time and comparison to the HTTP/1.1.
They conclude that the benefits of SPDY multiplexed stream is limited by
dependencies in webpages.

3.1.4 Analysis

From our survey, one thing in common from those studies is the use of sampled
web page as a test payload and the use of Page Load Time as performance metric.
However, we want to study sustain performance of the HTTP/2 that is important in
some applications such as streaming and effects of latency, packet loss compared to
that of the HTTP/1.1. We also want to study HTTP/2 performance under highly
congested network.

22

3.2 Experiment I : Stream-Connection equivalence

In this experiment, we measure payload transfer rate while varying number of
inflight requests and payload size. We want to prove that HTTP/2.0’s stream is
equivalent to multiple separate connection when the network is not under
bandwidth limited condition. We also want to see whether using multiplexed stream
helps to mitigate effect of lossy connection.

3.2.1 Experiment I Test setup

In this test, we setup 2 machines, one as a server, another as a client. The
machines were connected together through an Ethernet link with latency of 5ms
and bandwidth of 100Mbit/s. We used Apache 2.4.18[23] as a web server, h2load
[24] as an HTTP/2 client and ApacheBench as HTTP/1.1 client. Figure 12 shows
test setup of this experiment. We enabled keep-alive in HTTP/1.1 but not
pipelining because it not was not widely implemented in popular browsers. We
varied number of inflight requests from 10 to 100. In HTTP/2 case, we fixed
number of streams in each connection to 1 and 10. We used the number of
streams multiplied by the number of connection as a number of inflight requests.
The payload size we used in this experiment is 32 B and 1 KB. Round trip time
between server and client was 5 milliseconds. We tested with and without
packet loss rate of 1%. We compared Payload Transfer Rate from each type of
connection. We have verified that both Web Server and Client are not CPU-
bounded in this experiment.

Figure 12: Experiment I test setup

23

3.2.2 Experiment I Test result

Without packet loss, we can see from Figure 13 that with the same number
of inflight request, HTTP/2’s and HTTP/1.1’s payload transfer rates are roughly
equal for both transfer size when there is less than 50 inflight requests. However,
due to increased overhead of HTTP/2 protocol, there is small slowdown with
more connection compared to the HTTP/1.1.

Figure 13: Experiment I Payload transfer rate, 32 bytes payload

0

100

200

300

400

500

600

700

10 20 30 40 50 60 70 80 90 100

Pa
yl

o
ad

 t
ra

n
sf

er
 r

at
e(

K
B

/s
)

Number of inflight requests

Payload transfer rate, 32 bytes payload

HTTP/1.1 H2 1 stream H2 10 streams

24

However, as shown in Figure 14, HTTP/2’s peak payload transfer rate is higher
in 1KiB transfer size because our bandwidth limit is hit and there is less header space
overhead from compressed header.

Figure 14: Experiment I Payload transfer rate, 1KiB payload

0

2000

4000

6000

8000

10000

12000

10 20 30 40 50 60 70 80 90 100Pa
yl

o
ad

 t
ra

n
sf

er
 r

at
e(

K
B

/s
)

Number of inflight requests

Payload transfer rate, 1 KiB payload

HTTP/1.1 H2 1 stream H2 10 streams

25

With packet loss, in 32 bytes payload case, throughput of 10-stream
connection grows significantly faster than HTTP/1.1 and HTTP/2 with single stream.
This is due to faster TCP retransmission. 1-stream HTTP/2 connections also suffer
more penalty from loss than HTTP/1.1 as shown in Figure 15. But from our
experiment, the improvement is significant even with only 2 multiplexed streams.

Figure 15: Experiment I payload transfer rate, 32 bytes payload, 1% loss

0

50

100

150

200

250

300

350

400

450

500

10 20 30 40 50 60 70 80 90 100

Pa
yl

o
ad

 t
ra

n
sf

er
 r

at
e(

K
B

/s
)

Number of inflight requests

Payload transfer rate, 32 bytes payload, 1% loss

HTTP/1.1 H2 1 stream H2 10 streams

26

The result in 1 KiB payload is similar but HTTP/2 with single stream achieves
higher peak transfer rate than HTTP/1.1 due to the header compression. The result
was shown in Figure 16.

