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CHAPTER I

INTRODUCTION

1.1 Definitions and Notations

We use terminologies from West’s textbook [19]. A simple graph is a graph

having no loops and multiple edges. For our purpose, all graphs are simple and

undirected graphs. V (G) and E(G) denote the vertex set and the edge set of a

graph G, respectively. A subgraph H of a graph G is said to be induced if, for any

pair of vertices x and y of H, xy is an edge of H if and only if xy is an edge of G.

If an induced subgraph H is chosen based on a vertex subset S of V (G), then H

can be written as G[S] and is said to be induced by S. A component of a graph G

is a maximal connected subgraph of G. The neighborhood of a vertex x in a graph

G is the set of vertices adjacent to x, and is denoted by NG(x). For S ⊆ V (G),

NS(x) stands for the neighborhood of a vertex x in S, that is, NS(x) = NG(x)∩S.

The degree of a vertex x in a graph G is the size of the neighborhood of x in G.

An independent set in a graph is a set of pairwise nonadjacent vertices. A

maximum independent set of a graph G is a largest independent set of G and its

size is denoted by α(G).

Given a graph G, letM ⊆ E(G) and e ∈ E(G). We write G−M , and G−e, for

the subgraph of G obtained by deleting all edges of M , and an edge e, respectively.

Let A ⊆ V (G) and v ∈ V (G). We write G − A, and G − v, for the subgraph of

G obtained by deleting all vertices of A, and a vertex v, respectively. The join of

graphs G and H, written G∨H, is the graph obtained from the disjoint union of G
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andH by adding the edges {xy | x ∈ V (G), y ∈ V (H)}. For the case V (H) = {v},

we write G∨ v for G∨{v}. The union of graphs G1, G2, . . . , Gk is the graph with

vertex set
⋃k

i=1 V (Gi) and edge set
⋃k

i=1 E(Gi), denoted by G1 ∪ G2 ∪ . . . ∪ Gk.

A union of graphs G1, G2, . . . , Gk is called disjoint union if G1, G2, . . . , Gk have

pairwise disjoint vertex sets, and is denoted by G1 + G2 + · · · + Gk. For k ∈ N,

kG is the disjoint union of k pairwise disjoint copies of a graph G.

A path is a graph whose vertices can be ordered so that two vertices are

adjacent if and only if they are consecutive in the list; the path with n vertices

is denoted by Pn. A cycle is a graph with an equal number of vertices and edges

whose vertices can be placed around a circle so that two vertices are adjacent if

and only if they appear consecutively along the circle; the cycle with n vertices is

denoted by Cn. A complete graph is a graph whose vertices are pairwise adjacent;

the complete graph with n vertices is denoted by Kn. A triangle is the complete

graph K3. A triangle-free graph is a graph which contains no triangle as a

subgraph. A diamond is the complete graph K4 minus an edge. A hole in a graph

is an induced cycle with at least four vertices. An odd (even) hole is a hole with

an odd (even, respectively) number of vertices. A tree is a connected graph with

no cycle. A forest is a disjoint union of trees. A star is a tree consisting of one

vertex adjacent to all the others. The star with k+ 1 vertices is denoted by K1,k.

A claw is the star K1,3. A paw is the claw plus an edge. A graph G is bipartite

if V (G) is the union of two disjoint independent sets. Equivalently, a bipartite

graph is a graph which contains no odd cycle. A graph G is complete multipartite

if V (G) is the union of disjoint independent sets where any two vertices in different

independent sets are adjacent.
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A subset Q of V (G) is a clique of a graph G if any two vertices of Q are

adjacent. A clique is maximal if it is not properly contained in another clique. A

maximum clique of a graph G is a clique of the largest possible cardinality in G,

and its cardinality is denoted by ω(G). A k-coloring of a graph G is a function

f : V (G) → X, where |X| = k. A proper k-coloring of a graph G is a k-coloring

of G such that adjacent vertices have different colors. A graph G is k-colorable if

G has a proper k-coloring. The chromatic number of a graph G is the smallest

positive integer k such that G has a proper k-coloring, denoted by χ(G). Given a

k-coloring of a graph G, a clique Q of G is said to be monocolored if all vertices

of Q are labeled by the same color. A proper k-clique-coloring of a graph G is a

k-coloring of G without a monocolored maximal clique of G of size at least two.

A graph G is k-clique-colorable if G has a proper k-clique-coloring. The clique-

chromatic number of a graph G is the smallest positive integer k such that G has

a proper k-clique-coloring, denoted by χc(G).

Example 1.1. Figure 1.1 illustrates a graph with a proper 3-clique-coloring and

a proper 2-clique-coloring.

Figure 1.1: A graph G with a proper 3-clique-coloring (i) and a proper 2-clique-

coloring (ii)
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Remark 1.2. Let G be a graph.

(i) χc(G) = 1 if and only if G is an edgeless graph.

(ii) χc(G) ≤ χ(G) because a proper k-coloring of a graph G is a proper k-

clique-coloring of G.

(iii) If G is triangle-free, then all maximal cliques of G, which is not an isolated

vertex, have size two; so χc(G) = χ(G). For example, χc(C2n+1) = χ(C2n+1) = 3

where n ≥ 2, and χc(G) = χ(G) = 2 if G is bipartite.

Remark 1.3. Some properties of the chromatic number of a graph do not belong

to the clique-chromatic number of a graph:

(i) It is well known that χ(G) ≥ ω(G) for any graph G. But it is possible that

χc(G) < ω(G) for some graph G; for example, χc(Kn) = 2 while ω(Kn) → ∞ as

n → ∞.

(ii) For a subgraph H of a graph G, it is always true that χ(H) ≤ χ(G). This

analogous statement is not necessary true for the clique-chromatic number; see

the graph G in Example 1.1. We have χc(G) = 2 but G has a subgraph C5 with

the clique-chromatic number three.

1.2 History and Overview

The clique-coloring problem was originally defined in terms of the vertex-

colorings of clique-hypergraphs. The authors of the first few papers studied this

problem by finding the chromatic numbers of the clique-hypergraphs of perfect

graphs, planar graphs, and circulant graphs (see more in [1, 2, 6, 9, 10, 13, 14]).

Until 2008, Cerioli and Petito [4] restated the problem in terms of the clique-

chromatic numbers of graphs which we use throughout this dissertation.

Like the chromatic numbers of graphs, some families of graphs have a bounded

clique-chromatic number, while some families of graphs do not have. In 1955,
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Mycielski [15] showed that there is no constant C such that every triangle-free

graph is C-colorable. That is, the family of triangle-free graphs has no bounded

chromatic number. Consequently, it has no bounded clique-chromatic number,

either. However, some families of graphs containing a triangle may have no

bounded clique-chromatic number. Bacsó et al. [1] showed in 2004 that the

family of line graphs has no bounded clique-chromatic number. Later, Cerioli

and Petito [4] proved that the family of UE graphs also has no bounded clique-

chromatic number (a UE graph is the edge intersection graph of a family of paths

in a tree).

On the other hand, many families of graphs have bounded clique-chromatic

numbers. Recall that a graph G is perfect if χ(G) = ω(H) for every induced

subgraph H of G. In 1991, the following question was proposed by Duffus et

al. [8]: Does there exist a constant C such that each perfect graph is C-clique-

colorable? This question has a positive answer for two subclasses of perfect graphs;

every comparability graph is 2-clique-colorable, and every cocomparability graph

is 3-clique-colorable (see more in [7, 8]). However, it is open in general case. Bacsó

et al. [1] proved further that almost all perfect graphs are 3-clique-colorable and

conjectured that all perfect graphs are 3-clique-colorable.

