v o :// ' = Y ! '
ﬂ"ﬁﬁﬂﬂu‘l’faTﬁJﬂ?Q"UENﬁlHJJLLiJLWaﬂqwﬂﬂﬂﬁuﬂjgil‘ﬂﬂ HagnN151530YNIn

=3 ' < o o 4 a y
Glummmnmmmamfn‘uqmﬁ@u 90 @Qﬂ'”lﬂ‘lJL'Jﬂm'ﬂjﬂﬂ@ﬂ]@ﬁﬂﬁuﬂﬁgﬁuﬂﬂ

4 a
HIYIATIA FAUTYIN

b4
=\

InerfinusiidudaunilsvesmsfinmmundngasSyaInomaas e
aInidnd madnildnd
TudnIne1ds YnansalumIInedy
Unsdnu 2542
ISBN 974-333-115-8

a a & v a a a/ o a o
AUANTUDIUUNAINGIDY JWIINTUNNIINYIAY

11%%94a902

MULTIPLE MAGNETIC FIELD-SHOCK CROSSINGS AND PARTICLE

ACCELERATION AT QUASI-PERPENDICULAR SHOCKS

Mr. Jaturong Sukonthachat

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science in Physics
Department of Physics
Graduate School
Chulalongkorn University
Academic Year 1999
ISBN 974-333-115-8

i1

Thesis Tittle Multiple Magnetic Field-Shock Crossings and Particle
Acceleration at Quasi-Perpendicular Shocks

By Mr. Jaturong Sukonthachat

Department Physics

Thesis Advisor Associate Professor David Ruffolo, Ph.D.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of

the Requirement for the Degree of Master of Science

A G W, R Dean of Graduate School

(Associate Professor Suchada Kiranadana, Ph.D.)

Thesis Committee

..

: 5 ‘
l | j/mww - vameW Chairman

(Associate Professor Thaworn Souttipongse, M.Sc.)

i A AL .‘.‘..L/./,z.f;' Thesis Advisor

L

(Associate Professor David Ruffolo, Ph.D.)

........... Af}/@“ ‘“‘7@:/ < ;Qﬂ [(C . Member

(Assistant Professor Kajornyod Yoodeé, Ph.D.)

IR 2 //" Member

o~

(Pong Songﬁb'ﬁ_g_s_, PhD)

apafd QAUSTIR: NMISAfUUAIEATNesaRNLHMANgRILATUNTzINN uazninseyniATungdl
gUINWIMANMEReY 90 asumnnmesnATesafunszMn (MULTIPLE MAGNETIC FIELD-
SHOCK CROSSINGS AND PARTICLE ACCELERATION AT QUASI-PERPENDICULAR SHOCKS) 8. @

Uinw : 9. ms. 103n gWIWTa, 114 weln. ISBN 974-333-115-8

ANHAIALITRIN Tl aete A luiAsRINa nau L mANeAY Tunsdlueanindeeyniaiauiuu

=3 d‘ o P a & a dl :J/ ‘:ii/v b o 1 =
widnwRsniyainey 90 evAiuvnmefUnfresadunszinniluilungdnuas nnsWadsnaniainisnesunginanig
Augrassduaninudingn Tnaaynalaasseuduaunuuimdnuasfeldndunuunoreadusunnudmanisiag lu
nsanaedBulnglfuundisesauulsUsuly 1 87 Ae wundisesausy annuulslsousesaunuusimniniy

o o oa

v v 1
agiuan1eTuiuunu z i antilduundiaesaouulssuresaunnudivanly 3 85 An uuud1aed 2 J6 99
Auudssauaued iuiantsluuuuny x wazuuauny y uaniunaseduuudaesausy Inslidnsdansasuny
| k2
31829 2 {15 80% UATULLILANANEUAL 20% \Hadandndnsdautiannnsnedunsanuulsloulesauuuivén
o ! 4 o P VT O et A 4 S pap

1esanaszdannaar st ififued e dduawnudvdaniiudsdsauiuduadunszunn N* ade Ineiiflsces
\ ' a - v v v P P 2 =A a

W L unndissuslansiednueseynin A, usseyninaziesituadunszunningeiy N* afasasiudass ns
— K .oy e & I S .
updunszunniiasiifiayniAgnINnANIY LALITezN1sIARRUNABEIAaUTUIAENTTLAUNTIINEYNIALLLIADE
{@9U (shock drift acceleration) Tun1sanasusldfigaiinfinisduadunszunnuanaafad i naumaaunaues
(6B /B, Infufuniinandunszunn usrlddananisnszaradoneainves N, 6 (yuszudtaduanunuu

G o A & o W o 5 - 0o o P - =

wianfulnmafinfrasadunszunn) was L dAwmiunisdiseadusuinuimandy dmiunsdiiashenstizednfu
nezunnnesSuduessiIugiey (solar wind termination shock) nalniianadaslunisaiuionisiadeuiuuuein

v
Wlussazmannnanuuadugudgrsresssuugiaziady vivalunanduiy

Q “) 1) 4 Qa p
AAIBY o AVIUOBOUTG oo

4

< 4 A ¢ a
GALARE A AT e10150N
¢ o
i

! 4 !
AMBUDBODIVNTINUIOHITIN oo

fmsanun

£ 4072449123408 PHYSICS

KEVWORDSHOCK / TERMINATION SHOCK / TURBULENT MAGNETIC FIELD
JATURONG SUKONTHACHAT: MULTIPLE MAGNETIC FIELD-SHOCK
CROSSINGS AND PARTICLE ACCELERATION AT QUASI-PERPENDICULAR
SHOCK. THESIS ADVISOR: ASSOC. PROF. DAVID RUFFOLO, Ph.D. 114 pp.
ISBN 974-333-115-8

The importance of accounting for diffusion perpendicular to the mean magnetic field
during nearly perpendicular shock acceleration is well documented. Here we note that
perpendicular diffusion is typically envisioned as due to the random walk of field lines, with
particle guiding centers closely tied to and diffusing back and forth along the field. We first
simulate one-dimensional magnetic field turbulence by using a slab model, in which the
turbulence depends on the z direction only. Then we simulate three-dimensional magnetic field
turbulence by superimposing two types of turbulence, a 2D model depending on x and y, and the
slab model, in the admixture of 80% 2D turbulence and 20% slab turbulence, which provides a
good fit to interplanetary turbulence. If these turbulent field lines can cross and recross a shock
at N magnetic field-shock crossing that are separated by distances L > 4, the scattering mean

free path, a particle will cross the shock an average of N* times before escaping. This could
increase the total shock-drift distance and energization of particles. We have verified that
multiple field-shock crossing do occur for reasonable values of (6B/B,)* near the shock, and

have measured the distribution of N, @ (the angle at which the field crosses the shock), and L
for 1000 simulated random magnetic fields. For the special case of the solar wind termination
shock, this mechanism may help to explain the observationally inferred drift of anomalous

cosmic rays (ACR) over much of the distance from the heliospheric equator to the poles or vice-
versa.

= /
A A an @Q@Qﬁg
PAAIE Ve D aesyoUdN :
o 3 Al
VIV T A e aeiieTe 1158 S 0. D iaid /{/?/J/,
/.

= = 7 j
Un1sanun 2547 aneiiates1nstiEnuisu

V1

e :\-Q;\'.l at iyf‘:

»/‘“)@/‘\
Acknowledegments (, &/

I would like to express my sincere gratitude to my thesis adviser, Dr.

David Ruffolo, for his encouragement not only in his useful comments but also
in his researcher’s sipirit. I also wishes to express my thanks to a Basic Research
Grant from the Thailand Research Fund for supporting this research.

I have to thank to Police Captain Dr. Wiwat Sidhisoradej, Mr. Songklod
Riyavong and Mr. Paisan Tooprakai for their helpful suggestions and assistance
with computer operating systems.

I would like to thank to Miss Thiranee Khumlumlert, Miss Supaporn
Kamklad and Mr. Kobchai Tayanasanti for thier kindness and help.

Finally, I would like to dedicate the thesis to my parents who are working

hard for their children. Special thanks go to my sisters for their attention.

Vil

Table of Contents

Abstract in Thai ... i e it e e iv
Abstract in Englishcoovvii i %
Acknowledgements ...ttt e e vi
Table of Contentscoveiieniiiiiiiieeriet et enneennnnnns vii
List Of Figutes sl ccare s s b a s a POBEiS 5 5 - <« + c s+ s aorossasosssss X
List of Tablasets «adlc sl ifibdc o b st sis maie dasi e o cosoeornoessocsnsns xvii
Chapter I Introductionc.ooiiiiiiiiiiiaa... 1
1.1 Thesis Purpose and Scope, 1
1.2 Overview of the Thesisooiiiiii 3
Chapter II Theoretical Background 4
2.1 The Discovery of Cosmic Rays and the Power Law Spectrum 4

2.2 Shock Waves, the Solar Wind Termination Shock,
and Anomalous Cosmic Raysooo i i 6
2.3 The Dynamics of Charged Particles in Magnetic Fields 7
2.3.1 A uniform, static magnetic field, 8
2.3.2 A non-uniform, static magnetic field 10
ga. 2.1 Gradieng@iel. 0. L. 4. Q. L0l AW el Lol 11
2.3.2.2 Curvature drifto 11
2.4 Shock Drift Acceleration 13

2.5 Order of Magnitude Calculations of Shock Drift Acceleration

at the Solar Wind Termination Shock 15

2.5.1 Conclusions of the order of magnitude calculations 22

2.6 Multiple Magnetic Field-Shock Crossings, 22
Chapter III Model of Turbulent Magnetic Fields 27
3.1 Slab Model ... 27

3.2 2D+Slab Model ..o 31

Chapter IV Simulation Technique and Their Testing . 35

4.1 Overview of Numerical Simulations 35
4.2 Inverse Fourier Transform 36
4.3 Random Phase Approximation 37
4.4 Euler’s Method and Interpolation 38
44.1 Buler’'smethodc. o 38
4.4.2 Linear interpolation 38
4.4.3 Bilinear interpolation 39

4.5 Trajectories of Magnetic Field Lines and Field-Shock Crossings . .40

4.6 BUANIATION TEBEIET <. - cx e cia <o bn ans om ek« e ceneemaee e e vnn s, 43

4.6.1 Fourier transform testing 43

4.6.2 Total turbulence and correlation length testing 44

4.6.3 Crossings of a shock and statistical data testing 46
Chapter V Statistical Results 49
5.1 One-Dimensional Statistical Results 50

3.2 Three-Dimensional Statistical Results

X

Chapter VI Discussion and Conclusions 67
6.1 Discussion of One-Dimensional Results 67
6.2 Discussion of Three-Dimensional Results 68
6.3 Comparison of the Upstream Crossings Angle Distributions69
6.4 CONClUSIONS ...\ttt e e 70
References ..ottt ittt ittt i i it e e e 72
Appendix A One-Dimensional Random Walk 74
Appendix B Fast Fourier Transform 78
Appendix C Random Number Generator 89
Appendix D Computer Programcoviiiiiiiiiiiinean... 91

Curricu‘lum Tt =l A e e N Y 114

Figure

Figure: 2.1.1

Figure: 2.2.1

Figure: 2.2.2

Figure: 2.3.1

List of Figures

Page

Energy spectra for protons, helium, carbon and iron nuclei as
a function of their kinetic energy per nucleon (Longair, 1997,

after Simpson, 1983). 6

Diagram of the heliosphere with the particle populations in-
dicated schematically which influence termination shock struc-
ture: galactic cosmic rays (large dots), anomalous cosmic rays
(small dots), interstellar neutral gas (solid trajectories), and
interstellar pickup ions (dashed trajectories). The inner circle
indicates the transition at which pickup ions are injected at the

termination shock to become low-energy anomalous cosmic rays

(Lee 1996). ..o 8

Structure of the heliosphere when interstellar neutral hyvdrogen
is neglected altogether. Three boundaries are clearly discern-
able: the outermost bow shock, which decelerates an assumed
supersonic interstellar (galactic) wind; the heliopause. a con-
tact discontinuity that separates the interstellar wind and solar
wind; and the solar wind termination shock (L. Pauls, private

communication).

Hlustration of the gradient drift (Jackson 1975). 11

Figure: :

Figure:

Figure:

Figure:

Figure:

Figure:

Figure:

Figure:

Figure:

2.4.2

2.5.1

2.6.1

2.6.2

3.1.1

x1
Mustration of curvature drift (Tuska 1990).

Drift acceleration of charged particles at the shock front (Decker

and Vlahos, 1983)

Momentum-changing (Ap) mechanism of shock drift acceler-
ation for a quasi-perpendicular shock. The energy change is

(AE) ~ (Ap)c (Terasawa 1995).

Schematic spiral magnetic field, B, and the radial speed vector

of the solar wind w7 (Khumlumlert 1996). 16
Hlustration of the directions of 7, 2, and ¢ (Ruffolo 1995). .18

a) Drift distance due to a single shock encounter (Dg.f) of
anomalous cosmic rays of kinetic energy 1 MeV. b) The obser-

vationally inferred large drift distance of the anomalous cosmic

Top view of the solar system. The random magnetic field can
cross the quasi-perpendicular solar wind termination shock mul-

TRPIE TIIAEE, o miiiasii oM WY siash e wie -« « e v e vt et e e 24

A magnetic sample field line that crosses a shock (diagonal
line) multiple times.Note the greatly expanded verticle scale.
b) Schematic of the above multiple magnetic field-shock cross-

ings, and boundary conditions for the random walk of particles

Inthe slab model of turbulence, the turbulent magnetic field

depends on the k, component only. 28

o
o
—

Figure:

Figure: 4.4.1

Figure: 4.4.2

Figure: 4.5.1

Figure: 4.5.2

Figure: 4.6.1

Figure: 4.6.2

Figure: 4.6.3

X

Inthe 2D model of turbulence, the turbulent magnetic field de-

pends on the ky,, component only. 32

Linear interpolation (depends on 4 only) at point P between

two points F(z;) and F(Ziq1). ovvvvini e, 39
Bilinear interpolation at point S. 40

Three dimensional trajectories from the slab model of turbu-

Three dimensional trajectories from the 2D + slab model of

Pl teld . N o . . o 42

(a) Distribution of R,4(2)/0B2 vs. z. (b) inverse Fourier trans-
form of P, vs. z (Mathematica plot)
Both of them have similar distributions, serving as a successful

test of the program. 42

Crossings between random magnetic field trajectories and

a shock. We can see the total number of crossings, angles of the
crossings, and

the distance between adjacent

crossing points.

Calculation table for the figure above, showing for each crossing
the grid point (i), x and y coordinates (xcoor[] and ycoorf]),
number of crossings (Cross), upstream crossing angle (alphal]),
and distance along the shock (L[]) We can use these data to
recheck all of the calculation values reported by the program

for confirmation.co 47

Figure:

Figure:

Figure:

Figure:

Figure:

Figure:

Figure:

Figure:

Figure:

Figure

0.1.1

5.1.4

5.1.6

0.1.7

5.1.8

5.1.9

: 5.1.10

X111

Histogram of the number of field-shock crossings from the slab

model using 6B*/B2 =1x107° 5l

Histogram of the number of field-shock crossings from the slab

model using §B%/BE =1 x 1074 51

Histogram of the number of field-shock crossings from the slab

model using §B%/B2 =1x 1073 52

Histogram of the number of field-shock crossings from the slab

model using 6B2/B2 =1x 1072 52

Histogram of the number of field-shock crossings from the slab

model using §B?/B2 =5x 1072 53

Histogram of the number of field-shock crossings from the slab

model using 6B*/B2 =1x 107 53

Histogram of the upstream crossing angle between the field and
the shock normal from the slab model using

§B2/B2=1x10"%coooiii i 54

Histogram of the upstream crossing angle between the field and
the shock normal from the slab model using

6B?/B2 =1 x 1074 54

Histogram of the upstream crossing angle between the field and

the shock normal from the slab model using

st St JUNSL IR (R NS RRLE) I S 55

Histogram of the upstream crossing angle between the field and
the shock normal from the slab model using

§B2/B2 =1 x10"2 . ..o 55

Figure:

Figure

Figure

Figure

Figure:

Figure

Figure

Figure

Figure:

Figure:

5.1.11

0 5.1.12

0 5.1.13

:5.1.14

:5.1.16

: 5.1.17

0 5.1.18

0.2.2

NIV

the shock normal from -+ slab model using
6B?/B] =35 x 1072 36

Histogram of the upstrez:: crossing angle between the field and
the shock normal from rhe slab model using

§B2/B2=1x10" ... 56

Histogram of the distance between crossings from the slab model

ugng 4B/ Bie= 1 Rl e cacn oo 57

Histogram of the distance between crossings from the slab model

ugidg S8 B = 1 1070 i e 37

Histogram of the distance between crossings from the slab model

g 0B B =1 x W= e 58

Histogram of the distance between crossings from the slab model

using 6B?/B3 =1 x 1077 ... 58

Histogram of the distance between crossings from the slab model

using 8B/ B = 5x 1072, .., e 39

Histogram of the distance between crossings from the slab model

using dB*/By =1 X 107 . .. 59

Histogram of the number of field-shock crossings from the 2D

+ slab model using 6B* B3 =1x107°. 61

Histogram of the number of field-shock crossings from the 2D

+ slab model using 6B° B3 =1 x 107*. 61

Figure: &

Figure:

Figure: @

Figure:

Figure:

Figure: 5

Figure:

Figure

Figure

5.2.6

5.2.7

5.2.9

0 5.2.10

: 5.2.11

XV

Histogram of the number of field-shock crossings from the 2D

+ slab model using §B*/B =1 < 1075 62

Histogram of the number of field-shock crossings from the 2D

+ slab model using 6B%/B5 =1 x 1072, 62

Histogram of the upstream crossing angle between the field and

the shock normal from the 2D + slab model using § B*>/B2 =

Histogram of the upstream crossing angle between the field and

the shock normal from the 2D + slab model using § B>/ B =

Histogram of the upstream crossing angle between the field and

the shock normal from the 2D + slab model using §B?/B? =

Histogram of the upstream crossing angle between the field and

the shock normal from the 2D + slab model using §B%/B; =

Histogram of the distance between crossings from the 2D 4+ slab

model using §B2/B2 =1 x 1075 65

Histogram of the distance between crossings from the 2D + slab

model using 6B%/BZ =1 x 107,o 65

Histogram of the distance between crossings from the 2D + slab

model using §B%/B2 =1x 107, 66

pa%!

Figure: 5.2.12 Histogram of the distance between crossings from the 2D + slab

model using 6B?/B: =1 x 1072 66

Table

Table:

Table:

Table:

2.1.1

5.1.1

5.2.1

XVIl

List of Tables

Page

Examples of types of cosmic rays, their sources and their energy

07173 T R s P o
Parameters of the One-Dimensional Simulations. 50

Parameters of the Three-Dimensional Simulations. 60

Chapter 1

Introduction

This chapter provides the overview of this thesis and its purpose and
scope. After reading this chapter, readers will obtain a useful summary of each
chapter for planning their reading and quickly searching for topics of interest. In
the thesis purpose and scope, readers will learn about the proposed ideas in this
work and their scope, which will improve understanding and may give new ideas

for future work.

1.1 Thesis Purpose and Scope

The purpose of this thesis is to prove that the random magnetic field lines can
cross a quasi-perpendicular shock wave multiple times; “quasi-perpendicular”
means that the angle between the shock normal vector and the trajectory of a
random magnetic field is nearly 90 degrees. After that. we prove that if the ran-
dom magnetic fields cross a shock with a crossing distance more than the mean
free path N times, charged particles will encounter the shock N? times before
escaping from the shock (Section 2.6). Because we cannot find the random mag-
netic field crossings of a shock by an analytical method. we must use a numerical
method. This means that the computer software and hardware are requirements

(and limitations) of this work.

1.2 Overview of the Thesis

[Chapter II, we describe details of cosmic rays and fundamentals of
shock waves. which are needed to understand this research. First, we talk about
the discovery of cosmic rays, the most important experiment that proved that
the cosmic rays come from space, and describe one of the most important char-
acteristics of galactic cosmic rays, the power law spectrum. Then we introduce
the concept of a shock wave and in particular the solar wind termination shock,
which is an example of an interesting case. After that, we discuss the dynamics
of charged particles in magnetic fields, both in a uniform magnetic field and a
non-uniform magnetic field. These results give more understanding of the shock
drift acceleration, which is explained in Section 2.4. Finally, we calculate the
order-of-magnitude parameter values relevant to particle acceleration at the so-
lar wind termination shock and relate them to the multiple magnetic field-shock
crossings mechanism (Section 2.6). We discuss the probability of escape after the
multiple crossings by using a classical random walk in Appendix A.

