
วิธีซิมเพล็กซแบบไรตัวแปรเทียมสำหรับตัวแบบกำหนดการเชิงเสนหลักและคูควบ

นางสาวเอื้ออารี บุญเพิ่ม

วิทยานิพนธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต

สาขาวิชาคณิตศาสตรประยุกตและวิทยาการคณนา

ภาควิชาคณิตศาสตรและวิทยาการคอมพิวเตอร

คณะวิทยาศาสตร จุฬาลงกรณมหาวิทยาลัย

ปการศึกษา 2556

ลิขสิทธิ์ของจุฬาลงกรณมหาวิทยาลัยบทคดัยอ่และแฟ้มข้อมลูฉบบัเตม็ของวิทยานิพนธ์ตัง้แตปี่การศกึษา 2554 ท่ีให้บริการในคลงัปัญญาจฬุาฯ (CUIR)

เป็นแฟ้มข้อมลูของนิสติเจ้าของวิทยานิพนธ์ท่ีสง่ผา่นทางบณัฑิตวิทยาลยั

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.

ARTIFICIAL-VARIABLE-FREE SIMPLEX METHOD FOR PRIMAL AND

DUAL LINEAR PROGRAMMING MODELS

Miss Aua-aree Boonperm

A Dissertation Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy Program in Applied Mathematics and

Computational Science

Department of Mathematics and Computer Science

Faculty of Science

Chulalongkorn University

Academic Year 2013

Copyright of Chulalongkorn University

Thesis Title ARTIFICIAL-VARIABLE-FREE SIMPLEX METHOD FOR

PRIMAL AND DUAL LINEAR PROGRAMMING MODELS

By Miss Aua-aree Boonperm

Field of Study Applied Mathematics and Computational Science

Thesis Advisor Assistant Professor Krung Sinapiromsaran, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Doctoral Degree

. Dean of the Faculty of Science

(Professor Supot Hannongbua, Dr.rer.nat.)

THESIS COMMITTEE

. Chairman

(Assistant Professor Khamron Mekchay, Ph.D.)

. Thesis Advisor

(Assistant Professor Krung Sinapiromsaran, Ph.D.)

. Examiner

(Associate Professor Pornchai Satravaha, Ph.D.)

. Examiner

(Phantipa Thipwiwatpotjana, Ph.D.)

. External Examiner

(Assistant Professor Titirut Thipbharos, Ph.D.)

iv

เอื้ออารี บุญเพิ่ม : วิธีซิมเพล็กซแบบไรตัวแปรเทียมสำหรับตัวแบบกำหนดการเชิงเสนหลักและคู
ควบ. (ARTIFICIAL-VARIABLE-FREESIMPLEXMETHODFORPRIMALAND

DUALLINEARPROGRAMMINGMODELS) อ.ที่ปรึกษาวิทยานิพนธหลัก: ผศ.ดร.กรุง
สินอภิรมยสราญ, 136 หนา.

การแกปญหากำหนดการเชิงเสนโดยใชขั้นตอนวิธีซิมเพล็กซดวยการเพิ่มตัวแปรเทียมเปนการเพิ่ม
ปริภูมิการคนหาใหมีขนาดใหญขึ้น วิทยานิพนธนี้นำเสนอเทคนิคการผอนปรนเงื่อนไขบังคับที่ไมใชมุม
แหลมซึ่งไมเพียงแตกำจัดความตองการตัวแปรเทียมเทานั้น ยังลดเวลาเริ่มตนของการแกปญหาผอน
ปรน การรับประกันผลเฉลยเหมาะที่สุดหรือไมมีผลเฉลยหรือไมมีขอบเขตของปญหากำหนดการเชิง
เสน ทำไดโดยขั้นตอนวิธีจะนำเงื่อนไขบังคับที่ ไมใชมุุมแหลมกลับเขามารวมในปญหาผอนปรน ซึ่ง
ผลลัพธของขั้นตอนวิธีนี้ดีกวาขั้นตอนวิธีซิมเพล็กซแบบดั้งเดิมซึ่งใชตัวแปรเทียม เมื่อปญหากำหนดการ
เชิงเสนที่ปญหาผอนปรนมีคำตอบที่เหมาะที่สุดกอนการนำเงื่อนไขที่ไมใชมุมแหลมเขามา

ภาควิชา คณิตศาสตร และ.......................... ลายมือชื่อนิสิต

วิทยาการคอมพิวเตอร.......................... ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธหลัก

สาขาวิชา คณิตศาสตรประยุกต และ..........................

วิทยาการคณนา..........................

ปการศึกษา 2556..........................

v

5273908523 : MAJOR APPLIED MATHEMATICS AND COMPUTATIONAL

SCIENCE KEYWORDS : ARTIFICIAL-FREE / GRADIENT VECTOR / LIN-

EAR PROGRAMMING / NON-ACUTE CONSTRAINT RELAXATION

AUA-AREE BOONPERM : ARTIFICIAL-VARIABLE-FREE SIMPLEX

METHOD FOR PRIMAL AND DUAL LINEAR PROGRAMMING

MODELS. ADVISOR : ASST. PROF. KRUNG SINAPIROMSARAN,

Ph.D., 136 pp.

Solving a general linear programming problem using the simplex algorithm

relies on introducing artificial variables that deals with a large search space. This

dissertation presents the non-acute constraint relaxation technique that not only

eliminates the need for artificial variables but also reduces the start-up time to

solve the initial relaxation problem. To guarantee the optimal solution or infeasi-

bility or unboundedness of a linear programming problem, the algorithm reinserts

the non-acute constraints back to the relaxation problem. The results of this al-

gorithm are superior than the original simplex algorithm with artificial variables

for a linear programming problem which the relaxed problem obtains the optimal

solution before the the reinsertion of non-acute constraints.

Department :Mathematics.and.Computer.Science Student’s Signature :

Field of Study : .Applied Mathematics and Advisor’s Signature :

. .Computational Science

Academic Year : .2013

vi

ACKNOWLEDGEMENTS

I would like to express the deepest appreciation to my advisor, Assistant Pro-

fessor Dr. Krung Sinapiromsaran for his invaluable suggestion, understanding and

support throughout this dissertation. Without his guidance and continued help,

this dissertation would not have been possible.

I also would like to thank to my thesis committees, Assistant Professor Dr.

Khamron Mekchay, Associate Professor Dr. Pornchai Satravaha and Dr. Phan-

tipa Thipwiwatpotjana, and my thesis external examiner, Assistant Professor Dr.

Titirut Thipbharos who is the lecturer at Faculty of Applied Science, Dhurakij

Pundit University for the invaluable comments and attitudes which have signif-

icantly improved this dissertation. Moreover, I would like to thank all lecturers

who instructed and taught me valuable knowledge.

Additionally, I also most gratefully thanks to the Development and Promotion

of Science and Technology talents project (DPST) under the Institute for the

Promotion of Teaching Science and Technology, for financial support throughout

my Ph.D. study.

Finally, I most gratefully acknowledge my parents, my family, Roungroj Poom-

duang, Roungroj’s family and my friends for all their support throughout the pe-

riod of this dissertation, and I would like to thank those whose names are not

mentioned here but greatly inspired and encouraged us until this dissertation

comes to the end.

CONTENTS

page

ABSTRACT IN THAI . iv

ABSTRACT IN ENGLISH . v

ACKNOWLEDGEMENTS . vi

CONTENTS .vii

LIST OF TABLES . x

LIST OF FIGURES .xii

CHAPTER

I INTRODUCTION . 1

1.1 Introduction to Linear Programing . 1

1.2 Motivation . 6

1.3 Overview Of the Dissertation . 10

II LITERATURE REVIEWS . 12

2.1 Definitions and Theorems of Linear Programming 12

2.2 The Simplex Method . 14

2.2.1 Key to the Simplex Method . 16

2.2.2 The Simplex Algorithm in Tableau Format 18

2.2.3 The Initial Basic Feasible Solution. .20

2.3 Artificial Variable Techniques . 23

2.3.1 Two-Phase Method . 24

2.3.2 The Big-M Method . 29

2.4 Duality . 33

2.5 The Dual Simplex Method . 36

viii

page

2.6 Sensitivity Anslysis . 39

2.7 The Artificial-Variable-Free Techniques . 41

2.7.1 The Criss-Cross Method . 41

2.7.2 Primal Perturbation Simplex Algorithm 44

2.7.3 Big-M Free Solution Algorithm. 49

2.7.4 The Cosine Simplex Method . 52

III ARTIFICIAL-VARIABLE-FREE SIMPLEX METHOD57

3.1 Preliminaries . 57

3.1.1 The Classification Groups of Constraints 57

3.1.2 The Non-Acute Constraint Relaxation Problem 59

3.1.3 The Transformed NAR Problem. .61

3.1.1 The Reinsertion of Relaxation Constraints 63

3.2 SNAR . 74

3.3 Dual SNAR . 90

3.4 Comparison the Dimension of Parameters . 95

3.4.1 SNAR vs Two-Phase Method . 95

3.4.2 Dual SNAR vs Two-Phase Method . 97

IV EXPERIMENTAL RESULTS . 99

4.1 Experimental Designs . 99

4.1.1 Problem P. 99

4.1.2 Problem D . 100

4.2 Computational Results . 101

4.2.1 Computational Results on Problem P 101

4.2.2 Computational Results on Problem D 119

page

4.3 Summary of Results . 125

4.3.1 Problem P . 125

4.3.2 Problem D . 126

4.4 Discussion . 127

4.4.1 Problem P . 127

4.4.2 Problem D . 132

V CONCLUSIONS . 133

REFERENCES . 134

VITA . 136

LIST OF TABLES

TABLE x

1.1 Standard and Canonical Forms 3

1.2 Problem manipulations . 5

2.1 Relationships Between Primal and Dual Problems 34

3.1 Comparison the number of dimensions of parameters between SNAR

and Two-Phase Method . 97

3.2 Comparison the number of dimensions between SNAR, Dual SNAR

and Two-Phase Method . 98

4.1 The average number of iterations between SNAR, Two-Phase method

and Arsham’s method for a small number of constraints 102

4.2 Description of the columns in table ?? 103

4.3 The average running time between SNAR, Two-Phase method and

Arsham’s method for a small number of constraints 104

4.4 Ratios of the average number of iterations and the average running

time by Two-Phase method to SNAR and by Arsham’s method to

SNAR . 104

4.5 The average number of iterations solved by SNAR, Two-Phase

method and Arsham’s method for 5, 10 and 20 variables 110

4.6 The average number of iterations solved by SNAR, Two-Phase

method and Arsham’s method for 50 and 100 variables 111

4.7 The average running time solved by SNAR, Two-Phase method

and Arsham’s method . 112

4.8 Ratios of the average number of iterations and the average running

time by Two-Phase method to SNAR and by Arsham’s method to

SNAR . 113

xi

4.9 The average number of iterations solved by SNAR, Dual SNAR,

Two-Phase method and Arsham’s method. 119

4.10 The average running time solved by SNAR, Dual SNAR, Two-

Phase method and Arsham’s method. 120

4.11 Ratios of the average number of iterations and the average running

time solved by SNAR to Dual SNAR, by Two-Phase method to

Dual SNAR and by Arsham’s method to Dual SNAR 121

4.12 Description of columns in table ?? 121

LIST OF FIGURES

FIGURE xii

1.1 Common technique . 6

1.2 A feasible region of the relaxed problem in R2 9

1.3 Example of the two-phase method 10

2.1 Example of Two-Phase method 29

3.1 Angle between gradient vectors of constraints and the gradient

vector of the objective function in R2 58

3.2 Example of the original problem and NAR 59

3.3 Example of the unbounded problem 61

3.4 Example of the original, NAR and transformed NAR problems . 62

3.5 Example of the optimal solution found from NAR 65

3.6 Example of the optimal solution from NAR is infeasible 66

3.7 Example of the original problem is infeasible 66

3.8 Example of the original problem is optimal 68

3.9 Example of the original problem is unbounded 68

3.10 Some cases of the unbounded of NAR after adding 69

3.11 Some cases of P = ∅, Nl ̸= ∅ and Ne ̸= ∅ in R2 70

3.12 Example of the Ne constraint relaxation for P = ∅ and Nl ̸= ∅ 71

3.13 Some possible cases of P = ∅, Nl = ∅ and Ne ̸= ∅ 72

3.14 Example of the Ne constraint relaxation for P = ∅ and Nl = ∅ . 73

3.15 Flow chart of SNAR . 74

3.16 Example of the feasible region of the dual problem 91

3.17 Flow chart of Dual SNAR . 92

4.1 The average number of iterations solved by SNAR, Two-Phase

method and Arsham’s method for 5 variables 105

xiii

4.2 The average running time solved by SNAR, Two-Phase method

and Arsham’s method for 5 variables 105

4.3 The average number of iterations solved by SNAR, Two-Phase

method and Arsham’s method for 10 variables 106

4.4 The average running time solved by SNAR, Two-Phase method

and Arsham’s method for 10 variables 106

4.5 The average number of iterations solved by SNAR, Two-Phase

method and Arsham’s method for 20 variables 107

4.6 The average running time solved by SNAR, Two-Phase method

and Arsham’s method for 20 variables 107

4.7 The average number of iterations solved by SNAR, Two-Phase

method and Arsham’s method for 50 variables 108

4.8 The average running time solved by SNAR, Two-Phase method

and Arsham’s method for 50 variables 108

4.9 The average number of iterations solved by SNAR, Two-Phase

method and Arsham’s method for 100 variables 109

4.10 The average running time solved by SNAR, Two-Phase method

and Arsham’s method for 100 variables 109

4.11 The average number of iterations solved by SNAR, Two-Phase

method and Arsham’s method for 5 variables 114

4.12 The average running time solved by SNAR, Two-Phase method

and Arsham’s method for 5 variables 114

4.13 The average number of iterations solved by SNAR, Two-Phase

method and Arsham’s method for 10 variables 115

4.14 The average running time solved by SNAR, Two-Phase method

and Arsham’s method for 10 variables 115

4.15 The average number of iterations solved by SNAR, Two-Phase

method and Arsham’s method for 20 variables 116

4.16 The average running time solved by SNAR, Two-Phase method

and Arsham’s method for 20 variables 116

xiv

4.17 The average number of iterations solved by SNAR, Two-Phase

method and Arsham’s method for 50 variables 117

4.18 The average running time solved by SNAR, Two-Phase method

and Arsham’s method for 50 variables 117

4.19 The average number of iterations solved by SNAR, Two-Phase

method and Arsham’s method for 100 variables 118

4.20 The average running time solved by SNAR, Two-Phase method

and Arsham’s method for 100 variables 118

4.21 The average number of iterations solved by SNAR, Dual SNAR,

Two-Phase method and Arsham’s method for 5 variables 122

4.22 The average running time solved by Dual SNAR and Two-Phase

method for 5 variables . 122

4.23 The average number of iterations solved by SNAR, Dual SNAR,

Two-Phase method and Arsham’s method for 10 variables 123

4.24 The average running time solved by Dual SNAR and Two-Phase

method for 10 variables . 123

4.25 The average number of iterations solved by SNAR, Dual SNAR,

Two-Phase method and Arsham’s method for 20 variables 124

4.26 The average running time solved by Dual SNAR and Two-Phase

method for 20 variables . 124

4.27 The original problem has the optimal solution. 129

4.28 NAR is unbounded. 130

4.29 Example of NAR is unbounded and non-acute constraits are added.131

CHAPTER I

INTRODUCTION

1.1 Introduction to Linear Programming

Linear programming (LP) describes the mathematical programming type dealing

with the optimal value of a linear objective function which is defined as minimizing

or maximizing under linear equality or inequality constraints. Some real world

problems such as an industrial production, a transportation problem, a production

scheduling problem, an assignment problem, etc., can be constructed as a linear

programming model searching for the optimal solution. Consider a general linear

programming model:

Maximize c1x1 + c2x2 + · · ·+ cnxn

subject to a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

a21x1 + a22x2 + · · ·+ a2nxn ≤ b2
... ... + · · ·+

am1x1 + am2x2 + · · ·+ amnxn ≤ bm

x1, x2, . . . , xn ≥ 0.

(1.1)

Denote the following column vectors c and x of size n, b of size m, and the

m× n matrix A:

c =

c1

c2
...

cn

, x =

x1

x2

...

xn

, b =

b1

b2
...

bm

, A =

a11 a12 · · · a1n

a21 a22 · · · a2n
...

am1 am2 · · · amn

.

Ai: = [ai1, ai2, . . . , ain] is a coefficient vector or a gradient vector of the constraint

i. The problem can be written in the matrix form:

2

Maximize cTx

subject to Ax ≤ b

x ≥ 0

(1.2)

In Problem 1.2, the function being maximized is called the objective function

and c is a vector of coefficients of the objective function or, in other word, c

is a gradient vector of the objective function. x is a vector of variables called

the decision variables, A is a coefficient matrix of constraints, b is a vector of

parameters called the right-hand side vector, n is the number of decision variables

and m is the number of constraints.

A vector x is said to be a feasible point or a feasible solution if it satisfies

all constraints, and a set of all feasible points is called the feasible region. The

solution of a linear programming problem depends on the problem structure which

can be summarized (for a maximization problem) below:

(i) Optimal solution. An optimal solution to a linear programming problem

exists which provides the greatest objective value.

(ii) Unbounded optimal solution. A linear programming problem is unbounded

when the optimal objective value is unbounded (with value ∞) and no op-

timal solution exists.

(iii) Empty feasible region. A linear programming problem is infeasible or has

an empty feasible region when the system of constraints defining the feasible

region is inconsistent.

Standard and Canonical Formats

There are two important representations of a linear programming problem for dif-

ferent uses: the standard form and the canonical form. The standard form of a

linear programming will be useful for the simplex algorithm which is designed to

work on the standard form while the canonical form is useful for duality relation-

ship. These forms (in matrix form) are summarized in Table 1.1

3

Table 1.1: Standard and Canonical Forms
Maximization Problem Minimization Problem

Standard Form
Maximize cTx

subject to Ax = b

x ≥ 0

Minimize cTx

subject to Ax = b

x ≥ 0

Canonical Form
Maximize cTx

subject to Ax ≤ b

x ≥ 0

Minimize cTx

subject to Ax ≥ b

x ≥ 0

Either all constraints of the maximization or minimization problem in the stan-

dard form are of “equal to” types while all constraints of the maximization problem

in the canonical form are of “less than or equal to” types, and all constraints of

the minimization problem in the canonical form are of “greater than or equal to”

types. The decision variables of all forms are nonnegative.

Problem Manipulation

Many linear programming problems in term of maximization or minimization and

variables may be nonnegative, unrestricted in sign or bounded which may not

match the standard or the canonical form. Since some algorithms deal with a

specific form of a linear programming problem, a problem must be manipulated

from one form to fit the required form.

- Maximization and Minimization problems: Converting a maximiza-

tion problem to a minimization problem and conversely as:

maximize cTx = −minimize −cTx.

- Inequality Constraints: Consider a constraint given by
n∑

j=1

aijxj ≤ bi.

This constraint can be transformed to an equality constraint as follow:

n∑
j=1

aijxj + si = bi,

4

where si ≥ 0 is called a slack variable.

While a constraint given by
n∑

j=1

aijxj ≥ bi can be converted to an equality

constraint as follows:

n∑
j=1

aijxj − si = bi,

where si ≥ 0 is called a surplus variable.

- Equality Constraints: If a constraint has an equation form, i.e.,
n∑

j=1

aijxj =

bi, it can be transformed into two inequality constraints as follows:

n∑
j=1

aijxj ≤ bi and
n∑

j=1

aijxj ≥ bi

- Nonnegativity of the Variables: If the variable xj can be positive, zero

or negative, called unrestricted in sign, it can be converted to two new

nonnegative variables as follows:

xj = x′
j − x′′

j where x′
j ≥ 0, x′′

j ≥ 0.

Next, if the variable xj ≥ lj, the new variable x′
j = xj − lj is mathematically

nonnegative. Similarly, if xj ≤ uj, the new variable x′
j = uj − xj is also

nonnegative.

The problem manipulation of all cases are summarized in Table 1.2.

Methods for Solving LP

There are many methods to solve a linear programming problem such as the

graphical method, the simplex method, the interior point method, etc.

The graphical method is a method to solve an LP problem by drawing a feasible

region corresponding to all constraints. Then the hyperplane of the objective

function is moved parallel in the direction that the objective value increases for the

maximization problem (or toward the direction that the objective value decreases

for the minimization problem) maintaining within the feasible region. The last

5

Table 1.2: Problem manipulations
Original form Equivalent form

objective function maximize cTx −minimize −cTx

constraints

n∑
j=1

aijxj ≤ bi

n∑
j=1

aijxj + si = bi, si ≥ 0

n∑
j=1

aijxj ≥ bi

n∑
j=1

aijxj − si = bi, si ≥ 0

n∑
j=1

aijxj = bi

n∑
j=1

aijxj ≥ bi,
n∑

j=1

aijxj ≤ bi

variables

xj unrestricted xj = x′
j − x′′

j , x
′
j ≥ 0, x′′

j ≥ 0

xj ≥ lj x′
j = xj − lj

xj ≤ uj x′
j = uj − xj

feasible point that the plane touches is the optimal solution. Since the graphical

method requires the sketch of the feasible region be, it is suitable for two or three

dimensional problems.