For a given graph F , a graph G is F-free if it does not contain F as an induced

subgraph. A graph G is (F1, F2, . . . , Fk)-free if it is Fi-free for all 1 ≤ i ≤ k. In

2003, Gravier, Hoáng and Maffray [9] wrote an interesting paper on the clique-

chromatic numbers of F -free graphs. They showed that, for any graph F , the

family of all F -free graphs has a bounded clique-chromatic number if and only

if F is a vertex-disjoint union of paths. Many families of (F1, F2, . . . , Fk)-free

graphs are 2-clique-colorable. For example, (P3 + P1)-free graphs unless it is C5,

(P5, C5)-free graphs, (claw, odd hole)-free graphs, and (bull, odd hole)-free graphs
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[1, 6, 10]. Recently, Defossez in 2006 [6] also proved that (diamond, odd hole)-free

graphs are 4-clique-colorable.

Figure 1.2: A claw, a diamond, and a bull

Furthermore, Mohar and S̆krekovski in 1999 [14] proved that all planar graphs

are 3-clique-colorable. In 2008, Campos, Dantas and Mello [2] proved that the

clique-chromatic number of the power of a cycle, unless it is an odd cycle of size at

least five, is two. Later, Cerioli and Korenchendler [3] showed in 2009 that every

circular-arc graph, that is the intersection graph of a family of arcs on the circle,

is 3-clique-colorable.

In this dissertation, we study two main problems, one in Chapter II, and the

other in Chapter III. We obtain the values of the clique-chromatic numbers of the

line graphs of complete graphs, and characterize the clique-chromatic numbers of

the line graphs of triangle-free graphs in Chapter II. In Chapter III, we focus on

the clique-chromatic numbers of F -free graphs where F is a vertex-disjoint union

of paths, namely, (P2+kP1)-free graphs, (P3+kP1)-free graphs, and (Pk+Pm)-free

graphs. Moreover, we study the clique-chromatic numbers of some subclasses of

claw-free graphs. Lastly, the conclusion and some open problems for future work

are located in Chapter IV.



CHAPTER II

CLIQUE-COLORINGS OF LINE GRAPHS

In 2004, Bacsó et al. [1] showed that there is no constant C such that all line

graphs are C-clique-colorable, that is, the family of line graphs has no bounded

clique-chromatic number. In particular, the Ramsey numbers recalled in Section

2.2 provide a sequence of the line graphs of complete graphs with no bounded

clique-chromatic number. In this chapter, we give the exact values of the clique-

chromatic numbers of the line graphs of complete graphs in terms of Ramsey

numbers. Furthermore, the clique-chromatic numbers of the line graphs of triangle-

free graphs are characterized.

2.1 Line Graphs

The line graph of a graph G, written L(G), is the graph whose vertices are the

edges of G; and for any edges e and f in G, ef is an edge in L(G) if and only if e

and f share a common vertex in G.

Example 2.1.

Figure 2.1: The line graph L(G) of a graph G
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A graph G is a line graph if there is a simple graph H such that L(H) = G.

Example 2.2. Not all graphs are line graphs. To see this, let G be a claw.

Suppose that G is a line graph. Then there is a simple graph H such that L(H) =

G. Let x be a vertex in G with neighbors a, b and c. Note that each pair of

vertices a, b and c are not adjacent. The edges a, b and c in H must be incident to

the edge x in H but not share a common vertex. However, the edge x in H has

only two endpoints, a contradiction. Hence G is not a line graph.

A star in a graph G is called maximal if it is not properly contained in another

star or a triangle in a graph G.

Proposition 2.3. Let G be a graph. Then a maximal clique in L(G) corresponds

to a triangle or a maximal star in G.

Proof. A clique in L(G) corresponds to a triangle or a star in G [19, pp.275].

A triangle in G induces a maximal clique of size three in L(G) because no edge

of G is incident to all three edges of a triangle in G. Besides, a maximal star

in G induces a maximal clique in L(G). Therefore, a maximal clique in L(G)

corresponds to a triangle or a maximal star in G.

To study a vertex-coloring of L(G), we could study an edge-coloring of G

instead. Recall that a k-edge-coloring of a graph G is a function f : E(G) → X,

where |X| = k. Given an edge-coloring of a graph G, a subgraph H of G is said

to be monocolored if all edges of H are labeled by the same color. Since edges

of G correspond to vertices of L(G), by Proposition 2.3, a k-edge-coloring of G

without a monocolored triangle and a monocolored maximal star corresponds to

a k-coloring of L(G) without a monocolored maximal clique, which is in fact a

proper k-clique-coloring of L(G).
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2.2 The Line Graphs of the Complete Graphs

Ramsey numbers play a major role in Section 2.2. We recall its concept here.

2.2.1 Ramsey Numbers

The Ramsey number R(k1, k2, . . . , km) is the smallest positive integer such that

every m-edge-coloring of KR(k1,k2,...,km) gives a monocolored complete subgraph on

ki vertices for some i ∈ {1, 2, . . . ,m}. We denote the Ramsey numberR(3, 3, . . . , 3
︸ ︷︷ ︸

m

)

by R(m).

In 1930, it was proved that the Ramsey numbers R(k1, k2, . . . , km) for any

k1, k2, . . . , km ∈ N always exist [17]. The next proposition shows that the sequence

{R(m)}∞m=1 is strictly increasing.

Proposition 2.4. For m ∈ N, R(m) < R(m+ 1).

Proof. Suppose that R(m + 1) ≤ R(m). Then R(m + 1) − 1 < R(m). By

the definition of the Ramsey number R(m), there is an m-edge-coloring g of

KR(m+1)−1 without a monocolored triangle. Let v be a vertex that is not in

V (KR(m+1)−1). ConsiderKR(m+1)−1∨v. Extend g : E(KR(m+1)−1) → {1, 2, . . . ,m}

to ḡ : E(KR(m+1)−1 ∨ v) → {1, 2, . . . ,m + 1} by ḡ(uv) = m + 1 for all u ∈

V (KR(m+1)−1). We have that ḡ is an (m + 1)-edge-coloring of KR(m+1)−1 ∨ v

without a monocolored triangle. But KR(m+1)−1 ∨ v is the complete graph with

R(m+1) vertices, this contradicts the definition of the Ramsey number R(m+1).

Hence R(m) < R(m+ 1).

It is well-known that R(1) = 3 and R(2) = 6. In 1955, Greenwood and Gleason

[11] proved that R(3) = 17. We still do not know the exact value of the Ramsey

numbers R(m) where m ≥ 4. Even for case m = 4, the recent best bounds

provided by Chung [5] and Kramer [12]; 51 ≤ R(4) ≤ 62.
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2.2.2 The Clique-chromatic Number of L(Kn)

In [1], Bacsó et al. proved that the family of line graphs has no bounded

clique-chromatic number. In particular, the family of the line graphs of complete

graphs on Ramsey numbers of vertices has no bounded clique-chromatic number,

that is, χc(L(KR(m))) > m where m ∈ N. In this section, we sharpen this bound

by showing that χc(L(KR(m))) = m+1. Furthermore, we extend the result to the

exact values of the clique-chromatic numbers of the line graphs of all complete

graphs.

Lemma 2.5. Let m ∈ N. If a graph G has an m-edge-coloring without a mono-

colored triangle, then the line graph L(G∨v) has a proper (m+1)-clique-coloring,

where v is a vertex that is not in G.