We introduce models of turbulent magnetic fields in Chapter II1. First,
in the slab model we introduce 1D magnetic field turbulence, depending on the
mean magnetic field direction (z direction). Then, we discuss a 2D model of tur-
bulence in which the magnetic field turbulence depends on the z and y directions.
After that, we discuss a realistic model that explains solar wind turbulence well,
the 2D—Slab model, by using the previous discussions.

In Chapter IV, we introduce simulation techniques for simulating random
magnetic field trajectories and their crossings of a shock. First, we discuss 1D
and 2D inverse Fourier transforms (Appendix B), which are used for transforming
the slab model and 2D model from wave vector space to position space. Then,

we discuss a random phase approximation by using a random number genera-

tor (Appendix C) in section 4.3 and describe Euler’s method which is used to
simulate a random magnetic field and interpolation methods for this simulation,
linear and bilinear interpolation. After that, we introduce concepts of multiple
magnetic field crossings, including setting up the origin of the simulation, the
shock wave plane and crossing conditions. Finally, we provide a section on sim-
ulation testing, including inverse Fourier transform testing, total turbulence and
correlation length testing, and statistical data testing. All of the simulation and
testing programs are shown in Appendix D.

In Chapter V, we show 1D and 3D statistical data that are calculated
by setting the correlation length equal to 16 and varying the ratio of the total
turbulence over the mean magnetic field to be 1075, 104, 1072, 1072, 5x 1072,
and 1x107!. For each of the ratios, we show three simulation histograms for
1000 simulated turbulent magnetic fields: the number of field-shock crossings,
the upstream angle between the field and the shock normal angle, and the dis-
tance between crossings.

In the last chapter, Chapter VI, we give our discussion and conclusions
for the statistical results and use these conclusions to explain the long drift of
anomalous cosmic rays from the heliospheric equator to the poles or vice-versa

and their energy gain.

Chapter 11

Theoretical Background

This chapter provides the important concepts for understanding this re-
search. We start with the discovery of galactic cosmic rays and their power law
spectrum. After that, we will describe fundamental concepts of the Sun, solar
wind, anomalous cosmic rays, shock waves and termination shock. Then we will
explain the concept of shock drift acceleration. Finally, we will introduce an idea
of multiple magnetic field-shock crossings to compare with the single crossing
idea. All of these concepts will be used in our simulations, which are described

in Chapter 4.

2.1 The Discovery of Cosmic Rays and the Power
Law Spectrum

The cosmic ray story began in about 1900 when it was found that electroscopes
discharged in ordinary air. It was later shown by Rutherford that the leaves of the
electroscopes provided a measure of the amount of ionization. However, the big
breakthrough came in 1912 when Hess rode in a balloon to 5 km above the ground.
The third balloon carried the ionization experiment for measuring the ionization
of the atmosphere with increasing altitude. He found the startling result that
the average ionization increased with respect to the ionization at sea-level above
about 1.5 km. This means that the source of the ionizing radiation must be

located above the Earth’s atmosphere. Later, people referred to the source of the

- -
Hlnuuinag
'!Ire'mxr-:-:-uum.' YTy l

wanLannT any:

ionization of the atmosphere as “cosmic rays.” Nowadays people define cosmic
rays as energetic particles or y-rays from space. Examples of cosmic rays and

their sources are shown in Table 2.1.1.

(@52t

Source Species l Energy
Sun,Shocks pe,na ,°C,"0,.., (~100 keV to 50 GeV
Jupiter e 1-25MeV
Termination Shock 0, Gl O ... 1-100 MeV -

Table 2.1.1: Examples of types of cosmic rays, their sources and energy ranges.

A striking feature of galactic cosmic rays (GCR), cosmic rays coming from
our galaxy, is that their energy spectrum can often be represented by power-law
energy distributions, a decrease in the differential flux of particles proportional
to their kinetic energy to some power, as illustrated in Fig. 2.1.1. This means
that galactic cosmic rays are accelerated to high energies by using the same
mechanism in space. Nowadays, we know that the most important mechanism is
shock acceleration, which can describe the power-law spectrum of galactic cosmic
rays. In 1954, Fermi showed that when cosmic rays cross a shock wave, they can
gain energy and produce a power-law spectrum (Fermi, 1954). Shock acceleration
is also called 1%-order Fermi acceleration. The differential energy spectrum of
cosmic rays is measured at the Earth from observations made from above the
Earth’s atmosphere. The flux of helium nuclei below about 60 MeV nucleon™! is

due to an additional flux of these particles which are known as the anomalous He

component (Simpson, 1983).

oL
10 ~°7p'

1077

1073 |
1074
{eRS
10—6 =

107 F

Differential flux of particles/m"2 sV s Mev! nucleon

1079 |

FeITV SR

i) et L {] Ll
10" =40? 10° 104 10° 108 10’

Kinetic enzrgy/MeV nucleon™!

Figure 2.1.1: Energy spectra for protons, helium, carbon and iron nuclei as a
function of their kinetic energy per nucleon (Longair, 1997, after Simpson, 1983).

2.2 Shock Waves, the Solar Wind Termination
Shock, and Anomalous Cosmic Rays

In section 2.1, we learned that cosmic rays are most commonly accelerated by
shock waves. In this section, we will discuss these shock waves. The definition

of a shock wave is a discontinuity in fluid parameters (Longair, 1997). The dis-

~J

continuity is caused by a collision between two fluids which have a supersonic
relative velocity or between a supersonic fluid and an obstacle. At supersonic ve-
locities, the forward region of a fluid cannot communicate with the region behind
it, whereas for a subsonic flow, such communication would mitigate a colliéion
into a continuous compression. For supersonic flow, when the forward region
impacts the shock, the region behind will also collide with the same speed and
make a compressional discontinuity in the fluid. Such discontinuities are called
shock waves.

The solar termination shock is caused by the interaction between the so-
lar wind, a supersonic plasma flow from the Sun, and the interstellar medium,
a slow, denser plasma surrounding the solar system. The overpressure of the in-
teraction region can drive two shocks: a stationary, reverse shock that attempts
to propagate against the flow of the wind back toward the star, and a stationary
forward shock, though the existence of the latter depends on whether the inter-
stellar flow is supersonic, which is not certain. The structure of the termination
shock is shown in Figure 2.2.2. We call the particles accelerated by the solar wind
termination shock “anomalous cosmic rays.” The identification of the anomalous
cosmic rays is from an excess over the galactic spectrum, and because they have
low charges, mostly +1 or +2 from charge exchange or ionization mechanisms at

the termination shock.

2.3 The Dynamics of Charged Particles in Mag-
netic Fields

This analysis has applications regarding how the energy spectrum of the cosmic
rays is influenced by the solar wind. The results are useful for understanding the

effects of the magnetic field on the trajectories of particles.

Termination : .
Shock "~ .7,

G ey Ay

Figure 2.2.1: Diagram of the heliosphere with the particle populations indicated
schematically which influence termination shock structure: galactic cosmic rays
(large dots), anomalous cosmic rays (small dots), interstellar neutral gas (solid
trajectories), and interstellar pickup ions (dashed trajectories). The inner circle
indicates the transition at which pickup ions are injected at the termination shock
to become low-energy anomalous cosmic rays (Lee 1996).

2.3.1 A uniform, static magnetic field

The equation of motion for a particle of rest mass m, charge Ze and Lorentz

factor v = (1 — v2/c?)~Y/% in a uniform static magnetic field B is

F= % = %(ymﬁ) = Ze(7 x B). | (2.3.1)

The left hand side can be expanded as follows:

d v a
m—(79) = yma + mryf‘ﬁvc—f (2.3.2)

because the Lorentz factor v can be written v = (1 — @+ #/c?)~/2. In a magnetic

field, the acceleration @ = di//dt is always perpendicular to ¢ and consequently

— =

v-d=0. As a result

d -
’ymaﬁz Ze(U x B). (2.3.3)

/

/
ow ...Shock

/1Y

Figure 2.2.2: Structure of the heliosphere when interstellar neutral hydrogen is
neglected altogether. Three boundaries are clearly discernable: the outermost
bow shock, which decelerates an assumed supersonic interstellar (galactic) wind;
the heliopause, a contact discontinuity that separates the interstellar wind and
solar wind; and the solar wind termination shock (L. Pauls, private communica-

tion).

Heli

10

We split ¢ into components parallel and perpendicular to the uniform magnetic

field, v and v, respectively. Thus

d .
%UH =0 (234/‘
d '_Z b
= ry—me(B X 7)) =& x Ty, (2.3.3)
where @ = —ZeB/(ym) can be interpreted as the angular frequency of gyration.

Thus the parallel component v is unchanged, while the perpendicular component

7| rotates with a frequency w. Furthermore,
v = vcost (2.3.6)

v, = vsind, (2.3.7)

where 6 is the pitch angle, i.e., the angle between ¢’ and B.

Because the magnetic field is uniform, this constant acceleration perpen-
dicular to the velocity vector results in circular motion of ¥} about the magnetic
field as described above. Equating this acceleration. to the centrifugal accelera-
tion, we find

v3 /r = ZevBsinf/(ym) (2.3.8)
r = ymusinb/(ZeB). (2.3.9)

Since the velocity v and the magnitude of the magnetic field B are constant, this
equation shows that the particle moves in a spiral path with a constant pitch

angle 6.

2.3.2 A non-uniform, static magnetic field

In the case of a non-uniform static magnetic field, there are interesting effects
of the gradient and the curvature of the magnetic field. These effects make the

guiding centers of particles drift from the mean magnetic field.

11

/ Vs

Figure 2.3.1: Illustration of the gradient drift (Jackson 1975).
2.3.2.1 Gradient drift

The gradient drift is the drift of the particle trajectory arising from the perpen-
dicular gradient of the mean magnetic field. This gradient is small compared
to the mean magnetic strength. The gradient velocity is shown in the equation

below:

L

% = 552 (B x V.B) (2.3.10)

where wp is the gyration frequency, wp = ¢B/ymc, and a is the gyroradius of the
particle (Tuska 1990). The gradient drift is perpendicular to the magnetic field
vector B and VB as shown in Figure 2.3.1.

2.3.2.2 Curvature drifts

The curvature drift is a systematic motion perpendicular to the magnetic field,
due to the curvature of the magnetic field. The curvature of the magnetic field
lines induces a drift velocity of particles when the radius of curvature of magnetic
lines of force, R, is longer than the gyroradius, a, of the particle. Here R points

from the center of curvature to the point of interest on the field line. In the

12

& Fora>»0 i, 4

Figure 2.3.2: Illustration of quantities related to the curvature drift (Tuska 1990).

absence of a magnetic field, the guiding center of a particle would tend to follow a
straight line tangent to the curving field line. This leads to an effective centrifugal
acceleration vﬁ/ R, which can also be viewed as due to an effective electric field
(Jackson 1975):

Fop = QE:ﬁ = ymay, (2.3.11)

where a is the centrifugal acceleration. Then

2 —
- rm (V]\ 5 ™M R 5
Eef’f = —q— (§> H= 7 (ﬁ) UH (2312)

where R points from the center of curvature to the point of interest on the field line
(Figure 2.3.2). The effective field is always perpendicular to the magnetic field.
The drift velocity of a particle moving perpendicular to electric and magnetic

fields is

—

= il e 24 (2.3.13)

We find the velocity for the curvature drift velocity perpendicular to the magnetic

field to be

o C(E-'ﬂf X EO)
0= eT (2.3.14)

13

Loerm oy, Bﬁ By

" I . 2.3.15
Vd q Y R2B? (2.3.15)

2.4 Shock Drift Acceleration

In section 2.3, we described some details of the trajectory of a charged particle
in a non-uniform magnetic field. In this section, we will discuss the effect of the

trajectories of charged particles on their acceleration.

.
I

e
/5 downstreom | upstreom

Figure 2.4.1: Drift acceleration of charged particles at the shock front (Decker
and Vlahos, 1985).

Only in the special case of a parallel shock, in which B is parallel to
the shock normal, is the magnetic field the same on either side of the shock. In

this case, particles are accelerated by 1%-order Fermi acceleration, compression

14

at the shock front with scattering. Refurning to the more general case of an
oblique (non-parallel and non-perpendicular) shock as in Fig. 2.4.1, we find that
the gradient drift due to the changing magnetic field is parallel to the electric
field. This means that charged particles are accelerated by drifting in the same

direction as the electric field, thereby gaining energy. This is called shock-drift

acceleration.
simple wall oblique. shock
L sheck
V8 7 6 ol
.
Ap=2mVs

Ap=2mVs secf

Figure 2.4.2: Momentum-changing (Ap) mechanism of shock drift acceleration
for a quasi-perpendicular shock. The energy change is (AE) ~ (Ap)c (Terasawa
1995).

In the case of quasi-perpendicular shocks, shock-drift acceleration has
been confirmed by observations, i.e., shock-spike events at the interplanetary
shocks, and electron acceleration at the Earth’s bow shock. The motion and

energy and momentum changes due to shock drift acceleration are shown in Figs.

2.4.1 and 2.4.2.

12

2.5 Order of Magnitude Calculations of Shock-
Drift Acceleration at the Solar Wind Ter-
mination Shock

This section shows details of rough calculations of shock-drift acceleration. We
illustrate that in the case of the solar wind termination shock, charged particles
can have difficulty drifting from the heliospheric equator to the poles or vice-
versa. First, in the case of the solar wind termination shock, we can see that the
momentum of the solar wind is approximately perpendicular to the shock normal
vector (1) (Fig. 2.2.1).

We want to calculate the gyroradius of a proton (r,) at the solar wind
termination shock in AU. Rewriting equation (12.42) from the classical electro-

dynamics text of Jackson (1977),
pi/(MeV/c) = 3.00 x 1074(B,/G)(r,/cm), (2.5.1)

where p, is the perpendicular component of the momentum. At a quasi-perpendicular
shock p, ~ p. Also, 7, is the gyroradius of a proton at the shock, and B, is the
magnetic field at the solar wind termination shock.

We assume that the solar wind termination is at a distance of 110 AU

from the Sun. Thus, we estimate this magnetic field as follows:

_B(r=R)R
By = 7 1 (2.5.2)

where B, is the magnetic field at the shock in the ¢ direction at § = 90° (see Fig.
2.5.1), R = vsy/(wsin@) which is v, /w at § = 90°, where v, is the solar wind
speed, ~400km/s, w is the sidereal solar rotation angular frequency, ~ 2w /(24
days) and r is the distance between the shock and the Sun in AU (110 AU). Now

R is approximately equal to the distance between the Earth and the Sun (1 AU),

16

and B(r = R) is the magnetic field at r = R (say, 5 nT). Thus the magnetic field

in the ¢ direction (B;) is 3.21x1077 G or 3.21x107!" T.

magnetic field line

Yy l
solar wind

Figure 2.5.1: Schematic spiral magnetic field, B,, and the radial speed vector of
the solar wind u# (Khumlumlert 1996).

From Pauls (1996),

B

[
o
B
Ay
2
o
A
=
I
Ne)
<
2,
=
D
s

(2.5.3)

where B, (6 = 90°) = B, = 3.21 x 107! T,
After that, we calculate the momentum of a proton at the solar termina-

tion shock (p) by using special relativity:
pc = V1?4 2mc?T, (2.5.4)

where mc? is the rest energy of a proton equal to 938.26 MeV, and T is the kinetic
energy of the proton. Suppose that it is 1, 10, or 100 MeV, for a proton momentum

of 43.3, 137.4, or 444.6 MeV /c, respectively. Using equation (2.5.1), we can

17

calculate the gyroradius of a proton (for p, = p) at the solar wind termination
shock to be 0.0301, 0.0954, or 0.309 AU for a kinetic energy of 1, 10, or 100 MeV
respectively.

To find the electric field at the solar wind termination shock (E), we use
the equation below:

E = -7, x B, (2.5.5)

where vy, is the solar wind speed vector and B is the magnetic field at the solar
termination shock. Using a magnetic field vector (B) of 3.21 x 10~ - sin§@ T
and an average solar wind speed u of approximately 600 km/s, we get an electric
field of

E =1.926 x 107° - sin 8(d), - (25.6)

Physically, the maximum energy that can be gained by the shock-drift mechanism
is the potential difference V' along the termination shock from ¢ =0 to ¢ = n/2
or vice-versa:

E=-VV (2.5.7)
Ve=-[Fdi (2.5.8)

In polar coordinates, V depends on 6 only. Thus

v:—/Eme (2.5.9)

0
V = —1.926 x 10—5/sm9 rd§ = —1.926 x 1075 -7, (2.5.10)

[¥]

where the radius of the termination shock (r) is 110x1.496x 10" m = 1.65x 10*3m.
Finally, the voltage V is -3.18x10® Volts or -318 MV. To find the maximum drift

energy of a proton at the termination shock (Fqpis),

Equiee = |qV], (2.5.11)

18

where ¢ is the charge of the proton. Thus, we obtain a maximum drift energy of
318 MeV.

Let us estimate the maximum energy change (AFE) of a proton at the
termination shock due to a single particle-shock encounter. We can rewrite the
relativistic energy as:

E? = p*c® + m*c*, (2.5.12)
where F is the total energy, mc? is the rest mass, and pc is the kinetic energy.

Considering infinitesimal changes, we get

2EdE = 2pdpc’. (2.5.13)

Figure 2.5.2: Illustration of the directions of 7, 2, and ¢ (Ruffolo 1995).

Now since E = ymc?, and p = ymv, where v is the particle velocity, we
have

v= .. (2.5.14)

19

TO View: P
F Tntevste Way

SO/Q—a.Y in\A
TCYM'AV\D\{’I'OH Shark

Ecsuatovi ol Plane

<>

> L

DOHY?S_tha,M

Sheak
UszCYcAm

Quasi - Pc chndicuﬂw Shock

Figure 2.5.3: a) Drift distance due to a single shock encounter (Dgyf¢) of anoma-
lous cosmic rays of kinetic energy 1 MeV. b) The observationally inferred large
drift distance of the anomalous cosmic rays.

20

Therefore equation (2.5.14) becomes
AE = vAp. (2.5.15)

For an oblique shock, the momentum change of a particle " \p), e.g., a pick—up

ion, is approximately (Terasawa 1979; cited by Lagage and Cesarsky 1983)
Ap ~ 2mug, sec 1) (2.5.16)

(Figure 2.4.2) where 1 is the angle between 7 and 2, which is shown in Figure
2.5.2. For an ideal Archimedean spiral, sec? =~ 7 for r > R. Note that Eq.
(2.5.15) only applies for small Ap (Apc << mc?). In fact, Ap will be small for
realistic shock crossing angles, but can theoretically be large for a fortuitously
large sec 1.