The simplex method published by George B. Dantzig [1] in 1947 is quite ef-

ficient in practice and has been popularly used for solving a linear programming

problem. The simplex algorithm starts from the origin point if it is a feasible point.

Otherwise, artificial variables will be added to obtain the initial feasible solution

on a larger search space with x = 0. Then, it moves from one corner point to an

adjacent corner point along the boundary of the feasible region until the optimal

solution is reached. However, in 1972, Klee and Minty [2] constructed a collec-

tion of linear programming problems which the simplex algorithm using Dantzig’s

rule took an exponential number of iterations with respect to the problem size.

Karmarkar [3] responded to this in 1984 by proposing a new polynomial-time

algorithm called the interior point method for a linear programming problem.

The interior point method creates the sequence of interior points which con-

verges to the optimal solution along the improving direction. The number of

iterations of the interior point method requires less than 100 iterations which does

not increase with the the problem size [4, 5]. However, one iteration with the inte-

rior point method is much more complicated than one iteration with the simplex

6

method. In order to compute a direction at each iteration, AD2AT matrix must

be formed where D2 is a diagonal matrix which changes at each iteration and

the system is solved to find the direction. Computing AD2AT for dense columns

causes it to converge slowly. So the density of this matrix is the main weakness

point of the interior point method [4, 6, 7].

1.2 Motivation

“Is there a polynomial time algorithm over the real numbers which decides the

feasibility of the linear system of inequalities Ax ≥ b?” [8, 9] is still an open prob-

lem. This is one version of finding a feasible solution of an optimization problem

of a linear programming problem. Moreover, improving the simplex method is

still important and suitable for solving integer programming problems [21, 23].

Many researchers proposed the improved simplex algorithm by suggesting a new

pivot rule [18, 23], a new initial solution [21, 22], a new method without artificial

variables [10, 14, 11, 12, 15, 16, 17], etc. Some proposed their common technique

to improve the simplex method, that is, constraints making small angles between

its gradient vector to the objective gradient vector will form the extreme point

close to the optimal solution as shown in Figure 1.1.

x2

x1

optimal point

0

c

1:A
c

2:A
c

3:A

4:A
5:A

Figure 1.1: Common technique

7

In 2005, Junior and Lins [21] suggested the new initial basis formed by m

variables associated with m constraints making the smallest angles between its

gradient vector to the gradient vector of the objective function in the dual prob-

lem, respectively. The computational results of their algorithm were shown to be

superior for small problems. However, in 2007, Hu [22] showed that Junior and

Lins’ algorithm could not start if this new initial basis is singular.

Then, in 2009, Yeh and Corley [23] proposed the new pivot rule. The variable

which associated with the constraint making the smallest angle between its gra-

dient vector to the gradient vector of the objective function in the dual problem

was chosen to be an entering variable. However, computational results showed

that their algorithm could improve the average number of iterations only 2.6597%

with respect to the simplex algorithm.

Recently, in 2011, Wei Li and Haohao Li [24] proved that the optimal solution of

2-dimensional linear programming problem with no redundant constraint belongs

to the constraint making the acute angle between its gradient vector to the gradient

vector of the objective function.

Although a constraint making the acute angle technique is used to improve the

simplex algorithm, one technique that researchers interested is eliminating the use

of artificial variables. From Figure 1.1, artificial variables are needed to start the

simplex algorithm at x = 0. There are two well-known methods to deal with the

artificial variable technique, i.e., the Big-M method and the Two-Phase method.

If artificial variables are introduced, the primal space expands. Solving the LP

problem without using artificial variable may reduce iterations and time.

The algorithm without artificial variables was first proposed by Zionts [10], in

1969, called the criss-cross algorithm. The criss-cross algorithm needed not main-

tain feasibility and no artificial variable required. But the criss-cross algorithm did

not have the polynomial time-complexity and it slowly converges to the optimal

solution.

In 1997, Arsham [11, 12] proposed the algorithm without using artificial vari-

ables. However, in 1998, Enge and Huhn [13] presented a counterexample, in

8

which Arsham’s algorithm declared the infeasibility of a feasible linear program-

ming problem.

In 2000, Pan [14] proposed another algorithm for solving a linear programming

problem without introducing artificial variables. If the initial basis was neither

primal nor dual feasible, then coefficients of objective function in primal will be

perturbed for the dual feasibility and the dual simplex method will be used. The

computational results were shown to be superior for small problems.

Then, in 2006, Arsham [15, 16] presented the improved algorithm by relaxing

some constraints which the origin point does not satisfy. Therefore, the algorithm

can start at the origin point without using artificial variables. After the solu-

tion is found, relaxed constraints are added for checking with the optimal point.

The performance of his algorithm is shown by some examples. In that year, Cor-

ley, Rosenberge, Yeh and Sung [17] proposed the similar algorithm with Arsham.

They solved a sequence of relaxed linear programming problems until the optimal

solution of the original problem was found. The relaxed problem consisted of an

original objective function subject to a single constraint which makes a largest co-

sine angle with the gradient vector of the objective function. At each subsequent

iteration of the algorithm, the constraint which had the new maximum cosine

angle with the gradient vector to the objective function among those constraints

would be added and the dual simplex method were applied. But their research

lacked a computational result and all linear programming problems were feasible

and bounded.

Note that some constraints making acute angles may form an extreme point

close to the optimal solution. In this dissertation, we classify constraints to two

types.

- The acute constraint is the constraint which makes an acute angle be-

tween its gradient vector to the gradient vector of the objective function.

- The non-acute constraint is the constraint which makes an obtuse or

orthogonal angle between its gradient vector to the gradient vector of the

objective function.

9

We propose to remove non-acute constraints temporary and solve the problem

called the relaxed problem. After the relaxed problem is solved, the algorithm

reinserts all non-acute constraints for an optimal case and it reinserts one non-

acute constraints at a time for an unbounded case. If the optimal solution of the

original LP problem is achieved from the relaxed problem, we may reduce the

solution time to solve the whole problem since non-acute constraints will satisfy

this optimal solution in one step.

x2

x1

optimal point

0

c

1:A
c

2:A
c

Figure 1.2: A feasible region of the relaxed problem in R2

In Figure 1.2, non-acute constraints which were not related to the optimal

solution were relaxed. The simplex method can start at the origin point and find

the optimal solution easily without using artificial variable. However, if the origin

point of the relaxed problem is infeasible as in Figure 1.3b, the simplex method

still needed to introduce artificial variables to start the algorithm. We can prove

that the relaxed problem has a feasible solution, and then an artificial variable is

not needed to start the simplex method.

Our algorithm starts by separating constraints into two collections: the collec-

tion of acute constraints and the collection of non-acute constraints. The original

objective function with the collection of acute constraints, called the non-acute

constraint relaxation problem, will be solved first. We can prove that the feasible

region of this collection is nonempty and the feasible point can be identified by the

mathematical formula. So the algorithm starts with an interior feasible solution

10

c

c

c
 c

c

1:A

2:A
c

8:A

7:A

6:A

5:A

4:A3:A0

2x

1x
optimal point

(a) The original problem.
c

c

c
 c

c

1:A

2:A
c

8:A

7:A

5:A

4:A3:A0

2x

1x
optimal point

(b) The relaxed problem.

Figure 1.3: Example of the two-phase method

without artificial variables. Then, it transforms the interior feasible solution to

the basic feasible solution of the equivalent linear programming problem and is

solved using the simplex algorithm. In case that the relaxed problem reaches the

optimal solution, the algorithm reinserts non-acute constraints back to the relaxed

problem and uses the dual simplex method to identify the optimal solution or the

infeasibility or the unbounded optimal solution. For the case of unbounded opti-

mal solution of the relaxed problem, a single non-acute constraint is inserted one

constraint at a time. Our algorithm is named the Simplex method based on the

Non-Acute constraint Relaxation or SNAR.

The aim of this dissertation is to reduce the number of iterations or time to

solve the LP problem with respect to the simplex method using Dantzig’s rule.

The performance of our algorithms are shown by computational results which test

with randomly generated linear programming problems.

1.3 Overview of the Dissertation

In chapter 2, we describe definitions and theorems used in our algorithm such

as a direction, an extreme point, duality, sensitivity analysis, etc. Moreover, the

simplex algorithm including the artificial variables techniques, two-phase method

and big-M method, are in chapter 2. Additionally, related works which consist

11

of artificial variable techniques, the artificial-variable-free techniques will be de-

scribed in detail. Some artificial-free variable techniques will be compared with

our algorithm. In chapter 3, the main concept of our algorithm and theorems will

be described. Next, the experimental design and computational results are shown

and discussed in chapter 4. Finally, in the last chapter, our research and results

are analysed and concluded.

CHAPTER II

LITERATURE REVIEWS

Some definitions and theorems of a linear programming problem that will be used

for our dissertation are described, and related works are summarized and discussed

in this chapter.

2.1 Definitions and Theorems of Linear Programming

The following definitions are useful for the simplex method, our algorithm and

sensitivity analysis.

Definition 2.1. (Hyperplane): A hyperplane H in Rn is a set of the form {x :

p · x = k} where p is a nonzero vector in Rn and k is a scalar.

Here, p is called the normal or the gradient to the hyperplane.

Definition 2.2. (Half-Spaces): A half-space is a collection of points of the form

{x : p · x ≤ k} or {x : p · x ≥ k}.

Definition 2.3. (Polyhedral Sets): A polyhedral set is the intersection of a

finite number of half-spaces.

Definition 2.4. (Convex Sets): A set X in Rn is called a convex set if given

any two points x1 and x2 in X, then λx1 + (1− λ)x2 ∈ X for each λ ∈ [0, 1].

Any point of the form λx1 + (1− λ)x2 ∈ X where λ ∈ [0, 1] is called a convex

combination of x1 and x2. If λ ∈ (0, 1), then the convex combination is called

strict.

Definition 2.5. (Rays and Directions): A ray is a collection of points of the

form {x0 + λd : λ ≥ 0} where d is a nonzero vector. x0 is called the vertex of the

ray, and d is the direction of the ray.

13

Definition 2.6. (Directions of a Convex Set): Given a convex set, a nonzero

vector d is called a recession direction of the set if for each x0 in the set, the ray

{x0 + λd : λ ≥ 0} also belongs to the set.

Definition 2.7. (Extreme Directions of A Convex Set): An extreme di-

rection of a convex set is a direction of the set that cannot be represented as a

positive combination of two distinct directions of the set.

Let the polyhedral set is in the following form:

X = {x | Ax ≤ b, x ≥ 0}, (2.1)

where A is an m × n matrix and b is an m-dimensional vector. We will use

this form to explain some definitions below.

Theorem 2.8. If the polyhedral set X is nonempty. Then a nonzero d is a

recession direction of X if and only if

A(x + λd) ≤ b
x + λd ≥ 0

(2.2)

for each λ ≥ 0 and each x ∈ X.

Theorem 2.8 will be used to prove our theorem in chapter 3.

The following definitions will lead to an extreme point associated to the optimal

solution.

Definition 2.9. (Defining Hyperplanes): Let the hyperplanes associated with

the (m+ n) defining half-spaces of X be referred to as defining hyperplanes of X.

Note that the (m + n) defining half-spaces of X consist of m constraints and

n nonnegativity constraints.

Definition 2.10. (Extreme Points): A point x̄ ∈ X is said to be an extreme

point of set X if x̄ lies on some n linearly independent defining hyperplanes of X.

The following theorem is one of the most important theorems of the linear

programming problem.

14

Theorem 2.11. (Representation Theorem for the General case): Let

X = {x | Ax ≤ b,x ≥ 0} be a nonempty polyhedral set. Then the set of extreme

points is not empty and has a finite number of points, say x1, x2,...,xk, the set

of extreme directions is empty if and only if X is bounded. If X is not bounded,

then the set of extreme directions is nonempty and has a finite number of vectors,

say d1, d2,...,dl. Moreover, x̄ ∈ X if and only if it can be represented as a convex

combination of x1, x2,...,xk plus a nonnegative linear combination of d1, d2,...,dk,

that is,

x̄ =
k∑

j=1

λjxj +
l∑

j=1

µjdj

k∑
j=1

λj = 1

λj ≥ 0, j = 1, 2, ..., k

µj ≥ 0, j = 1, 2, ..., l.

(2.3)

2.2 The Simplex Method

Consider the following standard linear programming problem :

LP: Maximize cTx

subject to Ax = b

x ≥ 0.

(2.4)

where A is an m×n matrix with rank m. Since the simplex algorithm was designed

to deal with the standard form, we will use this form in this section.

Definition 2.12. (Basic Feasible Solutions): Consider the system Ax = b

and x ≥ 0, where A is an m×n matrix and b is an m-dimensional vector. Suppose

that rank(A, b) = rank(A) = m. After possibly rearranging the columns of A,

let A = [B, N] where B is an m×m invertible matrix and N is an m× (n−m)

matrix. The solution x =

xB

xN

 to the equation Ax = b, where

xB = B−1b and xN = 0

15

is called a basic solution of the system.

If xB ≥ 0, then x is called a basic feasible solution of the system.

Here B is called the basic matrix and N is called the nonbasic matrix.

The components of xB are called basic variables and the components of xN are

called nonbasic variables.

If xB > 0, then x is called a nondegenerate basic feasible solution, and if at

least one component of xB is zero, then x is called a degenerate basic feasible

solution.

The following theorems show a relation between an extreme point and a basic

feasible solution, and some properties of extreme directions lead to the existence

of the optimal solution.

Theorem 2.13. The collection of extreme points corresponds to the collection of

basic feasible solutions, and both are nonempty, provided that the feasible region is

nonempty.

The following theorem will be used to prove the unbounded optimal solution

in our theorem.

Theorem 2.14. Assume that a feasible region is nonempty. Then a finite optimal

solution exists if and only if cdj ≤ 0 for j = 1, 2, ..., l, where d1,d2, ...,dl are the

extreme directions of the feasible region. Otherwise, the optimal solution value is

unbounded.

Theorem 2.15. If an optimal solution exists, then an optimal extreme point exists.

Theorem 2.16. For every extreme point (basic feasible solution), there is a cor-

responding basis (not necessarily unique), and, conversely, for every basis there is

a corresponding (unique) extreme point. Moreover, if an extreme point has more

than one basis representing it, then it is degenerate. Conversely, a degenerate

extreme point has more than one basis representing it if and only if the system Ax
= b itself does not imply that the degenerate basic variables corresponding to an

associated basis are identically zero.

16

2.2.1 Key to the Simplex Method

Consider a matrix A in the equation Ax = b being partitioned as A = [B, N],

and let xT = [xT
B, xT

N] and cT = [cT
B, cT

N] with xT
B and cT

B are associated columns

of B and xT
N and cT

N are associated with columns of N. Then, the problem (2.4)

can be written as follow:

Maximize cT
BxB + cT

NxN

subject to BxB + NxN = b

xB , xN ≥ 0.

(2.5)

Suppose that we have a basic feasible solution

xB

xN

 =

B−1b

0

 ≥ 0. Consider

the equation

BxB + NxN = b (2.6)

xB = B−1b − B−1NxN. (2.7)

By substituting xB into the objective function in the problem (2.4) and letting

z denote the objective function value, JB and JN are the the current set of the

indices of the basic and nonbasic variables respectively, we get

z = cT
BxB + cT

NxN (2.8)

= cT
B
(
B−1b − B−1NxN

)
+ cT

NxN (2.9)

= cT
BB−1b − cT

BB−1NxN + cT
NxN (2.10)

= cT
BB−1b −

(
cT

BB−1N − cT
N
)

xN (2.11)

= cT
BB−1b −

∑
j∈JN

(
cT

BB−1A:j − cj
)
xj (2.12)

= z0 −
∑
j∈JN

(zj − cj)xj, (2.13)

where zj = cT
BB−1A:j for each nonbasic variable, z0 = cT

BB−1b and A:j is the jth

column of A.

Since the problem (2.4) is the maximization problem and z0 is a constant, the

objective value will increase when there exists zj − cj < 0. Therefore, the optimal

17

solution is reached when the index set

J = {zj − cj < 0 | j ∈ JN} = ∅. (2.14)

For the current basic feasible solution, since xj = 0 for all j ∈ JN, z = z0.

When zj − cj ≥ 0 for all j ∈ JN, z ≤ z0 for any feasible solution. Therefore, the

current basic feasible solution is the optimal solution.

The simplex algorithm is an iterative method that moves from one basis to

an adjacent basis by entering one variable from the nonbasic variable set into the

basis, and remove one variable from the basic variable set from the basis. The

variable which will be introduced to the basis is called the entering variable and the

variable which will be removed from the basis is called the leaving variable. Each

step is known as iteration or pivot. So the simplex algorithm can be summarized

below:

The Simplex Algorithm (Maximization Problem)

INITIALIZATION STEP: Choose a starting basis B.

MAIN STEP:

(i) Solve the system BxB = b. Then, we have xB = B−1b = b̄.

(ii) Solve the system wTB = cT
B, w is called the vector of simplex multipliers.

(iii) Calculate zj = wTA:j for all j ∈ JN.

(iv) Determine the entering variable k such that

zk − ck = min{zj − cj | j ∈ JN}. (2.15)

(v) If zk − ck ≥ 0, then stop. The optimal solution is the current basic feasible

solution.

Otherwise, solve the system Byk = A:k.

(vi) If yk ≤ 0, then stop. The optimal solution is unbounded.

18

Otherwise, determine the index r of the leaving variable xBr by minimum

ratio test such that

b̄r
yrk

= min
1≤i≤m

{
b̄i
yik

| yik > 0

}
. (2.16)

(vii) Update the basis B where A:k replaces A:Br

(viii) Update the index set JN, and repeat the MAIN STEP (step (i) - step (viii)).

2.2.2 The Simplex Algorithm in Tableau Format

From the previous algorithm, the linear system of equations: BxB = b, wTB =

cT
B, and Byk = Ak need to be solved. Solving and updating these systems can be

handled easily if we use the tableau format to describe the simplex method.

Suppose that we have a starting basic feasible solution x =

xB

xN

 with basis

B. We can represent the problem (2.4) as follows:

Maximize z

subject to z − cT
BxB − cT

NxN= 0 (2.17)

BxB +NxN = b (2.18)

xB, xN ≥ 0.

From the equation (2.18), we have

xB + B−1NxN = B−1b. (2.19)

Multiplying (2.19) by cT
B and adding to the equation (2.17), we get

z + 0xB +
(
cT

BB−1N − cT
N
)

xN = cT
BB−1b. (2.20)

19

Therefore, the equivalent system is as follows:

Maximize z

subject to z + 0xB +
(
cT

BB−1N − cT
N
)

xN = cT
BB−1b (2.21)

xB + B−1NxN =B−1b (2.22)

xB, xN ≥ 0.

Since xN = 0, we get xB = B−1b and z = cT
BB−1b. For convenience, we can

represent the current basic feasible solution with basis B in the following tableau.

z xB xN RHS

z 1 0 cT
BB−1N − cT

N cT
BB−1b Row 0

xB 0 I B−1N B−1b Row 1 through m

The objective row is referred to as row 0 and the remaining rows are rows 1

through m. The right-hand-side column (RHS) contains the value of the basic

variables including the objective value.

Consider row 0, cT
BB−1N − cT

N consists of zj − cj and B−1N consists of

yj = B−1A:j for all nonbasic variables. Therefore, we can determine the en-

tering variable by considering row 0. If each zj − cj ≥ 0, the current basic feasible

solution is the optimal solution. Otherwise, nonbasic variables can be increased.

If xk is selected as an entering variable, then we can determine how much xk can

be increased by evaluating the minimum ratio between vector yk which is stored

in the tableau in rows 1 through m under the variable xk and B−1b. If yk ≤ 0,

then the optimal objective value is unbounded. Otherwise, xk will be blocked by

the minimum ratio test. One of the current basic variables which blocks xk will

be the leaving variable and will be droped to zero. If xk enters the basis and xBr

leaves the basis, then the tableau will be updated by pivoting on yrk that can be

stated as follows:

(i) Divide row r by yrk.

(ii) Update the ith row by adding to it −yik times the new rth row for i =

1, 2, ...,m and i ̸= r.

20

(iii) Update the row zero by adding to it ck − zk times the new rth row.

So the simplex method in tableau format can be summarized below.

The Simplex Method (Maximization Problem)

INITIALIZATION STEP: Find an initial basic feasible solution with basis B.

Form the following initial tableau:

z xB xN RHS

z 1 0 cT
BB−1N − cT

N cT
BB−1b

xB 0 I B−1N B−1b

MAIN STEP:

(i) Determine the entering variable k such that

zk − ck = min{zj − cj | j ∈ JN}. (2.23)

If zk − ck ≥ 0, then stop. The optimal solution is the current basic feasible

solution. Otherwise, examine yk = B−1A:k.

If yk ≤ 0, then stop. The optimal solution is unbounded. Otherwise, de-

termine the index r of the leaving variable xBr by minimum ratio test such

that
b̄r
yrk

= min
1≤i≤m

{
b̄i
yik

| yik > 0

}
. (2.24)

(ii) Update the tableau by pivoting at yrk. Update the basic and nonbasic

variables where xk enters the basis and xBr leaves the basis, and repeat

the MAIN STEP.