Figure 16: Experiment I payload transfer rate, 1KiB payload, 1% loss

0

2000

4000

6000

8000

10000

12000

10 20 30 40 50 60 70 80 90 100

Pa
yl

o
ad

 t
ra

n
sf

er
 r

at
e(

K
B

/s
)

Number of inflight requests

Payload transfer rate, 1 KiB payload, 1% loss

HTTP/1.1 H2 1 stream H2 10 streams

27

3.3 Experiment II : HTTP/2, HTTP/1.1 co-running

In this experiment, we want to compare HTTP/2 performance in highly congested
network to that of the HTTP/1.1. We want to know whether STREAM-CONNECTION
EQUAVALENCE holds true in highly congested network or not.

3.3.1 Experiment II Test setup

In this test, we setup 2 client machines connected to a server machine through a
bottleneck link of 100 Mbit/s. Link latency between client machine and server
machine was 5ms. To measure payload bandwidth under congestion, we assigned
one of the client machine as a stress machine and another as a measured machine.
The stress machine loaded the server with HTTP requests and we ran the test on
measured machine as shown in Figure 17. However, it is important to note that we
had verified that in this test, server’s CPU is not fully utilized, therefore there is no a
performance bottleneck. As in previous experiment, we used Apache 2.4.18 as a web
server on server machine, ApacheBench as HTTP/1.1 client and h2load as HTTP/2
client. For each test, we ran HTTP/2 load on measured machine alongside HTTP/1.1
on stress machine and vice versa. We varied payload size from 1KiB to 128KiB. Then
we switched stress machine to HTTP/2 and measure machine to HTTP/1.1 such that
we always measure the same machine to eliminate systematic error. We then
compare the ratio of payload transfer rate between HTTP/1.1 and HTTP/2 both of
the same number of connections and the same number of inflight requests.

Figure 17: Experiment II test setup

28

3.3.2 Experiment II Test result

From Figure 18, we can see that, with equal number of connection, ratio
between HTTP/2 and HTTP/1.1 pay load throughput starts from ration between
number of inflight requests and converges toward 1 in larger payload size.

Figure 18: Experiment II Ratio of HTTP/2 and HTTP/1 bandwidth, 32 connections

0

1

2

3

4

5

1 2 4 8 16 22 32 64 128

Payload size (KiB)

Ratio of HTTP/2 and HTTP/1 bandwidth, 32 connections

2 streams 4streams

29

In Figure 19, we can see that ratio between HTTP/2 and HTTP/1.1 converges
to the ratio of number of HTTP/2 connections and HTTP/1.1 connections. In
other words, ratio of payload throughput is proportional to number of inflight
requests in latency limited case and converges toward number of connection as
payload size increases in bandwidth limited case.

Figure 19: Experiment II Ratio of HTTP/2 and HTTP/1 bandwidth, 32 inflight requests

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 22 32 64 128

Payload size (KiB)

Ratio of HTTP/2 and HTTP/1 bandwidth, 32 inflight requests

2 streams 4streams

30

3.4 Section 3 Conclusion

As shown from our experiments, the HTTP/2 multiplexed streams can be
effectively used to replace multiple HTTP/1.1 connection, increasing service capacity
on the server machine and improve bandwidth utilization. However, in highly
congested network, from web users’ perspective, there is a penalty from using
multiplexed stream especially in case of large payload size as transport layer
protocol tries to balance bandwidth between each connection. On the other hand,
from ISP and service providers’ perspective, using multiplexed streams is more
friendly to other connections comparing to multiple connections. This also helps
preventing bandwidth starvation. Therefore, web users may want to use multiplexed
stream only if they have excess bandwidth or they don’t want to compete for
bandwidth such as running a background job such as volunteer computing with
networking requirements. However, service providers can greatly benefit from
multiplexed stream because overhead from multiple connections can be significant.
For volunteer computing application, using multiplexed streams can serve 2
purposes: 1. It can fully utilize bandwidth without creating contention with other
application. 2. It reduces connection overhead on the coordinator machine.