Proof. For case m = 1, let x ∈ V (G) be fixed. By assumption, G has no triangle.

Note that all triangles and maximal stars in G ∨ v contain v. Then we define

f : E(G ∨ v) → {1, 2} by

f(ab) =







2, if (a 6= x and b = v) or (a = x and b 6= v)

1, otherwise.

This function f is a 2-edge-coloring of G ∨ v without a monocolored triangle

and a monocolored maximal star. Thus f corresponds to a proper 2-clique-coloring

of L(G ∨ v).

Now, assume m ≥ 2. Let φ be an m-edge-coloring of G without a monocolored

triangle. Choose a vertex w in G such that |NG(w)| 6= 0. Let i be a color

of an edge incident to w in G. Extend φ : E(G) → {0, 1, . . . ,m − 1} to φ̄ :

E(G ∨ v) → {0, 1, . . . ,m} by
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φ̄(e) =







(i+ 1)(mod m), if e = wv

m, if e = uv for some u ∈ V (G)r {w}

φ(e), otherwise.

Figure 2.2: An (m+ 1)-edge-coloring φ̄ in Lemma 2.5

We have that φ̄ is an (m + 1)-edge-coloring of G ∨ v without a monocolored

triangle and a monocolored maximal star, and hence φ̄ corresponds to a proper

(m+ 1)-clique-coloring of L(G ∨ v).

Proposition 2.6. Let G be a graph and m ∈ N. If G contains KR(m) as a

subgraph, then χc(L(G)) ≥ m+ 1.

Proof. Suppose that L(G) has a proper m-clique-coloring. Then G has an m-

edge-coloring which contains no monocolored triangle, say f . Thus f |KR(m)
is an

m-edge-coloring without a monocolored triangle. This contradicts the definition

of the Ramsey number R(m). Hence L(G) has no proper m-clique-coloring, and

so χc(L(G)) > m.

In the next theorem, we sharpen the bound in Bacsó’s result by giving the

exact values of the clique-chromatic numbers of L(KR(m)) for all m ∈ N.
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Theorem 2.7. For m ∈ N, χc(L(KR(m))) = m+ 1.

Proof. By Proposition 2.6, we have χc(L(KR(m))) ≥ m+1. The definition of R(m)

implies that KR(m)−1 has an m-edge-coloring without a monocolored triangle. By

Lemma 2.5, L(KR(m)) has a proper (m+1)-clique-coloring. Hence χc(L(KR(m))) ≤

m+ 1.

Note that L(K1) is the null graph (that is, the graph whose vertex set and

edge set are empty), and χc(L(K2)) = χc(K1) = 1. Now, let n ≥ 3. We have

that there always exists a positive integer m such that R(m) ≤ n < R(m + 1)

because the Ramsey numbers always exist and {R(m)}∞m=1 is a strictly increasing

sequence. The next theorem is the main theorem of this section. It gives the value

of the clique-chromatic number of L(Kn) where n ≥ 3.

Theorem 2.8. For n ≥ 3, χc(L(Kn)) = m+ 1 where R(m) ≤ n < R(m+ 1) for

some positive integer m.

Proof. Since n ≥ R(m), Kn contains KR(m) as a subgraph. By Proposition 2.6,

χc(L(Kn)) ≥ m + 1. If n = R(m), then χc(L(KR(m))) = m + 1 by Theorem 2.7.

Assume that R(m) < n < R(m + 1). The definition of R(m + 1) implies that

Kn has an (m+1)-edge-coloring without a monocolored triangle, say φ. Suppose

that φ gives a monocolored maximal star S, say labeled all edges in S by color 1.

If there is an edge in Kn outside S colored by 1, then Kn contains a monocolored

triangle, a contradiction. Thus E(Kn)rE(S) uses m colors, moreover they form

a complete graph Kn−1. Since n − 1 ≥ R(m), for every m-edge-coloring of Kn−1

gives a monocolored triangle, a contradiction. Thus φ is an (m+1)-edge-coloring

of G without a monocolored maximal star. Therefore φ corresponds to a proper

(m+ 1)-clique-coloring of L(Kn), and hence χc(L(Kn)) ≤ m+ 1.
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Given a positive integer m, Theorem 2.8 provides R(m+1)−R(m) line graphs

with clique-chromatic number m+1. In fact, there are infinitely many line graphs

with the same clique-chromatic number as shown below.

Example 2.9. Let n ∈ N where R(m) ≤ n < R(m+ 1) for some positive integer

m. Let G = kKn−t ∨ pKt where k, p ∈ N and 1 ≤ t ≤ n − 1. Then χc(L(G)) =

m+ 1.

Proof. Since Kn is a subgraph of G and n ≥ R(m), G contains KR(m) as a sub-

graph. By Proposition 2.6, χc(L(G)) ≥ m+ 1. Let kKn−t = K
(1)
n−t +K

(2)
n−t + · · ·+

K
(k)
n−t and pKt = K

(1)
t +K

(2)
t + · · · +K

(p)
t where K

(i)
n−t and K

(j)
t are copies of Kn−t

and Kt, respectively.

Figure 2.3: The graph kKn−t ∨ pKt

Note that for i = 1, 2, . . . , k and j = 1, 2, . . . , p, K
(i)
n−t ∨ K

(j)
t = Kn. Since

R(m) ≤ n < R(m+ 1), we have χc(L(K
(1)
n−t ∨K

(1)
t )) = m+ 1 by Theorem 2.8.

Thus there is an (m + 1)-edge-coloring φ of K
(1)
n−t ∨K

(1)
t without a monocolored

triangle and a monocolored maximal star, and then φ can be easily extended to

an (m+1)-edge-coloring of G without a monocolored triangle and a monocolored

maximal star. So L(G) has a proper (m + 1)-clique-coloring. Hence χc(L(G)) ≤

m+ 1.

We next extend the previous result to consider the line graphs of complete

graphs in which some edges are removed.
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Theorem 2.10. Let n ∈ N where R(m) ≤ n < R(m+1) for some positive integer

m. Let G be a graph with n + 1 vertices and E(G) = E(Kn+1) − E(K1,r) where

1 ≤ r ≤ n − 1. Then L(G) is (m + 2)-clique-colorable. In particular, if r = 1 or

n−m− 1 ≤ r ≤ n− 1, then χc(L(G)) = m+ 1.

Proof. Let x be the center of K1,r and w ∈ NG(x). Since R(m) ≤ n < R(m + 1)

and G− x = Kn, by Theorem 2.8, χc(L(G− x)) = m+ 1. Thus there is a proper

(m+1)-clique-coloring of L(G− x), so there is an (m+1)-edge-coloring of G− x

without a monocolored triangle and a monocolored maximal star, say φ.

Figure 2.4: The graph G with n+ 1 vertices and the edge set E(Kn+1)−E(K1,r)

Extend φ : E(G− x) → {1, 2, . . . ,m+ 1} to φ̄ : E(G) → {1, 2, . . . ,m+ 2} by

φ̄(e) =







1, if e = xw

m+ 2, if e = xu for some u ∈ V (G)r {w}

φ(e), otherwise.

Then φ̄ is an (m+2)-edge-coloring of G without a monocolored triangle and a

monocolored maximal star. Thus φ̄ corresponds to a proper (m+2)-clique-coloring

of L(G), and hence χc(L(G)) ≤ m+ 2.
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If r = 1, then χc(L(G)) = m+1 by Example 2.9 when k = 1, p = 2 and t = 1.