2.2.3 The Initial Basic Feasible Solution

Since the simplex method starts at a basic feasible solution with a basis B which

B−1b ≥ 0, the question arises how can we find the initial basis.

Consider an easy case where b ≥ 0, suppose that the constraints are of the

following form:
Ax ≤ b,

x ≥ 0
(2.25)

21

where A is an m × n matrix, b is a nonnegative m- dimensional vector. Recall

that the simplex method is designed to deal with the standard form, so the slack

vector s is added as follows:

Ax + s = b,

x, s ≥ 0
(2.26)

where s is a nonnegative m- dimensional vector. So the new constraint matrix is

[A, I] having rank m. Let I be the basis and A be the nonbasic matrix, then s is the

basic vector. Therefore, the initial basic feasible solution is (x, s)T = (0,b)T ≥ 0,

that is x = 0 is a feasible point, and the simplex method can be performed.

Example 2.17. Consider the following problem:

Maximize x1 − 3x2 + 2x3

subject to 5x1 − 3x2 − 2x3 ≤ 1

− 2x1 + 4x2 + x3 ≤ 2

x1, x2, x3 ≥ 0

(2.27)

Solution. Before starting the simplex algorithm, the problem must be in the

standard form. By adding slack variables, we get

Maximize x1 − 3x2 + 2x3

subject to 5x1 − 3x2 − 2x3 + s1 = 1

− 2x1 + 4x2 + x3 + s2 = 2

x1, x2, x3, s1, s2 ≥ 0

(2.28)

Let the identity matrix be an initial basis. Then, s1, s2 are basic variables with

the identity basis, x1, x2, x3 are nonbasic variables, and (x1, x2, x3, s1, s2)
T =

(0, 0, 0, 1, 2)T ≥ 0 is the initial basic feasible solution. The simplex method can

start. Put it in the initial tableau,

z x1 x2 x3 s1 s2 RHS

z 1 -1 3 -2 0 0 0

s1 0 5 -3 -2 1 0 1

s2 0 -2 4 ..1 0 1 2

22

Determine the pivot column k by Dantzigs’ pivot rule, zk−ck = −2 = min{zj−

cj | j ∈ JN} which k = 3. Determine the pivot row r by the minimum ratio test,
b̄2
y23

= min{ b̄2
y23

| y23 ≥ 0} = min{2} which r = 2. Then, we pivot at y23, x3 enters

the basis and s2 leaves the basis. After pivoting, we get

z x1 x2 x3 s1 s2 RHS

z 1 -5 11 0 0 2 4

s1 0 ..1 1 0 1 2 5

x3 0 -2 4 1 0 1 2

Similarly, we get the pivot element at y12, that is, x2 enters the basis and s1

leaves the basis. After pivoting, we get

z x1 x2 x3 s1 s2 RHS

z 1 0 16 0 5 12 29

x1 0 1 1 0 1 2 5

x3 0 0 6 1 2 5 12

Since zj−cj ≥ 0 for all j, the optimal solution is found at (x∗
1, x

∗
2, x

∗
3, s

∗
1, s

∗
2)

T =

(5, 0, 12, 0, 0)T with the objective value z∗ = 29. �

However, in many problems, the initial basis can not easily be obtained from

the identity matrix such as when the constraints are in the following form:

Ax ≤ b,

x ≥ 0,
(2.29)

where the vector b is negative. By adding the slack vector s, we have the standard

form as Ax+s = b, x, s ≥ 0, that is, the new constraint matrix is [A, I]. If let

I be the basis and A be the nonbasic matrix, then (x, s)T = (0,b)T ̸≥ 0 violates

the nonnegativity constraints.

Another problems occur when the constraints are of the following form:

Ax ≥ b,

x ≥ 0,
(2.30)

23

where b ̸≤ 0. To get the standard form, the surplus vector s is subtracted and we

get as follows:

Ax − s = b,

x, s ≥ 0.
(2.31)

The new constraints matrix is [A, − I] which is difficult to pick a basis B with

B−1b ≥ 0. We can handle this problem by introducing artificial variables to be an

initial basis. We describe the artificial variable techniques in the following section.

2.3 Artificial Variable Techniques

For some cases that we can not pick a basis B from the standard form Ax = b,

x≥ 0, where A is an m×n matrix and b ≥ 0, we will introduce artificial variables

to the system to get a starting basic feasible solution as follows:

Ax + xa = b,

x, xa ≥ 0,
(2.32)

where xa is a vector of artificial variables. The new constraint matrix is [A, I],

then this gives a basic feasible solution with xa = b ≥ 0 and x = 0 and the

simplex method can be applied.

Example 2.18. Consider the following constrains:

x1 + x2 ≤ 3

x1 + 4x2 ≥ 4

5x1 + x2 ≥ 5

x1, x2, ≥ 0

(2.33)

Manipulating the problem to the standard form, we get

x1 + x2 + s1 = 3

x1 + 4x2 − s2 = 4

5x1 + x2 −s3 = 5

x1, x2, s1, s2, s3 ≥ 0

(2.34)

24

This constraint matrix has no identity matrix. We can introduce three arti-

ficial variables to get an initial basic feasible solution. However, since s1 has the

coefficient of 1, we need to add only two artificial variables xa1 and xa2 , then we

get the following system.

x1 + x2 + s1 = 3

x1 + 4x2 − s2 + xa1 = 4

5x1 + x2 − s3 + xa2 = 5

x1, x2, s1, s2, s3, xa1 , xa2 ≥ 0

(2.35)

Here, we have the identity matrix with the initial basic feasible solution, s1 =

3, xa1 = 4, xa2 = 5. Remaining variables are nonbasic variables having values equal

to zeroes.

Although we have the basic feasible solution, the problem have been changed

from adding artificial variables. To get back to the original problem, we need to

force these artificial variables to zero, because Ax = b if and only if Ax+xa =

b with xa = 0. In other words, adding artificial variables is only a tool to get

a basic feasible solution for starting the simplex method. The two well-known

techniques for eliminating artificial variables are the two-phase method and the

big-M method.

2.3.1 Two-Phase Method

Two-Phase method is a method to find an initial basic feasible solution of the

linear programming problem. The algorithm is separated into two phases. Phase

I: finds a basic feasible solution and phase II starts the simplex method from the

current basic feasible solution from phase I.

Phase I obtains a basic feasible solution of the original problem. The new linear

programming problem which is minimized the sum of artificial variables subject to

Ax+xa = b, xa ≥ 0 is solved. If an original problem has a feasible solution, then

the objective value of this problem is zero, that is, values of all variables drop to

zero. Then, they leave the basis, and the basis consists of legitimate variables (if

25

all artificial variables are out of the basis). So we get a basic feasible solution for

the original problem Ax = b, x ≥ 0, and the simplex method can start with the

original objective function. If the objective value of phase I is not zero, then the

original problem is infeasible. The two-phase method is summarized as follows:

Phase I:

Solve the following linear programming problem with the starting basic feasible

solution x = 0 and xa = b:

Minimize x0 = 1Txa

subject to Ax + xa = b

x, xa ≥ 0.

(2.36)

At optimality, if xa ̸= 0, then stop; the original problem is infeasible. Other-

wise, let basic and nonbasic legitimate variables be xB and xN. (We are assuming

that all artificial variables left the basis.) Proceed to Phase II.

Phase II:

Solve the following linear programming problem with the starting basic feasible

solution xB = B−1b and xN = 0.

Maximize z = cT
BxB + cT

NxN

subject to xB + B−1NxN = B−1b

xB, xN ≥ 0.

(2.37)

This problem is equivalent to the original problem and it can be solved by the

simplex method.

Example 2.19. Consider the following linear programming problem:

Maximize 2x1 + x2

Subject to x1 + x2 ≤ 3

x1 + 2x2 ≥ 4

3x1 + x2 ≥ 5

x1, x2, ≥ 0

(2.38)

26

Manipulating the problem to the standard form, we get

Maximize 2x1 + x2

Subject to x1 + x2 + s1 = 3

x1 + 2x2 − s2 = 4

3x1 + x2 − s3 = 5

x1, x2, s1, s2, s3 ≥ 0

(2.39)

This constraint matrix has no identity submatrix. We need to add two artificial

variables xa1 and xa2 , then we get the following system.

Minimize 2x1 + x2

Subject to x1 + x2 + s1 = 3

x1 + 2x2 − s2 + xa1 = 4

3x1 + x2 − s3 + xa2 = 5

x1, x2, s1, s2, s3, xa1 , xa2 ≥ 0

(2.40)

Therefore, phase I is written as follows:

Phase I:

Minimize xa1 + xa2

Subject to x1 + x2 + s1 = 3

x1 + 2x2 − s2 + xa1 = 4

3x1 + x2 − s3 + xa2 = 5

x1, x2, s1, s2, s3, xa1 , xa2 ≥ 0

(2.41)

Here, we have s1, xa1 and xa2 being the basic variables, so the tableau can be

written below:

x0 x1 x2 s1 s2 s3 xa1 xa2 RHS

x0 1 0 0 0 0 0 -1 -1 0

s1 0 1 1 1 0 0 0 0 3

xa1 0 1 2 0 -1 0 1 0 4

xa2 0 3 1 0 0 -1 0 1 5

27

Since the reduced cost of basic variables will be zero, add row 2 and row 3 to

row 0, we have

x0 x1 x2 s1 s2 s3 xa1 xa2 RHS

x0 1 4 3 0 -1 -1 0 0 9

s1 0 1 1 1 0 0 0 0 3

xa1 0 1 2 0 -1 0 1 0 4

xa2 0 3 1 0 0 -1 0 1 5

For the minimization problem, the entering variable k can be chosen by zk −

ck = max
j∈N

{zj − cj}. All iterations in phase I are shown below.

x0 x1 x2 s1 s2 s3 xa1 xa2 RHS

x0 1 4 3 0 -1 -1 0 0 9

s1 0 1 1 1 0 0 0 0 3

xa1 0 1 2 0 -1 0 1 0 4

xa2 0 ..3 1 0 0 -1 0 1 5

x0 x1 x2 s1 s2 s3 xa1 xa2 RHS

x0 1 0 5/3 0 -1 1/3 0 -4/3 7/3

s1 0 0 2/3 1 0 1/3 0 - 1/3 4/3

xa1 0 0 ..5/3 0 -1 1/3 1 -1/3 7/3

x1 0 1 1/3 0 0 -1/3 0 1/3 5/3

x0 x1 x2 s1 s2 s3 xa1 xa2 RHS

x0 1 0 0 0 0 0 -1 -1 0

s1 0 0 0 1 2/5 1/5 -2/5 -1/5 2/5

x2 0 0 1 0 -3/5 1/5 3/5 -1/5 7/5

x1 0 1 0 0 1/5 -2/5 -1/5 2/5 6/5

The last iteration of phase I has no artificial variables in the basis the starting

basic feasible solution (x1, x2, s1)
T = (6/5, 7/5, 2/5)T. Phase II can be started at

28

this basic feasible solution which the original objective function is maximized and

all artificial variables are removed.

Phase II:

z x1 x2 s1 s2 s3 RHS

z 1 -2 -1 0 0 0 0

s1 0 0 0 1 2/5 1/5 2/5

x2 0 0 1 0 -3/5 1/5 7/5

x1 0 1 0 0 1/5 -2/5 6/5

Multiply row 2 and row 3 by 1 and 2, respectively, and add to row 0, producing

z1 − c1 = z2 − c2 = 0. For the maximization problem, the entering variable k is

chosen by zk − ck = min
j∈N

{zj − cj}. So each iteration in phase II can be performed

below.

z x1 x2 s1 s2 s3 RHS

z 1 0 0 0 -1/5 -3/5 19/5

s1 0 0 0 1 2/5 ..1/5 2/5

x2 0 0 1 0 -3/5 1/5 7/5

x1 0 1 0 0 1/5 -2/5 6/5

z x1 x2 s1 s2 s3 RHS

z 1 0 0 3 1 0 5

s3 0 0 0 5 2 1 2

x2 0 0 1 -1 -1 0 1

x1 0 1 0 2 1 0 2

Since zj − cj ≥ 0 for all nonbasic variables, the optimal solution is found at

(x1, x2)
T = (2, 1)T with the objective value 5.

Note that Phase I moved from the infeasible point (0,0) to the point (0, 5/3),

and finally to the feasible point (6/5, 7/5). From this feasible point, Phase II

29

moved to the feasible point (2, 1) and stopped at this point since it is the optimal

point. This is illustrated in the following figure.

2x

3

2

optimal solution

c

Phase I

Phase II

(6/5, 7/5)

1x
0 3 421

1
optimal solution

(0, 0) (0, 5/3)

(6/5, 7/5) (2, 1)

Figure 2.1: Example of Two-Phase method

2.3.2 The Big-M Method

Another technique for eliminating artificial variables is to assign very big coeffi-

cients for these variables in the original objective function. To illustrate, suppose

that we want to solve the following linear programming problem, where b ≥ 0:

P: Maximize cTx

subject to Ax = b

x ≥ 0.

(2.42)

If no convenient basis is known, we can introduce the artificial vector xa, which

leads to the following system:

Ax + xa = b

x, xa ≥ 0.
(2.43)

The starting basic feasible solution is given by xa = b. In order to reflect the

undesirability of a nonzero artificial vector, the objective function is modified such

30

that a large penalty is assigned for any such solution. More specifically consider

the following problem.

P(M): Maximize zbig-M = cTx − M1Txa

subject to Ax + xa = b

x, xa ≥ 0,

(2.44)

where M is a very large positive number. The term −M1Txa can be interpreted

as a penalty to be assigned to a solution with xa ̸= 0. Alternatively, the foregoing

strategy can be interpreted as one that minimizes 1Txa with priority one, and

among all alternative optimal solutions for this objective, maximizes the secondary

objective cTx. Hence, even though the starting solution x = 0,xa = b is feasible

to the new constraints, it has a very unattractive objective value, namely M1Tb.

Therefore, the simplex method itself will try to drop artificial variables out of the

basis, and then continue to find the optimal solution to the original problem.

Since we are interested in the solution of the original problem, after solving it

by the simplex method, one of the following two cases may occur:

(i) We found the optimal solution of P(M).

• The artificial variables are all equal to zero. In this case, the original

problem is feasible and the optimal solution is found.

• Some artificial variables are positive. In this case, the original problem

is infeasible.

(ii) We found that the problem P(M) has an unbounded solution. Then, the

original problem has an unbounded solution.

The big-M method is illustrated by the following numerical example.

31

Example 2.20. Consider the following linear programming problem:

Maximize 2x1 + x2

Subject to x1 + x2 ≤ 3

x1 + 2x2 ≥ 4

3x1 + x2 ≥ 5

x1, x2, ≥ 0

(2.45)

This example is the same linear programming problem in example 2.19. The

slack variable s1 and the surplus variables s2, s3 are introduced and the artificial

variables xa1 and xa2 are incorporated in the last two constraints. The modified

objective function is zbig-M = cTx −M1Txa, where M is a large positive number.

This leads to the following sequences of tableau:

zbig-M x1 x2 s1 s2 s3 xa1 xa2 RHS

zbig-M 1 -2 -1 0 0 0 M M 0

s1 0 1 1 1 0 0 0 0 3

xa1 0 1 2 0 -1 0 1 0 4

xa2 0 3 1 0 0 -1 0 1 5

Since the reduced cost of basic variables will be zero, multiply row 2 and row

3 by −M and add to row 0, we have

zbig-M x1 x2 s1 s2 s3 xa1 xa2 RHS

zbig-M 1 −2− 4M −1− 3M 0 M M 0 0 −9M

s1 0 1 1 1 0 0 0 0 3

xa1 0 1 2 0 -1 0 1 0 4

xa2 0 ..3 1 0 0 -1 0 1 5

32

zbig-M x1 x2 s1 s2 s3 xa1 xa2 RHS

zbig-M 1 0 −1

3
− 5M

3
0 M −2

3
− M

3
0 2

3
+

4M

3

10

3
− 7M

3

s1 0 0 2/3 1 0 1/3 0 - 1/3 4/3

xa1 0 0 ..5/3 0 -1 1/3 1 -1/3 7/3

x1 0 1 1/3 0 0 -1/3 0 1/3 5/3

zbig-M x1 x2 s1 s2 s3 xa1 xa2 RHS

zbig-M 1 0 0 0 −1/5 −3/5
1

5
+M

3

5
+M 19/5

s1 0 0 0 1 2/5 ..1/5 -2/5 -1/5 2/5

x2 0 0 1 0 -3/5 1/5 3/5 -1/5 7/5

x1 0 1 0 0 1/5 -2/5 -1/5 2/5 6/5

zbig-M x1 x2 s1 s2 s3 xa1 xa2 RHS

zbig-M 1 0 0 3 1 0 −1 +M M 5

s3 0 0 0 5 2 1 -2 -1 2

x2 0 0 1 -1 -1 0 1 0 1

x1 0 1 0 2 1 0 -1 0 2

Since zj − cj ≥ 0 for each nonbasic variable, the last tableau gives the optimal

solution with the same sequences of points as in Figure 2.1.

Summary of the Initial Basic Feasible Solution

Before picking a basis B, a general linear programming problem needs to be trans-

formed into the following standard form:

Maximize cTx

subject to Ax = b

x ≥ 0.

(2.46)

where b ≥ 0 (if bi < 0, we can multiply the ith row by -1). An initial basis can be

picked as follows:

33

• if A contains an identity matrix, then an initial basis B= I and since b ≥ 0,

B−1b ≥ 0, then the simplex method can start.

• Otherwise, artificial variables are introduced with the associated identity

matrix and letting B=I, then we need to force these artificial variables to

zero by Two-Phase method or Big-M method.

2.4 Duality

Each linear programming problem called the primal has the associated problem

called the dual which maintains all coefficients of the primal problem with dif-

ferent objective function. The number of variables in the primal is equal to the

number of constraints in the dual and the number of variables in the dual is equal

to the number of constraints in the primal. Moreover, coefficients of objective

function in the primal will be on the right-hand side values of the dual and the

constraints matrix A of the primal will be transposed for the dual. The dual linear

programming problem possesses many important properties related to the original

primal linear programming problem. There are two important forms of duality:

the canonical form and the standard form.

Canonical Form of Duality

Suppose that the primal linear programming problem is given in the canonical

form:
Maximize cTx

subject to Ax ≤ b

x ≥ 0.

(2.47)

Then the dual linear programming problem is defined by:

Minimize bTw

subject to ATw ≥ c

w ≥ 0.

(2.48)

Standard Form of Duality

34

The primal linear programming problem in the standard form is given below:

Minimize cTx

subject to Ax = b

x ≥ 0.

(2.49)

Then the dual linear programming problem is defined by:

Maximize bTw

subject to ATw ≤ c

w unrestricted.

(2.50)

In practice, many linear programming problems contain some constraints of

the “≤” type, “≥” type or “=” type. Additionally, variables may be “≤ 0,” “≥ 0,”

or “unrestricted.” From table 1.2, we can convert the primal problem to the dual

problem or use the transformation between primal and dual problem as below:

Table 2.1: Relationships Between Primal and Dual Problems
Maximization Problem Minimization Problem

Variables

≥ 0 ⇐⇒ ≥

≤ 0 ⇐⇒ ≤ Constraints

Unrestricted ⇐⇒ =

Constraints

≥ ⇐⇒ ≤ 0

≤ ⇐⇒ ≥ 0 Variables

= ⇐⇒ Unrestricted

Note that there is exactly one dual variable for each primal constraint and

exactly one dual constraint for each primary variable.

Example 2.21. Consider the following linear programming problem:

Maximize 2x1 − 3x2 + x3

subject to − 2x1 + x2 + 5x3 ≤ 3

3x1 + 6x2 − x3 ≥ 7

− x1 + 2x2 + 4x3 = −10

x1 ≥ 0, x2 ≤ 0, x3 unrestricted.

(2.51)

35

Then, the dual problem can be written as below:

Minimize 3w1 + 7w2 − 10w3

subject to − 2w1 + 3w2 − w3 ≥ 2

w1 + 6w2 + 2w3 ≤ −3

5w1 − w2 + 4w3 = 1

w1 ≥ 0, w2 ≤ 0, w3 unrestricted.

(2.52)

Karush-Kuhn-Tucker (KKT) Optimality Conditions

The primal linear programming problem in the standard form is given below:

(P): Maximize cTx

subject to Ax = b

x ≥ 0.

(2.53)

Then the dual linear programming problem can be written by:

(D): Minimize bTw

subject to ATw ≥ c
(2.54)

The decision variables w of the dual problem (2.54) are unrestricted in sign. The

optimality conditions for a linear programming problem state that a necessary and

sufficient condition for x∗ to be the optimal solution is that there exists a vector

w∗ such that

1. Ax∗ = b,x∗ ≥ 0,

2. ATw∗ ≥ c,

3. w∗T(Ax∗ − b) = 0,

x∗T(ATw∗ − c) = 0.

(2.55)

Condition 1 requires that the optimal solution x∗ must be feasible to the primal

problem while condition 2 requires that the optimal solution w∗ must be feasible

to the dual problem. From condition 3 called complimentary slackness, we find

that w∗TAx∗ = w∗Tb and x∗TATw∗ = x∗Tc, that is cTx∗ = bTw∗, the optimal

objective values of the primal problem is equal to the optimal objective value of

the dual problem.