To calculate the drift distance of a particle, Dgyyin (see Figure 2.5.3), we

use:
Vv

s
D it

(2.5.17)

where E is the electric field at the termination shock as given by equation (2.5.5)
or |E| = vs,B, and V is the potential difference the particle drifts across or the

energy change of particles (AFE) divided by g. We can calculate the potential

difference V as

A
V==L (2.5.18)
q
Then Dyyig is given by
1% A 1
Dgripr = = = 4. (2.5.19)

BV 1 ¢0 FugB'
and using equation (2.5.16), we get

2msecy w
Djisr=—— — 2.5.20)
drift q B ()

- i o L |
| HOOLANDIY AOTUWI VYT N |

s
, IWADINTOUUNTI NN | 21

where 1) is approximately 90 degrees at a nearly perpendicular shock. For the
specific case of a proton of 1 MeV, v is the relativistic particle velocity of approx-
imately 1.38 x 10" m/s, m is the mass of the proton (1.6725 x 107%" kg), and B is
the solar wind termination shock magnetic field that was calculated in equaﬁion
(2.5.2), 3.21 x 107" T. We then obtain the drift distance of the proton at the

solar termination shock as:

8.98x 10° 6.00 x 1072

D = m =
drift cos cos

AU (2.5.21)

For v = 0 degrees, the minimum of Dy = 6.02 x 1072AU. The drift distance
increases with sect. [Note, however, that for secy = 110, Ap is large and Eq.
(2.5.15) is no longer valid.] For a perpendicular shock, ¢ — 90°, Dy — 0.
Actually, a more detailed analysis has been performed by Jokipii (1987).
The actual acceleration rate does not diverge as # — 90°; rather it reaches a
maximum of 1 + n?, where 7 = X /ry, the ratio between the parallel scattering
mean free path and the gyroradius. Also, considering the derivation of Jokipii

(1982) for a nearly perpendicular shock, we find that

e
Dyrigy = —?ﬁ sec (2.5.22)

where 7 is the compression ration at the shock and p is the cosine of the pitch
angle. Therefore, while Jokipii (1982)’s analysis still contains a divergence, it

shows that a typical drift distance is

Dayiey ~ T4 5€C. (2.5.23)

For sect = 110, we have Dgug ~ 3 AU. This gives us a rough idea of how much
drift is normally expected at the solar wind termination shock, in the idealized
case without magnetic fluctuations. This is only a small fraction of the distance

along the solar wind termination shock from the heliospheric equator to poles

22

(173 AU; see Figure 2.5.3). Later in this thesis, we will examine more realistic,
turbulent fields, and we find that shock-crossing angles so close to 90° are in fact

quite rare, so Dg.; ¢ from a single shock encounter would be even smaller.

2.5.1 Conclusions of the order of magnitude calculations:

We assume that the radius of the solar wind termination shock is approximately
110 AU:

- The solar termination shock magnetic field is approximately 3.21 x 107" T.

- The electric potential at the solar wind termination shock from the heliospheric
equator to poles is approximately 318 MV in magnitude.

- The gyroradius of a 1 MeV proton at the solar wind termination shock is ap-
proximately 0.03 AU.

- The maximum drift energy of such a proton from the equator to the poles is
approximately 318 MeV.

- In the idealized case of a perfectly regular magnetic field nearly perpendicular
to the shock normal, ¢p = 89° (sect = 110), the drift distance is ~ 3 AU. This
means that such a proton would typically drift only a small fraction of the dis-
tance along the solar wind termination shock from the heliospheric equator to

poles.

2.6 Multiple Magnetic Field-Shock Crossings

In the last section, we showed that in the case of the solar wind termination
shock, particles can typically drift only a small fraction of the distance (3 AU)
along the solar wind termination shock from the heliospheric equator to the poles

(see Figure (2.5.3c). Thus a single field-shock encounter, or even several of them,

23

are insufficient to explain the observationally inferred cirift of anomalous cosmic
rays over much of that distance (Cummings, Stone, and Webber 1985).

We introduce the concept of multiple magnetic field-shock crossings as a
more realistic model in which random trajectories of magnetic field lines can Cross
and recross a shock many times before completely passing the shock. If the plasma
flow speed is much less than the velocity of particles, particle trajectories are
helices around the magnetic field, and if we trace the magnetic fields, we should
trace the particle trajectories. We trace random trajectories of the magnetic field
by using a random phase in the magnetic field because the nature of the magnetic
field itself is random (turbulent). After simulations, we want to characterize the
multiple field-shock crossings as in Figure 2.6.1.

Let us first consider the random walk of particles along the random mag-
netic field by ignoring the possibility of reflection when approaching the shock
from upstream. Considering Figure 2.6.2, in this framework we view the acceler-
ation process in terms of discrete episodes of diffusive shock acceleration (which
includes shock drift acceleration) when the particle encounters a field-shock cross-
ing. In addition to the correlation lengths, other relevant length scales for a given
particle species and energy include the gyroradius r, and the scattering mean free
path). Since the particle motion follows a sort of average of B over a gyro-
radius, field-shock crossings closer together than r, should be grouped together
so that the particle interaction in that region is considered to constitute a single
particle-shock encounter.

Next, field-shock crossings spaced father than r, but closer than A will
generally be traversed in sequence; N such crossings can then yield an N-fold
enhancement in shock acceleration. We refer to this as a linear enhancement.

Now consider only field-shock crossings or groups of field-shock crossings

that are spaced father apart than A. For this purpose, the magnetic field in Figure

24

D View -

Oozsmﬁé»?

ACR

C mmﬁﬂng

@un:: ” @cm

Noyth fole
Ay

moQ.S; _oqu

cie v Y ACK ~ 318 MeV
de View |
172.5 AU
\ Equator
/ ~110AV

mmwc,»&oﬁ

-

Quasi - mn,%nsm._ncb»x Sheck

1 \Sm<

h

ﬁ;\o.woj A:
0.03 AU

R

o

5

— e =T

Figure 2.6.1: Top view of the solar system. The random magnetic field can cross

the quasi-perpendicular solar wind termination shock multiple times.

100

b .
(absorbing)

/’
m_/ N\~ shock

(reflecting)

J

x/a 0 ;/\\f/

-100 | ‘ ,
26000 30000 34000 38000

z/A

Figure 2.6.2: a) A sample magnetic field line that crosses a shock (diagonal line)
multiple times. Note the greatly expanded vertical scale. b) Schematic of the
above multiple magnetic field-shock crossings, and boundary conditions for the
random walk of particles along B.
2.6.2a can be conceptually simplified as in Figure 2.6.2b. (Again, for simplicity
we have not indicated the refraction of magnetic field lines at the shock.) Between
two crossings, a particle’s motion is randomized, and there is an equal probability
of either moving forward to the next crossing or returning to the previous crossing.
This then becomes a classic random walk problem (Chandrasekhar 1943),
as described in detail in Appendix A, and is amenable to mathematical analysis.
Starting from upstream of the shock on the left hand side, let n be the number of
times a particle encounters the shock, and let m indicate the regions between field-
shock crossings from left (m = 0) to right (m = N). To represent the ultimate
return of particles upstream of the first field-shock crossing, due to convection, we
place a reflecting barrier at m = 0, and to represent escape downstream, we use
the conservative assumption of absorption at m = N. This is slightly different
from the situation considered by Chandrasekhar (1943), who considered only one

barrier at a time. The probability of escape after n shock encounters can be

shown to be

P(n) = Z¥ <2_{)1] ((n +nm_—12)/2) -2 (2_—1—)1] ((ni_ﬂ“})/2 > |

7=0,m<n-2
(2.6.1)

where n + N is even and m = (2§ + 1)N. This probability sums to 1 (when
summing over all n > N such that n + N is even), and the mean value of n
is N2. The mean number of shock encounters before escape should actually be
even larger if we consider that a large fraction of particles approaching a shock
from upstream (87% for a strong shock with a compression ratio of 4) should be
reflected backup upstream, which gives some probability of trapping between two
adjacent field-shock crossings.

Therefore, even with conservative assumptions, the multiple magnetic
field-shock crossing model predicts a quadratic enhancement by a factor of ~ N?
in the shock drift and total energization of particles, where IV is the number
of field-shock crossings spaced farther than A. Presumably this enhancement is
occurring in Monte Carlo simulations of particle acceleration at nearly perpen-
dicular shocks. In practice the total energy gain of particles will also be limited
by the lateral extent of the shock, and the convection of field lines past the shock.
This quadratic enhancement is our proposed solution to the problem we found in
the order of magnitude calculations of the previous section. Taking into account
turbulence in the magnetic field natually provides a large number of particle-shock
encounters, potentially explaining the observations that a significant fraction of
anomalous cosmic rays can achive energies on the order of the maximum drift
energy, and can drift over a large fraction of the distance from the heliosphere

equator to the poles or vice-versa.

Chapter 111

Model of Turbulent
Magnetic Fields

3.1 Slab Model

Magnetometer measurements of magnetic turbulence in a space plasma flowing
past a spacecraft yield a one-dimensional spectrum of the turbulence. This in-
spired the one-dimensional model of turbulence called the “slab model” in which
the turbulence depends on the z-direction only. A magnetic field can be expressed
in terms of the mean magnetic field, Eo(z) = ByZ2, and its turbulent components,

6B, (z) and 6 By(2), as follows:
B(2) = B,2 + 6By(2)& + 6B, (2)4. (3.1.1)

Because the magnetic field itself is random, thus we can describe it by statisti-
cal characteristics such as ensemble averages, correlations, etc. To describe the
magnetic helicity in a spectrum of fluctuations with different wavelengths, it is
assumed that the magnetic field B can be separated into a mean field By and a
fluctuating component 5-3, ie., B = By + 6B. Here, we introduce the two-point

correlation R;;(7) defined as (Pauls 1993)

In the case of homogeneous turbulence, R;;(7) is independent of the position T

where the correlation is evaluated. The power spectrum matrix P;;(7) is given by

its Fourier transform as:

- 1 0, o
Pi(k) = (2m)? /_OO R (F)e T dF (3.1.3)

Bieber and Matthaeus (1997) suggest the form
Py(k) = Ak, k) {0i; — kik;/K”}, (3.1.4)

where for the slab model

Alky, k) = CA+E2N)Y6(ky) /K. (3.1.5)

Figure 3.1.1: In the slab model of turbulence, the turbulent magnetic field de-
pends on the k, component only.

In the slab model, £, = 0 because the turbulence corresponds to fluctu-
ations along the solar wind flow (see Figure 3.1.1) and the only non-zero compo-
nents of the power spectrum are P, and P, which are equal. From equation
(3.1.4), we got the power spectrum which was used to simulate a magnetic field
line as follows:

Poo(k,) = C(1+ E2\%)™. (3.1.6)

29

The index v is chosen as 5/6 based on the Kolmogorov model of turbulence. The
parameter A determines the scale at which the power spectrum starts to decrease.
We want to relate the parameters A and C to the physical parameters § 532, the
total turbulence of the magnetic field, and the correlation length, A., which are

defined as follows:

§B* = 0B+ 6B2 =< [0B,(z)° > + < [0By(2)]* > (3.1.7)
and -
[< 8By(2)6B,(z+2) > dz
— 0
Ao = S52(%) : (3.1.8)

First, we introduce a version of the convolution theorem which is shown

in Arfken and Weber (1995) as

§B;(20)6B;(z0 + 2)e ™7 dz | e®e®odz = 6 B;(k. — k,)3 B, (k,).
= [| [BB+ e | i 5B)55 k)

(3.1.9)
At k, =0, we get

\/ﬁ/ L/%/ 6B;(20)6 Bj(20 + 2)e _zkzzdz} dzg = 6B] (k,)0B;(k.),
(3.1.10)

where § B(—k,) = 6 B! (k,) because 6B;(z) is a real function. We can relate this

to the one-dimensional power spectrum,

Py(k,) < 6Bi(%)0B;(z + 2) > e ***dz (3.1.11)

=71
as follows:
\/% {\/2—7;/ < 6B;(20)0B; (20 + 2) > etz g, | — 6B} (k,)6B;(k,) (3.1.12)

Py(k,) = @53;(@)5@(@), (3.1.13)

30

where L is a periodic length which is used in a simulation program, L = NA, N
1s the total number of data points in the z-direction, and A is the grid size in the

z-divection. In the case of 1 =j =z or v =7 = vy, we get

, L
B;(k)|? = ——=Py;(k, 3.1.14
Bik:)* = o Pulk) (3.1.14)

Here, we introduce Parseval’s theorem as follows (i = z):

[1Baba) Pk, = [~ B2(2)dz (3.1.15)

or for a discrete Fourier transform over periodic ranges,
ST IBAD)|PAr =) Bi(2) (3.1.16)

NA S |Bi(w < B2(2) > (3.1.17)

where 7 = k£/2r and Av = 1/(NA). The left side of equation (3.1.16) becomes
[for 1/(2A) >> 1/A, i.e, 24 <<)

(1 R NA/ (D | dv (3.1.18)

\/%c/

Q

m (3119)

using equations (3.1.6) and (3.1.14), L = NA, and the identity B, (v) = V27 B, (k).

Finally, we get

2C o dk,
LS. ~ , 3.1.20
Vor oo (14 k22X ()
where v = 5/6. We use the Mathematica program to calculate
oo du
/0 (1 + u?)5/6 ()
Thus we can estimate equation (3.1.20) as
2C 2.104
LS = ———. (3.1.22)

Vor o A

31

The right side of equation (3.1.16) becomes
2 2 Ll ‘- :
< B, >=0B. = 5cSB (3.1.23)

Equation (3.1.22) is equal to equation (3.1.23), thus we get

4C

§B*)\ = ——(2.104 3.1.24
(2104 (3129
From equation (3.1.8)
« 1 Co ! !
B A= 5/ < By(2)By(z+2z) >dz. (3.1.25)

Next, we note that from the definition, equation (3.1.11), with k, = 0,
1 o0 : /
P, (0 z-/ < By(2)Bulz+ 7)) > d7 | 3.1.26
©)= = [<B2)B:la+5) (3.1.26)
and P,;(0) = C from equation (3.1.6), so we get
6B\, = V2rC. (3.1.27)

From equations (3.1.24) and (3.1.27), we can relate the parameters A and C to
the physical parameters B2, the total turbulence of the magnetic field, and the

correlation length A. as follows:

i
= ; (2.104) (3.1.28)
= —_s5B2) (3.1.29)
~ —=tB 1

3.2 2D 4 Slab Model

We simulate three-dimensional magnetic field turbulence by superimposing two
types of turbulence, the 2D model depending on z and y, and the slab model

depending on z. An admixture of 80% 2D turbulence and 20% slab turbulence

32

provides a good fit to interplanetary turbulence (Matthaeus, Bieber and Zaunk
1995):

§B® = 0.80 B, + 0.26 B2, (3.2.1)
This three-dimensional model of turbulence can be calculated by using the equa-

tion below:

B(m) Y, Z) - Boi + [5Bz,slab(z> = 5Bz,2D ($> y)]i + [5By,slab(z) -+ 5By,2D (:E; y}&
(3.2.2)

The slab components are found as before. For the power spectrum of §B,p,

Figure 3.2.1: In the 2D model of turbulence, the turbulent magnetic field depends
on the k£, component only.

we note that the Fourier transform 6B;D(k1) only depends on k, = k& + kyy.

Furthermore, we assume axisymmetry (see Figure 3.2.1) so that §Bsp(k,) only
depends on k) = ki| = (/k} + k2. Then
B, = / / 16Bap (kL) Pk dk, (3.2.3)

- 27T/0 6 Bap (k)| dk. (3.2.4)

33

According to the Kolmogorov theory of turbulence, the distribution of the energy

density, § B*/(87), vs. the scale of irregularities (irrespective of their orientation)
should tend to k=%3 for large k. Thus we set

C
(14 kFA2)v

3 C
T k(LRI

where the index v is chosen as 5.0/6.0 based on the Kolmogorov model of turbu-

|6Bap(ky)[kL = (3.2.5)

|6Bap (k)|

(3.2.6)

lence (v in the 2D model is equal to v in the slab model). Next, we note that the

Fourier transform of equation (3.2.6) gives

§Byp(ky) = ki X [a(kL)3] (3.2.7)
and
|6Ban (k1) * = k2 [a(k)| (3.2.8)
N2 |5BQD(/€1)\2 a C
la(kL)|” = P TR R (3.2.9)

After using the inverse Fourier transform (LF.T.), we can get
a(kr) = LET. = alz,y)2 1(3.2.10)
We can calculate the total turbulence of the magnetic field, 5B;D, as:

6Bap =V X |a(z,y)5] (3.2.11)

or 6B, = 9a(z,y) and 0B, aa(a:,y)
oy oz

As in the slab model, we want to relate the parameters A and C to the physical

(3.2.12)

parameter 6 B2, the total turbulence of the magnetic field, and the correlation

length A.. First, we write down Parseval’s theorem in two dimensions.

/ / (ke) [Pk dk, —/ / B(x,y)dzdy (3.2.13)

34
The left side becomes

LS. —/ / (7, 7)) |27, dv, (3.2.14)

where v, = k. /27 and v, = k,/27. Again, as for the slab model, for a discrete

Fourier transform over periodic ranges,

Z|B VquyJ |2 Ap)? Z|B i,)| (A)) (3.2.15)

1,J

where Av = 1/(NA). Then

1 — 1
AT 2| BalVa 3)° = <5 3 Bolmi, yy) =< 0B > (3.2.16)
,] 5

The left side of equation (3.2.15) becomes

1 (] oo o o
LS. » g / / | B, (73, 7;) |2diido; (3.2.17)
d*v
dlu
~ c/ T (3.2.19)
S (2 104). (3.2.20)
Finally, we get the relation
6B*)\ = 2C(2.104). (3.2.21)
We estimate that
2(2.104))\,
Nop = Ay = 22100 A (3.2.22)

From equations (3.2.21) and (3.2.22), we can relate the parameters A\ and C to
the physical parameter §B?, the total turbulence of the magnetic field, and the
correlation length A. as follows:

2
us

A= —2(2.104) (3.2.23)

1
C = ;5132&. (3.2.24)

Chapter IV

Simulation Techniques
and Their Testing

4.1 Overview of Numerical Simulations

In order to determine the characteristics of magnetic field-shock crossings, we
computationally generated random magnetic fields for a specified power spectrum
matrix using inverse Fourier transforms and a random phase. In our work, we
use an inverse fast Fourier transform program and a random number generator

program from the standard reference, Numerical Recipes (Press et al. 1988).

After an inverse Fourier transform, we get a random magnetic field in the z-
direction and y-direction (B, and B,). A trajectory of the random magnetic
field can be found by Euler’s method by using B, and B,. We assume that the
shock wave plane, e.g., representing the solar wind termination shock, is a flat
plane parallel to the y-axis. In the quasi-perpendicular case, the angle between
the mean magnetic field (z-axis) and the unit vector normal to a shock is nearly
perpendicular. Our procedure for transforming the turbulent power in the wave
vector space to the position space in 1D or 3D is shown below.

One-dimensional simulations (slab model):

(\/ Poz(k.)€") s1ab moder —1D Inverse Fourier Transforms— B,(2), By(z) —

FEuler's Method — 1D Random Trajectories — Crossings of a Shock —

TA%A4GA40C2

36

Collect Statistical Data
Three-dimensional simulations (2D + slab model):

(|a(kL)] €%)2p moder —2D Inverse Fourier Transform— a,,(z,v)
sy (2,y) + (By(2), By(#))sies — Linear, Bilinear Interpolation + Euler's Method
— By(z,y,2), By(z,y,z) — 3D Random Trajectories — Crossings of a Shock —

Collect Statistical Data

Here, P;;(k,) is the power spectrum of the turbulent magnetic field which is
calculated from the slab model (see Chapter 3), |a(k,)| is the magnitude of the

scalar function which is calculated from the 2D model, and e* is a random phase.

4.2 Inverse Fourier Transform

In Chapter 2, the turbulence of the magnetic field is described in wave vector
space, E, but we want to know the turbulence of the magnetic field in position
space by using a Fourier transfrom. The Fourier transform is well known as a
technique for solving problems in linear systems. The Fourier transform (in terms

of the wave number 7) of H(z) is h(7) and the inverse Fourier transform of h(D)

is H(z):

o0

h(v) = /H(z)e‘izw’”dz (4.2.1)
H(z) = /h(l?)ei%’”dz?. (4.2.2)

In our work, we use the one-dimensional inverse Fourier transform, which is shown

in equation 4.2.3, to simulate B, and B,:

H(z) = \/%7 fh(k)eikzdk, (4.2.3)

37

where k = 27 and h(k) = h(9)/v/27, k is the angular wave number, and 7 is
the wave number. In our simulations, we use an inverse fast Fourier transform
(IFFT) to transform h(7) to H(z).

In the 3D simulation, we use a 2D inverse Fourier transform H(z,y) which

is shown for simulating two dimensional magnetic turbulence:

8\8

/ h(vy, 7,)& =) 4y do, (4.2.4)

The two-dimensional inverse Fourier transform can also be written
2 oo oC
H(z,y) () / / h(ky, ky)e'F==o) df dk, (4.2.3)

where k = 270, h(ky, k) = h(vy, 7,) /27, k is the angular wave number, and ¥ is
the wave number. In 2D simulations, we use a 2D inverse fast Fourier transform
to transform h(vy,v,) to H(z,y). Details of the inverse fast Fourier transform

are shown in Appendix C.