For case n − m − 1 ≤ r ≤ n − 1, let NG(x) = {v1, v2, . . . , vl} where l = n − r.

Then 1 ≤ l ≤ m+ 1. Extend φ to an (m+ 1)-edge-coloring f of G by f(xvi) = i

for all 1 ≤ i ≤ l. Then f is an (m+ 1)-edge-coloring of G without a monocolored

triangle and a monocolored maximal star. Thus χc(L(G)) ≤ m + 1. Since Kn is

a subgraph of G and n ≥ R(m), by Proposition 2.6, χc(L(G)) ≥ m + 1. Hence

χc(L(G)) = m+ 1.

2.3 The Line Graphs of Triangle-free Graphs

In this section, we characterize the clique-chromatic numbers of the line graphs

of triangle-free graphs. Given a triangle-free graph G, by Proposition 2.3, a

maximal clique in L(G) corresponds to a maximal star in G. Thus if f is a k-

edge-coloring of G without a monocolored maximal star, then f corresponds to a

proper k-clique-coloring of L(G).

Theorem 2.11. If G is a triangle-free graph, then χc(L(G)) ≤ 3.

Proof. Let G be a triangle-free graph. Without lost of generality, assume that

G is connected. Let x ∈ V (G). Define A0 = {x}, A1 = NG(x), and Ai =

NG(Ai−1)r (Ai−1∪Ai−2) for all i ≥ 2. We refer to a vertex having distance i from

x as a vertex of distance i. Then Ai contains all vertices with distance i. Each

edge in G joins either two vertices of the same distance or vertices of distance

i− 1 and i, for some i. If in the later case, we call such edge a (distance i)-edge.

We first label all (distance 1)-edges by color 1 or color 2, at least one edge for

each color. (If |NG(x)| = 1, label the unique edge by color 1.) Then for each ith

step, i = 2, 3, . . ., label a (distance i)-edge by color 1 if it is incident to a (distance

i − 1)-edge of color 2, and by color 2, otherwise. Finally, label all edges joining
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two vertices of the same distance by color 3. This process garantees that each

vertex is incident to edges of at least two colors except the end vertices (vertices

incident to a (distance i − 1)-edge but not to any (distance i)-edge). If an end

vertex is incident to all edges of the same color, we can relabel one edge of them

by color 3.

Figure 2.5: A 3-edge-coloring of G in Theorem 2.11

Therefore, we have a 3-edge-coloring of G without a monocolored maximal

star. So the coloring corresponds to a proper 3-clique-coloring of L(G), and hence

χc(L(G)) ≤ 3.

The upper bound in Theorem 2.11 is sharp by the odd cycle C2n+1 (n ≥ 2)

because C2n+1 is triangle-free and χc(L(C2n+1)) = 3.

In our purpose, a graph is called trivial if it is the complete graph K1 or K2.

Note that if a graph G has a nontrivial component, then χc(L(G)) ≥ 2.

Lemma 2.12. If G is a forest having a nontrivial component, then χc(L(G)) = 2.

Proof. Use the same coloring in the proof of Theorem 2.11. Since G has no cycle,

all end vertices have degree 1 and there is no edge incident to vertices of the same
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distance. Thus color 3 is not used in the coloring. Besides G has a nontrivial

component, χc(L(G)) = 2.

Lemma 2.13. If G is a bipartite graph having a nontrivial component, then

χc(L(G)) = 2.

Proof. If G contains no cycle, then G is a forest, it is done by Lemma 2.12.

Now, assume that O1 is any cycle of G. Since G is bipartite, O1 is an even

cycle. Label edges of O1 alternately around the cycle by 1,2,1,2,. . . , then this

is a 2-edge-coloring of O1 without a monocolored maximal star. If G − E(O1)

has a cycle, say O2, then we color edges of O2 similarly to O1. Then similarly

consider G − (E(O1) ∪ E(O2)). Continue this process until the resulting graph

contains no cycle. Label this resulting graph by the coloring in Lemma 2.12.

Therefore, G has a 2-edge-coloring without a monocolored maximal star, and

hence χc(L(G)) = 2.

The next theorem is the main theorem of this section. It contains a

characterization of the clique-chromatic numbers of the line graphs of triangle-free

graphs.

Theorem 2.14. Let G be a triangle-free graph with at least one edge. Then

χc(L(G)) =







1, if all components of G are trivial

3, if G has an odd hole component

2, otherwise.

Proof. If all components of G are trivial, then χc(L(G)) = 1. Assume that G has a

nontrivial component. If G has an odd hole component, say O, then χc(L(O)) = 3.

Thus χc(L(G)) ≥ 3. By Theorem 2.11, χc(L(G)) = 3. Assume that G has no odd
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hole component. Without lost of generality, assume that G is connected. Let H

be the union of all odd holes of G. Then G−E(H) is a bipartite graph. By Lemma

2.13, G − E(H) has a 2-edge-coloring without a monocolored maximal star, say

f . To label edges of H, assume that H is connected. We can write H =
⋃n

i=1 Oi

for some n ∈ N where each Oi is an odd hole of G, and V (Oj) ∩ V (
⋃j−1

i=1 Oi) 6= ∅

for each 2 ≤ j ≤ n.

Claim that G has a 2-edge-coloring (extend from f) without a monocolored

maximal star by induction on n. If n = 1, then H is an odd hole of G. Since G

is connected, there is a vertex x ∈ V (H) having an incident edge which is colored

by f , say color 1. Label two incident edges of x in H by color 2 and label other

edges of H alternately around the cycle by 1,2,1,2,. . . . Since the number of edges

of H is odd, every vertex of H has two incident edges with different colors. Now,

assume that n ≥ 2 and (G−E(H))+E(
⋃n−1

i=1 Oi) has a 2-edge-coloring without a

monocolored maximal star, say f ′. Thus every vertex of (G−E(H))+E(
⋃n−1

i=1 Oi)

has two incident edges with different colors by f ′. If On and
⋃n−1

i=1 Oi have the

only one common vertex, say y, then y has two incident edges in
⋃n−1

i=1 Oi with

different colors. Label edges of On alternately around the cycle by 1,2,1,2,. . . . If

|On∩
⋃n−1

i=1 Oi)| ≥ 2, then consider each path in On such that each edge of a path is

not contained in
⋃n−1

i=1 Oi. Label edges of each such path alternately by 1,2,1,2,. . . .

Then every vertex of On has two incident edges with different colors. So G has a

2-edge-coloring without a monocolored maximal star. Hence χc(L(G)) = 2.



CHAPTER III

CLIQUE-COLORINGS OF F -FREE GRAPHS

In 2003, Gravier, Hoáng and Maffray [9] gave a significant result that, for any

graph F , the family of all F -free graphs has a bounded clique-chromatic number

if and only if F is a vertex-disjoint union of paths, and they give an upper bound

for all such cases. In this chapter, we show better bounds for F = P2 + kP1,

F = P3 + kP1 with k ≥ 3, and F = Pk + Pm with max{k,m} ≥ 4, and sharp

bounds are given for some subclasses. In the last section of this chapter, we

investigate the clique-chromatic numbers of claw-free graphs.

Let f(F ) = max{χc(G) | G is an F -free graph}.

Remark 3.1. Let F1 be an induced subgraph of a graph F2. If a graph G is

F1-free then G is also F2-free, it follows that f(F1) ≤ f(F2).

In [9], Gravier, Hoáng and Maffray showed the following result.