36

The Fundamental Theorem of Duality

Theorem 2.22. With regard to the primal and dual linear programming problems,

exactly one of the following statements is true:

(i) Both possess optimal solutions x∗ and w∗ with cTx∗ = bTw∗.

(ii) One problem has an unbounded optimal objective value, in which case another

problem must be infeasible.

(iii) Both problems are infeasible.

From (ii) and (iii) of this theorem, if one problem is unbounded then another

problem must be infeasible. While one problem is infeasible, another problem can

be unbounded or infeasible.

2.5 The Dual Simplex Method

The dual simplex method is a method which solves a dual linear programming

problem by using the primal simplex tableau directly. Consider a primal problem

(2.53) at any basic feasible solution, it can be written in the following tableau:

z xB xN RHS

z 1 0 cT
BB−1N − cT

N cT
BB−1b

xB 0 I B−1N B−1b

The tableau shows the primal feasible solution if B−1b ≥ 0 for i = 1, 2, ...,m.

If zj − cj ≥ 0 for all j = 1, 2, ..., n, then the tableau is optimal. Consider the row

zero, zj − cj = cT
BB−1A:j − cj for all j = 1, 2, ..., n. Define wT = cT

BB−1. Then,

we have

zj − cj = cT
BB−1A:j − cj = wTA:j − cj. (2.56)

At the optimal tableau, we have zj − cj ≥ 0 for all j = 1, 2, ..., n that is

wTA:j − cj ≥ 0 for all j = 1, 2, ..., n which implies that wTA ≥ cT or ATw ≥ c.

Therefore, wT = cT
BB−1 is a dual feasible point.

37

Lemma 2.23. At optimality of the primal maximization problem in the canonical

form(that is, zj − cj ≥ 0 for all j), w∗ = cT
b B−1 is an optimal solution to the dual

problem. Furthermore, w∗
i = −(zn+i − cn+i) = −zn+i for i = 1, 2, ...,m.

Consider the objective value, z = cT
BB−1b = wTb, that is, the primal objective

value and the dual objective value are equal. By KKT conditions, this primal basic

feasible solution and this dual basic feasible solution are optimal to the primal and

dual problem, respectively.

Similarly, if there is zj − cj < 0 for some j which implies that there is wTA:j −

cj < 0, this dual point is infeasible. The primal simplex method then performs

until zj − cj ≥ 0 or wTA:j − cj ≥ 0 for all j = 1, 2, ..., n, that is, it will perform

until the dual solution is feasible.

For the dual simplex method, it starts when the dual is feasible that is zj−cj ≥

0 for all j = 1, 2, ..., n while there exists B−1bi < 0 for some i ∈ 1, 2, ...,m, that is

the primal is infeasible. The dual simplex method is useful when the dual feasible

point is found easier than the primal feasible point. On the other hand, some new

constraints are added to the optimal tableau. These constraints may be violated

by the current optimal solution which cause the infeasibility of primal then the

dual simplex can handle this problem. So the dual simplex method is summarized

as follows:

Summary of the Dual Simplex Method (Maximization Problem)

INITIALIZATION STEP: Find a basis B of the primal such that zj − cj =

cT
BB−1A:j − cj ≥ 0 for all j.

MAIN STEP:

(i) If b̄ = B−1b ≥ 0, then stop; the current solution is optimal. Otherwise,

select a pivot row r with b̄r < 0;

b̄r = min
1≤i≤m

{b̄i}. (2.57)

(ii) If yrk ≥ 0 for all j, then stop; the dual is unbounded and the primal is

infeasible. The optimal solution is the current basic feasible solution.

38

Otherwise, select the pivot column k by the following minimum ratio test:

zk − ck
|yrk|

= min
1≤j≤n

{
zj − cj
|yjk|

| yjk < 0

}
. (2.58)

(iii) Pivot at yrk and repeat the MAIN STEP.

Example 2.24. Consider the following problem:

Maximize − x1 − 3x2 − 2x3

subject to 1x1 − 2x2 + x3 ≤ −2

− 3x1 + 3x2 − 2x3 ≤ −3

x1, x2, x3 ≥ 0

(2.59)

Solution. Before starting the simplex algorithm, the problem must be in the

standard form. By adding slack variables, we get

Maximize − x1 − 3x2 − 2x3

subject to 1x1 − 2x2 + x3 + s1 = −2

− 3x1 + 3x2 − 2x3 + s2 = −3

x1, x2, x3, s1, s2 ≥ 0

(2.60)

Put it in the initial tableau, then

z x1 x2 x3 s1 s2 RHS

z 1 1 3 2 0 0 0

s1 0 1 -2 1 1 0 -2

s2 0 ..-3 3 -2 0 1 -3

With this basis, the primal is infeasible while the dual is feasible. Applying the

dual simplex method, select a pivot row r with b̄r < 0, we get b̄2 = min{b̄1, b̄2} =

min{−2,−3}, and the minimum ratio test is computed with y2j < 0 for all j ∈

{1, 2, ..., n} and we get 1

3
= min{1

3
,
2

2
}. Then, we pivot at y21

z x1 x2 x3 s1 s2 RHS

z 1 0 4 4/3 0 1/3 -1

s1 0 0 ..-1 1/3 1 1/3 -3

x1 0 1 -1 2/3 0 -1/3 1

39

In a similar fashion, we pivot at y12 then we get,

z x1 x2 x3 s1 s2 RHS

z 1 0 0 8/3 4 5/3 -13

x2 0 0 1 -1/3 -1 -1/3 3

x1 0 1 0 1/3 -1 -2/3 4

Since b̄ ≥ 0 and zj − cj ≥ 0 for all j, the optimal solution is found with

(x∗
1, x

∗
2, x

∗
3, s

∗
1, s

∗
2) = (4, 3, 0, 0, 0). Moreover, the optimal solution of the dual is

found with (w∗
1, w

∗
2) = (−4,−5/3) .

2.6 Sensitivity Analysis

Suppose a linear programming problem is solved with the optimal tableau. If

some coefficients are changed, we can determine the effect on the new change with

respect to the current optimal solution without resolving the problem from the

beginning. In this dissertation, the following variations in the problem will be

applied in our algorithm.

• Change in the cost vector c.

• Addition of a new constraint.

Change in the Cost Vector

Given the optimal basic feasible solution, if some objective coefficients are

changed, the effect of this change will occur in the cost row on the final tableau,

that is, the dual problem may be infeasible.

In our algorithm, the objective cost will be changed from ck to c′k for some k

which xk is a nonbasic variable. So cB is not affected, and zj = cT
BB−1A:j is not

changed for all j ∈ N. Since the current basic feasible solution is the optimal

solution of the original problem, zk − ck ≥ 0. We would like to know the sign of

zk − c′k. We can calculate zk − c′k by

zk − c′k = zk − ck + ck − c′k = (zk − ck) + (ck − c′k) (2.61)

40

That is, it can compute easily by adding ck − c′k to the known value zk − ck. If

zk − c′k ≥ 0, then the old solution is still optimal for the new problem. Otherwise,

the primal simplex method will be continued by introducing xk into the basis and

performed the standard simplex method.

Adding a New Constraint

Consider the following optimal tableau with a basis B.

z xB xN RHS

z 1 0 cT
BB−1N − cT

N cT
BB−1b

xB 0 I B−1N B−1b

Suppose a new constraint am+1x ≥ bm+1 is added to the problem. Before

adding the new constraint to the tableau, am+1 is decomposed into [am+1B , am+1N]

and it is rewritten as

am+1BxB + am+1NxN + sn+1 = bm+1 (2.62)

where sn+1 is a nonnegative slack variable. Then, add it into the optimal tableau,

we get

z xB xN sn+1 RHS

z 1 0 cT
BB−1N − cT

N 0 cT
BB−1b

xB 0 I B−1N 0 B−1b

sn+1 0 am+1B am+1N 1 bm+1

We can eliminate am+1B by multiplying row 1 by am+1B and subtracting from

row 2 gives the following tableau:

z xB xN sn+1 RHS

z 1 0 cT
BB−1N − cT

N 0 cT
BB−1b

xB 0 I B−1N 0 B−1b

sn+1 0 0 am+1N − am+1BB−1N 1 bm+1 − am+1BB−1b

We can obtain the optimal solution by considering the sign of the right hand

side in the sn+1. If bm+1 − am+1BB−1b ≥ 0, then the current solution is optimal.

Otherwise, the dual simplex method is needed to find the optimal solution.

41

2.7 The Artificial-Variable-Free Techniques

2.7.1 The Criss-Cross Method

To solve a linear programming problem using the standard simplex method, it

requires a primal feasible solution to start the algorithm. Similarly, the dual sim-

plex method requires a dual feasible solution to start the algorithm. However, for

a linear programming problem, neither a primal nor a dual feasible basic solution

could be found easily. So the modified problem with artificial variables is set up

to start the algorithm. In 1969, Zionts [10] proposed an algorithm which needed

not maintain feasibility and no artificial variables required called the criss-cross

algorithm. The algorithm starts by partitioning the problem as follows:

The Partitioned Problem*:

Maximize −cT1 x1 + cT2 x2

subject to A11x1 + A12x2 ≤ −b1

A21x1 + A22x2 ≤ b2

x1, x2 ≥ 0,

(2.63)

The Primal Portion of the Problem:

Maximize −cT1 x1 + cT2 x2

subject to A21x1 + A22x2 ≤ b2

x1, x2 ≥ 0,

(2.64)

The Dual Portion of the Problem:

Maximize −cT1 x1

subject to A11x1 ≤ −b1

A21x1 ≤ b2

x1 ≥ 0,

(2.65)

where c1 and x1 are n1-dimensional column vectors, c2 and x2 are n2-dimensional

column vectors, b1 and b2 are m1and m2-dimensional column vectors, respectively,

A11, A12, A21 and A22 are m1 × n1,m1 × n2,m2 × n1 and m2 × n2 matrix; m1

42

is the number of primal infeasibilities, n2 is the number of dual infeasibilities;

m = m1 + m2, n = n1 + n2; b2 and c2 are non-positive; b1 and c1 are strictly

positive.

The original problem is partitioned to a primal feasible problem as the problem

(2.64) and a dual feasible problem as (2.65). Then, the dual portion of problem

is considered, for pivoting selection, dual infeasible constraints are ignored for a

dual iteration, but the entire problem is performed for each pivoting. Then, it

alternates to consider the primal portion of problem and ignores primal infeasible

constraints, then performs the pivoting on the entire problem. The algorithm

performs alternating during primal and dual iterations until a primal or dual

feasible solution is obtained. Only primal or dual iterations are performed to

reach an optimal solution.

Example 2.25. Consider the following problem:

Maximize 3x1 − 4x2

subject to − x1 − 2x2 ≤ −2

− 3x1 − x2 ≤ −4

x1 − x2 ≤ 1

x1 + x2 ≤ 3

x1, x2 ≥ 0.

(2.66)

The primal portion of the problem can be expressed as follows:

Maximize 3x1 − 4x2

subject to x1 − x2 ≤ 1

x1 + x2 ≤ 3

x1, x2 ≥ 0.

(2.67)

Then, the dual portion of the problem can be written as follows:

43

Maximize − 4x2

subject to − 2x2 ≤ −2

− x2 ≤ −4

− x2 ≤ 1

x2 ≤ 3

x2 ≥ 0.

(2.68)

However, since the entire problem will be performed for each pivoting, it will be

put to the following tableau.

z x1 x2 s1 s2 s3 s4 RHS

z 1 -3 4 0 0 0 0 0

s1 0 -1 -2 1 0 0 0 -2

s2 0 -3 ..-1 0 1 0 0 -4

s3 0 1 -1 0 0 1 0 1

s4 0 1 1 0 0 0 1 3

Start with a dual iteration by ignoring the column x1. So s2 leaves the basis

and x2 enters the basis. Then, we get

z x1 x2 s1 s2 s3 s4 RHS

z 1 -15 0 0 4 0 0 -16

s1 0 ..5 0 1 -2 0 0 6

x2 0 3 1 0 -1 0 0 4

s3 0 4 0 0 -1 1 0 5

s4 0 -2 0 0 1 0 1 -1

Then, the primal iteration is alternated by ignoring row 4 which x1 enters the

basis and s1 leaves the basis. After pivoting, we get

44

z x1 x2 s1 s2 s3 s4 RHS

z 1 0 0 3 -2 0 0 2

x1 0 1 0 1/5 - 2/5 0 0 6/5

x2 0 0 1 - 3/5 1/5 0 0 2/5

s3 0 0 0 - 4/5 3/5 1 0 1/5

s4 0 0 0 2/5 1/5 0 1 7/5

Here, the primal is feasible, so we can perform the standard simplex method.

s3 leaves the basis and s2 enters the basis. Then, we get

z x1 x2 s1 s2 s3 s4 RHS

z 1 0 0 1/3 0 10/3 0 8/3

x1 0 1 0 - 1/3 0 2/3 0 4/3

x2 0 0 1 - 1/3 0 - 1/3 0 1/3

s2 0 0 0 -1 1/3 1 5/3 0 1/3

s3 0 0 0 2/3 0 - 1/3 1 4/3

The optimal solution is found, and the algorithm stops at the point (x∗
1, x

∗
2) =

(4/3, 1/3) with the optimal value z = 8/3.

Advantage of this method is no initial requirements as to whether a primal or

dual feasible solution is available. No artificial variables are required. Moreover,

the convergence of this method is proved. However, the criss-cross algorithm does

not have the polynomial time complexity and it is not efficient in practice.

2.7.2 Primal Perturbation Simplex Algorithm

In 2000, Pan [14] proposed the algorithm for solving a linear programming problem

without introducing artificial variables. If the initial basis was neither primal nor

dual feasible, then the cost of the objective function in primal will be perturbed

for the dual feasibility and the dual simplex method will be performed until the

dual solution is found. Then, the original cost of the objective function in primal

will be restored and the primal simplex will be performed.

45

Consider the following linear programming problem in the standard form:

Maximize cTx

subject to Ax = b

x ≥ 0.

(2.69)

where A ∈ Rm×n with rank(A) = k ≤ m < n,b ∈ Rm, c and x are n-dimensional

column vectors.

Let an initial basis

B = (A:j1 ,A:j2 , ...,A:jk), (2.70)

where A:ji is the column of A corresponding to the basic variable xi (i = 1, 2, ..., k).

Let JB be the set of indices of basic variables and J̄B be the remaining set by

J̄B = {1, 2, ..., n} − JB. (2.71)

Let B+ be the Moore - Penrose pseudoinverse [26, 27] of B and let cB be the

cost of the objective function corresponding to basic variables. Then, the following

partially revised simplex tableau will be used:

c̄ z̄

B+A b̄
(2.72)

where z̄, b̄ and c̄ are determined by

z̄ = cT
BB+b

c̄ = cT
BB+A − c

b̄ = B+b.

(2.73)

In the tableau (2.72), if both primal and dual are feasible, the following two

sets

I = {i | b̄i < 0, i = 1, ..., k}, (2.74)

J = {j | c̄j < 0, j ∈ J̄B}, (2.75)

are empty, and the optimal solution is found.

46

Suppose that the tableau (2.72) is neither primal nor dual feasible. c̄j, for all

j ∈ J , will be perturbed to some predetermined number δj > 0, then the tableau

(2.72) is turned into the following:

c̄′ z̄

B+A b̄
(2.76)

where

c̄′j =

 δj, ∀j ∈ J,

c̄j, ∀j ∈ {1, 2, ..., n} − J.
(2.77)

The following perturbation of the problem (2.69) can be written as follows:

Maximize ĉTx

subject to Ax = b

x ≥ 0,

(2.78)

where

ĉ′j =

 cT
BB+A:j − δj, ∀j ∈ J,

cj, ∀j ∈ {1, 2, ..., n} − J.
(2.79)

Since cj > 0 for all j ∈ {1, 2, ..., n}, the tableau (2.76) is dual feasible. So the

dual simplex method can start to solve the problem (2.78).

Suppose the following tableau is the optimal tableau of the problem (2.78):

c̃′ z̃′

B̃+A b̃
(2.80)

It means that c̃′ ≥ 0, b̃ ≥ 0. Then, a feasible tableau for the original problem

(2.69) can be restored from (2.80) by replacing z̃ and c̃′ with

z̃ = cT
BB̃+b (2.81)

c̃′
j = cT

BB̃+A − c. (2.82)

If c̃ ≥ 0, the restored tableau is already optimal to the original problem (2.69).

Otherwise, it can be performed by the standard simplex method.

The following theorems and lemmas can guarantee that the solution from the

restored tableau (2.80) is an optimal or a feasible point of the original problem.

47

Lemma 2.26. Suppose that the problem (2.69) has an optimal solution which

is also optimal to (2.78). If any optimal tableau (2.80) of (2.78) is dually non-

degenerate, the tableau restored from (2.80) gives the optimal solution to the prob-

lem (2.69).

Lemma 2.27. Suppose that the problem (2.69) has an optimal basis which is also

optimal to (2.78). If any optimal tableau (2.80) of (2.78) is primally and dually

non-degenerate, the tableau restored from the (2.80) is optimal to (2.69).

Lemma 2.28. Let B∗ be an optimal basis of the original problem (2.69) and let

J ∩ JB be empty. Then, B∗ is also and optimal basis for the problem (2.78).

Theorem 2.29. Under the same assumption of Lemma 2.28, the tableau restored

from (2.80) gives the optimal solution to the original problem if (2.80) is dually

non-degenerate, and even the optimal tableau of it if, in addition, (2.80) is also

primally non-degenerate.

Theorem 2.30. Under the same assumption of Lemma 2.28, the tableau restored

from (2.80) gives an optimal solution to the original program (2.69) if only those

components of the relative cost row of (2.72) are changed which correspond to

non-basic variables of (2.80), i.e., J ∩ JB is empty.

Primal Perturbation Simplex Algorithm

The algorithm is separated into two Phases: the dual Phase-1 consists of Steps 2

through 8, the primal Phase-2 consist of Steps 8 through 14. Symbols ia and ic

are defined as follows:

ia = 1 or 2: proceeding with Phase-1 or Phase-2;

ic = 0 or 1: proceeding with relative price row unchanged or changed.

Algorithm A. Let B+ ∈ Rk×m be the Moore-Penrose pseudoinverse of an initial

basis. Given constants δj = 10−6, j = 1, ..., n, and a tolerance ϵ = 10−6.

Step 1. Set ia = 1 and ic = 0.

Step 2. Compute z̄, c̄ and b̄ by (2.73).

48

Step 3. If the index set, define by (2.75), is nonempty, set c̄j = δj, j ∈ J,

and ic = 1.

Step 4. Determine the row index r such that

b̄r = min{b̄i | i = 1, ..., k} < 0. (2.83)

Step 5. If b̄r ≥ −ϵ, then:

(a) stop if ic = 0;

(b) restore z̄ and c̄ by (2.73);

(c) set ia = 2, and then go to Step 10.

Step 6. Stop if index set J ′, defined by

J ′ = {j | B+(A:j)r < 0, j ∈ J̄B} (2.84)

is empty.

Step 7. Determine the column index s by

c̄′s/(B+A:s)r = max{c̄′j/(B+A:j)r, j ∈ J ′}. (2.85)

Step 8. Update entire tableau.

Step 9. Go to Step 4 if ia = 1.

Step 10. Determine s such that

c̄s = min{c̄j | j ∈ J̄B} (2.86)

where J̄B defined as (2.71).

Step 11. Stop if c̄s ≥ −ϵ.

Step 12. Stop if the row index set

I ′ = {i | (B+A:s)i > 0, i = 1, ..., k} (2.87)

is empty.

Step 13. Determine r such that

b̄′r/(B+A:s)r = max{b̄′i/(B+A:s)i, i ∈ I ′}. (2.88)

49

Step 14. Go to Step 8.

Based on properties of the dual and primal pivoting rules, the following theorem

can be stated as:

Theorem 2.31. Assuming dual non-degeneracy for Phase-1 and primal non-

degeneracy for Phase-2, Algorithm A terminates at either

(i) Step 5(a) or 11, with the optimal solution of (2.69) reached; or

(ii) Step 6, indicating infeasibility of the problem; or

(iii) Step 12, indicating upper unboundedness of the problem.

The author showed the efficiency of the algorithm by computational results of

small problems.

Advantages of this method is that no artificial variables are required. Moreover,

if we can choose the initial basis which closes to the optimal basis, we may reduce

the computational time to solve the problem. However, in this research, the

appropriate initial basis was not suggested and computational results were shown

to be superior for small problems.

2.7.3 Big-M Free Solution Algorithm

In 2006, Arsham [15, 16] presented the new solution algorithm for solving a gen-

eral linear programming problem without using artificial variables by relaxing

constraints. The algorithm starts with the following linear programming problem:

Maximize cTx

subject to Ax ≤ a

Bx ≥ b

x ≥ 0,

(2.89)

where b ≥ 0 and a > 0, A and B are the respective matrices of constraint

coefficients, a and b are the corresponding RHS vectors (all with appropriate

dimensions). If any linear programming problem is not in this form, we can convert

50

it according to the problem manipulation in Chapter I. Then, the algorithm can

be summarized as follows:

Big-M Free Solution Algorithm

Phase I Relax the greater-than (≥) constraints and solve the relaxed prob-

lem by the standard simplex at the origin point.