31

4. Conclusion

In this work, we solved the problem of performance loss when running
volunteer computing application. In the “Nicer Processing” section, we used idea of
adaptive reservation to solve problem of share between users in CFS based system.
We solved problem of violation of user boundary by using global statistics. Our
method also does not require any modification to the operating system. In section
“Nicer Protocol”, we studied the HTTP/2 multiplexed stream. We showed the
equivalence between multiplexed stream and multiple separate connections. We
also showed that the HTTP/2 multiplexed stream is more network friendly compared
to multiple HTTP/1.1 connections. The implementation of HTTP/2 only require
modification of web server, web page and web browser.

Thus, we have demonstrated 2 different approaches dealing with 2 different
resources important to volunteer computing applications.

In “Nicer Processing", the of our work is to allow a person to continuously
donate their processing power without interfering with their foreground usage. The
principal in this work can also be adapt to other resource such as GPU. For example,
processing time allocation for asynchronous physics simulation and graphic
processing on the Graphic Processing Unit. However, one of the point that can be
improved is the parameters in Starvation Detection Algorithm. In this work, we hand-
tuned the parameters. In order to tune parameters to suite wide range of application,
an automated tuning is required.

In “Nicer Protocol”, our intention in this study is to uncover another aspect of
HTTP/2 performance characteristics and its potential in volunteer computing
application. However, our study is far from being comprehensive. Though the HTTP/2
standard was finalized, its implementation has yet to be solidified. Therefore, further
studies are required.

REFERENCES

[1] D. P. Anderson and G. Fedak, "The computational and storage potential of
volunteer computing," in Cluster Computing and the Grid, 2006. CCGRID 06. Sixth
IEEE International Symposium on, 2006, pp. 73-80.
[2] J. Kay and P. Lauder, "A fair share scheduler," Communications of the ACM,
vol. 31, pp. 44-55, 1988.
[3] P. Turner, B. B. Rao, and N. Rao, "CPU bandwidth control for CFS," 2010.
[4] J. Corbet. (2007). CFS group scheduling. Available:
https://lwn.net/Articles/240474/
[5] J. Corbet. (2007). TTY-based group scheduling. Available:
https://lwn.net/Articles/415740/
[6] J. Corbet. (2007). Group scheduling and alternatives. Available:
https://lwn.net/Articles/418884/
[7] M. Prpic, R. Landmann, and D. Silas, "Red Hat Enterprise Linux 6 Resource
Management Guide," Managing system resources on Red Hat Enterprise Linux,
vol. 6, pp. 1-40, 2013.
[8] C. S. Pabla, "Completely fair scheduler," Linux Journal, vol. 2009, p. 4, 2009.
[9] (2015). BOINC preferences. Available:
http://boinc.berkeley.edu/wiki/preferences
[10] C. W. Mercer, S. Savage, and H. Tokuda, "Processor capacity reserves:
Operating system support for multimedia applications," in Multimedia Computing
and Systems, 1994., Proceedings of the International Conference on, 1994, pp.
90-99.
[11] T. Cucinotta, L. Palopoli, L. Marzario, G. Lipari, and L. Abeni, "Adaptive
reservations in a Linux environment," in Real-Time and Embedded Technology
and Applications Symposium, 2004. Proceedings. RTAS 2004. 10th IEEE, 2004, pp.
238-245.

https://lwn.net/Articles/240474/
https://lwn.net/Articles/415740/
https://lwn.net/Articles/418884/
http://boinc.berkeley.edu/wiki/preferences