4.3 Random Phase Approximation

We can specify the power |h(7)|* because it is related to the average properties
which are described in Chapter II. This gives us the amplitude of h(7), |h(7)]|.
Because the magnetic field itself is random, we describe it by using a random
phase. Thus we set the phase of the magnetic field to a random number. We use a

random number generator program from the book, Numerical Recipes in C (Press

et al. 1988). We calculate this random phase ¢, and multiply the amplitude
|B(k)| by € in calculating the inverse Fourier transform. After that, we calculate
an inverse Fourier transform, as described in the previous section. Finally, we

will get a random magnetic field for further calculations.

38

4.4 FEuler’s Method and Interpolation
4.4.1 FEuler’s method

Euler’s method is a simple method to solve a 1%*-order differential equation. The

general form of this method is

— = f(z,2) (4.4.1)

or

Tit1 — T4 Tit1 — X4
= = f(x;, 2 4.4.2
bt X flxs, i) (4.4.2)

where A is the grid size spacing along the z-axis.

We can calculate the new value z;.; from the previous value z; and

f(ﬂ%, Zi)

Bi1 = T+ flas, m) - A (4.4.3)
In our simulations, we use
6B, (1
i,) (4.4.4)
By

where z; is the trajectory of the magnetic field at 2 = 4A, B, (i) is the magnetic
field at the same grid point, and By is the mean magnetic field.

We use Euler’s method to trace a random magnetic field because the na-
ture of random numbers is unpredictable. We cannot accurately estimate the
derivatives of a function that represents them. Euler’s method is a simple and
convenient choice because it only requifes evaluating function values, not their
derivatives. For the three-dimensional field model, bilinear interpolation is re-

~ quired.
4.4.2 Linear interpolation

We can describe the field line trajectory vs. z by using linear interpolation (e.g.,

in order to determine a shock-crossing location). The linear interpolation of two

39

points is presented in Figure (4 1.1 below.
Fpl,'{',i
@--momos O SEEEEEEES °
F(X,) P F(XH-{)

Figure 4.4.1: Linear interpolation (depends on 7 only) at point P between two
points F'(z;) and F(z;41).

We can estimate the function value F, at point P as follows:

Tiz1 — T r— T
Fp =] F(.LJ ==
Tit1 — Ty Tiy1 — T4

F(zig)

where fr = (zi1 — 2)/(Zip1 — 7).
4.4.3 Bilinear interpolation

If we want to calculate the linear interpolation in 2D, we can use bilinear inter-
polation. In this work, we use bilinear interpolation for interpolating magnetic
field values in 2D. The bilinear interpolation is presented in Figure (4.4.2) below.

We can calculate a function value Fg at point S by using bilinear inter-

polation as follows:

At point P:
Fp(z,y;) = (L = fo) Fzi, 4) + foF(@it1, y5) (4.4.6)

At point Q:
Fo(z,yi41) = (1= fo) (@i, Y1) + foF(Tiva, y541) (4.4.7)

At point S:

FS(I>y) = (1 - fy)FP(LU,’yj) + fyFQ($7yj+l)> (448)

40

F (x,y)) P F (Xiv1,)))

Figure 4.4.2: Bilinear interpolation at point S.

At point S:
Fs(z,y) = (1 = fy) Fp(z,y;) + [y Fo(z,y511), (4.4.8)
where
Y=Y
fy = ——=—. 4.4.9
R (4.4.9)

Now, we can calculate the function value Fs(z,y) as follows:

Fs(z,y) = (1= f)(1 = fo)F(zi,95) + (1 = fy) fo F(Tis1,95)

+(1 = fw)fyF(zz:yJ+l) + f:z;fyF(xi-{-l, yj+1). (4410)

4.5 Trajectories of Magnetic Field Lines
and Field-Shock Crossings

After we find z- and y-components of the random magnetic field by using inverse
Fourier transforms from a power spectrum in k-space with the random phase

approximation, a trajectory of the random magnetic field can be found by Euler’s

method as follows:

Ty = Tim1 + A - 5Bz(i)/30 and y; = y;—1 + A - (5By(i)/Bo, (4.5.1)

41

distance between adjacent grid points. In this simulation, we set By equal to one
for simplicity.

In the one-dimensional simulations, we only use Euler’s method for simu-
lating random trajectories (Figure 4.5.1) because the turbulence magunetic field in
the zy-plane is a constant at each grid point. However, in the three-dimensional
simulations, the turbulent magnet@c field in the zy-plane varies with the z and y

position, so we use bilinear interpolation to calculate these values (Figure 4.5.2).

X Constant B constant B
iy
/\\
T
B 2
b A |

Figure 4.5.1: Three dimensional trajectories from the slab model of turbulence.

We assume that the shock wave plane, e.g., representing the solar wind
termination shock, is a flat plane parallel to the y-axis and nearly parallel but
slightly tilted to the z-axis. This means that the shock location in the z-direction

is given by the equation

xshack(z) = —mi+ Zcutoff/ t‘rlIlZ/), (452)

Bilincay Ayy

,"‘ntcrpolatl'oh :
At .

X
4
|
|

aﬂ I thYFoL\'f; ion

Figure 4.5.2: Three dimensional trajectories from the 2D + slab model of turbu-
lence.

is given by the equation

Tshock(2) = =8 + Zeutor £/ tAD Y, (4.5.2)

where Zg001(7) is the z-coordinate at a given z, m is the slope of the shock wave,
m = A/tant, A is the grid size of our simulation in the z direction, zeufs is @
crossing point between the shock and the z-axis, and 7 is the angle between the
shock normal and z-direction. With a view toward the solar wind termination
shock, with 7 =110 and R = 1 AU (see Chapter IT), we set tant equal to 110.0
or 1 equal to 89.48 degrees.

An important thing that we need to calculate before simulating the tra-
jectory of the magnetic field is the origin of the simulation. Our concept is that
the origin should be sufficiently upstream of the shock that particles should not

cross the before they get to the origin. In our simulation, we check this concept

43

for the first 100 iterations. If the random trajectory crosses the shock before
getting to the origin for 1% of the 1D simulations or 5% of the 3D simulations of
100 iterations, we must increase this distance and check again.

When the random trajectories cross the shock from upstream to down-
stream, the value of z is greater than the value of Z;po at the same grid point,
z = iA. On the other hand, the value of z is less than the value of z p,0 at
the same grid point when crossing from downstream to upstream. We use this
condition to check their crossings and are interested only in the z coordinate
because the shock wave is a flat plane parallel to the y-axis. We have measured
the distribution of the number of crossings (), the angle between the magnetic
field and the shock normal at each crossing (1), and the 2-distance between two

crossing points (L) for 1000 iterations for each physical situation.

4.6 Simulation Testing

4.6.1 Fourier transform testing

We use Parseval’s theorem to check the normalization factor:

/ F(k)G* (k)dk = / £(2)g*(2)d= (4.6.1)

where f(z) and g(z) are functions which depend on the position parameter, z,
and F'(k) and G(k) are functions which depend on the wave vector parameter, k.

For the special case of F(k) = G(k), we get

o0

/|G(k~)l2dk: / 19(2) 2dz (4.6.2)

—o0o
We can change the equation 4.6.2 into a discrete form:
N-1 N-1

> |G (ka)PAk = ZO l9(2)PAz, (4.6.3)

n=0

44

where Ak and Az are the grid spacings in wave number space and the posi-
tion space, respectively. Equation 4.6.3 implies that if we calculate a summa-
tion of |G(k)|*Ak before using the inverse Fourier transform, we should get the

Az after using the inverse

same value when we calculate the summation of |g(z)|?

Fourier transform. This condition is used to test the fast Fourier transform pro-

gram which is adapted from Numerical Recipes in C (Press et al., 1988) and also

to check our normalization constants.

4.6.2 'Total turbulence and correlation length testing

In our program, the most important thing is the random magnetic fields which
are calculated by using a model of turbulence and a random phase approximation.
The total turbulence, AB?, and the correlation,)., can be checked. The total

turbulence can be recalculated from equation (3.1.7):
6B® = 0B} + 6B. =< [6B,(2)]* > + < [0B,(2)]* > . (4.6.4)

We use the equation to directly calculate the total turbulence in position space
(or after the inverse Fourier transform) and check the percentage error. We can
also directly calculate the correlation length from equation (3.1.8) (Chapter III):

0
[< 0By (2)0By(z+2) > d2

Ae =) (4.6.5)

ofo < By(2)By(z+2) > d2

Ao = (4.6.6)

N |

< B2 >

N N N
k ;E < By(1)Bg(i+7) > Az ﬁ];[i; B,())B.(i + 7)]Az o
c = 2 - N -U.
< B2 > 5 B2(i)
i=1

-
Ch

We use equation 4.6.8 to recalculate the correlation length and check the percent

error. We can plot a relation between the correlation,

Rz (iA)

5B MBZZB B, (i +), (4.6.9'

and z = 1A as shown in Figure 4.6.1 below.

@) 1
5 06
5 0.2

0.2

(b)

‘__11(||l||:rv - A ba s e N J
~ T T] ’

SCALE %2

1000 2000 3000 4000 5000 6000 7000 8000

Figure 4.6.1: (a) Distribution of R;,(2)/6B2 vs. 2. (b) Inverse Fourier transform
of P,, vs. z (Mathematica plot). Both of them have similar distributions, serving
as a successful test of the program.

4.6.3 Crossings of a shock and statistical data testing

An important assumption of these simulations is that the random magnetic field

trajectories do not cross the shock before the start of the simulation (i.e., for

46

z < 0). (Details are shown in section 4.5.) We check for crossings at z less than 0
by increasing the length of the simulation in the opposite direction and checking
for field-shock crossings. If there are any crossings at z < 0 in 100 trials (i.e.,
> 1% trials for 1D simulations and > 5% trials for 3D simulations), we do not
use the results because our assumption failed. In this case we increase zcusofy,
and also N if necessary.

Another way to check the crossings is a simple way that is the most
accurate, that is, plotting the random trajectories and shock wave. We tried to
use this idea to check every part of our program, such as the crossings at z < 0,

and the random magnetic field before and after the 1D and 2D inverse Fourier

transforms. Samples of these are shown below.

47

x (i*delta)
| |
o o o2 |
~ N O sl
@) AN N ~ ~J
o
L0
AN
o
~
o
(G
N RO
—)
R
o
@
— 1N
& &
~— w
0o
&)
AN
o
oS
~
S
I~
o
5
O

Figure 4.6.2: Crossings between random magnetic field trajectories and a shock.

We can see the total number of crossings, angles of the crossings, and the distance
between adjacent crossing points.

48

dbsqg = 0.001000 dbsgSlab = 0.000200 dbsq2D = 0.000800
Nslab = 524288 N2D = 256

iterations = 1 Cress =3

no. L[] i alphal] xcoorl] zcoorl]

1 48315.078 48303.000 136.985 -87.115 48303.000
2 48338.078 48315.000 136.991 -87.224 48315.000

3 0.000 48338.000 136.948 -87.433 48338.000

KAKRKAKARETAAKRAKRRKARARK AR F A AT R AR KA AAK

Figure 4.6.3: Calculation table for the figure above, showing for each cros§ing
the grid point (i), x and y coordinates (xcoor[] and ycoor(}), number of crossings
(Cross), upstream crossing angle (alphal]), and distance along the shock (L{]).
We can use these data to recheck all of the calculated values reported by the
program for confirmation.

Chapter V

Statistical Results

In this chapter, we show all of the statistical results for one-dimensional
and three-dimensional magnetic fields. We have three types of histograms, for the
total number of field-shock crossings, the upstream crossing angle between the
field and the shock normal, and the distance between crossings. Histograms were
produced for different values of the physical parameter §B%/B2. From hybrid
plasma simulations at a quasi-perpendicular shock, we found that § B?/B2 may
be expect to be 1 x 107! due to turbulence generated by the shock. Thus we
simulate random magnetic fields for §B%/BZ equal to 1 x 1073, 1 x 10~4, 1 x 1073,
1 %1072, 5% 1072, and 1 x 1071, For each histogram, we collected statistical data
for 1000 simulated turbulent magnetic fields and used a correlation length, A,
equal to 16. Histograms of the total number, N of field-shock crossings indicate
the number of cases per value of N. Histograms of the shock crossing angle
indicate the number of cases per one-degree bin. For histograms of the distance
between crossings, the units are in each plot. The discussion of the results is
reserved for the next chapter because we want to connect that to the conclusion.
Details of simulations are shown in Appendix E. For each of our simulations, we
set a different value of § B2/ B2 and related parameters as shown in Tables (5.1.1)

and (5.2.1).

5.1 One-Dimensional Statistical Results

Table 5.1.1 Parameters of the One-Dimensional Simulations.

Slab model T
-

dbsqg Nslab ZcutTimes
Te-6 4096 x 64 30 x 64
le-4 8192 x 32 10 x 32
1e-3 B9z 62
1 g 2 131072 x 8 8
5e-2 , 524288 x 8 8
1 e 1048576 x 8 8

1500
_ 1000
)
0
&
>
=z 1.00E-05
500
0 -
1 3

N (odd values only)

Figure 5.1.1: Histogram of the number of field-shock crossings from the slab
model using §B%/B2 =1 x 107 (< N >=1.0).

1200 -

1000

800 -

600
1.00E-04

Number

400 -

200 -

N (odd values only)

Figure 5.1.2: Histogram of the number of field-shock crossings from the slab
model using 6B%/B2 =1 x 107* (< N >~ 1.0.)

800 -
600 -
®
S 400 1.00E-03
=]
prd
200 -
0 - % | =

grs 7 9wl 13 13

N (odd values only)

Figure 5.1.3: Histogram of the number of field-shock crossings from the slab
model using §B%/B2 =1 x 1073(< N >= 1.8).

1.00E-02

E-n P

911 19232731 35,39 .43

N (odd values only)

Figure 5.1.4: Histogram of the number of field-shock crossings from the slab
model using B?/B2 =1 x 1072 (<« N >=11.2).

200

150 ||
)
0O
% 100
Z 5.00E-02

50 |

O } '”’;H‘”"nnﬂnnnﬂnn"nnn An n

15 91317 21 5 R s S | 61 ' 81
N (odd values only)

Figure 5.1.5: Histogram of the number of field-shock crossings from the slab
model using §B%/BZ =5 x 1072 (< N >=13.2).

150 -
< 100
é " 1.00E-01
2 50
T —

159 17 31 41 51 S9

N (odd values only)

Figure 5.1.6: Histogram of the number of field-shock crossings from the slab
model using §B%/B2 =1 x 107} (< N >=18.2).

o4

800
600
g
00
3D
z 1.00E-05
200 -
0 - ' = |; T T

0 90 170

Upstream Crossing Angle (degrees)

Figure 5.1.7: Histogram of the upstream crossing angle between the field and the
shock normal from the slab model using §B%/B2 = 1 x 1075.

1000 -

800

(o))
()
O

1.00E-04

Number

~
)
O

200

0 90 170
Upstream Crossing Angle (degrees)

Figure 5.1.8: Histogram of the upstream crossing angle between the field and the
shock normal from the slab model using §B%/B% = 1 x 10~

800

600
s
£400 1.00E-03
=

200

O i] T]] i]
0 80 90 100 170

Upstream Crossing Angle (degrees)

Figure 5.1.9: Histogram of the upstream crossing angle between the field and the
shock normal from the slab model using §B?/Bg =1 x 1073,

600 -

400 - 1.00E-02

Number

200

0 70 90 110 170

Upstream Crossing Angle (degrees)

Figure 5.1.10: Histogram of the upstream crossing angle between the field and
the shock normal from the slab model using §B?/B3 = 1 x 1072.

600

400

5.00E-02

Number

200

T T o R : —
0 50 70 90 110 130 170
Upstream Crossing Angle (degrees)

Figure 5.1.11: Histogram of the upstream crossing angle between the field and
the shock normal from the slab model using §B?/B2 =5 x 1072,

600 -

400 - 1.00E-01

Number

200

0 50 90 130 170

Upstream Crossing Angle (degrees)

Figure 5.1.12: Histogram of the upstream crossing angle between the field and
the shock normal from the slab model using §B*/B2% = 1 x 107",

~1

(@]

£
© 0.8
3
[
©0.6
o
204
o 1.00E-05
E
E 0.2 zero value only
0
I 2 3 4 5
L / (delta)

Figure 5.1.13: Histogram of the distance between crossings from the slab model
using 6B?/B2 =1 x 107°,

50

nN
-

w
-

N
O

1.00E-04

RN
O

Number per 20 delta bin

|z

il Z 3 4 5 6
L / (20 delta)

Figure 5.1.14: Histogram of the distance between crossings from the slab model
using 6B*/Bs =1 x 1074

1000

800

600

200

Number per 100 delta bin

400 -

o8

1 2 3 4 5 6 7 8 9 .10

L / (100 delta)

Figure 5.1.15: Histogram of the distance between crossings from the slab model
using 6 B%/B2 =1 x 1073.

4000 -

3000

—_
O
()
O

Number per 100 delta bin
S
O
(&)

1.00E-02

15 20 25
L / (100 delta)

Figure 5.1.16: Histogram of the distance between crossings from the slab model
using §B?/B3 =1 x 1072,

8000
[en
=
£ 6000
(0]
go!
o
= 4000
> 5.00E-02
o
g
= 2000
>
e

O ; AP oo e e e = oy

1 5 10 15 20 25
L / (100 delta)

Figure 5.1.17: Histogram of the distance between crossings from the slab model
using 6 B%/B2% =5 x 1072,

10000 -

8000 -

6000 |f

1.00E-01

I
(@]
O
O

2000

Number per 100 delta bin

\ 5 10 15 20 25
L / (100 delta)

Figure 5.1.18: Histogram of the distance between crossings from the slab model
using 6B?/B% =1 x 1071

5.2 Three-Dimensional Statistical Results

Table 5.2.1 Parameters of the Three-Dimensional Simulations.

2D +slab

dbsqg 2D dbsq Slab N2D Nslab ZcutTimes
8e-06 2e-6 64 4096 x 64 30 x 64
8e-5 2e-5 128 8192 x 64 10x 64
8e-4 2e-4 256 8192 x 64 64
8e-3 2€-3 512 131072 x 8 8
de-2 le-2 2048 524.288><8 8
8e-2 le-2 2048 1048576 x 8 8

60

1000

800

600

Number

400

200

1.00E-05

N(odd values only)

61

Figure 5.2.1: Histogram of the number of field-shock crossings from the 2D +
slab model using 6B?/B3 =1 x 107° (< N >= 1.0).

1000

800

600

Number

400

200

1.00E-04

3

5

N/(odd values only)

Figure 5.2.2: Histogram of the number of field-shock crossings from the 2D +
slab model using 6B?/B2 =1 x 107 < N >=1.1)

62

800

600

400

Number

1.00E-03

200

9 1113 15 17 19 21 23 25

N(odd values only)

Figure 5.2.3: Histogram of the number of field-shock crossings from the 2D +
slab model using 6B%/B2 =1 x 1073 (< N >= 1.6).

500 -

400

300

Number

200

_—y 1.00E-02

O' SR o
1 5 7 9 11 13 15 17 19 21 23 25 27 29 33 37

N(odd values only)

Figure 5.2.4: Histogram of the number of field-shock crossings from the 2D +
slab model using §B2/B2 = 1 x 1072 (< N >= 3.5).

80

60

40 1.00E-05

Number

20

0 20 40 60 80 100 120 140 160 180
Upstream Crossing Angle (degrees)

Figure 5.2.5: Histogram of the upstream crossing angle between the field and the
shock normal from the 2D — slab model using B2/B2 = 1 x 107°.

60

40 -
5 1.00E-04
0
=
o0
=

20 -

0

0 20 40 60 80 100 120 140 160 180
Upstream Crossing Angle (degrees)

Figure 5.2.6: Histogram of the upstream crossing angle between the field and the
shock normal from the 2D — slab model using §B?/BZ = 1 x 107

64

250

200

150

Number

100 - 1.00E-03

50

O - ! i f
0 20 40 60 80 100 120 140 160 18/0
Upstream Crossing Angle (degrees)

Figure 5.2.7: Histogram of the upstream crossing angle between the field and the
shock normal from the 2D + slab model using §B%/BZ =1 x 1072,

300

200
1.00E-02

Number

100 -

0 20 40 60 80 100 120 140 160 180
Upstream Crossing Angle (degrees)

Figure 5.2.8: Histogram of the upstream crossing angle between the field and the
shock normal from the 2D + slab model using §B%/BZ = 1 x 1072,

10
e
O
8
©
©
o
)
S 5 1.00E-05
)
o
g
&
>S5
s
0 - | [|

0 5 10 15 20 25 30 35 40

L / (500 delta)

Figure 5.2.9: Histogram of the distance between crossings from the 2D + slab
model using §B%/B2 =1 x 10~°.