Phase II If the solution satisfies all relaxed constraints. Then stop. Oth-

erwise, if the relaxed problem is unbounded, then the optimal solution

is modified for dual feasibility and the most “violated” constraint is

appended into the tableau and the dual simplex is used to restore fea-

sibility.

Phase III Restore the original objective function (if needed). Then, the

standard simplex is used until the solution is found.

Some numerical examples illustrate the efficiency of the big-M free solution

algorithm for small problems.

Example 2.32. Consider the following problem:

Maximize 3x1 + x2 − 4x3

subject to x1 + x2 − x3 = 1

x2 ≥ 2

x1, x2 ≥ 0.

(2.90)

Since the problem (2.90) is not in form of the system (2.89), we need to convert

it as follows:

Maximize 3x1 + x2 − 4x3

subject to x1 + x2 − x3 ≤ 1

x1 + x2 − x3 ≥ 1

x2 ≥ 2

x1 x2 ≥ 0.

(2.91)

Phase I, two of ≥ constraints are relaxed as follows:

51

Maximize 3x1 + x2 − 4x3

subject to x1 + x2 − x3 ≤ 1

x1 x2 ≥ 0.

(2.92)

The simplex algorithm can start by adding a slack variable as the following

tableau:

z x1 x2 x3 s1 RHS

z 1 -3 -1 4 0 0

s1 0 ..1 1 -1 1 1

z x1 x2 x3 s1 RHS

z 1 0 2 1 3 3

x1 0 1 1 -1 1 1

The optimal solution is (x1, x2, x3) = (1, 0, 0). This solution is violated the

constraint x2 ≥ 2, so this constraint is appended to the tableau as follows:

z x1 x2 x3 s1 s2 RHS

z 1 0 2 1 3 0 3

x1 0 1 1 -1 1 0 1

s2 0 0 ..-1 0 0 1 -2

Perform the dual simplex by entering x2 into the basis and s2 leaves the basis.

After pivoting, we have

z x1 x2 x3 s1 s2 RHS

z 1 0 0 1 3 2 -1

x1 0 1 0 ..-1 1 1 -1

x2 0 0 1 0 0 -1 2

Enter x3 into the basis and x1 leaves the basis as follows:

52

z x1 x2 x3 s1 s2 RHS

z 1 1 0 0 4 3 -2

x3 0 -1 0 1 -1 -1 1

x2 0 0 1 0 0 -1 2

The solution (x1, x2, x3) = (0, 2, 1) satisfies all constraints, so this solution is

the optimal solution of the original problem.

The strength of this algorithm is that no artificial variables are required and

it deals with a small fraction of the original constraints.

However, Arsham’s paper showed only small examples and lacked a compu-

tational result. Moreover, if all constraints which form the optimal solution are

“≥” constraints, they will be relaxed. So it will converge very slowly since the

algorithm wastes time to solve the relaxed problem which far from the solution.

This is the obvious weakness of that algorithm. Moreover, if there are no “≤”

constraints, the original positive costs are changed to zero for the dual feasibility

and performed the dual simplex which converges slowly.

2.7.4 The Cosine Simplex Method

The simplex algorithm without using artificial variables which is called the Cosine

Simplex Method was repeatedly proposed in the same year by Corley et. al. [17].

It is similar to Big-M free solution algorithm by Arsham which solved a sequence

of relaxed linear programming problems until the optimal solution of the original

problem was found. They used the cosine criterion to select the constraint. The

algorithm starts by considering the following linear programming problem:

Maximize cTx

subject to Ax ≤ b

x ≥ 0.

(2.93)

where x and c are n-dimensional vectors, A is an m × n matrix and b is

an m-dimensional vector. The problem (2.93) is assumed that it has an optimal

53

solution.

Denote ai the row i of the matrix A of the problem (2.93), so constraint i is

written as follows:

aix ≤ bi, i = 1, ...,m. (2.94)

To guarantee that the problem (2.93) has the optimal solution, a constraint

r in (2.94) is assumed for which arj > 0, j = l, ..., n and br > 0. Therefore, the

problem is bounded. Then, the initial relaxed problem can be written as below:

Maximize cTx

subject to arx ≤ br

x ≥ 0.

(2.95)

Obviously, this problem has the optimal solution. Then, define

cos θi =
ai

T · c
∥ai∥∥c∥ (2.96)

as the cosine of the angle θi between the normal vectors ai for constraint i and

c for the objective function. If this constraint is a part of the current relaxed

problem, then it is called a constraint operative. Otherwise, it is called a constraint

inoperative. The algorithm can be stated as follows:

The Cosine Simplex Algorithm

Step 0 Compute cos θi =
ai

T · c
∥ai∥∥c∥ , i = 1, ...,m, i ̸= r and order the con-

straints according to decrease cos θi, where ties are broken arbitrarily.

Step 1 Solve the problem (2.95) to obtain x1. Set k = 1.

Step 2 Check the inoperative constraints in decreasing order of cos θi. If

the first one is violated by xk, then go to Step 3. Otherwise, xk is the

optimal solution of the problem (2.93). Then, stop.

step 3 Set k = k + 1. Append the violated constraint to the final tableau

of relaxed problem k to obtain relaxed problem k + 1. Apply the dual

simplex algorithm to obtain a solution xk. Go to Step 2.

54

Small problems were shown the efficiency of the cosine simplex algorithm as

the following example.

Example 2.33. Consider the problem

Maximize 4x1 + 5x2 + 9x3 + 11x4

subject to 3x1 + 5x2 + 10x3 + 15x4 ≤ 100

x1 + x2 + x3 + x4 ≤ 15

7x1 + 5x2 + 3x3 + 2x4 ≤ 120

x1, x2, x3, x4 ≥ 0.

(2.97)

The following table shows the values of cos θi up to two decimal digits in Step 0.

Constraint i cos θi

1 0.99

2 0.93

3 0.70

Each of these constraints bounds the problem. Since cos θ1 which associated with

constraint 1 is the maximum, the first relaxed problem to be solved is

Maximize 4x1 + 5x2 + 9x3 + 11x4

subject to 3x1 + 5x2 + 10x3 + 15x4 ≤ 100

x1, x2, x3, x4 ≥ 0.

(2.98)

Solving this relaxed problem gives the following sequences of tableaus.

z x1 x2 x3 x4 s1 RHS

z 1 -4 -5 -9 -11 0 0

s1 0 3 5 10 ..15 1 100

z x1 x2 x3 x4 s1 RHS

z 1 -9/5 -4/3 -5/3 0 3/4 220/3

x4 0 ..1/5 1/3 2/3 1 0 20/3

55

z x1 x2 x3 x4 s1 RHS

z 1 0 5/3 13/3 9 4/3 400/3

x1 0 1 5/3 10/3 5 1/3 100/3

The solution of the relaxed problem is obtained at the second iteration with

x1 = [100/3, 0, 0, 0]. Check this point with the inoperative constraint 2 and 3.

The constraint 2 is violated by x1, then it is appended to the last tableau and is

solved by the dual simplex method. So we get the following sequences of tableaus:

z x1 x2 x3 x4 s1 s2 RHS

z 1 0 5/3 13/3 9 4/3 0 400/3

x1 0 1 5/3 10/3 5 1/3 0 100/3

s2 0 0 -2/3 ..-7/3 -4 - 1/3 1 -55/3

z x1 x2 x3 x4 s1 s2 RHS

z 1 0 3/7 0 11/7 5/7 13/7 695/7

x1 0 1 5/7 0 - 5/7 - 1/7 1 3/7 50/7

x3 0 0 2/7 1 12/7 1/7 - 3/7 55/7

The optimal solution is found with x2 = [50/7, 0, 55/7, 0]. Check this point

with the inoperative constraint 3. The constraint 3 is not violated by x2. So this

solution is optimal to the original problem.

The standard simplex algorithm solves this problem with four tableaus includ-

ing the initial one.

The computational efficiency of their algorithm was compared with the stan-

dard simplex method by counting the constraints which is operated from the first

relaxed problem until the optimal solution is found. Therefore, the computation

of the cosine simplex is

C =

p∑
k=1

(# of tableaus with k constraints) ∗ k (2.99)

56

where p is the number of constraints in the optimal tableau. For the standard

simplex, they computed

S = (# of tableaus required by the standard simplex for a solution)∗m. (2.100)

Therefore, in the example 2.33, C = 6, while S = 12.

The strength of this algorithm is, at each iteration, the cosine algorithm deal

with a small fraction of the original constraints in the simplex computation. In

addition, relatively few constraints by the cosine criterion may active at optimality.

Moreover, artificial variables are not needed to start the algorithm.

However, the efficiency of this research were shown by small examples and

lacked a computational result. In addition, this algorithm could deal with only a

feasible and bounded linear programming problem.

According to literature reviews, some theorems are used in our proof of our

theorem. Moreover, the simplex method, the dual simplex method and sensitivity

analysis will be applied in our algorithms. Efficiency of our algorithms is shown

by comparing with Two-Phase method and Arsham’s method.

CHAPTER III

ARTIFICIAL-VARIABLE-FREE SIMPLEX METHOD

In this chapter, the algorithm for solving a linear programming problem by the

simplex method without using artificial variables is proposed. Our algorithm

consists of four important parts, i.e., the classification of constraints, the non-acute

constraint relaxation problem (NAR), the transformed NAR problem and the

reinsertion of relaxed constraints. These four parts are composed to one algorithm

called Simplex method based on Non-Acute constraint Relaxation (SNAR) which

is proposed to solve either a primal or a dual linear programming problem.

3.1 Preliminaries

Consider a linear programming problem in the following form:

Maximize cTx

subject to Ax ≤ b
(3.1)

where c is a nonzero vector and x is an n-dimensional column vector, A is an m×n

matrix, b is an m-dimensional column vector. Recall the problem manipulation,

since any linear programming problem can be converted from one form to another

form, all linear programming problems can be converted to this form.

3.1.1 The Classification of Constraints

Since we know that a constraint making the acute angle between its gradient vector

to the gradient vector of the objective function may form the extreme point close to

the optimal solution, we will separate constraints by their angles between gradient

vectors and the gradient vector of the objective function into two collections, i.e.,

the collection of acute constraints and the collection of non-acute constraints.

58

Let Ai: be the gradient vector of the constraint i and c be the gradient vector

of the objective function. Let θi be the angle between Ai: and c which can be

computed by

θi = arccos
Ai: · c

∥Ai:∥∥c∥ . (3.2)

Since all constraints of the problem (3.1) are in the form “≤”, the feasible

region is on opposite side of the direction of gradient vectors of constraints, see

figure 3.1.

c

:Ai

c

:A j

i

j

c

Figure 3.1: Angle between gradient vectors of constraints and the gradient vector

of the objective function in R2

The computation of arccosines appearing in the computation of angles can be

avoided by using their cosine values instead. For positive cosine, the constraint

will be put in the collection of acute constraints and for negative or zero cosine, the

constraint will be put in the collection of non-acute constraints. Since ∥Ai:∥∥c∥ >

0, we can use the sign of Ai: · c value to separate the constraint i. Let

P = {i | Ai: · c > 0} and N = {j | Aj: · c ≤ 0} (3.3)

where |P | = m1, |N | = m2 and m1 + m2 = m, so P is the collection of index of

59

acute constraints and N is the collection of index of non-acute constraints.

3.1.2 The Non-Acute Constraint Relaxation Problem

After we separate two collections of constraints, we will relax the original problem

by removing constraints from N and it is called the non-acute constraint relaxation

problem (NAR). So NAR can be written as follows:

Maximize cTx

subject to APx ≤ bP

(3.4)

where AP is an m1 × n submatrix of constraints corresponding to the collection

P , bP is m1-dimensional column vector and APc > 0. The number of constraints

of the problem (3.4) is less than or equal to the original problem (3.1) and we can

show that the problem (3.4) is always feasible.

(a) The original problem. (b) NAR.

Figure 3.2: Example of the original problem and NAR

Theorem 3.1. Let P− = {i ∈ P | bi < 0} and P+ = {i ∈ P | bi ≥ 0}. If P− ̸= ∅

and λ = max
i∈P−

{ bi
−Ai: · c}. Then x0 = −λc is a feasible point of the problem (3.4).

Proof. Suppose P− ̸= ∅. Then there is bi < 0 where i ∈ P . Consider

λ = max
i∈P−

{ bi
−Ai: · c}. (3.5)

60

Since bi < 0 and Ai: · c > 0 for all i ∈ P−, −Ai: · c < 0, then λ > 0. For all

k ∈ P−, λ ≥ bk
−Ak: · c . Therefore −λAk: · c ≤ bk .

Choose x0 = −λc, we get Ak:x0 ≤ bk for all k ∈ P−. For all l ∈ P+, −Al:·c < 0

and bl ≥ 0. So Al:x0 = −λAl: · c < 0 ≤ bl for all l ∈ P+.

Then AP :x0 ≤ bP , i.e., x0 is a feasible point.

Corollary 3.2. If P ̸= ∅ then the problem (3.4) is always feasible.

Proof. If bP ≥ 0 then x0 = 0 is a feasible point. Otherwise, by theorem 3.1,

x0 = −λc is always a feasible point.

If P = ∅, the original problem (3.1) can be rewritten as

Maximize cTx

subject to ANx ≤ bN

(3.6)

where AN is an m2×n submatrix of the constraints corresponding to the collection

N , bN is m2-dimensional column vector and ANc ≤ 0. If ANc < 0, then we can

show that the original problem has an unbounded optimal solution.

Theorem 3.3. Let c ̸= 0, Ne = {i ∈ N | Ai:·c = 0} andNl = {i ∈ N | Ai:·c < 0}.

If P = ∅ and Ne = ∅ then the problem (3.1) is unbounded.

Proof. Assume P = ∅ and Ne = ∅, we get N = Nl and Ac = ANc < 0. Let

X = {x | ANx ≤ bN}. Show that X is not empty.

Case 1: If bN ≥ 0. Then x0 = 0 is a feasible point.

Case 2: If there is bi < 0 where i ∈ N . Let N− = {i ∈ N | bi < 0} ̸= ∅, N+ =

{i ∈ N | bi ≥ 0} and

λ = max
i∈N−

{ bi
Ai: · c}. (3.7)

Since bi < 0 and Ai: · c < 0, λ > 0. For all k ∈ N−, λ ≥ bk
−Ak: · c .

61

By choosing x0 = λc, we get Ak:x0 = λAk:c ≤ bk. For all l ∈ N+, Al:x0 =

λAl: ·c ≤ 0 ≤ bl. Then AN :x0 ≤ bN , i.e., x0 is a feasible point. So X is not empty.

We will show that c is a recession direction [25]. For all α > 0 and x0+αc ∈ X,

AN(x0+αc) = ANx0+αANc ≤ ANx0 ≤ bN . Therefore c is a recession direction

of X.

For a nonzero vector c, cT(x0 + αc) = cTx0 + αcTc. Since cTc > 0, cTx0 +

αcTc → ∞ as α → ∞. Therefore the problem (3.1) is unbounded.

Consequently, if all constraints make obtuse angles between its gradient vector

to the gradient vector of the objective function, then the problem is unbounded.

1:A

2:A

8:A

7:A

5:A

4:A3:A0

2x

1x

c

Figure 3.3: Example of the unbounded problem

It should be noted that, Pan proposed the similar theorem [14] to theorem 3.3

where c > 0.

3.1.3 The Transformed NAR Problem

After non-acute constraints are relaxed, we will use the simplex algorithm to solve

NAR (3.4). From corollary 3.2, NAR is always feasible. If bP ≥ 0 then x0 = 0 is

a feasible point and we can start the simplex algorithm by adding slack variables.

Otherwise, x0 = −λc is a feasible point. We will relocate the problem so that 0

is the initial basic feasible solution using x′
= x − x0.

62

Maximize cTx
′
+ cTx0

subject to APx′ ≤ bP − APx0

(3.8)

Constraints of the problem (3.6) will be transformed also to

ANx′ ≤ bN − ANx0. So the transformed problem can be written as

Maximize cTx
′
+ cTx0

subject to Ax′ ≤ b − Ax0

(3.9)

This problem is called “the transformed NAR problem”. If the transformed

NAR problem is infeasible or unbounded then the original problem will be in-

feasible or unbounded, respectively. If the optimal solution of the transformed

problem (x′∗) is found then the optimal solution (x∗) of the original problem will

be found by computing x∗ = x′∗ + x0.

c

c

c
 c

c

1:A

2:A
c

8:A

7:A

6:A

5:A

4:A3:A0

2x

1x
optimal point

(a) Original problem.
c

c

c
 c

c

1:A

2:A
c

8:A

7:A

5:A

4:A3:A0

2x

1x
optimal point

(b) NAR.

c

c

c
 c

c

1:A

2:A
c

8:A

7:A

5:A

4:A3:A0

2x

1x
optimal point

0x c

2x

1x
0

(c) Transformed NAR problem.

Figure 3.4: Example of the original, NAR and transformed NAR problems

63

3.1.4 The Reinsertion of Relaxed Constraints

After transformed NAR problem was solved, relaxed constraints will be reinserted

to transformed NAR. Recall the sensitivity analysis, we can add a new constraint

to the optimal tableau and can analyse the effect on the problem case by case,

without having to resolve the problem from the beginning.

Consider the problem (3.8), x0 is a feasible point. So APx0 ≤ bP and bP −

APx0 ≥ 0. Then slack variables are added to transform inequality constraints to

equality constraints. So we have

Maximize cTx
′

+ cTx0

subject to APx′
+ s = bP − APx0

s ≥ 0

(3.10)

Then the simplex algorithm can start to solve the problem without using artificial

variables. However, if unrestricted variables exist, they will be transformed by

letting x′
= x+ − x− to get

Maximize cTx+ − cTx− + cTx0

subject to APx+ − APx− + s = bP − APx0

s,x+,x− ≥ 0

(3.11)

Let z = cTx+ − cTx− + cTx0. So the initial tableau of the problem (3.11) can

be shown as follow:

z x+ x− s RHS

z 1 −cT cT 0 cTx0

s 0 AP −AP Im1 b̂P = bP − APx0

where Im1 is an m1 × m1 identity matrix. Since the problem (3.10) is always

feasible, the solution can be one of two cases: optimal or unbounded solution.

64

The Optimal Solution Case

After we found the optimal solution of the problem (3.11), then we will add con-

straints from N into the problem (3.11). For the transformed problem, the right

hand side of N will be changed as b̂N = bN − ANx0. Then we add the slack sN
to the transformed problem as ANx+ − ANx− + sN = b̂N .

Let BP ∗ and NP ∗ are the optimal basis and the associated nonbasic matrix of

NAR (3.11), respectively. The corresponding tableau of the non-acute constraint

relaxation is as follows:

z xBP∗ xNP∗ RHS

z 1 0 cT
BP∗B−1

P ∗NP ∗ − cT
NP∗ cT

BP∗B−1
P ∗b̂P + cTx0

xBP∗ 0 Im1 B−1
P ∗NP ∗ B−1

P ∗b̂P

Let ÂN = [AN ,−AN]. The constraint ANx+ −ANx− + sN = b̂N is rewritten

by:

ANBP∗xBP∗ + ANNP∗xNP∗ + sN = b̂N (3.12)

where ÂN = [ANBP∗ ,ANNP∗] are rearranged by basic and nonbasic columns.

After adding constraints (3.12) into tableau, we get

z xBP∗ xNP∗ sN RHS

z 1 0 cT
BP∗B−1

P ∗NP ∗ − cT
NP∗ 0 cT

BP∗B−1
P ∗b̂P + cTx0

xBP∗ 0 Im1 B−1
P ∗NP ∗ 0 BP ∗

−1b̂P

sN 0 ANBP∗ ANNP∗ Im2 b̂N

where Im2 is an m2×m2 identity matrix. We can eliminate ANBP∗ by multiplying

row 1 by ANBP∗ and subtracting from the row 2 gives the following tableau:

z xBP∗ xNP∗ sN RHS

z 1 0 cT
BP∗B−1

P ∗NP ∗ − cT
NP∗ 0 cT

BP∗B−1
P ∗b̂P + cTx0

xB̂P∗ 0 Im1 B−1
P ∗NP ∗ 0 B−1

P ∗b̂P

sN 0 0 ANNP∗ − ANBP∗B−1
P ∗NP ∗ Im2 b̂N − ANBP∗B−1

P ∗b̂P

65

Since the optimal solution is found, the dual problem is feasible. We can obtain

the optimal solution by considering the feasibility of primal feasible after the non-

acute constraints are reinserted. That is considering the sign of the right hand

side in the sN . If b̂N − ANBP∗B−1
P ∗b̂P ≥ 0, then the current solution is optimal.

0

2x

1x

c

1:A

2:A optimal solution

3:A
2x

(a) NAR is optimal.

0

2x

1x

c

1:A

2:A

5:A
4:A

optimal solution

3:A

(b) Non-acute constraints are added.

Figure 3.5: Example of the optimal solution found from NAR

From figure 3.5b, after the non-acute constraints are reinserted, the optimal

solution from NAR satisfies all constraint, that is, primal is feasible. Therefore,

this optimal solution is the optimal solution of the original problem.