Theorem 3.2. [9] Let F be a graph. Then f(F ) exists if and only if F is a

vertex-disjoint union of paths. Moreover,

- if |V (F )| ≤ 2 or F = P3 then f(F ) ≤ 2,

- else f(F ) ≤ cc(F ) + |V (F )| − 3 where cc(F ) is the number of components of

a graph F .

Furthermore, they proved that (P2+2P1)-free graphs and (P3+2P1)-free graphs

are 3-clique-colorable. Since the cycle C5 is both (P2+2P1)-free and (P3+2P1)-free

with χc(C5) = 3, this bound is sharp.
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3.1 (P2 + kP1)-free Graphs

It follows from Theorem 3.2 that every (P2 + kP1)-free graph is (2k)-clique-

colorable. We improve this bound for k ≥ 3. In [1], Bacsó et al. stated the

relationship between the clique-chromatic number and the size of a maximum

independent set of a graph, as follows.

Theorem 3.3. [1] Let G be a graph. If G 6= C5 and G is not a complete graph,

then χc(G) ≤ α(G).

Theorem 3.4. For k ≥ 3, a (P2 + kP1)-free graph is (k + 1)-clique-colorable.

Proof. Let G be a (P2 + kP1)-free graph. Let S = {s0, s1, . . . , sα(G)−1} be a

maximum independent set of G. If α(G) ≤ k, then χc(G) ≤ k by Theorem 3.3.

Assume α(G) ≥ k + 1. Let M(s0) = V (G)r (S ∪NG(s0)) and A = {v ∈ M(s0)

| NS(v) = S r {s0}}. For ∅ 6= R ⊆ S r {s0}, define YR = {v ∈ M(s0) | NS(v) =

S r ({s0} ∪ R)} and min(R) = min{i ∈ N | si /∈ R}. Note that V (G) is the

disjoint union of S, NG(s0), A, and YR where ∅ 6= R ⊆ S r {s0}. Let f be the

coloring of G defined by

f(v) =







1, if v ∈ S

2, if v ∈ NG(s0)

3, if v ∈ A

min(R) + 2, if v ∈ YR where R = S r ({s0} ∪NS(v)).

To claim that f is a (k+1)-coloring of G, let R ⊆ Sr{s0} where YR 6= ∅, and

let y ∈ YR. If R = S r {s0}, then NS(y) = ∅; so S ∪ {y} is an independent set of

G. This contradicts the maximality of S. Thus R 6= Sr{s0}. If |R| ≥ k−1, then

the subgraph of G induced by S ∪ {y} contains an induced subgraph P2 + kP1, a
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contradiction. Thus |R| ≤ k − 2, and it follows that min(R) ≤ k − 1. Therefore,

f is a (k + 1)-coloring of G.

Suppose that G has a monocolored maximal clique Q of size at least two, say

colored by m. Since S is an independent set, m 6= 1. Thus Q∩ S = ∅. Note that

smin(R) is adjacent to all vertices of YR. Thus sm−2 is adjacent to all vertices of Q.

Then Q∪ {sm−2} is a clique of G. It contradicts the maximality of Q. Hence f is

a proper (k + 1)-clique-coloring of G, and so χc(G) ≤ k + 1.

Theorem 3.4 ensures that every (P2 + kP1)-free graph where k ≥ 3 is (k + 1)-

clique-colorable but we have found no graph guaranteeing this sharpness yet.

However, when k = 3 and 4, there is a (P2 + kP1)-free graph which is k-clique-

colorable, namely, the cycle C5 is (P2 + 3P1)-free and χc(C5) = 3, and the 4-

chromatic Mycielski’s graph G4 is (P2 + 4P1)-free and χc(G4) = 4. Notice that

both of them are diamond-free, this suggests the result in Theorem 3.5.

Figure 3.1: The 4-chromatic Mycielski’s graph G4

Theorem 3.5. For k ≥ 3, a (P2 + kP1,diamond)-free graph is k-clique-colorable.

Proof. Let G be a (P2+kP1,diamond)-free graph. If α(G) ≤ k, then χc(G) ≤ k by

Theorem 3.3. Assume α(G) ≥ k+1. Let S = {s0, s1, . . . , sα(G)−1} be a maximum

independent set of G.
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Let M(s0) = V (G)r (S ∪NG(s0)) and A = {v ∈ M(s0) | NS(v) = S r {s0}}.

For ∅ 6= R ⊆ S r {s0}, define YR = {v ∈ M(s0) | NS(v) = S r ({s0} ∪ R)}

and min(R) = min{i ∈ N | si /∈ R}. Note that V (G) is the disjoint union of

S, NG(s0), A, and YR where ∅ 6= R ⊆ Sr {s0}. By the same argument as in the

proof of Theorem 3.4, we have that min(R) ≤ k− 1 for each R ⊆ S r {s0} where

YR 6= ∅. Define g : V (G) → {1, 2, . . . , k} by

g(v) =







1, if v ∈ S

2, if v ∈ NG(s0)

3, if v ∈ A

min(R) + 2, if v ∈ YR where R = S r ({s0} ∪NS(v)) and

min(R) ≤ k − 2

k, if v ∈ YR where R = S r ({s0} ∪NS(v)) and

min(R) = k − 1.

To claim that g is a proper k-clique-coloring of G, suppose that G has a

monocolored maximal clique Q of size at least two, say colored by m. Since S is

an independent set, m 6= 1. If m ≤ k − 1, then we have that sm−2 is adjacent to

all vertices of Q, a contradiction.

Assume m = k. Then Q ⊆
⋃
{YR | R ⊆ Sr{s0} and k−2 ≤ min(R) ≤ k−1}.

Since YR = ∅ for all R ⊆ S r {s0} where |R| ≥ k− 1, we consider only YR where

|R| ≤ k − 2. Thus if k − 2 ≤ min(R) ≤ k − 1, then R = {s1, s2, . . . , sk−3, st}

where k− 2 ≤ t ≤ α(G)− 1. Since G is diamond-free and α(G)− 1 ≥ k, YR is an

independent set, and then |Q ∩ YR| ≤ 1 for each R ⊆ S r {s0}. If |Q| ≥ 3, then

there exists a diamond induced by a vertex in S r {s0} and three vertices in Q, a

contradiction. So |Q| = 2. Let Q ⊆ YR1 ∪ YR2 for some R1, R2 ⊆ S r {s0} where
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R1 6= R2 and k − 2 ≤ min(R1),min(R2) ≤ k − 1. Then |R1 ∪ R2| ≤ k − 1. Since

α(G)− 1 ≥ k, there exists a vertex in S r {s0} that is adjacent to all vertices of

Q, a contradiction. Hence χc(G) ≤ k.

Gravier et al. [9] showed that all (P2+2P1)-free graphs are 3-clique-colorable,

and this bound is sharp by the cycle C5. In the next theorem, we give a subclass

of (P2 + 2P1)-free graphs with clique-chromatic number two.

Theorem 3.6. Let G be a (P2 + 2P1,diamond)-free graph where G 6= C5 and

E(G) 6= ∅. Then χc(G) = 2.

Proof. Let S be a maximum independent set of G. If |S| ≤ 2, then χc(G) ≤ 2 by

Theorem 3.3. Assume |S| ≥ 3. Let x ∈ S and M(x) = V (G)r (S∪NG(x)). Since

G is (P2 + 2P1)-free, each vertex in M(x) is adjacent to all vertices of S r {x}.

Assign color 1 to all vertices of S and color 2 to all vertices of V (G)r S.