33

[12] M. Laner, P. Svoboda, P. Romirer-Maierhofer, N. Nikaein, F. Ricciato, and M.
Rupp, "A comparison between one-way delays in operating HSPA and LTE
networks," in Modeling and Optimization in Mobile, Ad Hoc and Wireless
Networks (WiOpt), 2012 10th International Symposium on, 2012, pp. 286-292.
[13] (2016, 10 March). HTTP archive. Available: http://httparchive.org
[14] HTTP Pipelining - The Chromium Projects. Available:
https://www.chromium.org/developers/design-documents/network-stack/http-
pipelining
[15] (2016). Bug report: Enable HTTP pipelining by default. Available:
https://bugzilla.mozilla.org/show_bug.cgi?id=264354
[16] SPDY: An experimental protocol for a faster web. Available:
https://www.chromium.org/spdy/spdy-whitepaper
[17] M. Belshe, M. Thomson, and R. Peon. (2015). Hypertext transfer protocol
version 2 (http/2). Available: http://tools.ietf.org/html/rfc7540
[18] H. de Saxcé, I. Oprescu, and Y. Chen, "Is HTTP/2 really faster than HTTP/1.1?,"
in 2015 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), 2015, pp. 293-299.
[19] M. Varvello, K. Schomp, D. Naylor, J. Blackburn, A. Finamore, and K.
Papagiannaki, "To HTTP/2, or not to HTTP/2, that is the question," arXiv preprint
arXiv:1507.06562, 2015.
[20] H. Kim, J. Lee, I. Park, H. Kim, D.-H. Yi, and T. Hur, "The upcoming new
standard HTTP/2 and its impact on multi-domain websites," in Network
Operations and Management Symposium (APNOMS), 2015 17th Asia-Pacific,
2015, pp. 530-533.
[21] Y. Elkhatib, G. Tyson, and M. Welzl, "Can SPDY really make the web faster?," in
Networking Conference, 2014 IFIP, 2014, pp. 1-9.
[22] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall, "How
speedy is SPDY?," in 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14), 2014, pp. 387-399.
[23] The Apache HTTP Server Project. Available: https://httpd.apache.org
[24] T. Tsujikawa. Nghttp2: HTTP/2 C Library. Available: https://nghttp2.org

http://httparchive.org/
https://www.chromium.org/developers/design-documents/network-stack/http-pipelining
https://www.chromium.org/developers/design-documents/network-stack/http-pipelining
https://bugzilla.mozilla.org/show_bug.cgi?id=264354
https://www.chromium.org/spdy/spdy-whitepaper
http://tools.ietf.org/html/rfc7540
https://httpd.apache.org/
https://nghttp2.org/

APPENDIX

Reservation-Based Scheduling(RBS)
RBS allows user to specify processor requirement and controls allocation of

processor time to the process in each period. It guarantees availability of the
processor to the process by restricting processor admission and utilization of other
processes.

Adaptive Reservation (Feedback Scheduling)
 RBS scheme that selects RBS’s parameter based on previous scheduling error.

𝑒 = 𝑑 − 𝑡
where e is scheduling error, d is scheduling deadline and t is task’s soft deadline.
Adaptive Reservation tries to drive e towards 0.

PID Controller
 The PID algorithm is describe by

where y is the measured process variable, r the reference variable, u is the control
signal and e is the control error. The control signal is a sum of three terms:
proportion term, integral term and derivative term. Since CPU time measuring range
is limited, we only consider first and second term.

35

VITA

VITA

Korakit Seemakhupt was born in Bangkok, Thailand on April 1992. He
received Bachelor of Engineering in Computer Engineering from Chulalongkorn
University, Thailand in 2013.

36

	THAI ABSTRACT
	ENGLISH ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	List of Figures
	List of Tables
	1. Introduction
	1.1 Objectives
	1.2 Scope
	1.3 Organization of the Dissertation

	2. Nicer Processing
	2.1 Background & Related works
	2.1.1 The Completely Fair Scheduler(CFS)
	2.1.2 Analysis and Problems of the CFS

	2.2 Our solution
	2.2.1 Design concept
	2.2.2 How to detect Starvation

	2.3 Implementation and Experiments
	2.3.1 Implementation
	2.3.2 The experiments
	2.3.2.1 Experiment 1
	2.3.2.2 Experiment 2

	2.4 Section 2 Conclusion

	3. Nicer Protocol
	3.1 Background and Related works
	3.1.1 The Hypertext Transfer Protocol Version 2(HTTP/2)
	3.1.2 Previous works regarding HTTP/2 performance
	3.1.3 Previous works regarding SPDY protocol performance
	3.1.4 Analysis

	3.2 Experiment I : Stream-Connection equivalence
	3.2.1 Experiment I Test setup
	3.2.2 Experiment I Test result

	3.3 Experiment II : HTTP/2, HTTP/1.1 co-running
	3.3.1 Experiment II Test setup
	3.3.2 Experiment II Test result

	3.4 Section 3 Conclusion

	4. Conclusion
	REFERENCES
	VITA