Otherwise, if b̂N − ANBP∗B−1
P ∗b̂P ̸≥ 0, that is, primal is infeasible, then the

dual simplex method is needed to find the optimal solution. Then we can conclude

that if we find the optimal solution by the dual simplex method using Dantzig’s

rule, the value of the right hand side in the optimal tableau is the optimal solution

of the transformed NAR problem. Otherwise, if the dual is unbounded, we can

conclude that the original problem is infeasible.

66

0

2x

1x

c

1:A

2:A optimal solution of NAR

3:A
2x

(a) NAR is optimal.

0

2x

1x

c

1:A

2:A

6:A

5:A
4:A

optimal solution

3:A

optimal solution of NAR

(b) Non-acute constraints are added.

Figure 3.6: Example of the optimal solution from NAR is infeasible

From figure 3.6b, after non-acute constraints are reinserted, the optimal solu-

tion from NAR does not satisfy the sixth constraint, that is, primal is infeasible at

the sixth constraint. We will use the dual simplex method to move to the optimal

solution.

0

2x

1x

c

1:A

2:A optimal solution of NAR

3:A
2x

(a) NAR is optimal.

0

2x

1x

c

1:A

2:A optimal solution of NAR

3:A

4:A

(b) Non-acute constraints are added.

Figure 3.7: Example of the original problem is infeasible

From figure 3.7b, after non-acute constraints are reinserted, the optimal so-

lution from NAR does not satisfy the fourth constraint. We will use the dual

simplex method which can detect the primal infeasibility by the dual unbounded.

The Unbounded Case

Let BP be the basis and NP be the associated nonbasic matrix of NAR. The

corresponding tableau is as follows:

67

z xBP
xNP

RHS

z 1 0 cT
BP

B−1
P NP − cT

NP
cT

BP
B−1

P b̂P + cTx0

xBP
0 Im1 B−1

P NP B−1
P b̂P

The unbounded solution will occur when some components of cT
BP

B−1
P NP −cT

NP

are negative. If the non-acute constraint relaxation problem is unbounded, it

means that there is zj − cj < 0 and yj ≤ 0 where yT
j = [a′1j, a

′
2j, ..., a

′
m1j

]T =

B−1
P NP :j. We will find the solution of the transformed problem by adding each

constraint from N into the current relaxed tableau.

Let AT
l: = [alBP

, alNP
]T be the coefficient of the constraint l which is rearranged

by basic and nonbasic columns where l ∈ N . We will add the constraint alBP
xBP

+

alNP
xNP

+ sl = bl − Al:x0 into the tableau as follows:

z xBP
xNP

sl RHS

z 1 0 cT
BP

B−1
P NP − cT

NP
0 cT

BP
B−1

P b̂P + cTx0

xBP
0 Im1 B−1

P NP 0 B−1
P b̂P

sl 0 alBP
alNP

1 bl − Al:x0

We can eliminate alBP
by multiplying the second row by alBP

and subtracting

from the third row gives the following tableau:

z xBP
xNP

sl RHS

z 1 0 cT
BP

B−1
P NP − cT

NP
0 cT

BP
B−1

P b̂P + cTx0

xBP
0 Im1 B−1

P NP 0 B−1
P b̂P

sl 0 0 alNP
− alBP

B−1
P NP 1 b′l = (bl − Al:x0)− alBP

B−1
P b̂P

Let a′lj be the coefficient of the constraint l in column j after the elimination.

Then the solution can be in one of these two cases.

(i) If b′l ≥ 0, that is, the primal is still feasible, then we will consider the value

of a′lj.

• If a′lj > 0, we apply the primal simplex pivoting at a′lj.

• If a′lj ≤ 0, the transformed problem is unbounded.

68

0

2x

1x

c

1:A

2:A

(a) NAR is unbounded.

0

2x

1x

c

1:A

2:A

3:A

optimal solution

(b) Non-acute constraint is added.

Figure 3.8: Example of the original problem is optimal

From the figure 3.8b, the third constraint is valid and then we can pivot at

a3j.

0

2x

1x

c

1:A

2:A

(a) NAR is unbounded.

0

2x

1x

c

1:A

2:A

4:A3:A

(b) Non-acute constraints are added.

Figure 3.9: Example of the original problem is unbounded

From the figure 3.9b, after non-acute constraints were added, the primal is

still feasible and can not pivot at a3j and a4j. So the original problem is

unbounded.

(ii) If b′l < 0, then both primal and dual solutions are infeasible at the current

iteration because of zj − cj < 0. We use the technique from Pan [14]. Pan’s

69

method perturbs zj − cj < 0 to a positive value to obtain the dual feasible

and then perform the dual simplex. After the optimal solution is found, the

original zj − cj will be restored and the primal simplex is used. However, if

the dual problem is unbounded, then the original problem is infeasible.

0

2x

1x

c

1:A

2:A

(a) NAR is unbounded.

0

2x
c

1:A

2:A

1x

3:A

(b) The reinserted problem is infeasible.

2x

1x

c

1:A

2:A

0

optimal solution

3:A

(c) The reinserted problem is optimal.

0

2x
c

1:A

2:A

1x

3:A

(d) The reinserted problem is un-

bounded.

Figure 3.10: Some cases of the unbounded of NAR after adding

The Empty Set of P

If P ̸= ∅, then NAR will be solved and the solution can be as the above explana-

tion. On the other hands, if P = ∅ and Ne = ∅, then the problem is unbounded

as theorem (3.3).

70

In other cases, such as, if P = ∅, Nl ̸= ∅ and Ne ̸= ∅, then some possible

cases can occur as figure 3.11.

2:A

8:A

7:A

4:A3:A0

2x

1x

1:A

5:A

c

6:A

7:A

(a) The problem is unbounded.

2:A

8:A

7:A

3:A
0

2x

1x

1:A

5:A

7:A

4:A

6:A
c

(b) The problem is unbounded.

2:A

8:A

7:A

3:A
0

2x

1x

1:A

5:A

c

6:A

7:A

4:A

(c) The problem is unbounded.

2:A

8:A

7:A

3:A
0

2x

1x

1:A

5:A

c

6:A

7:A

4:A

(d) The problem is infeasible.

Figure 3.11: Some cases of P = ∅, Nl ̸= ∅ and Ne ̸= ∅ in R2

The solution can be either infeasible or unbounded. Therefore, we will relax

constraints from Ne and then the relaxed problem can be rewritten as follows:

Maximize cTx

subject to ANl
x ≤ bNl

(3.13)

71

1:A

2:A

8:A

7:A

5:A

4:A3:A0

2x

1x

c

Figure 3.12: Example of the Ne constraint relaxation for P = ∅ and Nl ̸= ∅

We can choose

x0 = λc where λ = max
i∈N−

{ bi
Ai: · c}. (3.14)

Then, the relaxed problem will be transformed as follows:

Maximize cTx′ + cTx0

subject to ANl
x′ ≤ bNl

− ANl
x′
0

(3.15)

The simplex can start by adding slack variables without using artificial variables

and this problem is unbounded by theorem 3.3. Then, the unbounded case will

be applied and constraints from Ne will be reinserted one by one.

In the last case, if P = ∅ and Nl = ∅, then some possible cases can occur as

in figure 3.13.

72

7:A

0

2x

1x

c

1:A

2:A

(a) The problem is infeasible.

0

2x

1x

c

1:A

2:A

(b) The problem is unbounded.

0

2x

1x

c

1:A

2:A

(c) The problem is unbounded.

0

2x

1x

c

1:A

2:A

(d) The problem is unbounded.

Figure 3.13: Some possible cases of P = ∅, Nl = ∅ and Ne ̸= ∅

Then, we will relax all constraints except the first constraint. We can pick

a feasible point by choosing one variable with its coefficient is nonzero and set

other variables equal to zero. Then the value of the selected variable is the right

hand side value divided by its coefficient. The relaxed problem will has a single

constraint as

Maximize cTx

subject to A1:x ≤ b1
(3.16)

73

We can choose

xT
0 = (0, ..., 0, xi, 0, ..., 0)

T where xi =
b1
a1i

, a1i ̸= 0. (3.17)

Therefore, the relaxed problem can be transformed as follows:

Maximize cTx′ + cTx0

subject to A1:x′ ≤ b1 − A1:x0

(3.18)

The simplex can start by adding slack variables without using an artificial variable

and our algorithm can proceed.

0

2x

1x

c

1:A

Figure 3.14: Example of the Ne constraint relaxation for P = ∅ and Nl = ∅

Summary of Our Algorithm

Accordingly, our algorithm starts from the classification of constraints then

non-acute constraints are relaxed. If the origin point of NAR is feasible, then the

simplex method will be applied. Otherwise, NAR will be transformed to the new

origin point which is identified by theorem 3.1. After that, non-acute constraints

will be reinserted to obtain the optimal solution of the original problem.

Since our algorithm solves the non-acute constraint relaxation problem with

74

the simplex algorithm, we will call our algorithm as “Simplex method based on

Non-Acute constraint Relaxation (SNAR)”.

3.2 SNAR

A general linear programming problem may not be in the form of the problem (3.1).

Then we will manipulate the problem to this form as the problem manipulation

table in Chapter I. SNAR can be summarized as the following flow chart:

Start

Classification

P

T

F

Solve the Transformed NAR

eN

Reinsert constraint
from N one by one

lN

T Unbounded

F

Optimal?
Reinsert all
non-acute
constraints

T F

T

{1}, {1}P N N

,l eP N N N F

Stop

Input A, b, c

Figure 3.15: Flow chart of SNAR

Each partial algorithm can be stated in detail below. Then, some examples

show the algorithm solving step by step.

75

Algorithm 1 Classification
1: P = ∅, P− = ∅, Ne = ∅, Nl = ∅, N−

l = ∅, δ = 10−6

2: for i = 1 → m do compute βi = Ai: · c

3: if βi > 0 then

4: Put i in P

5: if bi < 0 then

6: Put i in P−

7: end if

8: else

9: Put i in N

10: if β = 0 then

11: Put i in Ne

12: else

13: Put i in Nl

14: if bi < 0 then

15: Put i in N−
l

16: end if

17: end if

18: end if

19: end for

76

Algorithm 2 Transform NAR
20: if P ̸= ∅ then

21:

22: if P− = ∅ then

23: x0 = 0

24: else

25: x0 = −λc, where λ = max
i∈P−

{ bi
−Ai: · c}

26: end if

27: else

28: if P = ∅ and Ne = ∅ then

29: The problem is unbounded. Stop

30: else

31:

32: if Nl ̸= ∅ then

33:

34: if N−
l = ∅ then

35: x0 = 0

36: else

37: x0 = λc, where λ = max
i∈N−

l

{ bi
Ai: · c}, P = Nl, N = Ne.

38: end if

39: else

40: P = {1}, N = N − {1} and xi =
bi
a1i

, a1i ̸= 0, xj = 0,

41: j = 1, ..., n and j ̸= i.

42: end if

43: end if

44: end if

45: Compute b̂ = b − Ax0

77

Algorithm 3 Solve Transformed NAR
46: Solve the following problem:

Maximize cTx

subject to APx ≤ b̂P

Algorithm 4 Check Optimality
47: if zj − cj ≥ 0 for all j ∈ R then

48: go to Algorithm 5.

49: else

50: go to Algorithm 6.

51: end if

Algorithm 5 Optimal Case
52: if b̂N − ANBP∗B−1

P ∗b̂P ≥ 0 then

53: The current solution (x′∗) is the optimal solution and x∗ = x′∗ + x0 is the

optimal solution of the original problem.

54: else

55: Add [0, ANNP∗−ANBP∗B−1
P ∗NP ∗ , Im2 , b̂N−ANBP∗B−1

P ∗b̂P] into the current

tableau. Then perform the dual simplex algorithm.

56: if the dual optimal solution is found then

57: The current solution (x′∗) is the optimal solution and x∗ = x′∗ + x0 is

the optimal solution of the original problem.

58: else

59: The original problem is infeasible. Stop

60: end if

61: end if

78

Algorithm 6 Unbounded Case
62: for l ∈ N do

63: compute b′l = (bl − Al:x0) − alBP
B−1

P b̂P and add [0, alNP
− alBP

B−1
P NP ,

1, b′l] into the current tableau.

64: if b′l > 0 then

65:

66: if a′lj > 0 then

67: Apply the primal simplex pivoting at a′lj, N = N − l, P = P ∪ {l}

and perform primal simplex algorithm. Go to Algorithm 3.

68: else

69: The problem is unbounded.

70: end if

71: else

72: Replace all zj−cj < 0 where j ∈ JN by δ and perform the dual simplex.

73: if The optimal dual solution is found then

74: Restore the original zj − cj < 0 where j ∈ JN and perform the

primal simplex algorithm.

75: else

76: The original problem is infeasible. Then stop.

77: end if

78: end if

79: end for

80: if the optimal solution is found then

81: The current solution (x′∗) is the optimal solution and x∗ = x′∗ + x0 is the

optimal solution of the original problem. Then stop.

82: else

83: The original problem is unbounded. Then stop.

84: end if

79

Example 3.4. Consider the linear programming problem:

Maximize x1 + 2x2

subject to 2x1 + x2 ≥ 4

3x1 + 3x2 ≥ 9

x1 + 2x2 ≥ 4

−3x1 + x2 ≤ 6

x1 − 3x2 ≤ 6

2x1 − 3x2 ≤ 12

3x1 + 5x2 ≤ 30

x2 ≤ 5

x1 + x2 ≥ 2

4x1 + x2 ≥ 4

(3.19)

Solution. Since some constraints are ≥, we multiply the ≥ constraints by -1.

Then all constraints are ≤ as follows:

−2x1 − x2 ≤ −4

−3x1 − 3x2 ≤ −9

−x1 − 2x2 ≤ −4

−3x1 + x2 ≤ 6

x1 − 3x2 ≤ 6

2x1 − 3x2 ≤ 12

3x1 + 5x2 ≤ 30

x2 ≤ 5

−x1 − x2 ≤ −2

−4x1 − x2 ≤ −4

(3.20)

Then we compute Ai: · c

80

Constraint No. (i) Ai: Ai: · c

1 [−2,−1]T -4

2 [−3,−3]T -9

3 [−1,−2]T -5

4 [−3, 1]T -1

5 [1,−3]T -5

6 [2,−3]T -4

7 [3, 5]T 13

8 [0, 1]T 2

9 [−1,−1]T -3

10 [−4,−1]T -6

So P = {7, 8} and N = {1, 2, 3, 4, 5, 6, 9, 10}, then the non-acute constraint

relaxation is written as:

Maximize x1 + 2x2

subject to 3x1 + 5x2 ≤ 30

x2 ≤ 5

(3.21)

Since bP = [30, 5]T ≥ 0, x0 = 0 is a feasible point. Slack variables will be

added into the problem (3.21) to get

Maximize x1 + 2x2

subject to 3x1 + 5x2 + s1 = 30

x2 + s2 = 5

s1, s2 ≥ 0.

(3.22)

The relaxed problem is now written in the following standard form.

Maximize x1
+ − x1

− + 2x2
+ − 2x2

−

subject to 3x1
+ − 3x1

− + 5x2
+ − 5x2

− + s1 = 30

x2
+ − x2

− + s2 = 5

x1
+, x1

−, x2
+, x2

−, s1, s2 ≥ 0

(3.23)

and we get the following initial tableau

81

z x1
+ x1

− x2
+ x2

− s1 s2 RHS

z 1 -1 1 -2 2 0 0 0

s1 0 3 -3 5 -5 1 0 30

s2 0 0 0 ..1 -1 0 1 5

By Dantzig’s pivot rule, x2
+ enters the basis and s2 leaves the basis in the first

iteration. After pivoting, we get

z x1
+ x1

− x2
+ x2

− s1 s2 RHS

z 1 -1 1 0 0 0 2 10

s1 0 ..3 -3 0 0 1 -5 5

x2
+ 0 0 0 1 -1 0 1 5

Then x1
+ enters the basis and s1 leaves the basis in the second iteration. After

pivoting, we get

z x1
+ x1

− x2
+ x2

− s1 s2 RHS

z 1 0 0 0 0 1/3 1/3 35/3

x1
+ 0 1 -1 0 0 1/3 -5/3 5/3

x2
+ 0 0 0 1 -1 0 1 5

The optimal solution of the problem (3.21) is found at the second iteration.

Compute b̂N − ANBP∗B−1
P ∗b̂P = [13/3, 11, 23/3, 6, 58/3, 71/3, 14/3, 23/3]T > 0.

Then the optimal solution is x1
+ = 5/3, x1

− = 0, x2
+ = 5, x2

− = 0. So the optimal

solution of the original problem is x1 = x1
+ − x1

− = 5/3, x2 = x2
+ − x2

− = 5 and

the optimal value is 35/3. �

The simplex algorithm solves this problem by adding 5 artificial variables using

5 iterations in Phase-I and 5 iterations in Phase-II, while SNAR uses 2 iterations

without artificial variables.

For the next example, it has a nonempty collection of acute constraints and

SNAR algorithm finds the optimal solution from the relaxed problem but it is not

the optimal solution from the original problem.

82

Example 3.5. Consider the following problem:

Maximize x2

subject to x1 − 2x2 ≤ 4

3x1 − 2x2 ≤ 6

x1 + x2 ≤ −4

−2x1 + x2 ≤ 4

x1 ≤ −3

(3.24)

Solution. All constraints are ≤ and cT = [0, 1]T. We compute Ai: · c.

Constraint No. (i) Ai: Ai: · c

1 [1,−2]T -2

2 [3,−2]T -2

3 [1, 1]T 1

4 [−2, 1]T 1

5 [1, 0]T 0

So P = {3, 4} and N = {1, 2, 5}, then the non-acute constraint relaxation is

written as:

Maximize x2

Subjec to x1 + x2 ≤ −4

−2x1 + x2 ≤ 4

(3.25)

Since b3 = −4 < 0, choose x0 = −λc where λ = max{−4

−1
} = 4. So

x0
T = [0,−4]T, cTx0 = [0, 1]T

 0

−4

 = −4 and b̂P = bP − APx0 =

−4

4

 − 1 1

−2 1

 0

−4

=

0
8

. Then the transformed problem is rewritten as:

Maximize x′
2 − 4

Subjec to x′
1 + x′

2 ≤ 0

−2x′
1 + x′

2 ≤ 8

(3.26)

83

where x′ = x − x0. The transformed problem is written in the following standard

form.

Maximize x2
′+ − x2

′− − 4

Subjec to x1
′+ − x1

′− + x2
′+ − x2

′− + s1 = 0

−2x1
′+ + 2x1

′− + x2
′+ − x2

′− + s2 = 8

x1
′+, x1

′−, x2
′+, x2

′−, s1, s2 ≥ 0

(3.27)

Start with the simplex algorithm, and the initial tableau is

z x1
′+ x1

′− x2
′+ x2

′− s1 s2 RHS

z 1 0 0 -1 1 0 0 -4

s1 0 1 -1 ..1 -1 1 0 0

s2 0 -2 2 1 -1 0 1 8

By Dantzig’s pivot rule, x2
′+ enters the basis and s1 leaves the basis in the first

iteration. After pivoting, we get

z x1
′+ x1

′− x2
′+ x2

′− s1 s2 RHS

z 1 1 -1 0 0 1 0 -4

x2
′+ 0 1 -1 1 -1 1 0 0

s2 0 -3 ..3 0 0 -1 1 8

In the second iteration, x1
′− enters the basis and s2 leaves the basis. After

pivoting, we get

z x1
′+ x1

′− x2
′+ x2

′− s1 s2 RHS

z 1 0 0 0 0 2/3 1/3 -4/3

x2
′+ 0 0 0 1 -1 2/3 1/3 8/3

x1
′− 0 -1 1 0 0 -1/3 1/3 8/3

The optimal solution of the relaxed problem is found at the second itera-

tion. Compute b̂N − ANBP∗B−1
P ∗b̂P = [4, 34/3,−1/3]T ̸≥ 0. Add [0, ANNP∗ −

ANBP∗B−1
P ∗NP ∗ , Im2 , b̂N − ANBP∗B−1

P ∗b̂P] into the current tableau. We get

84

z x1
′+ x1

′− x2
′+ x2

′− s1 s2 s3 s4 s5 RHS

z 1 0 0 0 0 2/3 1/3 0 0 0 -4/3

x2
′+ 0 0 0 1 -1 2/3 1/3 0 0 0 8/3

x1
′− 0 -1 1 0 0 -1/3 1/3 0 0 0 8/3

s3 0 0 0 0 0 1 1 1 0 0 4

s4 0 0 0 0 0 1/3 5/3 0 1 0 34/3

s5 0 0 0 0 0 ..-1/3 1/3 0 0 1 -1/3

The dual simplex method can be applied by choosing s1 to enter the basis and

s5 to leave the basis. The result can be shown in the following tableau.

z x1
′+ x1

′− x2
′+ x2

′− s1 s2 s3 s4 s5 RHS

z 1 0 0 0 0 0 1 0 0 2 -2

x2
′+ 0 0 0 1 -1 0 1 0 0 2 2

x1
′− 0 -1 1 0 0 0 0 0 0 -1 3

s3 0 0 0 0 0 0 2 1 0 3 3

s4 0 0 0 0 0 0 2 0 1 1 11

s1 0 0 0 0 0 1 -1 0 0 -3 1

The optimal solution is found and x1
′− = 3, x1

′+ = 0, x2
′+ = 2, x2

′− = 0, s1 =

1, s2 = 0, s3 = 3, s4 = 11 and s5 = 0. So the optimal solution for the transformed

problem is x′
1 = x1

′+−x1
′− = −3, x′

2 = x2
′+−x2

′− = 2. Then the optimal solution

of the original problem is x = x′ + x0 =

−3

2

+

 0

−4

 =

−3

−2

 and the optimal

value is -2. �

For this problem, the simplex algorithm solves by adding 2 artificial variables

in Phase-I and uses 3 iterations to obtain the optimal solution while SNAR uses

3 iterations without artificial variables.