Figure 3.2: A (P2 + 2P1, diamond)-free graph G

Suppose that G has a monocolored maximal clique Q of size at least two. Since

S is an independent set, all vertices of Q are colored by 2. If Q ⊆ NG(x), then x

is adjacent to all vertices of Q, a contradiction. Thus Q is not a subset of NG(x).

Since G is diamond-free, M(x) is an independent set. Thus |Q ∩ M(x)| = 1,

say a ∈ Q ∩ M(x). If |Q| ≥ 3, then the vertices x and a and two vertices in
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Q ∩ NG(x) induce a diamond, a contradiction. Thus |Q| = 2. Let Q = {a, b}

where b ∈ NG(x). Since G is (P2 + 2P1)-free and |S| ≥ 3, each vertex in NG(x)

is adjacent to a vertex in S r {x}. Then there exists a vertex in S r {x} that is

adjacent to both a and b, a contradiction. Thus there is no monocolored maximal

clique of G of size at least two, so the coloring is a proper 2-clique-coloring of G.

Since E(G) 6= ∅, χc(G) = 2.

3.2 (P3 + kP1)-free Graphs

It follows from Theorem 3.2 that every (P3+kP1)-free graph is (2k+1)-clique-

colorable. We give a better bound in the next theorem.

Theorem 3.7. For k ≥ 3, a (P3 + kP1)-free graph is (k + 2)-clique-colorable.

Proof. Let G be a (P3+kP1)-free graph. Let S = {s1, s2, . . . , sα(G)} be a maximum

independent set ofG. If α(G) ≤ k+1, then χc(G) ≤ k+1 by Theorem 3.3. Assume

α(G) ≥ k + 2. Let A = {v ∈ V (G) r S | NS(v) = S}. For 1 ≤ i ≤ α(G), let

Xi = {v ∈ V (G) r S | NS(v) = {si}}. Suppose that there is an edge, say xixj,

between Xi and Xj where i 6= j. Then there exist k vertices in Sr{si, sj} together

with si, xi, xj form an induced subgraph P3 + kP1 of G, a contradiction. Thus

there is no edge between any two Xi’s.

For ∅ 6= R ⊆ S where |R| 6= α(G)− 1, define YR = {v ∈ V (G)r S | NS(v) =

S rR} and min(R) = min{i ∈ N | si /∈ R}. Note that V (G) is the disjoint union

of S, A, Xi where 1 ≤ i ≤ α(G), and YR where ∅ 6= R ⊆ S and |R| 6= α(G)− 1.

Let f be the coloring of G defined by

f(v) =







1, if v ∈ S

2, if v ∈ A ∪ (
⋃α(G)

i=1 Xi)

min(R) + 2, if v ∈ YR where R = S rNS(v).
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To claim that f is a (k + 2)-coloring of G, let R ⊆ S where YR 6= ∅, and let

y ∈ YR. If R = S, then NS(y) = ∅; so S ∪ {y} is an independent set of G. It

contradicts the maximality of S. If k ≤ |R| ≤ α(G)− 2, then the subgraph of G

induced by S∪{y} contains an induced subgraph P3+kP1, a contradiction. Thus

|R| ≤ k − 1, and it follows that min(R) ≤ k. Hence f is a (k + 2)-coloring of G.

Now, suppose that G has a monocolored maximal clique Q of size at least two,

say colored bym. Since S is an independent set, m 6= 1. Ifm = 2, then Q ⊆ A∪Xi

for some i. We have that si is adjacent to all vertices of Q, a contradiction. Now,

assume m ≥ 3. Since smin(R) is adjacent to all vertices of YR, sm−2 is adjacent to

all vertices of Q, a contradiction. Thus f is a proper (k+ 2)-clique-coloring of G,

and hence χc(G) ≤ k + 2.

Similarly to (P2 + kP1)-free graphs, the result for (P3 + kP1)-free graphs in

Theorem 3.7 has not been proved to be sharp. Theorem 3.8 gives its subclass of

graphs using at most k + 1 colors.

Theorem 3.8. For k ≥ 3, a (P3 + kP1,diamond)-free graph is (k + 1)-clique-

colorable.

Proof. Let G be a (P3 + kP1,diamond)-free graph. Let S = {s1, s2, . . . , sα(G)}

be a maximum independent set of G. If α(G) ≤ k + 1, then χc(G) ≤ k + 1 by

Theorem 3.3. Assume α(G) ≥ k + 2. Let A = {v ∈ V (G) r S | NS(v) = S}.

For 1 ≤ i ≤ α(G), let Xi = {v ∈ V (G) r S | NS(v) = {si}}. For ∅ 6= R ⊆ S

where |R| 6= α(G) − 1, define YR = {v ∈ V (G) r S | NS(v) = S r R} and

min(R) = min{i ∈ N | si /∈ R}. Note that V (G) is the disjoint union of S, A, Xi

where 1 ≤ i ≤ α(G), and YR where ∅ 6= R ⊆ S and |R| 6= α(G)− 1. By the same

argument as in the proof of Theorem 3.7, there is no edge between any two Xi’s

and min(R) ≤ k for each R ⊆ S where YR 6= ∅.
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Define g : V (G) → {1, 2, . . . , k + 1} by

g(v) =







1, if v ∈ S

2, if v ∈ A ∪ (
⋃α(G)

i=1 Xi)

min(R) + 2, if v ∈ YR where R = S rNS(v) and min(R) ≤ k − 1

k + 1, if v ∈ YR where R = S rNS(v) and min(R) = k.

To claim that g is a proper (k + 1)-clique-coloring of G, suppose that G has

a monocolored maximal clique Q of size at least two, say colored by m. Since S

is an independent set, m 6= 1. If m = 2, then Q ⊆ A ∪ Xi for some i; so si is

adjacent to all vertices of Q, a contradiction. If 3 ≤ m ≤ k, then we have that

sm−2 is adjacent to all vertices of Q, a contradiction.

Assume m = k+1. Then Q ⊆
⋃
{YR | R ⊆ S and k−1 ≤ min(R) ≤ k}. Since

G is diamond-free and α(G) ≥ k+2, YR is an independent set. Thus |Q∩YR| ≤ 1

for each R ⊆ S. If |Q| ≥ 3, then there exist a vertex in S together with any

three vertices in Q which induce a diamond, a contradiction. So |Q| = 2. Since

α(G) ≥ k + 2, there exists a vertex in S that is adjacent to all vertices of Q, a

contradiction. Hence χc(G) ≤ k + 1.

Since the 4-chromatic Mycielski’s graph G4 is (P3 + 3P1, diamond)-free, the

upper bound in Theorem 3.8 for the case k = 3 is sharp.

3.3 (Pk + Pm)-free Graphs

It follows from Theorem 3.2 that every (Pk + Pm)-free graph is (k +m − 1)-

clique-colorable. This bound is sharp when max{k,m} ≤ 3 and not both of k

and m are 3 (see more in [9]). In this section, we improve this bound when

max{k,m} ≥ 4.



27

In [9], Gravier et. al gave an upper bound of the clique-chromatic numbers of

Pk-free graphs where k ≥ 4, as follows.

Theorem 3.9. [9] For k ≥ 4, a Pk-free graph is (k − 2)-clique-colorable.

Remark 3.10.

(i) If G is a P2-free graph, then G is an edgeless graph, so χc(G) = 1.

(ii) If G is a P3-free graph, then each component of G is a clique, so χc(G) ≤ 2.

Theorem 3.11. For k,m ∈ N where max{k,m} ≥ 4, a (Pk + Pm)-free graph is

(k +m− 2)-clique-colorable.