15
._.g
= 1.00E-04
s 10
-
B
2
. S
BS
=
o
Z Y

O i i | i !

0 5 10 15 20 25 30 35 40

L / (500 delta)

Figure 5.2.10: Histogram of the distance between crossings from the 2D + slab
model using 6B%/B2 =1 x 10~

66

100
s 80
9
2
S 60 ,,
3 1.00E-03
S 40
5
O
E 20
=
0 -

0 200 40 60 80 100 120 140 160 180
L / (500 delta)

Figure 5.2.11: Histogram of the distance between crossings from the 2D + slab
model using §B%/B2 =1 x 1072,

150
£
0
S
O
o 100 1.00E-02
(an]
Lo
5
= 50
O
O
e
=
O ' o i i

0 20 40 60 80 100 120 140 160 180
L / (500 delta)

Figure 5.2.12: Histogram of the distance between crossings from the 2D + slab
model using 6B%/B2 =1 x 1072

Chapter VI

Discussion and Conclusions

We simulated turbulent magnetic fields using the slab and 2D + slab
models. The model power spectra, with random phases, were transformed to
position space by using 1D and 2D inverse Fourier transforms for the slab model
and the 2D model, respectively. We use a random number generator to produce
random phases of the Fourier transforms of the magnetic fields. We use Euler’s
method to trace the random magnetic fields. We assume that the shock wave
is a plane parallel to the y-axis and nearly parallel to the z-axis, the axis of the
mean magnetic field. For such a nearly perpendicular shock (i.e., with < B>
nearly perpendicular to the shock normal), we found that the random magnetic
fields can cross and recross a shock multiple times. We believe that this has an
important effect on the shock acceleration of cosmic rays, e.g., for anomalous
cosmic rays at the solar wind termination shock. Therefore, for both turbulence
models, we have measured the distribution of the number of field-shock crossings
(N), the upstream angle between the field and the shock normal (8), and the
distance between crossings (L) for 1000 simulated turbulent magnetic fields at

different values of < §B% > /B2 = 1075, 107, 1073, 1072, 5 x 1072, and 107.

6.1 Discussion of One-Dimensional Results

1) If < 6B* > /B2 is small, we found that the random magnetic fields

can cross a shock only one time. This is consistent with what we expect in

68

the limit 6B2 — 0: then B = Byz, fields lines are parallel to the z-axis, and
therefore cross the shock only once. When this ratio increased, the number of
crossings increased, too. This means that the number of crossings depends on
the total turbulence and the multiple shock crossings occurred in cases with a
high total turbulence. Note that hybrid plasma simulations indicate high levels
of turbulence, 6B?/B3 ~ 0.1,

2) For the upstream crossing angle distributions, we found that the up-
stream crossing angles are nearly 90 degrees. This result indicates that particle-
shock encounters can potentially yield a large amount of shock-drift acceleration.
However, in the case of low turbulence, i.e., < 6B > /B35 = 107°,107%,0r 1073,
we found an asymmetry around 90 degrees because there are more crossings from
upstream to downstream than vice-versa. At 90 degrees, there is a small number
of crossings because when such a random flight (along the field direction) is nearly
parallel to the shock and has a low probability of crossing. In cases with higher
turbulence, we found symmetry around 90 degrees. This means that the random
magnetic fields have the freedom to cross the shock back and forth.

3) For the distance between crossings, we found that the frequency de-
creased for large distances. This distribution can help us to determine the number
of crossings which are sufficiently far apart for the multiple magnetic field-shock
crossing mechanism (see Chapter II) to take effect, because if L >), particles
have the freedom to go forward or backward along the random magnetic field line

and gain energy each time.

6.2 Discussion of Three-Dimensional Results

1) For the number of field-shock crossings, we found essentially the same

results as for one-dimensional simulations. Both of them supported the idea of

69

multiple crossings of a random magnetic field for high turbulence.

2) From the upstream crossing angle distributions, we found that the
random magnetic field can cross a shock at any angle from 0 to 180 degrees but
there are many more crossings for small values of angles. This result indicat.ing
that many particle-shock encounters will yield only a small amount of shock-drift
acceleration. The very different distributions for the one-dimensional and the
three-dimensional models are discussed in the next section.

3) For the distance between crossings, we found much longer distances
between crossings than for the one-dimensional simulation, greatly increasing
the number for which L > Xj. This means that particles have the freedom to
go forward or backward along the random magnetic field line. Tanyong (1999)
demonstrated that a charged particle can diffuse in a random magnetic field of
the type generated in this work; thus in this case, a charged particle can diffuse

along the random magnetic line and gain energy at every shock crossing.

6.3 Comparison of the Upstream Crossing An-
gle Distributions "

There are very different results for the upstream crossing angles for one-dimensional
and three-dimensional models. In one-dimensional simulations, the upstream
crossing angle is nearly 90 degrees. This means that particle-shock encounters
can potentially yield a large amount of shock-drift acceleration. On the other
hand, we found many upstream crossings for small values of angles in the three-
dimensional simulations, so that particle-shock encounters can potentially yield
only a small amount of shock-drift acceleration. Why do they give the different
results? The answer to this question should be related to the nature of turbulence.

In the three-dimensional simulations, we used an admixture of 80% 2D turbulence

70

and 20% slab turbulence, i.e., < §B? >= 0.8 < B, > +0.2 < §B%_, >. This
admixture provides a good fit to interplanetary turbulence near Earth but no-
body knows the nature of the turbulence near the solar wind termination shock.
Therefore, we report results for both types of turbulence, which can be viewed as
two different extremes.

How do these results relate to the effects of multiple magnetic field cross-
ings at a shock? It is an important result because if the particle-shock encounters
can potentially yield only a small amount of shock-drift acceleration, they cannot
explain the large drift of anomalous cosmic rays from the heliosphere equator to
the poles or vice-versa. At the same time, we found a lot more crossings and
larger crossing distances. This means that particles should often cross a shock
and can diffuse along the random magnetic field line, which may compensate for
the low crossing angles. In further work, one may be able to derive other observ-
able consequences of the multiple magnetic crossings, e.g., the charge states of
anomalous cosmic rays, so that a comparison with observations could constrain

the nature of turbulence at the solar wind termination shock.

6.4 Conclusions

We found similar results for both one-dimensional and three-dimensional simu-
lations for both the number of field-shock crossings and the distance between
crossings. However, we found different results for the upstream crossing angle
distribution. All of these results make us confident that the multiple magnetic
field crossings occur at a nearly perpendicular shock. We found that first, a highly
turbulent random magnetic field can cross a shock a large number of times. Then
we expect that particles would drift every time they cross a shock. They should

undergo a large total drift because they often cross a shock. Particles can diffuse

71

along a random magnetic field line, and cross even more frequently when the
crossing distance is larger than the parallel mean free path, L > A;. If random
magnetic field lines cross a shock N times with a large separation, greater than
the mean free path, particles will encounter the shock a total of N? times and
gain energy every at every shock crossing before escaping downstream. The three
distributions give us more understanding about the random magnetic field-shock
crossings and their effects on particle acceleration.

For the special case of the solar wind termination shock, this mechanism
may help explain the observationally inferred drift of anomalous cosmic rays
(ACR) over much of the distance from the heliospheric equator to the poles
or vice-versa. For the other quasi-perpendicular shock cases, if we know the
admixture of the turbulence model, we can set this admixture in the program
and run for an exact result. If we do not know the exact admixture, we can use

that of interplanetary turbulence for approximate results.

References

Arfken, G.B.and Webber, M. J., Mathematical Methods for Physicists Acadamic

Press, Inc (1995).

Chandrasekhar, S. “Stochastic Problem in Physics and Astronomy.”

Review of Modern Physics 15 (1943): 2-16.

Cummings, A. C., Stone, E, C., and Webber, W. R. “Changes in the Energy
Spectrum of Anomalous Oxygen and Helium during 1977-1985.”
19th Intern. Cosmic Ray Conf., 5, 163.

Decker, R.B., and Vlahos, L. “Prompt Acceleration of lons by Oblique Turbulent,
Shock in Solar Flares.” Goddard Space Flight Center 19th Intern.

Cosmic Ray Conf. 4, (1985): 10-13.

Jackson, J.D. Classical Electrodynamics, John Wiley and Sons, New York (1975).

Jokipii, J. D. “Particle Drift, Diffusion, and Acceleration at Shocks.”

Astrophysical Journal Part 1, 255, (1982): 716-720.

Khumlumlert, T. “Modeling Pulses of Solar Cosmic Rays.” Master Degree The-
sis, Chulalongkorn Univ, (1996): 109-116.

Lee, M. A. “The Termination Shock of the Solar Wind.” Space Science Reviews

78 (1996): 109-116.

Longair, M. S. High Energy Astrophysics Cambridge Univ. Press (1997).

73

Matthaeus, W. H., Bieber, J. W., and Zank, G. P. “Unquite on any front:
Anisotropic Turbulence in the Solar Wind.” Reviews of Geophysics 33

(1995): 609-614.

Pauls, H. L. “The Global Structure of our Heliosphere” Private communication

(1997).

Pauls, H. L. The Propagation of Charged Particles in a Focusing Magnetic Field

with Random Components Ph.D. thesis, Univ. of Potchefstroomse, (1993).

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.

Numerical Recipes in C Cambridge Univ. Press, (1988).

Simpson, J. A. “Elemental and Isotropic Composition of the Galactic Cosmic

Rays.” Ann. Rev. Nucl. Part Sci 33 (1983).

Ruffolo, D. “Effect of Adiabatic Deceleration on the Focused Transport of Solar

Cosmic Rays.” Astrophysical Journal 442 (1995), 861-874.

Tanyong, N.Simulation of Diffusion of Cosmic Ray Particles. Senior Project, Chu-

lalongkorn University (1998).

Terasawa, T. “Acceleration of Cosmic Rays. (I), (II)” JSPS-ICRR International

Spring School’95 in Contemporary Astrophysics., eds. Yuda, T., and Hayashida,

N. Tokyo: Instute for Cosmic Ray Research, University of Tokyo (19953),
172.

Tuska, E.B. Charge-sign dependent solar modulation of 1-10 GV cosmic rays. Ph.D.

thesis, Univ. of Delaware, (1990).

Appendix A

One-Dimensional Random Walk

This appendix includes a brief selection from Chandrasekhar (1943), for
the problem of random flights. In Chapter II, we use these concepts to show
that if random magnetic field lines cross a shock N times with a large separation,
greater than the particle mean free path, particles will encounter the shock a
total of N? times before escaping downstream.

First, we begin the simplest one-dimensional problem of random flights:
the problem of the random walk. The principle features of the solution of the
problem of random flights in its most general form are disclosed and more clearly
understood by considering first the following simplest version of the problem in
one dimension (Chandrasekhar 1943).

A particle suffers displacements along a straight line in the form of a
series of steps of equal length, each step being taken either in the forward or in
the backward direction with equal probability 1/2. After taking N such steps the

particle could be at any of the points
~N,-N+1,..,—1,0,+1,..N — 1 or N. (A.0.1)

We ask: What is the probability W (m, N) that the particle arrives at the
point m after suffering NV displacements?
We first remark that in accordance with the conditions of the problem

each individual step is equally likely to be taken either in the backward or in the

75

forward direction quite independently of the direction of all the preceding ones.
Hence, all possible sequences of steps each taken in a definite direction have the
same probability. In other words. the probability of any given sequence of N
steps is (1/2)". The required probability W(m, N) is therefore (1/2)¥ times the
number of distinct sequences of steps which will lead to the point m after N steps.
In order to arrive at m after the \" steps, some (N +m)/2 steps should have been
taken in the positive direction and the remaining (N — m)/2 steps when in the
negative direction. (Notice that m can be even or odd only when N is even or

odd, respectively.) The number of such distinct sequences is clearly

N!
[N —m]!Z(N — m)!

(A.0.2)

Hence
N!

I\
Tl =] (5) . (A.0.3)

2

W(m,N) =

Next we shall continue the discussion of the problem of the random walk
in one dimension, but with certain restrictions on the motion of the particle
introduced by the presence of reflecting or absorbing walls. We shall first consider

the influence of a reflecting barrier.

A.1 A Reflecting Barrier at m =m;

Without loss of generality we can suppose that m; > 0. Then, the interposition
of the reflecting barrier at m; has simply the effect that whenever the particle
arrives at m, it has a probability of unity of retracting its step to m; — 1 when it
takes the next step. We now seek the probability W (m, N;m) that the particle
will arrive at m(< m,) after N steps.

For the discussion of this problem it is convenient to trace the course of

the particle in the (m, N)-plane as in Fig. A.1. In this diagram, the displacement

of a particle by a step means that the representative point moves upward by one
unit while at the same time it suffers a lateral displacement also by one unit
either in the positive or in the negative direction.

In the absence of a reflecting wall at m = m, the probability that the
particle arrives at m after N steps is of course given by Eq. (A.0.3). However the
presence of the reflecting wall requires W (m, N) according to Eq. (A.0.3) to be
modified to take account of the fact that a path reaching m after n reflections must
be counted 2" times since at each reflection it has a probability unity of retracing
its step. It is now seen that we can take account of the relevant factors by adding
to W(m, N) the probability of W(2m; — m, N) of arriving at the “image” point

(2m, —m) after N steps (also in the absence of the reflecting wall), i.e.,
W{(m,N;m;) = W(m,N) +W(2m; — m, N). (A.1.1)
A.2 Absorbing Wall at m =m;

We shall now consider the case when there is a perfectly absorbing barrier at
m = my. The interposition of the perfect absorber at m; means that whenever
the particle arrives at m; at once becomes incapable of suffering further dis-
placements. There are two questions which we should like to answer under these
circumstances. The first is the analog of the problems we have considered so far,
namely the probability that the particle arrives at m(< m;) after taking N steps.
The second question which is characteristic of the present problem concerns the
average rate at which the particle will deposit itself on the absorbing screen.
Considering first the probability W (m, N;m,), it is clear that in counting
the number of distinct sequences of steps which lead to m we should be careful
to exclude all sequences which include even a single arrival to m,. In other

words , if we first count all possible sequences which lead to m in the absence

of the absorbing screen we should then exclude a certain number of “forbidden™
sequences. It is evident, on the other hand, that every such forbidden sequence
uniquely defines another sequence leading to the image (2m, — m) of m on the
line m = my in the (m, N)-plane (see Fig. A.1) and conversely. By reflecting
about the line m = m; the part of a forbidden trajectory above its last point of
contact with the m = m; before arriving at m we are led to a trajectory leading
to the image point, and conversely for every trajectory leading to m (since any

trajectory leading to 2m; — m must necessarily cross the line m = m;). Hence,

W(m, Nym,) = W(m,N) — W(2m; — m, N). (A.2.1)

Appendix B

Fast Fourier Transform!

B.1 Discrete Fourier Transform

Before we discuss a discrete Fourier transform, we represent a Fourier

transform equations as follows:

H(f) = /h(t)emﬁdt (B.1.1)
h(t) = / H(f)e 2miftqy (B.1.2)
which can also be written
H(f) = / h(t)e?miftdt (B.1.3)
Mo = o [H(Pe s (B.1.4)

where w = 2nf. We now estimate the Fourier transform of a function from a
finite number of its sampled points. Suppose that we have N consecutive sampled

values.

hkEh(tk),tkE/CA,kZO,l,Q,...,N—l (B15)

so that the sampling interval is A. To make things simpler, let us also suppose

that NV is even. If the function A(t) is nonzero only in a finite interval of time,

Hfrom Press et al. (1988)

79

then that whole interval of time is supposed to be contained in the range of the N
points given. Alternatively, if the function h(t) goes on forever, that the sampled
points are supposed to be at least “typical” of what h(t) looks like at all other
times.

With N numbers of input, we will evidently be able to produce no more
than N independent numbers of output. So, instead of trying to estimate the
Fourier transform H(f) at all values of f in the range —j. to fe, let us seek

estimates only at the discrete values

(B.1.6)

The extreme values of n in equation (B.1.6) correspond exactly to the
lower and upper limits of the Nyquist critical frequency range. If you are really on
the ball, you will have noticed that there are N+ 1, not N values of n in equation
(B.1.6); it will turn out that the two extreme values of n are not independent (in
fact they are equal), but all the others are. This reduces the count to V.

The remaining step is to approximate the integral in equation (B.1.1) by

a discrete sum:
00) n—1) N-1)
H(f) = / h(t)e*™mtdt a0 Y hye®™ A = A ST pye?m N, (B.1.7)
= k=0 k=0
Here equations (B.1.5) and (B.1.6) have been used in the final equality. The final
summation in (B.1.7) is called the discrete Fourier transform of the N points hy.

Let us denote it by H,, ,
N-1
H, =Y hye®™ /N, (B.1.8)
k=0
The discrete Fourier transform maps N complex numbers (the hz's) into N com-

plex numbers (the H,,’s). It does not depend on any dimensional parameter, such

as the time scale A. The relation (B.1.7) between the discrete Fourier transform

80

of a set of a set of numbers and their continuous Fourier transform when they
are viewed as samples of a continuous function sampled at an interval A can be

rewritten as

H(f,) ~ AH,. (B.1.9)

where f, is given by equation (B.1.6). Up to now we have taken the view that the
index n in equation (B.1.8) varies from —NN/2 to N/2. You can easily see, however,
that equation (B.1.8) is periodic in n, with period N. Therefore, H_, = Hy_p
n = 1,2.... With this conversion in mind, one generally lets the n in H vary from
0 to N — 1 (one complete period). Then n and k (in hy) vary exactly over the
same range, so the mapping of N numbers into N numbers is manifest. When
this convention is followed, you must remember that zero frequency corresponds
to n = 0, positive frequencies 0 < f < f, correspond to values 1 <n < N/2 — 1,
while negative frequencies —f, < f < 0 correspond to N/2+1<n < N—1. The
value n = N/2 corresponds to both f = f. and f = —f,.

The discrete Fourier transform has symmetry properties almost exactly
the same as the continuous Fourier transform. For example, all the symmetries
in the table following equations (B.1.3) and (B.1.4) hold if we read hy for h(t),
H, for H(f), and Hy_,, for H(—f). (Likewise, “even” and “odd” in time refer to
whether the values hy at k£ and N —k are identical or the negative of each other.)

The formula for the discrete inverse Fourier transform, which recovers the
set of hy's exactly from the H,’s is:

] N-1

e = 5 2. e TR (B.1.10)
n=0

Notice that the only differences between equation (B.1.10) and equation (B.1.8)
are (i) changing the sign in the exponential, and (ii) dividing the answer by N.

This means that a routine for calculating discrete Fourier transforms can also,

81

with slight modification, calculate the inverse transforms. The discrete form of

Parseval’s theorem is

N-1) N-1
Y by [’= i ZO | H,, |2 \ (B.1.11)
k=0 n=

‘B.2 Tast Fourier Transform (FFT)

How much computation is involved in computing the discrete Fourier
transform equation (B.1.8) of N points? For many years, until the mid-1960s,

the standard answer was this: Define W as the complex number
W (B.2.1)

Then equation (B.1.8) can be written as

N-1
Hy, =Y W™h (B.2.2)

k=0
In ofher words, the vector of hy’s is multiplied by a matrix whose (n, k)™ ele-
ment is the constant W to the power n X k. The matrix multiplication produces
a vector result whose components are the H,’s. This matrix multiplication evi-
dently requires N? complex multiplications, plus a smaller number of operations
to generate the required powers of W. So, the discrete Fourier transform appears
to be an O(NN?) process. These appearances are deceiving! The discrete Fourier
transform can, in fact be computed in O(N log, N) operations with an algorithm
called the Fast Fourier Transform, or F'F'T'. The difference between N log, NV and
N? is immense. With N = 10°, for example, it is the difference between, roughly,
30 seconds of CPU time and 2 weeks of CPU time on a microsecond cycle time
computer. The existence of an FFT algorithm became generally known only in

the mid-1960s, which in turn had been proved by F. L. Garwin of IBM York-

town Heights Research Center. Retrospectively, we now know that a few clever

82

individuals had independently discovered, and in some cases implemented, fast
Fourier transforms as many as 20 years previously (see Brigham for references).