85

Example 3.6. Consider the following problem:

Maximize −x

subject to −3x + 4y ≤ 12

x ≤ −1

2x − y ≤ −2

x + y ≤ 1

− y ≤ −2

(3.28)

Solution. All constraints are ≤ and cT = [−1, 0]T. We compute Ai: · c.

Constraint No. (i) Ai: Ai: · c

1 [−3, 4]T 3

2 [1, 0]T -1

3 [2,−1]T -2

4 [1, 1]T -1

5 [0,−1]T 0

So P = {1} and N = {2, 3, 4, 5}, then the non-acute constraint relaxation is

written as:

Maximize −x

Subjec to −3x+ 4y ≤ 12
(3.29)

Since b1 = 12 > 0, x0 = 0 is a feasible point. Let x = x1 − x2 and y = x3 − x4.

The transformed problem is written in the following standard form.

Maximize −x1 + x2

Subjec to −3x1 + 3x2 + 4x3 − 4x4 + s1 = 12

x1, x2, x3, x4, s1 ≥ 0

(3.30)

Start with the simplex algorithm, and the initial tableau is in the following:

z x1 x2 x3 x4 s1 RHS

z 1 1 -1 0 0 0 0

s1 0 -3 ..3 4 -4 1 12

86

By Dantzig’s pivot rule, x2 enters the basis and s1 leaves the basis in the first

iteration. After pivoting, we get

z x1 x2 x3 x4 s1 RHS

z 1 0 0 4/3 -4/3 1/3 4

x2 0 -1 1 4/3 -4/3 1/3 4

and find that problem (3.30) is unbounded. So add a constraint from N into

the current tableau one by one. The first constraint from N is added and we get

the following tableau

z x1 x2 x3 x4 s1 s2 RHS

z 1 0 0 4/3 -4/3 1/3 0 4

x2 0 -1 1 4/3 -4/3 1/3 0 4

s2 0 0 0 4/3 -4/3 1/3 1 3

The problem is still unbounded. The second constraint from N is added, we

get the following tableau.

z x1 x2 x3 x4 s1 s2 s3 RHS

z 1 0 0 4/3 -4/3 1/3 0 0 4

x2 0 -1 1 4/3 -4/3 1/3 0 0 4

s2 0 0 0 4/3 -4/3 1/3 1 0 3

s3 0 0 0 5/3 -5/3 2/3 0 1 6

The problem is still unbounded. The third constraint from N is added, we get

the following tableau.

z x1 x2 x3 x4 s1 s2 s3 s4 RHS

z 1 0 0 4/3 -4/3 1/3 0 0 0 4

x2 0 -1 1 4/3 -4/3 1/3 0 0 0 4

s2 0 0 0 4/3 -4/3 1/3 1 0 0 3

s3 0 0 0 5/3 -5/3 2/3 0 1 0 6

s4 0 0 0 7/3 -7/3 1/3 0 0 1 5

The problem is still unbounded. The last constraint from N is added, we get

the following tableau.

87

z x1 x2 x3 x4 s1 s2 s3 s4 s5 RHS

z 1 0 0 4/3 -4/3 1/3 0 0 0 0 4

x2 0 -1 1 4/3 -4/3 1/3 0 0 0 0 4

s2 0 0 0 4/3 -4/3 1/3 1 0 0 0 3

s3 0 0 0 5/3 -5/3 2/3 0 1 0 0 6

s4 0 0 0 7/3 -7/3 1/3 0 0 1 0 5

s5 0 0 0 -1 1 0 0 0 0 1 -2

Since b′5 < 0, we perturb z4 − c4 to δ = 10−6 and add the zperterb row to the

tableau as follows:

z x1 x2 x3 x4 s1 s2 s3 s4 s5 RHS

z 1 0 0 4/3 -4/3 1/3 0 0 0 0 4

zperterb 1 0 0 4/3 10−6 1/3 0 0 0 0 4

x2 0 -1 1 4/3 -4/3 1/3 0 0 0 0 4

s2 0 0 0 4/3 -4/3 1/3 1 0 0 0 3

s3 0 0 0 5/3 -5/3 2/3 0 1 0 0 6

s4 0 0 0 7/3 -7/3 1/3 0 0 1 0 5

s5 0 0 0 ..-1 1 0 0 0 0 1 -2

Perform the dual simplex, x3 enters the basis and s5 leaves the basis. We get

z x1 x2 x3 x4 s1 s2 s3 s4 s5 RHS

z 1 0 0 0 0 1/3 0 0 0 4/3 4/3

zperterb 1 0 0 0 4/3 1/3 0 0 0 4/3 4/3

x2 0 -1 1 0 0 1/3 0 0 0 4/3 4/3

s2 0 0 0 0 0 1/3 1 0 0 4/3 1/3

s3 0 0 0 0 0 2/3 0 1 0 5/3 8/3

s4 0 0 0 0 0 1/3 0 0 1 7/3 1/3

x3 0 0 0 1 -1 0 0 0 0 -1 2

The right hand side is positive. So a primal solution is feasible. Consider the

original row 0, the optimal solution is found at this iteration. The optimal solution

is x = x1−x2 = 0−4/3 = −4/3, y = x3−x4 = 2 and the optimal value is 4/3. �

88

For this problem, the simplex algorithm needs by adding 3 artificial variables

and used 4 iterations to find a feasible solution in Phase-I. Phase-II uses 1 iteration

to obtain the optimal solution while SNAR uses 2 iterations without artificial

variables.

Example 3.7. Consider the following problem:

Maximize −x1 + x2

subject to 5x1 − x2 ≤ −5

2x1 − x2 ≤ −4

2x1 + x2 ≤ −3

x1 − 2x2 ≤ −4

x1 − 5x2 ≤ −5

x1 ≤ 0

− x2 ≤ 0

(3.31)

Solution. All constraints are ≤ and cT = [−1, 1]T. We compute Ai: · c.

Constraint No. (i) Ai: Ai: · c

1 [5,−1]T -6

2 [2,−1]T -3

3 [2, 1]T -1

4 [1,−2]T -3

5 [1,−5]T -6

6 [1, 0]T -1

7 [0,−1]T -1

So P = ∅, Ne = ∅ and N = {1, 2, 3, 4, 5, 6, 7}. From theorem 3.3, this problem

is unbounded. �

For this problem, the simplex algorithm solves by adding 5 artificial variables

and uses 7 iterations to obtain the unbounded solution while SNAR can conclude

the unbounded optimal solution by our theorem.

89

Example 3.8. Consider the following problem:

Maximize −5x1 − 4x2 − 3x3

subject to x1 − x3 = −1

x1 + x2 − 2x3 = −1

−x1 + x2 − x3 = −1

− 2x2 + 3x3 = 2

3x1 = 3

− 2x2 + x3 = −2

3x1 − 2x2 + 2x3 = 3

3x1 + 3x3 = 9

x1, x2, x3 ≥ 0

(3.32)

Solution. Since this problem is in standard form which is not in form as the

problem (3.1), it is transformed into:

Maximize −5x1 − 4x2 − 3x3

subject to x1 − x3 = −1

x1 + x2 − 2x3 ≤ −1

−x1 −x2 + 2x3 ≤ 1

−x1 + x2 − x3 ≤ −1

x1 − x2 + x3 ≤ 1

− 2x2 + 3x3 ≤ 2

+ 2x2 − 3x3 ≤ −2

3x1 ≤ 3

−3x1 ≤ −3

− 2x2 + x3 ≤ −2

2x2 − x3 ≤ 2

3x1 − 2x2 + 2x3 ≤ 3

−3x1 + 2x2 − 2x3 ≤ −3

(3.33)

90

3x1 + 3x3 ≤ 9

−3x1 − 3x3 ≤ −9

−x1 ≤ 0

− x2 ≤ 0

− x3 ≤ 0

Before SNAR starts, the number of constraints is double. Moreover, the number

of variables will increase twice for the standard form while the simplex method

solves this problem by adding eight artificial variables. Therefore, the number of

dimensions of parameter by SNAR solved is larger than the number of dimensions

of parameter by the simplex method solved. So we will consider the dual of the

standard form. �

3.3 Dual SNAR

Consider the primal linear programming problem in the standard form which is

given below:
Maximize cTx

subject to Ax = b

x ≥ 0,

(3.34)

where A is an m×n matrix, c is an n-dimensional vector and b is an m-dimensional

vector.

Solving this by SNAR, the dimension of parameter will be expanded as follows:

Maximize cTx

subject to Ax ≤ b

−Ax ≤ −b

−x ≤ 0.

(3.35)

Consequently, we will consider the dual of this standard form which is defined

by:
Minimize bTw

subject to ATw ≥ c.
(3.36)

91

After the problem is transformed, it can be rewritten as follows:

−Maximize −bTw

subject to −ATw ≤ −c.
(3.37)

This form is the same as the problem (3.1) which have the objective vector

−b, the coefficient matrix −AT, and the right-hand side vector is c. We can use

the objective vector −b to separate the collections of constraints similar to SNAR.

Since (−AT
i:) · (−b) = AT

i: · b, we can separate the collections of acute constraints

and non-acute constraints as follows:

P = {i | AT
i: · b > 0} and N = {j | AT

j: · b ≤ 0} (3.38)

b

T
3:A

T
1:A

T
1:A

b

optimal solution

T
2:A

T
2:A

T
3:A

T
4:A

T
4:A

T
5:A

T
5:A

1w

2w

Figure 3.16: Example of the feasible region of the dual problem

Therefore, we can use SNAR by using the matrix −AT instead of A, using

the vector −b instead of c, the vector -c is the right-hand side of this algorithm

and the objective value is −z. Since we use SNAR in the dual form, we call this

algorithm the Dual SNAR. From lemma 2.23, the optimal solution is x∗
i = −zm+i

for all i = 1, ..., n. If SNAR reports unbounded optimal solution, then the original

92

problem is infeasible. If SNAR reports the infeasiblity, the original problem is

unbounded.

The Dual SNAR can be summarized as the following flow chart.

Figure 3.17: Flow chart of Dual SNAR

93

Example 3.9. Consider the following problem:

Maximize −5x1 − 4x2 − 3x3

subject to −x1 + x2 − x3 = −1

− 2x2 + 3x3 = 2

− 2x2 + x3 = −2

3x1 − 2x2 + 2x3 = 3

3x1 + 3x3 = 9

x1, x2, x3 ≥ 0

(3.39)

Solution. The dual form of this problem can be written as follows:

−Maximize w1 − 2w2 + 2w3 − 3w4 − 9w5

subject to w1 − 3w4 − 3w5 ≤ 5

−w1 + 2w2 + 2w3 + 2w4 ≤ 4

w1 − 3w2 − w3 − 2w4 − 3w5 ≤ 3

(3.40)

Then we compute AT
i: · b as the following tableau:

Constraint No. (i) AT
i: · b

1 10

2 -7

3 38

So P = {1, 3} and N = {2}, then the non-acute constraint relaxation is written

as:

−Maximize w1 − 2w2 + 2w3 − 3w4 − 9w5

subject to w1 − 3w4 − 3w5 ≤ 5

w1 − 3w2 − w3 − 2w4 − 3w5 ≤ 3

(3.41)

Since x0 = 0 is a feasible point, slack variables will be added into the problem

(3.41).

−Maximize w1 − 2w2 + 2w3 − 3w4 − 9w5

subject to w1 − 3w4 − 3w5 +s1 = 5

w1 − 3w2 − w3 − 2w4 − 3w5 +s2 = 3

(3.42)

94

Before we put these to the tableau, it will be converted to the standard form.

Then, we get the following initial tableau:

z w1
+ w1

− w2
+ w2

− w3
+ w3

− w4
+ w4

− w5
+ w5

− s1 s2 RHS

−z 1 -1 1 2 -2 -2 2 3 -3 9 -9 0 0 0

s1 0 1 -1 0 0 0 0 -3 3 -3 3 1 0 5

s2 0 1 -1 -3 3 -1 1 -2 2 -3 ..3 0 1 3

By Dantzig’s pivot rule, w5
− enters the basis and s2 leaves the basis in the first

iteration. After pivoting, we get

z w1
+ w1

− w2
+ w2

− w3
+ w3

− w4
+ w4

− w5
+ w5

− s1 s2 RHS

−z 1 2 -2 -7 7 -5 5 -3 3 0 0 0 3 9

s1 0 0 0 ..3 -3 1 -1 -1 1 0 0 1 -1 2

w5
− 0 1/3 - 1/3 -1 1 - 1/3 1/3 - 2/3 2/3 -1 1 0 1/3 1

w2
+ enters the basis and s1 leaves the basis in the second iteration. After

pivoting, we get

z w1
+ w1

− w2
+ w2

− w3
+ w3

− w4
+ w4

− w5
+ w5

− s1 s2 RHS

−z 1 2 -2 0 0 -8/3 8/3 -16/3 16/3 0 0 7/3 2/3 41/3

w2
+ 0 0 0 1 1 1/3 - 1/3 - 1/3 1/3 0 0 1/3 - 1/3 2/3

w5
− 0 1/3 - 1/3 0 0 0 0 -1 1 -1 1 1/3 0 5/3

NAR is unbounded. The second constraint will be added to the tableau as

follows:
z w1

+ w1
− w2

+ w2
− w3

+ w3
− w4

+ w4
− w5

+ w5
− s1 s2 s3 RHS

−z 1 2 -2 0 0 -8/3 8/3 -16/3 16/3 0 0 7/3 2/3 0 41/3

w2
+ 0 0 0 1 -1 1/3 - 1/3 - 1/3 1/3 0 0 1/3 - 1/3 0 2/3

w5
− 0 1/3 - 1/3 0 0 0 0 -1 1 -1 1 1/3 0 0 5/3

s3 0 -1 1 2 -2 2 -2 2 -2 0 0 0 0 1 4

Apply with this basis, then we get

z w1
+ w1

− w2
+ w2

− w3
+ w3

− w4
+ w4

− w5
+ w5

− s1 s2 s3 RHS

−z 1 2 -2 0 0 -8/3 8/3 -16/3 16/3 0 0 7/3 2/3 0 41/3

w2
+ 0 0 0 1 -1 1/3 - 1/3 - 1/3 1/3 0 0 1/3 - 1/3 0 2/3

w5
− 0 1/3 - 1/3 0 0 0 0 -1 1 -1 1 1/3 0 0 5/3

s3 0 -1 1 0 0 4/3 -4/3 ..8/3 -8/3 0 0 -2/3 2/3 1 2 2/3

95

w7
+ enters the basis and s3 leaves the basis in the second iteration. After

pivoting, we get

z w1
+ w1

− w2
+ w2

− w3
+ w3

− w4
+ w4

− w5
+ w5

− s1 s2 s3 RHS

−z 1 0 0 0 0 0 0 0 0 0 0 1 2 2 19

w4
+ 0 - 1/8 1/8 1 -1 1/2 - 1/2 0 0 0 0 1/4 - 1/4 1/8 1

w8
− 0 0 0 0 0 1/2 - 1/2 0 0 -1 1 0 1/4 3/8 8/3

w7
+ 0 - 3/8 3/8 0 0 1/2 - 1/2 1 -1 0 0 - 1/4 1/4 3/8 1

The optimal solution of this problem is found at the third iteration. Since the

dual of this problem is the original problem, the optimal solution of this tableau

will be the optimal solution of the original problem. From lemma (2.23), we obtain

the optimal solution (x∗
1, x

∗
2, x

∗
3) = (1,2,2) and the optimal value is −19. �

3.4 Comparison of the Problem Dimensions

3.4.1 SNAR vs Two-Phase Method

Recall the simplex algorithm, it performs on a linear programming problem in the

standard form. So the original problem (3.1) is transformed to

Maximize cTx+ − cTx− + 0s

subject to Ax+ − Ax− + s = b

x+, x−, s ≥ 0.

(3.43)

The number of dimensions of the problem (3.43) is as follows:

A b I c Total

m× 2n m m×m 2n+m (m× (2n+m)) + 2m+ 2n

If there exist bi < 0, i ∈ {1, ...,m}, we can not choose identity matrix as the

basis. Suppose b is split into b+ ≥ 0 and b− < 0. Therefore, it will be multiplied

by −1. Then, we can rewrite the system (3.43) as follows:

96

Maximize cTx+ − cTx−

subject to A+x+ − A+x− + s+ = b+

−A−x+ + A−x− − s− = −b−

x+, x−, s+, s− ≥ 0,

(3.44)

where A =

A+

A−

, b =

b+

b−

, b+ is an m+ dimensional vector and b− is an m−

dimensional vector, b+ ≥ 0, b− < 0 and m+ +m− = m.

Since the identity matrix is not the initial basis, the Two-Phase method need

to add m− artificial variables. Then, Phase-I can be written as the following.

Minimize 1Txa

subject to A+x+ − A+x− + s+ = b+

−A−x+ + A−x− − s− + xa = −b−

x+, x−, s+, s−, xa ≥ 0,

(3.45)

Consider SNAR, we can choose x0 which is a feasible point. So APx0 ≤ bP

and bP − APx0 ≥ 0. Then slack variables are added to transform inequality

constraints to equality constraints.

Maximize cTx+ − cTx− + cTx0

subject to APx+ − APx− + s = bP − APx0

x+, x−, s ≥ 0

(3.46)

Therefore, we can compare the number of dimensions of the problem between

SNAR and Two-Phase method as the following table.

97

Table 3.1: Comparison the number of dimensions of parameters between SNAR

and Two-Phase Method
Method Dimension of parameters

SNAR
NAR (m1 × (2n+m1)) + 2n+ 2m1

AN (m× (2n+m)) + 2n+ 2m

Two-Phase Method
Phase I (m× (2n+m+m−)) + 2n+ 2m+m−

Phase II (m× (2n+m+m−)) + 2n+ 2m+m−

where m1 is the number of the acute constraints, m− is the number of artificial

variables, NAR is the non-acute constraint relaxation and AN is the non-acute

constraint reinsertion.

Here, we found that the number of dimensions of parameters solving by SNAR

solved is less than or equal to the number of dimensions of the original problem

while the number of dimensions of the problem solving by Two-Phase method is

greater than the original problem.

3.4.2 Dual SNAR vs Two-Phase Method

Recall the standard form of Dual SNAR.

Maximize cTx

subject to Ax = b

x ≥ 0,

(3.47)

where A is an m × n matrix, c is an n-dimensional vector and b is an m-

dimensional vector. For the two-phase method, by adding m artificial variables,

the simplex method can start. Therefore, phase-I can be written as follows:

Minimize 1Txa

subject to Ax+ xa = b

x,xa ≥ 0,

(3.48)

Consider the number of dimensions of the problem solved by SNAR, it will be

expanded as follows:

98

Maximize cTx

subject to Ax ≤ b

−Ax ≤ −b

−x ≤ 0.

(3.49)

The number of constraints increases to 2m+ n constraints and the number of

variables is n while the dual of this standard form which is defined by:

-Maximize −bTw

subject to −ATw ≤ −c,
(3.50)

the number of constraints is n and the number of variables is m. Therefore,

from the subsection 2.4.1, the number of dimensions of SNAR, Dual SNAR and

two-phase method will be summarized in Table 3.2.

Table 3.2: Comparison the number of dimensions between SNAR, Dual SNAR

and Two-Phase Method
Method The number of dimensions

SNAR
NAR (m1 × (2n+m1)) + 2n+ 2m1

AN ((2m+ n)× (3n+ 2m)) + 4m+ 4n

Dual SNAR
NARD (n1 × (2m+ n1)) + 2m+ 2n1

AND (n× (2m+ n)) + 2m+ 2n

Two-Phase Method
Phase I (m× (n+m)) + 2m+ n

Phase II (m× (n+m)) + 2m+ n

where n1 is the number of the acute constraints in the dual problem, NARD is

the non-acute constraint relaxation and AND is the non-acute constraint reinser-

tion of the dual problem.

Here, we found that the number of dimensions of the problem by SNAR solved

is greater than the dimension of the original problem solving by Dual SNAR and

Two-Phase method while the number of dimensions of the problem solving by

Dual SNAR is likely as the number of dimensions of of the problem solving by the

Two-Phase method depend on n1.

CHAPTER IV

EXPERIMENTAL RESULTS

In this Chapter, we will describe problems designed to test our algorithms. The

computational results are proposed and summarized. Finally, we will analyze our

results and findings.

4.1 Experimental Designs

Since our algorithms: SNAR and Dual SNAR, were designed to suit for solving

different problem structures, test problems were differently designed. Randomly

generated linear programming test problems for comparing between SNAR, Two-

Phase method and Arsham’s method were called Problem P, and randomly

generated linear programming test problems for comparing between SNAR, Dual

SNAR, Two-Phase method and Arsham’s method were called Problem D.