Proof. Let G be a (Pk+Pm)-free graph. Without lost of generality, assume k ≥ m.

If G contains no induced path Pm, then G is Pm-free. Thus G is also Pk-free. Since

k ≥ 4, χc(G) ≤ k − 2 ≤ k +m− 2 by Theorem 3.9.

Assume that G contains an induced path Pm. Let V (Pm) = {v1, v2, . . . , vm}

and M = V (G)r (V (Pm) ∪ (
m⋃

i=1

NG(vi))).

Figure 3.3: A (Pk + Pm)-free graph G

Note that each vertex vi is not adjacent to a vertex in M . Since G is (Pk+Pm)-

free, an induced subgraph G[M ] is Pk-free. Since k ≥ 4, χc(G[M ]) ≤ k − 2 by

Theorem 3.9. Thus there exists a proper (k − 2)-clique-coloring of G[M ], using

colors 1, 2, . . . , k − 2. Then we label vertices of Pm alternately by 1,2,1,2,. . . .
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Next, we label all vertices of NG−V (Pm)(v1) by color k − 1, label all vertices of

NG−V (Pm)(v2) r NG(v1) by color k and so on. Finally, we label all vertices of

NG−V (Pm)(vm)r
m−1⋃

i=1

NG(vi) by color k +m− 2.

Suppose that G has a monocolored maximal clique Q of size at least two. It

is clear that every maximal clique of size at least two in M is not monocolored.

Thus Q ⊆
⋃m

i=1 NG(vi) r V (Pm). Then there exists a vertex vi in V (Pm) which

is adjacent to all vertices of Q, a contradiction. Thus the coloring is a proper

(k +m− 2)-clique-coloring of G, and hence χc(G) ≤ k +m− 2.

Since the cycle C5 is (P4 + P1)-free and the 4-chromatic Mycielski’s graph G4

is (P4 + P2)-free, the upper bound in Theorem 3.11 is sharp when (k = 4 and

m = 1), and (k = 4 and m = 2).

3.4 Claw-free Graphs

Since a claw is not a vertex-disjoint union of paths, by Theorem 3.2, the family

of claw-free graphs has no bounded clique-chromatic number. In 2004, Bacsó et

al. [1] proved that all (claw, odd hole)-free graphs are 2-clique-colorable. In

this section, we focus on some other subclasses of the family of claw-free graphs,

namely, (claw, paw)-free graphs and (claw, diamond)-free graphs.

3.4.1 (Claw, paw)-free Graphs

In 1988, paw-free graphs have been characterized by Olariu [16], as follows.

Theorem 3.12. [16] If G is a paw-free graph, then each component of G is either

triangle-free or complete multipartite.
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Figure 3.4: A paw

Lemma 3.13. Let G be a complete multipartite graph with at least one edge. Then

χc(G) = 2.

Proof. Since each maximal clique of G intersects every partite set of G, labeling

all vertices of one partite set of G by color 1 and the remaining vertices by color

2 provides a proper 2-clique-coloring of G. So χc(G) = 2.

Lemma 3.14. Let G be a (claw, triangle)-free graph. Then each component of G

is a path or a cycle.

Proof. Let H be a component of G. If H contains no cycle, then H is a tree.

Since H is claw-free, H is a path. Now, assume that H contains an induced cycle

C. Suppose H 6= C. Then there exists a vertex v outside C which is adjacent

to some vertex u in C. Since neighborhoods of u in C are not adjacent and H

is claw-free, one of them, say w, must be adjacent to v. Then {u, v, w} forms a

triangle in H, a contradiction. Hence H is a cycle.

In the next theorem, we give the characterization of the clique-chromatic

numbers of (claw, paw)-free graphs.
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Theorem 3.15. Let G be a (claw, paw)-free graph. Then

χc(G) =







1, if G is an edgeless graph

3, if G has an odd hole component

2, otherwise.

Proof. If G is an edgeless graph, then χc(G) = 1. Assume that G has at least

one edge. Without lost of generality, assume that G is connected. Since G is

paw-free, by Theorem 3.12, G is either triangle-free or complete multipartite. If

G is complete multipartite, then χc(G) = 2 by Lemma 3.13. Now, assume that G

is triangle-free. Then G is (claw, triangle)-free. By Lemma 3.14, G is a path or a

cycle. If G is an odd cycle, then χc(G) = 3. If G is not an odd cycle, then G is a

path or an even cycle. Hence χc(G) = 2.

3.4.2 (Claw, diamond)-free Graphs

It is unknown whether the family of all (claw, diamond)-free graphs has a

bounded clique-chromatic number. We introduce two subclasses of (claw, diamond)-

free graphs having bounded clique-chromatic numbers, namely, (claw, diamond)-

free graphs without even holes, and (claw, diamond)-free graphs without maximal

cliques of size three.

Lemma 3.16. Let x be a vertex in a diamond-free graph G. Then NG(x) is a

disjoint union of cliques of G.

Proof. Let H be a component of G[NG(x)]. Suppose that V (H) is not a clique

of G. Then there are non-adjacent vertices a and b in H. Since H is connected,

there is a path P between a and b. It follows that P contains an induced path P3
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of G. Then such induced path P3 and the vertex x form an induced diamond of

G, a contradiction. Hence V (H) is clique of G.

Lemma 3.17. Let G be a connected (claw, diamond, even hole)-free graph. If

G has a vertex contained in only one maximal clique of G, then G is 2-clique-

colorable.

Proof. Let x be a vertex contained in only one maximal clique of G. Define

A0 = {x}, A1 = NG(x), and Ai = NG(Ai−1) r (Ai−1 ∪ Ai−2) for all i ≥ 2. Then

V (G) =
⋃

i Ai. Note that A1 is a clique of G. Define a coloring of G by labeling

the vertices of Ai by color 1 if i is even, and by color 2 if i is odd.

Suppose that this coloring yields a monocolored maximal clique Q of size at

least two. Then Q ⊆ Ai for some i ≥ 2. Let ui, vi ∈ Q. Then there is a vertex

ui−1 in Ai−1 which is adjacent to ui. Suppose that ui−1 is adjacent to vi. Since Q

is a maximal clique of G, there is a vertex w in Q which is not adjacent to ui−1.

Then {ui−1, ui, vi, w} induces a diamond, a contradiction. So ui−1 is not adjacent

to vi. Similarly, there is a vertex vi−1 in Ai−1 which is adjacent to vi but not to

ui.

Since G is C4-free, ui−1 cannot be adjacent to vi−1. So i ≥ 3. Let ui−2, vi−2 ∈

Ai−2 such that ui−2 is adjacent to ui−1 and vi−2 is adjacent to vi−1. If ui−2 = vi−2,

then there is a vertex ui−3 in Ai−3 which is adjacent to ui−2, and it follows that

{ui−3, ui−2, ui−1, vi−1} induces a claw, a contradiction. Thus ui−2 6= vi−2. Since G

is claw-free, ui−2 is not adjacent to vi−1 and vi−2 is not adjacent to ui−1. Since G is

C6-free, ui−2 is not adjacent to vi−2. Continue this way until we have u1, v1 ∈ A1.

Since A1 is a clique, we eventually have an even hole, a contradiction. Hence this

coloring is a proper 2-clique-coloring of G.
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The next theorem shows that the family of (claw, diamond, even hole)-free

graphs has a bounded clique-chromatic number.

Theorem 3.18. Every (claw, diamond, even hole)-free graph is 3-clique-colorable.