One of the earliest discoveries of the FFT, that of Danielson and Lanczos
in 1942, still provides one of the clearest derivations of the algorithm. D.aniel'son
and Lanczos showed that a discrete Fourier transform of length IV can be rewritten
as the sum of two discrete Fourier transforms, each of length N/2. One of the
two is formed from the even-numbered points of the original NV, the other from

the odd-numbered points. The proof is simply this:

N—1 - N/2—-1 == N/2-1 o

F, = Z e27rz]k/ij == Z 827rzk(21)/Nf2j + Z e2mk(2]+l)/Nf2j+l (B23)
N/2—-1 . N/2—-1 _

F, = Z e27rzk/(N/2)f2j 1 Wk Z e27rzk:/(N/2)f2j+l — FIS + WkF]S- (B24)
j=0 7=0

In the last line, W is the same complex constant as in equation (B.2.1), F¥
‘denotes the kt component of the Fourier transform of length N/2 formed from
the even components of the original f;’s, while F is the corresponding transform
of length N/2 formed from the odd components. Notice also that k£ in the last
line of (B.2.4) varies from 0 to N, not just to N/2. Nevertheless, the transforms
F¢ and FY are periodic in k with length N/2. So each is repeated thorough two
cycles to obtain Fy.

The wonderful thing about the Danielson-Lanczos Lemma is that it can
be used recursively. Having reduced the problem of computing Fj to that of
computing F¢ and FY, we can do the same reduction of F¥ to the problem of
computing the transform of its N/4 even-numbered input data and N/4 odd-
numbered data. In other words, we can define F¢¥® and F¢° to be the discrete
Fourier transforms of the points which are respectively even-even and even-odd

on the successive subdivisions of the data.

83

Although there are ways of treating other cases, by far the easiest case is
the one in which the original /V is an integer power of 2. In fact, we categorically
recommend that you only use FFTs with N a power of two. If the length of your
data set is not a power of two, pad it with zeros up to the next power of two.
(We will give more sophisticated suggestions in subsequent sections below.) With
this restriction on n, it is evident that we can continue applying the Daneilson-
Lanczos Lemma until we have subdivided the data all the way down to transforms
of length 1. What is the Fourier transform of length one? It is just the identity
operation that copies its one input number into its one output slot. In other
words, for every pattern of e’s and o’s (numbering log, N in all), there is a one-

point transform that is just one of the input numbers f,.
Freoceoseroes = o for somen. (B.2.5)

(Of course this one-point transform actually does not depend on k, since it is
periodic in k£ with period 1.)

The next trick is to figure out which value of n corresponds to which
pattern of e’s and o’s in equation (B.2.5). The answer is: reverse the pattern of
e's and o’s, then let e = 0 and 0 = 1, and you will have, in binary, the value
of n. Do you see why it works? It is because the successive subdivisions of the
data into even and odd are tests of successive low-order (least significant) bits of
n. This idea of bit reversal can be exploited in a very clever way which, along
with the Danielson-Lanczos Lemma, makes FFTs practical: Suppose we take
the original vector of data f; and rearrange it into bit-reversed order (see Figure
B.2.1), so that the individual numbers are in the order not of j, but of the number
obtained by bit-reversing j. Then the bookkeeping on the recursive application
of the Danielson-lanczos Lemma becomes extraordinarily simple. The points as

given are the one-point transforms. We combine adjacent pairs to get two-point

84

transforms, then combine adjacent pairs of pairs to get 4-point transforms, and
so on, until the first and second halves of the whole data set are combined into
the final transform. Each combination takes of order /V operations, and there
are evidently log, N combinations, so the whole algorithm is of order Nlog, N
(assuming, as is the case, that the process of sorting into bit-reversed order is no
greater than order N log, IV).

This, then, is the structure of an FF'T algorithm: Tt has two sections.
The first section sorts the data into bit-reversed order. Luckily this takes no
additional storage, since it involves only swapping pairs of elements. (If k; is the
bit reverse of kg, then ks is the bit reverse of k;.) The second section has an outer
loop which is executed log, V times and calculates, in turn, transforms of length.
For each stage of this process, two nested inner loops range over the sub trans-
forms already computed and the elements of each transform, implementing the
Danielson-Lanczos Lemma. The operation is made more efficient by restricting
external calls for trigonometric sines and cosines to the outer loop, where they
are made only logs N times. Computation of the sines and cosines of multiple
angles is through a simple recurrence relation in the inner loops.

The FEFT routine given below is based on one originally written by N.
Brenner of Lincoln Laboratories. The input quantities are the number of complex
data points (nn), the data array (data[l..2*nn]), and isign, which should be set to
either +1 and is the sign of i in the exponential of equation (B.1.8). When isign is
set to -1, the routine thus calculates the inverse transform (B.1.10) - except that
it does not'multiply by the normalizing factor 1/N that appears in that equation.
You can do that yourself.

Notice that the argument nn is the number of complex data points. The
actual length of the real array (data[l..2*nn]) is 2 times nn, with each complex

value occupying two consecutive locations. In other words, data 1] is the real

000 > 000 000
001 001 001
010\ /: 010 010
011 01t .011
1060 100 100

10t / \i 101 101
110 110 10

111 > 111 111

(a) ()

Figure B.2.1: Reordering an array (here of length 8) by bit reversal, a) between
two arrays, versus b) in place. Bit reversal reordering is a necessary part of the
Fast Fourier Transform (FFT) algorithm.

part of fo, data[2] is the imaginary part of fy, and so on up to data[2*nn-1],
which is the real part of fy_;, and data[2*nn], which is the imaginary part of
fnv_1- The FFT routine gives back the F,,’s packed in exactly the same fashion,
as nn complex numbers. The real and imaginary parts of the zero frequency
component Fy are in data[l] and data[2]; the smallest nonzero negative frequency
has real and imaginary parts in data[2*nn-1] and data [2*nn]. Positive frequencies
increasing in magnitude are stored in the real-imaginary pairs data[5], data[6] up
to data[nn-1], datajnn]. Negative frequencies of increasing magnitude are stored
in data[2*nn-3], data[2*nn-2] down to data[nn+3], data[nn+4]. Finally, the pair
data[nn+1], data[nn+2] contains the real and imaginary parts of the one aliased
point which contains the most positive and the most negative frequency. You
should try to develop a familiarity with this storage arrangement of complex

spectra, also shown in the Figure 2, since it is the practical standard.

86

Z =
™ 3
= 5
<0)
5 8
E 5
fa >
:
= <
E g
204 S =

real

[esmeny +=aol t = (N - 2)4

QNED! imag

GN=D real 1

e r=(N-1)a

G imag |[TV

() (b)

Figure B.2.2: Input and output arrays for FFT. a) The input array contains N
(a power of 2) complex time samples in a real array of length 2V, with real and
imaginary parts alternating. b) The output array contains the complex Fourier
spectrum at N values of frequency. Real and imaginary parts again alternate.
The array starts with zero frequency, works up to the most positive frequency
(which is ambiguous with the most negative frequency). Negative frequencies
follow, from the second-most negative up to the frequency just below zero.

This is a good place to remind you that you can also use a routine like
fourl without modification even if your input data array is zero-offset, that is
has the range data[0..2*nn-1]. In this case, simply decrement the pointer to data

by one when fourl is invoked, e.g. fourl(data-1,1024,1). The real part of f; will

now be returned in data[0], the imaginary part in data[l], and so on. We use the

program below in our simulation program.

#include <math.h>
#define SWAP(a,b) tempr=(a);(a)=(b); (b)=tempr

void fourn(float datall, unsigned long nn(], int ndim, int isign)

Replaces data by its ndim-dimensional discrete Fourier transform, if isign is input as 1.
nn[1..ndim] is an integer array containing the lengths of each dimension (number of complex
values), which MUST all be powers of 2. data is a real array of length twice the product of
these lengths, in which the data are stored as in a multidimensional complex array: real and
imaginary parts of each element are in consecutive locations, and the rightmost index of the
array increases most rapidly as one proceeds along data. For a two-dimensional array, this is
equivalent to storing the array by rows. If isign isinput as —1, data is replaced by its inverse
transform times the product of the lengths of all dimensions.

int idim;

unsigned long 11,12,13,12rev,i3rev,ipl,ip2,ip3,ifp1,11p2;
unsjgned long ibit,k1,k2,n,nprev,nrem,ntot;

float tempi,tempr;

double theta,wi,vpi,wpr,wr,vtemp; Double precision for trigonometric recur-
rences.
for (ntot=1,idim=i;idin<=ndim;idin++) Compute total number of complex val-
ntot #= nnlidim]; ues.
nprev=1; :) .
for (idim=ndim;idim>=1;idim—) { Main loop over the dimensions.
n=nn(idin];

nrem=ntot/(nsuprev) ;
ipi=nprev << 1;

ip2=ipl*n;

ip3=ip2#*nrem;

i2rev=1;

for (12=1;12<=ip2;12+=ip1) { This is the bit-reversal section of the
if (12 < i2rev) { routine,

for (11=12;41<=12+ip1-2;41+=2) {
for (i3=11;13<=ip3;13+=1p2) {
i13rev=i2rev+i3-i2;
SWAP(data(i3) ,datali3rev]);
SWAP (data[i3+1] ,_data&raw-l]) :

}

}

ibit=ip2 >> 1;

while (ibit >= ipl k& i2rev > ibit) {
i2raev ~= ibit;

ibit >>= 1;
}
i2rev += ibit;
ztpl-ipl; Here begins the Danielson-Lanczos sec-
while (ifpt < 1p2) { tion of the routine,
ifp2=ifpl << 1; ..
thata=isign#6.28318530717969/(11p2/ip1); Initialize for the trig. recur-
vtemp=sin(0.5¢thaeta); rence.
vpr = -2.0eytemp*utemp;
vpi=sin(theta);
wr=1,0;
vi=0.0;
for (i3=1;43<=ifp1;id+=ip1) {
for ({1=43;41<=i3+ip1-2;11+=2) {
for (12=i1;12<=ip3;i2+=ifp2) {
k1=i2; Danielson-Lanczos formula:
k2=ki+ifpl;
tompr=(float)vr+data [x2]-(float)wisdata[k2+1];
tempi=(float)vr+data (x2+1)+(float)wisdata (k2] ;
data(k2]=data[k1]~tempr;
data[k2+1])=data(k1+1]-tempi;
datalkl] += tempr;
datal[ki+1] += tempi;
),
} .
wr=(wtemp=wr) swpr-wiswpi+ur; Trigonometric recurrence.
vim=yisvpr+utampswpi+vi;
}
ifpl=ifp2;
}

oprev *= n;

87

88

B.3 FFT in Two Dimensions

Given a complex function h(ki, ky) defined over the two-dimensional grid 0 <
ki < Ny —1,0<ky < Ny—1, we can define its two-dimensional discrete Fourier
transform as a complex function H(n,ny) defined over the same grid,

No—1 Ni—1

H(ny,no) = Z Z exp (2mikans/Ny) exp(2miking /N1)h(k1, k2)

k2=0 k1=0
By pulling the “subscripts 2” exponential outside of the sum over k;, or by re-
versing the order of summation and pulling the “subscript 1”7 outside of sum
over ko, we can see instantly that a two-dimensional FF'T can be computed by

taking one-dimensional FFTs sequentially on each index of the original function.

Symbolically,
H(ny,ng) = FFT — on — index — 1(FFT — on — index — 2[h(ky, k2)])

= FFT — on — index — 2(FFT — on — index — 1[h(k1, k2)])

For this to be practical, of course, both N; and N, should be some efficient length
for an FFT, usually a power of 2. Programming a two-dimensional FF'T, using
equation (B.2.4) with a one-dimensional FFT routine, is a bit clumsier than it
seems at first, because the one-dimensional routine requires that its input be in
consecutive order as a one-dimensional input array and then copying things out

of the multidimensional technique. program given below.

Appendix C

Random Number Generator!

In this program, we want to have a portable random number generator
which can be programmed in a high-level language, and which will generate the
same random sequence on all machines. We can distinguish two classes of use for
such portable routines: First, one might want a fully reliable generator. Second,
one frequently one would like a quick generator to embed in a program.

For both purposes we do care that there be no sequential correlations, but
we do not care that the discreteness of the random values returned be as fine as
is allowed by all significant bits of the wordsize. In this case, one might desire the
gain in speed that comes from using only one linear congruent generator. Then
the following routine is perfectly adequate: edition, pages 211-212):

#include <math.h>

#define M 714025

#define IA 1366

#tdefine IC 150889

float ran2(idum)

log *idum;

/* Returns a uniform random deviate between 0.0 and 1.0 Set idum to
any negative value value to initialize or reinitialize the sequence.
*/

‘from Press et al. (1988)

90

static long iy,ir[98];

static int iff=0;

int j;

void nrerror();

if (*idum< 0| iff==10) { /* as above */

iff=1;

if ((xidum = (IC-(xidum) % M) < 0) *idum = -(xidum);

for (j=1;j<=97; j++){ /* Initialize the shuffle table. =/
xidum = (IA*(xidum)+IC) % M;

ir[j1=(xidum) ;

}

idum=(IA (*idum)+IC) % M;

iy=(xidum); /% Compare to ran(), above. */

}

j=1 + 97.0xiy/M;

if (j >97 || j< 1) nrerror (“‘RAN2: This cannot happen.’’);
iy=ir[jl;

idum=(IA(xidum)+IC) % M;

ir[j1=(xidum) ;

return (float) iy/M;

The period of ran2 is again effectively infinite. Its principal limitation is
that it returns one of only 714,025 possible values, equally spaced as a “comb” in

the interval [0,1).

Appendix D

Computer Program

#include <stdio.h>
#include <math.h>

#define PI 3.141592654

#define iterations 1000

#define Rg 0.224 /* Rg is gyroradius of proton at 100 Mev Rg=0.224 A.U. %/
#define delta 1.0 /* delta is delta of z axis */
#define lambdaC 16.0

#define Bo 1.0

/* define for slab calculation */
#define countl 3001
#define count 6001

/% define for fourn() function */
#define isign -1
#define SWAP(a,b) tempr=(a);(a)=(b);(b)=tempr

/* define for ran2() function %/
ftdefine M 714025

#define IA 1366

#define IC 150889

/* define for ranl() function */
#define Ia 16807

#tdefine IM 2147483647

#define AM (1.0/IM)

#define IQ 127773

#define IR 2836

#tdefine NTAB 32

#define NDIV (1+(IM-1)/NTAB)
#define EPS 1.2e-7

#define RNMX (1.0-EPS)

/* slab simulations -> cal. only slab model */
/* 2d + slab simulations -> first cal. slab, afterthat cal 2d */

void main(void) {

int i,k,j,ndim,*NN,N2D,N2D1,N2D2,Nslab,Nslabl,lislab2,P1=0;
int choice,type,Crossl,countCrossl,zcutTimes,*ivector();

long idum,countalphalcount],countL[count],countCross[count];

float *data,**Axy,*Bx,*By,thetal,diffconts,zcutoff,dbsq,dbsqSlab,dbsq2D,Const;
float xcoorlcountl],zcoor[countl],Llcountl],alphalcounti];
float *dvector () ,**dmatrix2();

void Cal2D() ,fourn(),0utB2D(),0utAxy () ,0utBxBy(),GetRealixy(),0utBxBy () ,Parseval2D();
void SlabCal(),Slab2DCross(),Setup(),CalBxBySlab(),outputl() ,output3(),LambdaC();
void Diffconts() ,Zcutoff(),SlabCross(),AngleCoor(),Count(),Test2D() ,Parseval();

void free_dvector(),free_dmatrix2(),0utBxnuba(),free_ivector();

void output3d1(),output3d2(),output33(),output3d4(),outputds(),output3ds();

void output37(),output3ds8(),output39();

thetal = atan(110.0);

/* type=1->run 2D+Slab, type=2->run Slab, type=3->test2D, type=4->testSlab */
/% choice (1-7) 1s choosen value of dbsq2D and dbsqSlab

type = 1;

choice = 6;

Setup(&ndim,&Nslab,&Nslabl,&NslabQ,&NQD,&NQDl,&NQDQ,&dbsq,&dbsqSlab,&dbquD,
&zcutTimes,choice,type,&Const) ;

NN = ivector(i,ndim);

if(Nslabl >= N2D1) data = dvector(l,Nslabi);
else data = dvector(i,N2Di);

Bx = dvector(0,Nslab2);

By = dvector(0,Nslab2);

Axy = dmatrix2(0,2%N2D,0,24N2D);

countCrossl = 0;
for(i=1;i<=count-1;i++)

countL[i] = countalphali] = countCross[i] = 0;
for (k=1;k<=iterations;k++) {
Crossl = 0;
for(i=0;i<=counti-1;i++)
xcoor[il = zcoor[i] = L[i] = alpha[i] = 0.0;

if (type 1= 3){
for(j=1;j<=2;3++) {

SlabCal(Nslab,dbsqSlab,data,&idum,NN,&ndim) ;

if(type == 4 && j == 1 && k == 1){
Parseval(Nslab,Nslabl,P1,data);
PL =1

}

fourn(data,NN,ndim);

CalBxBySlab(j,Nslab,Nslabl,data,Bx,By);

if(type == 4 && j == 1 && k == 1)
Parseval(Nslab,Nslabi,P1,data);

}
Diffconts(dbsq,&diffconts);
Zcutoff(zcutTimes,thetal,difZconts,&zcutoff);
}
if(type == 3 && k == 1) {
Cal2D(dbsq2D,N2D,data,&idum, N, &ndim, Const) ;
OutB2D(N2D,data);
fourn(data,NN,ndim);
DutB2D(N2D,data);
GetRealAxy(N2D,NN,data,Axy,ndim);
OutAxy (N2D,Axy) ;
Test2D(k,Nslab2,N2D,Axy,dbsq2D);
exit(0);
}
if(type == 4 && k == 1){
LambdaC(Nslab,dbsqSlab,Bx) ;
exit (0); A
}
if (type == 1) {
Cal2D(dbsq2D,N2D,data,&idum, Ny, &ndim,Const) ;
fourn(data,NN,ndim);
GetRealAxy(N2D,NN,data,Axy,ndim);
S1ab2DCross(k,Nslab,Nslab2,N2D,&Crossl,&countCrossi, Axy,Bx,By,
Xcoor,zcoor,alpha,L,thetal,zcutoff);
}
if (type == 2){
SlabCross(k,Nslab,Nslab2,&Crossi,Bx,By,xcoor,zcoor,
alpha,L,thetal,zcutoff,&countCrossl);
}
if(type 1= 3){
Count (L,alpha,Crossl,countalpha,countL,countCross) ;
outputl(k,xcoor,zcoor,alpha,L,Crossl);
if (k == 1000)
output3(k,countalpha, countl,countCross) ;
}
}
free_dmatrix2(Axy,0,2%N2D,0);
free_dvector (By,0);
free_dvector(Bx,0);
free_dvector(data,l);
free_ivector(NN,1);

}
/% Setup(): Setup parameters of simulations */

/A A s i R R R RR AR K R o R o o K oK KK K R o R ok R R s s ok koK Kok oK K K o ook sk ok o ok ok ok ok /
void Setup(ndim,Nslab,Nslabl,Nslab2,N2D,N2D1,N2D2,dbsq,dbsqSlab,dbsq2D,
zcutTimes,choice,type,Const)
/o ok ok oo s o o ok s o sk ok ok R o ok KK R Kok o e o o sk sk ko sk KR ROROHOR ok sk o s o ok o sk sk o o ok ok ok ok ook ok ok /

int *ndim,*Nslab,*Nslabl,*Nslab2,*N2D,*N2D1,*N2D2,*=zcutTimes,choice,type;
float *dbsq,*dbsqSlab,*dbsq2D,*Const;

93

FILE *outl,*out3;

outl = fopen("Outl.dat!,"w");
out3 = fopen("Out3.dat","w");
/* Computational Trick !!!! %/
/* *N2D = 64 *Const = 2x1.5%PIxPI*PI

/* *N2D = 128 *Const

/* *N2D = 256 #Const
/% *N2D = 512 *Const
/4 *N2D = 1024 *Const

2%1.8%P1
4%1 . B#PI*PI
2%1.b%¥PI*PI
441 .35%P1

ERROR
ERROR
ERROR
ERROR
ERROR

/* type = 1 for 2D+5lab model, use 80% of 2d +
if(type == 1 || type ==

*ndim = 2;
if(choice == 1){
*N2D = 64;

/

/

3 A1

* dbsq = le-5 */

*Const = 2%1.5%PI«PI*PI;
*Nslab = (4096)*64;

*dbsg = le-5;

*dbsgSlab = 2e-6;

*dbsq2D = 8e-6;

¥zcutTimes = 3J0%64;

}
if (choice == 2){
*N2D = 128;

/

* dbsq = le-4 */

*Const = 2%1.8%PI;
#Nslab = (8192)%64;

*dbsqg = le-4;

*dbsqSilab = 2e-b;

*dbsg2D = 8e-b5;

kzcutTimes = 10%64;

¥

if(choice == 3){
*N2D = 266;
*Const
*Nslab
*dbsg = le-3;

/

* dbsq = 1e-3 %/

4%1 . 5%PT*PT;
(8192) %x64;

*dbsgSlab = 2e-4;

*dbsg2D = 8e-4;

¥zcutTimes = 64;

¥
if(choice == 4){
*N2D = 512;

/

* dbsq = le-2 */

#Const = 2%1,5%PI*PI;
*Nslab = 131072%8;

*dbsq = le—-2;

*dbsgSlab = 2e-3;
*dbsq2D = 8e-3;
*zcutTimes = 8;

= ~0,23% */
= ~1.09% %/
= 0.74% */
= -0.14% */
= 0.36% */

20% of slab x/

94

¥

if(choice == 5){
*N2D = 512;
*Const = 2%1.5%PIx
¥lslab = 262144x16
*dbsq = 2e-2;
#dbsgSlab = 4e-3;
*dbsq2D = 1.6e-2;
#zcutTimes = 16;

PI;

»

PE:

}

if (choice ==
*N2D = 512;
*Const = 2%k1,b6%PTxk
*Nslab = 524288#8;
*dbsq = be-2;
*dbsqSlab = le~2;
#*dbsq2D = 4e-2;
*zcutTimes = §;

}

if (choice == 7){
*N2D = 1024;
*Const = 2%1.3b%PI;
#Nslab = 1048576%8;
*dbsq = le-1i;
#dbsqSlab = 2e-2;
*dbsq2D = 8e-2;
*zcutTimes = 8;

I

/* type = 2 for Slab model #*/
if (type =e=3 1) type == 4) |

*N2D = 0;

*ndim = 1;

if(choice == 1){ /=
#Nslab = 4096;
*dbsqSlab = le-b;
*zcutTimes = 30;

¥

if (choice == 2){ /%
*#Nslab = 8192;
*dbsgSlab = le-4;
*zcutTimes = 10;

}

if (choice == 3){ /%
#Nslab = 8192%8;
*dbsqSlab = 1e-3;
*zcutTimes = 8;

}

if (choice == 4){ /*
*Nslab = 131072%8;
*dbsqBlab = le-2;
*zcutTimes = 8;

dbsq

dbsq

dbsq

dbsq

1t

i

6){ /% dbsq = be-2

/# dbsq = le-1

le-b

le—-4

le-3

le-2

/* dbsq = 2e-2 %/

*/

:k/

*/

*/

x/

*/

96

if (choice == 5){ /% dbsg
*Nslab = 262144x8;
*dbsqSlab = 2e-2;
¥zcutTimes = 8;

2e-2 x/

}

if(choice == 6){ /% dbsq
*Nslab = 524288%8;
*dbsqSlab = be-2;
*zcutTimes = 8;

5e-2 %/

}

if(choice == 7){ /* dbsq
*Nslab = 1048576%2;
*dbsqSlab = le-1;
*¥zcutTimes = 2;

le-1 */

}
*dbsq = *dbsqSlab;
}
if(choice > 7 || choice < 1){
printf ("ERROR, select choice 1-7 only\n");
exit (0);
}
*Nslabl
*Nslab2

2% (xNslab)+1;
*Nslab+1;

*N2D1 = 8% (xN2D) * (xN2D)+1;
*N2D2 = 4% (xN2D) % (xN2D)+1;

fprintf (outi,"dbsq = %1f dbsqSlab = %1f dbsq2D =}, 1f\n",*dbsq,*dbsqSlab,*dbsq2D);
fprintf (outl,"Nslab = }d N2D = %d\n",*Nslab,*N2D);

fprintf (outl,"\n");

fprintf(out3,"dbsq = %1f dbsqSlab = %1f dbsq2D =) 1f\n",*dbsq,*dbsqSlab,*dbsq2D);
fprintf (out3,"Nslab = %d N2D = Jd\n",*Nslab,*N2D);

fprintf (out3,"\n");

fclose(outl);
fclose(outd);
}

/* Subroutine SlabCal is used for calculate Pk from a slab model in Bieber 1990. */
/* P(k) = A(kp,kz) where A(kp,kz) = c/(1+kz"2lambda”2) “meu */
/* P(k) ==> data ==> sqrt(data) x/

[ks ko o kR ko kR ORRROR AR R AR Rk KRR K R K oK o ko ok ok o/
void SlabCal(Nslab,dbsqSlab,data,idum,NN,ndim)

[Rk ok ok o o Rk Rk ok ook ok R HOR K KR R AR R R Kk R ok sk ok ok ook /

int Nslab,NN[],*ndim;

long *idum;

float dbsgSlab, datafl];

{
int i;
float Meu, A, Kz, C, lambda, Ph, RePh, ImPh;

float ran2();

NN[1] = Nslab;
#¥ndim = 1;

Meu = 5.0/6.0;
C = lambdaC*dbsqSlab/sqrt (2+PI);
lambda = 4%2.104%lambdaC/(2%PI);

/* special case for nn = 0 %/
datal1l] = 0.0;
datal2] = 0.0;

/* special case for nn
Kz = PIklambda/(delta):
A = sqrt(2*PI)*Nslab*delta*C/ (pow((1+Kz*Kz) ,Meu));

Nslab/2 #/

/* sqrt(data) ==> FFT ==> Kzx %/
data[Nslab+1] = sqrt(4);
data[Nslab+2] = 0.0;

/* general case of nn */
for(i=1;i<=Nslab/2-1;i++) {
Kz = 2%PI*lambda*i/(Nslab%*delta);
A = sqrt(2%PI)*Nslabkdelta*C/ (pow ((1+Kz#Kz) ,Meu));

/* random phase ==> random maguetic field x*/
Ph = 2.0%PI*ran2(idum);

RePh = cos(Ph);

ImPh = sin(Ph);

data[2#1+1] = sqrt(A)*RePh; /¥ real part */
data[2%(Nslab-i)+1] = sqrt(A)+*RePh;

data[2*%i+2] = sqrt(A)*ImPh; /* Im part */
data[2#(Nslab-i)+2] = -sqrt(A)*ImPh;

/% Subroutine Cal2D is used for calculate Pk from a 2D */
/* P(k) = A(kp,kz) where A(kp,kz) = c/(1+kz"2lambda”2) "meu */

7 Ak ek sk o ok s o s ok o o sk ook o s sk R Kok s sk ko sk ek ok sk ok ok ok
void Cal2D(dbsqg2D,N2D,data,idum,NN,ndim,Const)

[etk ok s ks s stk stk R K K KK R R sk ks ok o R oKk ok ook o ok ok ok kKo /

float datal],dbsg2D,Const;

int N2D,#*ndim;

long *idum;

unsigned long NN[];

98

int i,7,g;
float K=x,Ky,Kperpen,Meu,A,C,lambda,Ph,RePh,ImPh;
float ran2();

*ndim = 2;

Meu = 6.0/6.0;
C = lambdaC#dbsq2D/(PI);
lambda = 2#%2.104%lambdaC/(PI);

Ph = RePh = ImPh = 0.0;

for(i=1;i<=#ndim;i++)
NN[i] = 2%N2D;

/* set all datal] = 0.0 */
for(j=0;j<=2%N2D-1; j++){
for(i=1;i<=4x%N2D-1;i+=2){
data[4*N2D*j+i] = 0.0;
datal[4+N2D+j+i+i] = 0.0;

}

/* calculate gl and g4 */
for(j=0;j<=2«N2D-1; j++){
for(i=0;i<=4*N2D-1;i+=2){
Kx = 2%«PI*lambda*(i/2.0)/(2xN2D#delta) ;
Ky = 2«PIxlambda#j/(2+N2D*delta);
Kperpen = sqrt(Kx#Kz+Ky*Ky) ;

I

/* Const is come from Setup(), computational trick ! */
A = lambda*lambda*lambda*Const*2%N2D*C/ (Kperpen*Kperpen+Kperpen*
pow((1+Kperpen#Kperpen) ,Meu)) ;

Ph = 2.0%PIT¥ran2(idum) ;
RePh cos(Ph);
ImPh = sin(Ph);

il

if(i <= 2#N2D && i >= 0){
data[4%N2D*j+i+1] = RePh#*sqrt(4);
data[4xN2D*j+i+2] = ImPh*sqrt(4);
}
if((i == 2%N2D || 1 == 0) && j > N2D){
data[4*N2D*j+i+1] = data[4*N2D# (2%N2D-j)+i+1];
data[4%N2D*j+i+2] = -data[4*N2D*(2%N2D-j)+i+2];
}

/% calculate special value for H(-f) = conjugate of H(f) x*/
data[4xN2D*N2D+2] = datal[4+N2D#N2D+2xN2D+2] = datal[24N2D+2] = 0.0;
datall] = data[2] 0.0;

¥

99

/* calculate q2 and g3 */
for (j=0; j<=2%N2D-1; j++){
for(i=0;i<=4*N2D-1;i+=2){
g = 8%N2D*N2D+4*N2D+2;
if (i > 2«N2D+1 && j > O){
datal4*N2D*j+i+1] = datalg-(4*N2D*j+i+1)];
data[4*N2D*j+i+2] = -datal[g-(4xN2D*j+i+1)+1];

}

if (i > 2%N2D && j == 0){
data[i+1] = datal[4*N2D+2-(i+1)];
datal[i+2] ~-data[4%N2D-(i+1)+3];

}

/* set data which is shown below = 0.0 */

data[4*xN2D*N2D+2] data[4*N2D#N2D+2%N2D+2] = data[2*N2D+2] = 0.0;
data[1] = datal2] 0.0;

/* GetRealAxy(): data[Real+Im] -> Axy{Real] */

/***/

void GetRealAxy(N2D,NN,data,Axy,ndim)

/***/
float datal[],**Axy;
int N2D,NN[],ndim;

{

int i,j,p,idim,ntot;

for (ntot=1,idim=1;idim<=ndim;idim++)
ntot %= NN[idim];

/* Calculate Axy in ql */
for(i=N2D-1;i<=2*N2D-1;i++) {
p=1; /* biginning point in ql */
for (j=N2D-1; j<=24N2D-1;j++) {
Axy(j1[i] = data[p+(i-N2D+1)*4*N2D]/(float)ntot;
p =2

¥

/% Calculate Axy in q2 */
for (i=N2D-1;i<=2%N2D-1;i++) {
p = 2%N2D+3; /* beginning point in q2 */
for(j=0;j<=N2D-2;j++) {
Axy[j1[i] = data[p+(i~N2D+1)*4%N2D]/(float)ntot;
p = 2;

100

/% Calculate Axy in g3 */
for (1=0;i<=N2D-2;i++) {
p = 4%N2D* (N2D+2)-2%(N2D-1)+1; /* beginning point in q3 =/
for(j=0; j<=N2D-2; j++) {
Axy[j1Ti] = datalp+i*4*N2D]/(float)ntot;
p =25

/* Calculate Axy in q4 */
for (i=0;i<=N2D-2;i++) {
P gl - 4 1 /% beginning point in q4 ¥/
for (j=N2D-1; j<=2#N2D-1;j++) {
Axy[j1[i] = datalp+i*2#N2D]1/(float)ntot;
p += 2;

/* SlabCross(): trace random trajectories, from slab model and cross a shock */

/) sk sk o ok ksl e R R R R o o o o o R o sk oR s R K sk sk ke ok sk o ok Rk o sl R R oK s sk o kR ok /
void SlabCross(k,Nslab,Nslab2,Crossl,Bx,By,xcoor,zcoor,alpha,L,
thetal,zcutoff,countCrossi)
ks ks ks sk sk sk s st se s et sl sk ok ol okt ok etk sk st sk s sl sk stk ok sk sk sk sk ok ok ok ok /

int k,Nslab,Nslab2,*Crossi,*countCrossi;
float xcoor[],zcoor[],alphal],L[],Bx(],By[],thetal,zcutoff;
{

void AngleCoor(),CrossCheck();

int i,a,b,g,h,s,Cross;
float shock,xcutoff,m,tjX=0,tj¥=0,tjXold=0,tjYold=0;

i=a=b=g=h=s8=0; /* Upstream a = 0, Downstream a = 1 %/

1 += 13

xcutoff = zcutoff/tan(thetal);
m = delta/tan(thetal);

shock = —-m*i+xcutoff;

/* Euler’s method for calculating tjtories of magnetic field */
tjX = tjXold+delta*Bx[i]/Bo;
tjY = tjYold+delta*By[i]/Bo;

/* Check crossings at z<0 */
if(k <= 100 && i >= 1){
CrossCheck(i,&h,Nslab,Nslab2,k,tjX,&countCrossi,thetal,zcutoff);
if(h == 1)
break;

101

/* Check escaping from a shock %/
if (t£jX > shock+xcutoff && s == 0) {
printf ("STOP when tjX > shock+xcutoff at i=d =>
Particle Escape from Shock\n",i);
printf("tjX[%d] = %1f, shock+xcutoff = %1f\n",1i,tjX,shock+xcutoff);
s = 1;

}

/* Crossings a shock, Up -> Down */
if (tjX >= shock && a == 0 && s == 0) {
/* Check error of crossings */
if (i >= Nslab/4) {
printf ("ERROR, crossing at z >= N/4 Up -> Down at i = %d\n",i);
break;
}
*Crossl += 1;
Cross = %Crossi;
AngleCoor (i,thetal,zcutoff,tjX,tjY,tjXold,tjYold,
zcoor ,xcoor ,alpha,L,Cross);
a=1;

3

/* Crossings a shock, Down -> Up */
if (tjX < shock && a == 1 && s == 0) {
/* Check error of crossings */
if (i >= Nslab/4) {
printf ("ERROR, crossing at z >= N/4 Down -> Up at i = %d\n",i);
break;
}
*Crossl += 1;
Cross = *Crossl;
AngleCoor (i,thetal,zcutoff,tjX,tj¥,tjXold,tjYold,
zcoor ,xcoor,alpha,L,Cross) ;
a=0;
}
tjXold = tjX;
tjYold = tjY;
} while (i <= Nslab2);

}

/* Slab2DCross(): trace random trajectories (2D + Slab model), */
/* bilinear interpolation and cross a shock */

/] ek ek ke ke ke o oo o o s e o s o ok ok o ek sk sk sk o o ok sk K sk ko ok ok ke o o o s o o o sk sk oo sk ko ok sk o/
void Slab2DCross(k,Nslab,Nslab2,N2D,Crossi,countCrossl,Axy,Bx,By,

xcoor,zcoor,alpha,L,thetal,zcutoff)
/R AR R AR AR KRR A R R KA R ROR R KRR KRR ok o ok ko ook ok /

int k,Nslab,Nslab2,N2D,*Crossl,*countCrossi;

float **Axy,xcoor[],zcoor[],alphal],L[],Bx[],By[],thetal,zcutoff;
{

102

void AngleCoor(),CrossCheck();

int i,a,b,g,h,distanceX,distanceY,Cross,stop;
float AOO,A01,A10,A11,fx,fy,Xold,Yold,X,Y;
float deltaX,deltaY,Bxtemp,Bytemp,shock,xcutoff,m,tjX,tjXold,tjY,tjYold;

FILE *outi;
outl = fopen("Outi.dat","a");

i=a=b=g=h-=stop = 0; /* Upstream a = 0, Downstream a = 1 */
do {
/* set X = Y = le-4 (for the ist time only) for calculate Bx(0,0) and By(0,0) */
if(g == 0){
i=20;
distanceX = distanceY = (N2D-1)xdelta;
deltaX = deltaY = le-6;
Xold = Yold = distanceX;
X = Y = distanceX+deltaX;
g=1;
}

A00 = Axy[distanceX] [distanceY];

A10 = Axy[distanceX+1] [distanceY];
A01 = Axy[distanceX] [distanceY+1];
A1l = Axyl[distanceX+1] [distanceY+1i];

fx
fy

deltaX/delta;
deltaY/delta;

/* bilinear interpolation of Axy */
Bxtemp = (-(1-fx)*A00+(1-fx)*A01-fx*A10+fx*A11)/deltat+Bx[i];
Bytemp = ((1-fy)*A00+fy*A01-(1-fy)*A10-fy*All)/delta+By[i];

/* Euler’s method (2) */
X = Xold+Bxtemp*delta/Bo;
Y = Yold+Bytemp*delta/Bo;

/* tjX (tjY) is random trajectories in xz(yz)-plane */
/* (N2D-1)*delta is set for a center of Axy */
tjX = X-(N2D-1)*delta;
tjY = Y-(N2D-1)*delta;

distanceX = (int)X;
distanceY = (int)Y;
deltaX = (X-distanceX)/delta;
deltaY = (Y-distanceY)/delta;

if ((distanceX == 2%N2D-1) || (distanceY == 2%N2D-1) ||

distanceX < 0| |distanceY < 0){
fprintf(outl,"ERROR at iterations=jd, Out of Axy at distanceX=}d
distanceY=%d => Stop this iteration\n",k,distanceX,distanceY);
printf ("ERROR at iterations=%d, Out of Axy at distanceX=¥d distanceY=%d =>
Stop this iteration\n",k,distanceX,distanceY);

103

stop = 1;

/* calculate shock */

xcutoff = zcutoff/tan(thetal);
m = delta/tan(thetal);

shock = —m*i+xcutoff;

/* Check crossings at z<0 (5%4) */
if(k <= 20 && i >= 1){
CrossCheck(i,&h,Nslab,Nslab2,k,tjX,&*countCrossi,thetal,zcutoff);
if(h >= 1)
stop = 1;
}

/* Crossing a shock from Up -> Down */
if (tjX > shock+xcutoff &% i >= 1) {
printf ("STOP when X > shock+xcutoff at iterations=yd =>
Particle Escape from Shock\n",k);
stop = 1;
+
if (tjX >= shock && a == 0 && 1 >= 1) {
if (i >= Nslab/4) {
printf ("ERROR, crossing at z >= N/4 Up -> Down at i = %d\n",i);
stop = 1;
}
*Crossl += 1;
Cross = *Crossil;
AngleCoor(i,thetal,zcutoff,tjX,tjY,tjXold,tjYold,zcoor,xcoor,alpha,L,Cross)
a=1;

}

/* Crossing a shock from Up -> Down */
if (tjX < shock && a == 1 && 1 >= 1) {
if(i >= Nslab/4) {
printf ("ERROR, crossing at z >= N/4 Down -> Up at i = %d\n",i);
stop = 1;
}
*Crossl += 1;
Cross = *Crossl;
AngleCoor(i,thetal,zcutoff,tjX,tjY,tjXold,tjYold,zcoor,,xcoor,alpha,L,Cross)

a = 0;
}
/* Euler’s method (2) %/
Xold = X;
Yold = Y;

tjX = X-(N2D-1) *delta;
tjY = Y-(N2D-1)*delta;

i+= 1
if (stop >= 1)

i = Nslab2+100;
¥
while (i <= Nslab?2);
fclose(outl);

¥

104

/* FAST FOURIER TRAN2DSFORM from "N2DUMERICAL RECIPES IN2D C" 2nd edition */

/* by Press, FlaN2Derry, Teukolsky, and Vetterling pages 523-524.
/* We define N2D and isign at the header.