Proof. Let G be a (claw, diamond, even hole)-free graph. Without lost of

generality, assume that G is connected. Let x ∈ V (G). By Lemma 3.16, NG(x) is

a disjoint union of r cliques of G for some integer r. Since G is claw-free, r ≤ 2.

If r = 1, then the theorem is proved by Lemma 3.17. Now, let NG(x) = A1 ∪ B1

where A1 and B1 are cliques of G. Define Ai = NG(Ai−1) r (Ai−1 ∪ Ai−2) and

Bi = NG(Bi−1)r(Bi−1∪Bi−2) for all i ≥ 2. Then V (G) = {x}∪(
⋃

i Ai)∪(
⋃

j Bj).

Case 1. (
⋃

i Ai)∩ (
⋃

j Bj) = ∅. By Lemma 3.17, both of G[(
⋃

i Ai)∪{x}] and

G[(
⋃

j Bj) ∪ {x}] have a proper 2-clique-coloring. Combining these two colorings

by identifying the color of x yields a proper 2-clique-coloring of G, so G is 2-clique-

colorable.

Case 2. (
⋃

i Ai) ∩ (
⋃

j Bj) 6= ∅. Let G′ be the subgraph of G obtained by

deleting all vertices of B1. Then G′ is a connected (claw, diamond, even hole)-

free graph with x satisfying the condition in Lemma 3.17. Thus G′ has a proper

2-clique-coloring. We can extend this coloring to a proper 3-clique-coloring of G

by labeling color 3 to all vertices of B1, and hence G is 3-clique-colorable.

Note that all odd cycles C2n+1 (n ≥ 2) are (claw, diamond, even hole)-free and

χc(C2n+1) = 3. Thus the upper bound in Theorem 3.18 is sharp.

Next, we focus on (claw, diamond)-free graphs without maximal cliques of size

three. Let T be a triangle in a graph G. We say that T is odd if |NG(v)∩V (T )| is

odd for some v ∈ V (G). In 1965, van Rooij and Wilf [18] gave a characterization

of line graphs which is shown in the following theorem.
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Theorem 3.19. [18] A graph G is a line graph if and only if G is claw-free and

no induced diamond of G has two odd triangles.

The next corollary gives the characterization of the clique-chromatic numbers

of (claw, diamond)-free graphs without maximal cliques of size three.

Corollary 3.20. Let G be a (claw, diamond)-free graph. If G has no maximal

clique of size three, then

χc(G) =







1, if G is an edgeless graph

3, if G has an odd hole component

2, otherwise.

Proof. By Theorem 3.19, all (claw, diamond)-free graphs are line graphs, so G is

a line graph. Then there is a simple graph H such that G = L(H). If H has a

triangle T , then T corresponds to a maximal clique of size three in L(H) = G, a

contradiction. Thus H is triangle-free. Then the corollary follows directly from

Theorem 2.14, and the fact that G has an odd hole component if and only if H

has an odd hole component.



CHAPTER IV

CONCLUSION AND OPEN PROBLEMS

4.1 Conclusion

We have investigated values and bounds of the clique-chromatic numbers of

graphs. Results are listed as follows:

Clique-colorings of line graphs:

The exact values of the clique-chromatic numbers of the line graphs of complete

graphs are obtained in the following main theorem.

Theorem 2.8. For n ≥ 3, χc(L(Kn)) = m+ 1 where R(m) ≤ n < R(m+ 1) for

some positive integer m.

Consequently, we also have these results:

1. Let n ∈ N where R(m) ≤ n < R(m + 1) for some positive integer m. Let

G = kKn−t ∨ pKt where k, p ∈ N and 1 ≤ t ≤ n − 1. Then χc(L(G)) = m + 1.

(Example 2.9)

2. Let n ∈ N where R(m) ≤ n < R(m + 1) for some positive integer m.

Let G be a graph with n + 1 vertices and E(G) = E(Kn+1) − E(K1,r) where

1 ≤ r ≤ n − 1. Then L(G) is (m + 2)-clique-colorable. In particular, if r = 1 or

n−m− 1 ≤ r ≤ n− 1, then χc(L(G)) = m+ 1. (Theorem 2.10)

The characterization of the clique-chromatic numbers of the line graphs of

triangle-free graphs is obtained in Theorem 2.14.
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Theorem 2.14. Let G be a triangle-free graph with at least one edge. Then

χc(L(G)) =







1, if all components of G are trivial

3, if G has an odd hole component

2, otherwise.

Clique-colorings of F -free graphs:

The following is the list of bounds of the clique-chromatic number of the family

of F -free graphs that are improved. (See Theorems 3.4, 3.5, 3.7, 3.8 and 3.11)

1. For k ≥ 3, a (P2 + kP1)-free graph is (k + 1)-clique-colorable.

2. For k ≥ 3, a (P2 + kP1, diamond)-free graph is k-clique-colorable.

3. For k ≥ 3, a (P3 + kP1)-free graph is (k + 2)-clique-colorable.

4. For k ≥ 3, a (P3 + kP1, diamond)-free graph is (k + 1)-clique-colorable.

5. For k,m ∈ N where max{k,m} ≥ 4, a (Pk +Pm)-free graph is (k+m− 2)-

clique-colorable.

Moreover, the clique-chromatic numbers of some subclasses of claw-free graphs

are investigated. The results are as follows: (See Theorems 3.15, 3.18 and 3.20)

1. Let G be a (claw, paw)-free graph with at least one edge. Then

χc(G) =







1, if G is an edgeless graph

3, if G has an odd hole component

2, otherwise.

2. Every (claw, diamond, even hole)-free graph is 3-clique-colorable.
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3. Let G be a (claw, diamond)-free graph. If G has no maximal clique of size

three, then

χc(G) =







1, if G is an edgeless graph

3, if G has an odd hole component

2, otherwise.

4.2 Open Problems for Future Work

This dissertation brings some open problems for future work as follows:

1. Let n ∈ N where R(m) ≤ n < R(m + 1) for some positive integer m.

Let G be a graph with n + 1 vertices and E(G) = E(Kn+1) − E(K1,r) where

1 ≤ r ≤ n − 1. Theorem 2.10 shows that L(G) is (m + 2)-clique-colorable, and

χc(L(G)) = m+ 1 if r = 1 or n−m− 1 ≤ r ≤ n− 1. When 2 ≤ r ≤ n−m− 2,

the problem is still unsolved.

2. Gravier et al. showed that all (P2 +2P1)-free graphs are 3-clique-colorable,

and this bound is sharp by the cycle C5. Theorem 3.6 gives a subclass of (P2+2P1)-

free graphs with clique-chromatic number two. An interesting unsolved problem

is to find the characterization of the clique-chromatic numbers of (P2 + 2P1)-free

graphs.

3. By Theorem 3.2, every (Pr+kP1)-free graph is (2k+ r−2)-clique-colorable

where r, k ∈ N. This dissertation improves the bound for r = 2 and 3. Improving

this bound where r ≥ 4 could be future work.

4. Theorem 3.18 shows that every (claw, diamond, even hole)-free graph

is 3-clique-colorable. It is interesting to find the characterization of the clique-

chromatic numbers of (claw, diamond, even hole)-free graphs.
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5. In Section 3.4.2, we show that both of the family of (claw, diamond)-free

graphs without even holes, and the family of (claw, diamond)-free graphs without

maximal cliques of size three have a bounded clique-chromatic number. It is

unknown whether the family of all (claw, diamond)-free graphs has a bounded

clique-chromatic number. We conjecture that this family has a bounded clique-

chromatic number.
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