/ol de sk koot ofe o ok ok ook ok ke skl sk ko ok ok ok sk sk /
void fourn(data,NN,ndim)

[/ Aotk ko skt ok sk skeok sk Kok Aok ook ok Rk /

float datal];

unsigned long NN[];

int ndim;

int idim;

unsigned long i1,12,i3,i2rev,i3rev,ipl,ip2,ip3,ifpl,ifp2;
unsigned long ibit,kl,k2,n,nprev,nrem,ntot;

float tempi,tempr;

float theta,wi,wpi,wpr,vwr,wtemp;

for(ntot=1,idim=1;idim<=ndim;idim++)
ntot *= NN[idim];
nprev=1;
for(idim=ndim:idim>=1;idim—-){
n=NN[idim] ;
nrem=ntot/ (n*nprev) ;
ipl=nprev << 1;
ip2=ipl#*n;
ip3=ip2%nrem;
i2rev=1;
for(i2=1;i2<=1p2;i2+=ipl){
if(i2 < i2rev)d{
for(il=i2;il<=12+ipi-2;i1+=2){
for(i3=i1;13<=1ip3;i3+=ip2){
13rev=i2rev+i3-12;
SWAP(datali3] ,data[i3rev]);
SWAP (datal[i3+1] ,data[i3rev+i]);

}
ibit=ip2 >> 1;
while(ibit >= ipl && i2rev > ibit){
i2rev -= ibit;
ibit >>= 1;
b
i2rev += ibit;
}
ifpl=ipl;

*/
*/

105

while(ifpl < ip2){
ifp2=ifpl << 1;
theta=isign#6.28318530717959/ (ifp2/ipl);
wtemp=sin(0.5%theta) ;
wpr = -2.0*wtemp*wtemp;
wpi=sin(theta);
wr=1.0;
wi=0.0;
for(i3=1;i3<=ifpl;i3+=ipi){
for(il=id;il<=13+ipl-2;1i1+=2){
for(i2=i1;i2<=ip3;i2+=ifp2){
k1=i2;
k2=ki+ifpl;
tempr=(float)wrkdatalk2]-(float)wikdetalk2+1];
tempi=(float)wr*data[k2+1]+(float)wi*datalk2];
data[k2]=datal[kl]-tempr;
datal[k2+1]=datalki+1]-tempi;
datalkl]+=tempr;
datalkl+1]+=tempi;

3
wr=(wiemp=wr) *upr-wikupi+vr;
wi=wirwpr+wtemp*wpi+wi;
}
ifpl=ifp2;
}

nprev ¥= nj}

/* RANDOM NUMBER from "NUMERICAL RECIPES IN C" page 212 x/
/* random number between 0.0 <= ran2 < 1.0 */
/o kR dok koo sokotok ok /

float ran2(idum)
/A RoRoR koo kokoR kol dokok /

long *idum;

{

static long iy, ir[98].
static int iff=0:

int j;

if(*idum < 0 || iff == 0){

iff=1;

if ((*#idum=(IC-(*idum)) %M) <0)*idum = -(*idum);
for (j=1;j<=97;3++) {

idum=(TA (kidum)+IC) %M;

ir[j1=(*idum);

}

idum=(IA (xidum)+IC) %M;

iy=(*idum) ;

}

j=1+97.0%1iy/M;

if(3>97 11 j<1) |

printf ("ERROR in RAN2\n");
printf("Press anykey to continue\n");
putchar(’\n’);

}

iy=ir[jl;

idum=(TA (*idum)+IC) %M;
ir[jl1=(+idum);

return (float) iy/M;

}

/% CalBxBySlab(): data[Real + Im] -> Bx[Reall %/
/R ok ok ok ok ko ok ok ok ok ok s R R Kok R o ok ok sk o Rk ok o o R R ok kR ok ok /
void CalBxBySlab(j,Nslab,Nslabi,data,Bx,By)

/**/

int j,Nslab,Nslabil;
float datal],Bx[],By[]l;

{
int i;
Bx[0] = By[0] = 0.0;
if(j == 1) {
for(i=1;i<=(Nslabi-1);i+=2)
Bx[(i+1)/2] = data[i]/Nslab;
}
if(j == 2) {
for(i=1;i<=(Nslabl-1);i+=2)
By[(i+1)/2] = datal[i]/Nslab;
}
}

/* calculate a diffusion coefficient */

[Hdokok ok sk ok o ko ok ok sk ok ko ok e s ook ok o/
void Diffconts(dbsq,diffconts)
[ko sk kotok ok otk ko ok ok s ook sk ok ol ok ook ok ok /

float dbsq,*diffconts;
{

*diffconts = dbsq*lambdaC/(2.0%Bo*Bo) ;
}

/* Calculate the cut-off distance in Z axis */
/Fdskokodokok ok sk ok oo ootk ok ok ot o e ol s ok ok Rk kR ok ok ok sk ok Kok ok /

void Zcutoff(zcutTimes,thetal,diffconts,zcutoff)
/Ao ok ko ok R o ok o sk Ko o ok ko ok ok ok ks 3 R Kk K ok KRR S ks sk ook /

106

107

int zcutTimes;

float thetal,diffconts,*zcutoff;

{
/* we use zcutTimes times of zcutoff, 6.25 = B5x5/2 %/
*zcutoff = zcutTimes*6.25xdiffconts+tan(thetal)*tan(thetal);

/* CrossCheck(): Check crossings at z<0 */

[ok ok ok ok sk ok koo Kook oK R Rk o ok KoK K K ok o K ok ks sk sk skt ke ok ook ok sk ok ok ko ok ok kR skok ok ok /
void CrossCheck(i,h,Nslab,Nslab2,k,tjX,countCrossl,thetal,zcutoff)
/ kokok ok ok ok ok ok sk ok oK ok ok s ok ok ok okok 3 o ok okok sk e ook ok ook sk ok sk skok ok ko skeok o o ok ek ok ko skok sk ok ok ke ok /

int i,*h,Nslab,Nslab2,*countCrossl,lk;
float thetal,zcutoff,tjX;
{

float m,cl,shockl;

FILE xoutl;
outl = fopen("Dutl.dat","a");

/* Calculate shock */

n = delta/tan(thetal);

cl = (Nslab2xdeltatzcutoff)/tan(thetal);
shockl = -m*i+cl;

/* Check crossings at z <0 */

if (tjX >= shockl) {
printf ("ERROR, There are crossings at z < 0 in itteration no. %d\n",k);
fprintf (outi,"ERROR, There are crossings at z < 0 in itteration no. %d\n",k);
*countCrossl += 1;
¥h = 1;

}

/* 1If crossings at z<0 higher than 1%, ERROR */

if (*countCrossi > 1) {
printf ("ERROR, Crossings at z < 0 are higher than 5%% in
itteration no = %d\n",k);
fprintf (outl,"ERRDOR, Crossings at z < 0 are higher than 5% in
itteration no. = %d\n",k); '
*h = 10000;

¥

if (*countCrossl <= 2 && i == Nslab2){
fprintf (outl,"iterations %d is OK, crossings at z < 0 is less than 5%% of 100
itterations\n",k);

}

fclose(outl);

}

/* AngleCoor(): Calculte Cross, Angle, and L at every iteration */

/**/

void AngleCoor(i,thetal,zcut

int i,Cross;
float thetal,zcutoff,tjX,tjY,tiXold,tjYold,zcoor[],xcoor[],alphal],L[];

off,tjX,tjY,tjXold,tjYold,zcoor,xcoor,alpha,L,Cross)
-

/e s o o sk 3k e sk o o o sk ok ok o ok s e ke ok o sk ok s o ok kR R e sk ok e sl s o st s e s s R ok o R ke st F sk sk K s oo o s ok s sk ok ke sk ok ok o e ko /

{
float c,d,e,x1=0,2z1=0,xdiff=0,zdiff=0;
/* Calculate Crossing-Position */
¢ = tiX-(tiX-tjXold)#i;
zcoor [2*Cross—-1] = (float) (i);
zcoor [2%Cross] = (zcutoff/tan(thetal)-c)/(1/tan(thetai)+(tjX-tjXold)/delta);
xcoor[2+«Cross-1] = (float) (i);
xcoor [2«Cross] = —-zcoor[2%Cross]/tan(thetal)+zcutoff/tan(thetal);
/* Calculate distance between two crossing points */
if(Cross >= 2)
xdiff = xcoor[2*%Cross]-x1;
zdiff = zcoor[2#Cross]-z1i;
L{Cross—-1] = sqrt(xdiffsxdiff+zdiff*zdiff);
priontf(MLIEIIIIIEEING");

printf ("L{%4]=%1f\n" ,Cross-1,L[Cross-1]);

}
x1 = xcoor[2*Cross];
z1 = zcoor[2%Cross] ;

/* Calculate Crossing angle x/

d = sin(thetal)*(tjX-tjXold)+cos(thetal)*delta;

e = (tjX-tjXold)*(tjX-tjkold)+(tjY-tjYold)*(tjV-tjYold)+delta*delta;
alpha[24Cross~1] = (float)(i);

alpha[2#Cross] = acos(d/sqrt(e))+*180.0/PI;

/* Count() is used for collect statistical data for 1000 iterations */

/e ok ke sk ok o ok ok ke sk sk st ok st sk ok e sk e stk stk sl i st kol ke ool ok sokorfefok kol sk solokok /

void Count(L,alpha,Crossi,countalpha,countL,countCross)

/et sk sk sk ok K o KR ROR R R ook sk oo 3 KR R K R o o o K s oK ok K K oK s ok sk ok /

int Crossi;
float L[],alphall;
long countalphal],countL[],countCross([];

{

int i;3s

for(i=0;i<=200;i++) { /* We estimate that No. of L[] is less than 200 %/

for(j=1;j<=count;j++) {

1£(((int) (LLi1+0.5) <= j*500) && ((int) (L[i]+40.5) > j*500-500)) {

countL[j] += 1;
brealk;

}
¥
for(i=0;i<=200;i+=2) { /* We estimate alphal] and Crossl > 200 toox/
for(j=1;j<=180;j++) {
if ((int) (alphali]+0.5) == j) {
countalphalj] += 1;
break;
}
¥
}

for(j=1;7j<=200;j++) {
if(Crossl == j) {
countCross[j] += 1;
break;

¥

/% output program */
/* outputi(): All data (Angle, L, Cross) at every iteration */

/o sk oo o s st R R o sk sk ko s ok sk o ok ok sk ok Sk ok ok ook sk sk ek
void outputil(k,xcoor,zcoor,alpha,L,Crossl)
ks ok sk ok ok kol sk ok sk s ok sk Ok sk ok o sk sk ok o sk ok R ok ok ok skl /

int Crossl,k;
float xcoor[],zcoor[],alphal],L[];

{
int i;
FILE *outil;
outl = fopen("Outl.dat","a");
fprintf (outi,"iterations = d AR
fprintf(outl,"Cross = %d\n",Crossl);
fprintf (outl," no. L[] i alphal] xcoor[] zcoor []\n");
for(i=1;i<=(countl-1)/2;i++) {
- if (alpha[2%i] >= 1e-7 || alphal[2#i] <= ~1le-7) {
fprintf (outl,"%4d %9.31f %9.31f %9.31f %8.31f %9.31f\n",1
,L[1],alpha[2+i-1] ,alpha[2*i],xcoor[2%i],zcoor[2%i]);
}
¥
fprintf (outl," feokskok ook ok ook ook ok soloR ok ook Rk \ D)
fclose(outl);
¥

/* output3(): Statistical data for plotting */

/et skok ke st st ok e s oK sk sk sk sl oK R R o s ok R ok ok kot ok ks ek ok /

void output3d(k,countalpha,countLl,countCross)
ok ok s oo ok sk o o o ok ok ek ok sk sk s sk sk stk ek ok sk skt ook /

110

int k;
long countalphal],countL[],countCross([];

{

int i;

FILE *out3;
out3 = fopen("Out3.dat","a");

fprintf (out3d,"iterations = %4d\n",k);

fprintf(out3," i countalpha countL(500) countCross \n");
for(i=0;i<=(count-1) ;i++)
fprintf (out3,"%5d %31d %31d %31ld\n",i,countalphali],

countL[i], countCross[i]);
fprintf (outd," wkkkkkkkikkkidkkiokkkkokkdkikokikk\n") ;
fclose(out3);
}

.

/% 0utB2D(): Checking for 2D IFT by ourself */

[Kok AR R R R KRRk kR Rk R ok ok /

void OutB2D(N2D,data)
[Hkordokokok ok ok sk ok ke ke ok ok ok ook sk ok /

float datall;
int N2D;

{

int i,j;

FILE *outB2D,*fopen();
outB2D = fopen("QutB2D.dat","a");

for(j=N2D; j>=0;j--){
fprintf (outB2D,"\n");
for(i=3;i<=2%N2D-1;i+=2)
fprintf (outB2D,")9.2e %9.2e ",data[2#N2D+4*N2D*j+1i] ,data [2#N2D+4*xN2D*j+i+1]);
for(i=1;i<=2%N2D+1;i+=2)
fprintf (outB2D,"%9.2e %9.2e ",data[4*N2D*j+i],data[4*N2D*j+i+1]);
B
for (j=2*N2D-1; j>=N2D+1; j--){
fprintf (outB2D,"\n");
for(i=3;i<=2%N2D-1;i+=2)
fprintf (outB2D,"%9.2e %9.2e ",data[2+N2D+4*N2D*j+i] ,data [2«N2D+4*N2D*j+i+1']);
for(i=1;i<=2xN2D+1;i+=2)
fprintf (outB2D,"%9.2e %9.2e ",data[4«N2D*j+i],data[4*N2D*j+i+1]);
}
fprintf (outB2D,"\n");
fclose (outB2D) ;
¥

/* OutAxy(): Checking Axy */

111

sk ok R KoK R K KKK K K KoK Kok K ok /
void OutAxy(N2D,Axy)
[R KKK KRR o KK R KK KRR KKK K f

float **Axy;
int N2D;

{

int 1,];

FILE *outB2D;
outB2D = fopen("QutB2D.dat","a");

for (i=2xN2D-1;i>=0;i--) {
fprintf (outB2D,"\n");
for (j=0; j<=24N2D~1; j++){
fprintf (outB2D,"%9.2e *,Axy[j]1[i1);
}
}
fprintf (outB2D,"\n");
fclose(outB2D) ;
}

/* Test2D() is used for checking Cal2D() (calculate 2D turbulence) */

/K AR Rk SR SRR o R ok Ko o s s o KRR K ok o kKR o KR Rk s ok R okok
void Test2D(k,Nslab2,N2D,Axy,dbsq2D)
/A R AR R ROR S oA R KoK o ok o sk ko o ok o o ko o ok ko ok ko e Kok o ok o s ok e/

int k,Nslab2,N2D;
float **Axy,dbsq2D;
{
int 1i,7;
float A0O0,A01,A10,A11,fx,fy,Bx,By,Bxysqav=0.0,error;

for(i=0;i<=2%N2D-2;i++) {
for(j=0; j<=2%N2D-2;j++) {

A00 = Axy[j1[il;

A10 = Axy[j+1]1[i];

A01 = Axy[j][i+1]1;

A1l = Axy[j+1][i+1];

fx = 0.5/delta;

fy = 0.5/delta;

Bx = (~(1-£x)*A00+(1-£fx)*A01-fx*A10+fx*A11) /delta;
By = ((1-fy)*A00+fy*A01-(1-fy)*ALl0-fy*All)/delta;

Bxysqav += (Bx*Bx+By*By)/(float) (4% (N2D-1)*(N2D-1));

}
error = (Bxysqav-dbsq2D)*100/dbsq2D;

112

printf ("Bxysqav = %.91f dbsq2D = %1f ERROR = %1f%%\n",Bxysqav,dbsq2D,error);

printf("N2D = %d Nslab2 = %d\n",N2D,Nslab2);
b

/* Subroutine Perseval()is used for check the fouri() x/
/* summation(ldata~2])/Nslab = summation(|Bx"2|) x/

Kok sk ok sk o ok ke ok sk R ok K K SR o sk sk ok s ok sk oF R ok sk ok ok K ok ok ok /

void Parseval(Nslab,Nslabl,Pi,data)
/A ks R ek ek R sk AR o o s e e ek e ek ke ok ok ok ook /

int Nslab,Nslabl,Pi;
float datal[];

{
int i;
float sumdata=0;
for(i=1;i<=Nslabil;i++) {
sumdatat+=data[i]*data[i];
}
if(P1 == 0){
printf ("Parseval checking\n");
printf ("sum(Bx)=%9.61f\n",sumdata) ;
}
if (P1 == 1)
printf ("sum(data/Nslab)=%9.61f\n",sumdata/Nslab);
}
/* subroutine Corelation length (lambdaC) is used for check x*/
/* a SlabCal(). We use lambdaC = LC (LambdaC). */
/* LC = (delta/2){sum j [sum i (Bx(i)*Bx(i+j)/Bx~2(i))]1} */
/% deltaBSQ = (sum i 2%(sum i Bx~2(i)/Nslab)) x/
/* where (sum i Bx~2(i)/Nslab) = (sum i Bx~2(i)/Nslab) %/

/RFok ko ok ook ok Rk kool ok katolokook kol kR ROk Rk ok ok /
void LambdaC(Nslab,dbsqSlab,Bx)
[®Fk Rk dokok ok ok Rk doRok ok ok ok ok kR R kR kR ok Kokok ook /

int Nslab;
float Bx[],dbsqSlab;
{
int i, j;
float LC,Bxavsquare,deltaBS({,error,errorl;

LC = Bxavsquare = deltaBSQ = 0.0;

/% delta Bsquare Checking */

for(i=1;i<=Nslab;i++) {
deltaBSQ += Bx[i]*Bx[i];

}

deltaBSQ *= 2.0/Nslab;

113

/* LambdaC Checking */
for(i=1;i<=Nslab;i++) {
Bxavsquare += Bx[i]*Bx[i];
}
for(j=-(Nslab/16-1);j<=(Nslab/16-1);j++) {
for(i=1;i<=Nslab;i++) {
if(i+j >= 1 && i+j <= Nslab) {
LC += Bx[il#Bx[i+j];
} else
if (i+j > Nslab) {
LC += Bx[i]*Bx[i+j~Nslab];
} else
if (i+j < 1) {
LC += Bx[i]*Bx[i+j+Nslab];
}
}
¥
LC = LCxdelta/(2.0%Bxavsquare);
error = (LC-lambdaC)*100/lambdaC;
errorl = (deltaBSQ-dbsqSlab)#*100/dbsqgSlab;
printf("\n");
printf ("LambdaC and delta Bsquare Checking\n");
printf ("lambdaC(Cal) = %1f LambdaC = %1f ERROR = %1f%%\n",LC,lambdaC,error);
printf("deltaBSQ(Cal) = %1f dbsqSlab = %1f ERROR = %1f%%\n",deltaBS{Q,dbsqSlab,errorl);

1972

1990-1994

Curriculum Vitae

Jaturong Sukonthachat,

Born : Sep, 17** 1972 in Bangkok, THAILAND.
Father : Buaphan Sukonthachat.

Mother : Boontha Sukonthachat.

Bachelor of Science (Physics),
Chiangmai University, Chiangmai, THAILAND.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Introduction
	1.1 Thesis Purpose and Scope
	1.2 Overview of the Thesis

	Chapter II Theoretical Background
	2.1 The Discovery of Cosmic Rays and the Power Law Spectrum
	2.2 Shock Waves, the Solar Wind Termination Shock, and Anomalous Rays
	2.3 The Dynamics of Charged Particles in Manetic Fields
	2.4 Shock Drift Acceleration
	2.5 Order of Magnitude Calculations of Shock Drift Acceleration at the Solar Wind Termination Shock
	2.6 Multiple Magnetic Field-Shock Crossings

	Chapter III Model of Turbulent Magnctic Fields
	3.1 Slab Model
	3.2 2D+Slab Model

	Chapter IV Simulation Techniques and Their Testing
	4.1 Overview of Numerical Simulations
	4.2 Inverse Fourier Transform
	4.3 Random Phase Approximation
	4.4 Euler's Method and Interpolation
	4.5 Trajectories of Magnetic Field Lines and Field-Shock Crossings
	4.6 Simulation Testing

	Chapter V Statistical Results
	5.1 One-Dimensional Statistical Results
	5.2 Three-Dimensional Statistical Results

	Chapter VI Discussion and Conclusions
	6.1 Discussion of One Dimensional Results
	6.2 Discussion of Three Dimensional Results
	6.3 Comparison of the Upstream Crossings Angle Distributions
	6.4 Conclusions

	References
	Appendix
	Vita