4.1.1 Problem P

We tested SNAR based on simulated linear programming problems. Randomly

generated linear programming test problems

- are maximization problems;

- have a vector c with ci ∈ [−9, 9], i = 1, 2, ..., n;

- have a matrix A with aij ∈ [−9, 9], i = 1, 2, ...,m, j = 1, 2, ..., n;

- have a vector x with xi ∈ [−9, 9], i = 1, 2, ..., n;

Then we derive a vector b with bi = Ai:x where i ∈ {1, 2, ..., n} and bj =

Aj:x + 1 to guarantee feasibility where j ∈ {n + 1, n + 2, ...,m}. Junior and

Lins [21] used these interval to generate parameters for testing their algorithm.

100

We found that approximately 50% of the number of constraints are negative and

approximately 50% constraints are non-acute.

The different sizes of the number of variables (n) and the number of constraints

(m) were tested with SNAR, Two-Phase method and Arsham’s method[15, 16]

where m ≥ n, n ∈ {5, 10, 20, 50, 100} and m depended on sizes of variables as

m ∈{1n, 2n, 5n, 10n, 20n, 30n, 40n, 50n}.

Problems are in form of the problem (3.1) having n variables, m constraints,

about 50% of “≤” constraints (≈ m

2
) or O(m) space and RHS are negative. So

Two-Phase method required approximately to add m

2
artificial variables. By

comparing the number of dimension of problem as the table 3.1, the number

of dimension of problem for Two-Phase method has (≈(m × (2n + m +
m

2
))+

2n+2m+
m

2
) O(mn+m2) . While the number of dimension of problem for NAR

will be (≈(m
2
×(2n+

m

2
))+ 2n+m) O(mn+m2) and the dimension of parameters

of the last tableau will be (m× (2n+m))+ 2n+ 2m.

Arsham’s method deals with the linear programming problems of the same

dimension as SNAR.

For a small number of constraints with respect to n (m ∈ {n, 2n}) depended on

n, relaxed problems solved by SNAR had unbounded optimal solutions while, for a

large number of constraints with respect to n(m ∈ {5n, 10n, 20n, 30n, 40n, 50n}),

relaxed problems solved by SNAR had optimal solutions. So we separate com-

putational results into two sections: a small number of constraints and a large

number of constraints.

4.1.2 Problem D

Dual SNAR were tested by simulated linear programming problems in the standard

form. The randomly generated linear programming test problems

- are maximization problems;

- have a vector c with ci ∈ [−9, 9], i = 1, 2, ..., n;

- have a matrix A with aij ∈ [−9, 9], i = 1, 2, ...,m, j = 1, 2, ..., n;

101

- have a vector x with xi ∈ [0, 9], i = 1, 2, ..., n;

Then we derive a vector b with b = Ax for guarantee the feasibility.

The different sizes of the number of variables (n) and the number of con-

straints (m) were tested with SNAR, Dual SNAR, Two-Phase method and Ar-

sham’s method where m ≥ n, n ∈ {5, 10, 20} and m depended on sizes of variables

as m ∈{1n, 2n, 5n, 10n, 20n, 30n, 40n, 50n}. We did not test algorithms with sizes

n ∈ {50, 100} since we could see the trend of the average number of iterations

and the average running time from solving the smaller sizes.

4.2 Computational Results

According to a designed problem, the average number of iterations and the aver-

age running time were kept to compare efficiency. Since we had two collections of

problems, the computational results were divided into two subsections: computa-

tional results on problems P and computational results on problems D.

4.2.1 Computational Results on Problems P

A Small Number of Constraints

Firstly, we report the comparison of the average number of iterations between

SNAR, Two-Phase method and Arsham’s method for a small number of constraints

as in Table 4.1. Description of this table were shown in Table 4.2. Then, we report

the average running time in the table 4.3, and ratios of the average number of

iterations and the average running time by Two-Phase method to SNAR and by

Arsham’s method to SNAR were shown in Table 4.4. Then, the average number

of iterations and the average running time were plotted.

102

Table 4.1: The average number of iterations between SNAR, Two-Phase method and Arsham’s method for a small number of

constraints
SNAR Two-Phase Method Arsham’s Method

m n NAR AN NAR+AN SD1 PhaseI PhaseII PhaseI+II SD2 RP ≥ RP+≥ SD3

5 5 1.91 2.45 4.36 2.52 5.20 2.42 7.62 3.35 1.20 3.78 4.98 2.95

10 5 4.14 3.60 7.74 3.82 10.39 3.51 13.90 4.50 2.18 8.53 10.71 5.63

10 10 3.98 5.55 9.53 4.20 12.62 4.78 17.40 6.33 2.86 10.52 13.38 6.43

20 10 9.04 17.21 26.25 11.61 26.21 6.70 32.91 9.77 4.98 31.41 36.39 16.46

20 20 8.71 14.10 22.81 10.43 28.11 8.11 36.22 10.67 5.58 28.30 33.88 11.81

40 20 20.68 66.94 87.62 34.69 61.93 18.48 80.41 18.80 10.91 110.34 121.25 46.07

50 50 24.79 69.37 94.16 33.83 79.47 15.07 94.54 21.53 16.06 112.63 128.69 43.29

100 50 58.64 369.92 428.56 136.90 181.95 46.40 228.35 45.08 32.90 549.48 582.38 163.68

100 100 50.66 222.17 272.83 70.61 177.05 29.16 206.21 42.48 37.57 318.88 356.45 94.60

200 100 127.69 1145.84 1273.53 306.97 411.36 101.59 512.95 80.72 77.22 1884.85 1962.07 448.18

In table 4.1, the boldface numbers identify the smallest average number of iterations and the italic numbers identify that the

smallest standard deviations of iterations for solving linear programming problems of the same size. The description of columns

in table 4.1 are shown in table 4.2.

103

Table 4.2: Description of the columns in table 4.1
NAR The average number of iterations of the non-acute

constraint relaxation

AN The average number of iterations of the non-acute

constraint reinsertion

NAR+AN The summation of the average number of iterations

of the non-acute constraint relaxation and the

non-acute constraint reinsertion

SD1 The standard deviation of the number of iterations

of the SNAR algorithm

Phase I The average number of iterations of Phase I

Phase II The average number of iterations of Phase II

Phase I+II The summation of the average number of iterations

of Phase I and Phase II

SD2 The standard deviation of the number of iterations

of Two-Phase method

RP The average number of iterations of the relaxed

problem in Arsham’s method

≥ The average number of iterations of ≥ constraints

reinsertion

RP+≥ The summation of the average number of iterations

of the relaxed problem and the average number of

iterations of ≥ constraints reinsertion in Arsham’s

method

SD3 The standard deviation of the number of iterations

of Arsham’s method

Then, the average running time to solve unbounded problems including their

standard deviations are reported in the following table:

104

Table 4.3: The average running time between SNAR, Two-Phase method and

Arsham’s method for a small number of constraints
SNAR Two-Phase Method Arsham’s Method

m n time (sec.) SD time (sec.) SD time (sec.) SD
5 5 0.00076 0.00044 0.00090 0.00033 0.00088 0.00039
10 5 0.00171 0.00072 0.00161 0.00076 0.00184 0.00082
10 10 0.00200 0.00080 0.00197 0.00073 0.00231 0.00096
20 10 0.00539 0.00174 0.00415 0.00148 0.00651 0.00216
20 20 0.00594 0.00276 0.00540 0.00257 0.00774 0.00269
40 20 0.02352 0.00675 0.01686 0.00428 0.02940 0.00879
50 50 0.05020 0.02045 0.03430 0.01273 0.06260 0.02334
100 50 0.26800 0.06709 0.16110 0.03423 0.34040 0.08055
100 100 0.30590 0.06721 0.22010 0.05241 0.37610 0.086338
200 100 2.49010 0.54057 1.33920 0.21153 3.58020 0.70940

In table 4.3, the boldface numbers identify the smallest average running time

and the italic numbers identify the smallest standard deviations of the running

time for solving linear programming problems of the same size.

Table 4.4: Ratios of the average number of iterations and the average running

time by Two-Phase method to SNAR and by Arsham’s method to SNAR
Ratio of iterations Ratio of running time

m n 2-Phase/SNAR Arsham/SNAR 2-Phase/SNAR Arsham/SNAR
5 5 1.75 1.14 1.19 1.15
10 5 1.80 1.38 0.94 1.08
10 10 1.83 1.40 0.99 1.16
20 10 1.25 1.39 0.77 1.21
20 20 1.59 1.49 0.91 1.30
40 20 0.92 1.38 0.72 1.25
50 50 1.00 1.37 0.68 1.25
100 50 0.53 1.36 0.60 1.27
100 100 0.76 1.31 0.72 1.23
200 100 0.40 1.54 0.54 1.44

The results in table 4.1 and 4.3 are plotted as the following figures.

105

0

2

4

6

8

10

12

14

16

18

20

5 10

T
he

 a
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

The number of constraints

SNAR in primal

Two-Phase Method

Arsham's Method

Figure 4.1: The average number of iterations solved by SNAR, Two-Phase method

and Arsham’s method for 5 variables

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

5 10

T
he

 a
ve

ra
ge

 r
un

ni
ng

 t
im

e
(s

ec
.)

The number of constraints

SNAR in primal

Two-Phase Method

Arsham's Method

Figure 4.2: The average running time solved by SNAR, Two-Phase method and

Arsham’s method for 5 variables

106

0

10

20

30

40

50

60

10 20

T
he

 a
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

The number of constraints

SNAR in primal

Two-Phase Method

Arsham's Method

Figure 4.3: The average number of iterations solved by SNAR, Two-Phase method

and Arsham’s method for 10 variables

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

10 20

T
he

 a
ve

ra
ge

 r
un

ni
ng

 t
im

e
(s

ec
.)

The number of constraints

SNAR in primal

Two-Phase Method

Arsham's Method

Figure 4.4: The average running time solved by SNAR, Two-Phase method and

Arsham’s method for 10 variables

107

0

20

40

60

80

100

120

140

160

180

20 40

T
he

 a
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

The number of constraints

SNAR in primal

Two-Phase Method

Arsham's Method

Figure 4.5: The average number of iterations solved by SNAR, Two-Phase method

and Arsham’s method for 20 variables

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

20 40

T
he

 a
ve

ra
ge

 r
un

ni
ng

 t
im

e
(s

ec
.)

The number of constraints

SNAR in primal

Two-Phase Method

Arsham's Method

Figure 4.6: The average running time solved by SNAR, Two-Phase method and

Arsham’s method for 20 variables

108

0

100

200

300

400

500

600

700

800

50 100

T
he

 a
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

The number of constraints

SNAR in primal

Two-Phase Method

Arsham's Method

Figure 4.7: The average number of iterations solved by SNAR, Two-Phase method

and Arsham’s method for 50 variables

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

50 100

T
he

 a
ve

ra
ge

 r
un

ni
ng

 t
im

e
(s

ec
.)

The number of constraints

SNAR in primal

Two-Phase Method

Arsham's Method

Figure 4.8: The average running time solved by SNAR, Two-Phase method and

Arsham’s method for 50 variables

109

0

500

1000

1500

2000

2500

3000

100 200

T
he

 a
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

The number of constraints

SNAR in primal

Two-Phase Method

Arsham's Method

Figure 4.9: The average number of iterations solved by SNAR, Two-Phase method

and Arsham’s method for 100 variables

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

100 200

T
he

 a
ve

ra
ge

 r
un

ni
ng

 t
im

e
(s

ec
.)

The number of constraints

SNAR in primal

Two-Phase Method

Arsham's Method

Figure 4.10: The average running time solved by SNAR, Two-Phase method and

Arsham’s method for 100 variables

A Large Number of Constraints

The average number of iterations and the average running time for solving prob-

lems with a large number of constraints are shown in Tables 4.5, 4.6 and 4.7.

Then, ratios of the average number of iterations and the average running time are

shown in Table 4.4.

110

Table 4.5: The average number of iterations solved by SNAR, Two-Phase method and Arsham’s method for 5, 10 and 20 variables
SNAR Two-Phase Method Arsham’s Method

m n NAR AN NAR+AN SD1 PhaseI PhaseII PhaseI+II SD2 RP ≥ RP+≥ SD3

25 5 8.67 1.93 10.60 2.81 20.28 3.97 24.25 4.46 4.90 14.03 18.93 6.25
50 5 10.99 1.43 12.42 2.59 36.13 4.46 40.59 7.24 6.20 19.78 25.98 8.86
100 5 14.33 1.37 15.70 3.33 63.51 5.52 69.03 9.59 7.90 18.14 26.04 10.55
150 5 15.00 1.24 16.24 3.14 90.90 6.02 96.92 12.02 8.99 21.59 30.58 13.69
200 5 16.42 1.29 17.71 3.68 122.14 6.53 128.67 15.38 8.89 24.84 33.73 13.43
250 5 17.76 1.38 19.14 3.94 149.18 6.17 155.35 14.31 9.40 25.96 35.36 15.13
50 10 20.79 7.07 27.86 6.85 48.20 10.15 58.35 8.26 10.19 59.10 69.29 18.06
100 10 28.45 4.25 32.70 5.15 86.87 12.72 99.59 13.50 13.53 68.12 81.65 26.80
200 10 34.69 3.51 38.20 5.66 150.81 14.31 165.12 18.73 17.55 74.56 92.11 35.94
300 10 38.63 5.25 43.88 7.58 212.81 14.91 227.72 24.11 20.52 76.24 96.76 41.83
400 10 41.55 4.31 45.86 6.76 272.93 16.31 289.24 28.08 18.80 95.48 114.28 41.52
500 10 44.03 4.75 48.78 7.46 328.08 17.22 345.30 27.72 23.24 81.08 104.32 41.55
100 20 51.23 20.27 71.50 24.97 120.54 27.07 147.61 17.72 22.72 228.51 251.23 55.30
200 20 69.28 10.20 79.48 10.49 205.47 35.58 241.05 26.91 31.14 254.76 285.90 81.51
400 20 88.15 10.55 98.70 13.05 359.10 40.11 399.21 35.43 37.92 279.33 317.25 109.80
600 20 98.66 10.77 109.43 12.19 500.45 42.69 543.14 49.14 42.46 298.23 340.69 117.65
800 20 104.87 11.31 116.18 12.63 645.40 44.99 690.39 52.09 49.52 303.24 352.76 125.74
1000 20 112.34 11.12 123.46 12.97 772.61 44.10 816.71 67.38 49.96 300.93 350.89 126.99

111

Table 4.6: The average number of iterations solved by SNAR, Two-Phase method and Arsham’s method for 50 and 100 variables
SNAR Two-Phase Method Arsham’s Method

m n NAR AN NAR+AN SD1 PhaseI PhaseII PhaseI+II SD2 RP ≥ RP+≥ SD3

250 50 172.5 51.19 223.69 24.83 405.39 103.88 509.27 44.04 67.38 1510.42 1577.8 242.69
500 50 237.82 42.41 280.23 25.99 686.87 132.06 818.93 58.35 85.93 1724.21 1810.14 363.73
1000 50 305.74 41.25 346.99 28.18 1164.99 154.85 1319.84 90.34 112.26 1717.33 1829.59 456.07
1500 50 340.18 42.09 382.27 30.31 1614.14 162.56 1776.70 114.84 126.39 1680.94 1807.33 489.22
2000 50 366.02 40.90 406.92 35.55 2063.34 173.49 2236.83 168.68 142.71 1820.62 1963.33 996.88
2500 50 384.22 41.23 425.45 35.66 2502.03 179.56 2681.59 212.32 146.43 1795.97 1942.40 535.65
500 100 475.54 142.33 617.88 51.44 1077.71 293.92 1371.63 78.42 159.83 6640.71 6800.54 1215.04
1000 100 624.21 119.99 744.20 64.36 1755.44 355.94 2111.38 138.24 189.67 7340.59 7530.26 1067.89
2000 100 793.40 103.69 897.09 64.13 2927.42 430.28 3357.70 226.21 234.63 6815.52 7050.15 1272.25
3000 100 906.13 106.80 1012.93 75.03 4102.53 498.27 4600.80 230.59 287.33 6863.40 7150.73 1196.67
4000 100 950.33 96.17 1046.50 56.63 5458 474.67 5932.67 160.90 436.33 5674.67 6111 1764.78
5000 100 1000.56 126.56 1127.11 61.58 6109.11 504.44 6613.56 343.01 302.33 7105.11 7407.44 1712.84

In Table 4.5 and 4.6, the boldface numbers identify the smallest average number of iterations and the italic numbers identify

the smallest standard deviations of iterations for solving linear programming problems of the same sizes.

112

Table 4.7: The average running time solved by SNAR, Two-Phase method and

Arsham’s method
SNAR Two-Phase Method Arsham’s Method

m n time (sec.) SD time (sec.) SD time (sec.) SD
25 5 0.0017 0.0008 0.0040 0.0013 0.0046 0.0014
50 5 0.0035 0.0009 0.0093 0.0022 0.0135 0.0023
100 5 0.0119 0.0026 0.0375 0.0066 0.0494 0.0055
150 5 0.0286 0.0032 0.0989 0.0145 0.1261 0.0114
200 5 0.0616 0.0087 0.2442 0.0368 0.2681 0.0244
250 5 0.1212 0.0122 0.4474 0.0527 0.4955 0.0272
50 10 0.0058 0.0021 0.0142 0.0032 0.0209 0.0035
100 10 0.0164 0.0030 0.0554 0.0084 0.0674 0.0090
200 10 0.0785 0.0141 0.3197 0.0448 0.3194 0.0349
300 10 0.2403 0.0181 0.9308 0.1245 0.9039 0.0681
400 10 0.5037 0.0281 2.1378 0.2751 1.9202 0.1458
500 10 0.9640 0.0519 4.7602 0.4823 3.3199 0.2088
100 20 0.0350 0.0127 0.0925 0.0175 0.1463 0.0235
200 20 0.1148 0.0159 0.5004 0.0617 0.5075 0.0648
400 20 0.6218 0.0471 3.0493 0.3470 2.4188 0.2850
600 20 2.0391 0.1049 10.7710 1.1896 7.0536 0.6880
800 20 5.3593 0.2456 24.8665 2.5508 16.0027 1.3772
1000 20 10.5502 0.4020 45.9179 5.1068 29.6589 2.1707
250 50 0.4455 0.0481 1.7643 0.2022 2.7856 0.3727
500 50 1.9987 0.1856 12.2450 1.1287 10.9249 1.5327
1000 50 14.6223 0.9170 77.1635 7.0560 58.8373 7.7648
1500 50 46.0241 1.9569 257.0604 22.7486 163.2123 19.5543
2000 50 107.9391 4.5046 599.3633 60.0334 354.7317 40.1074
2500 50 218.2526 7.2408 1192.7648 126.0117 680.5636 66.4993
500 100 4.8388 0.4453 23.3188 1.9957 41.4612 7.1329
1000 100 24.5372 2.0704 131.4173 12.3284 179.1298 22.6895
2000 100 150.5739 8.9914 933.6161 81.9089 793.9966 96.3361
3000 100 485.3817 25.7367 3111.8113 213.7521 2216.7947 211.6782
4000 100 1108.7317 25.0011 7395.9633 323.9440 4258.3450 354.2545
5000 100 2128.4811 83.0332 12761.9222 957.3011 8470.2667 1126.8516

113

Table 4.8: Ratios of the average number of iterations and the average running

time by Two-Phase method to SNAR and by Arsham’s method to SNAR
Ratio of iterations Ratio of running time

m n 2-Phase/SNAR Arsham/SNAR 2-Phase/SNAR Arsham/SNAR
25 5 2.29 1.79 2.36 2.75
50 5 3.27 2.09 2.69 3.91
100 5 4.40 1.66 3.16 4.17
150 5 5.97 1.88 3.45 4.40
200 5 7.27 1.90 3.96 4.35
250 5 8.12 1.85 3.69 4.09
50 10 2.09 2.49 2.45 3.60
100 10 3.05 2.50 3.38 4.12
200 10 4.32 2.41 4.07 4.07
300 10 5.19 2.21 3.87 3.76
400 10 6.31 2.49 4.24 3.81
500 10 7.08 2.14 4.94 3.44
100 20 2.06 3.51 2.64 4.18
200 20 3.03 3.60 4.36 4.42
400 20 4.04 3.21 4.90 3.89
600 20 4.96 3.11 5.28 3.46
800 20 5.94 3.04 4.64 2.99
1000 20 6.62 2.84 4.35 2.81
250 50 2.28 7.05 3.96 6.25
500 50 2.92 6.46 6.13 5.47
1000 50 3.80 5.27 5.28 4.02
1500 50 4.65 4.73 5.59 3.55
2000 50 5.50 4.82 5.55 3.29
2500 50 6.30 4.57 5.47 3.12
500 100 2.22 11.01 4.82 8.57
1000 100 2.84 10.12 5.36 7.30
2000 100 3.74 7.86 6.20 5.27
3000 100 4.54 7.06 6.41 4.57
4000 100 5.67 5.84 6.67 3.84
5000 100 5.87 6.57 6.00 3.98

The results in Table 4.5, 4.6 and 4.7 are plotted as the following figures.

114

0

20

40

60

80

100

120

140

160

180

25 50 100 150 200 250

T
he

 a
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

The number of constraints

SNAR in Primal

Two-Phase Method

Arsham's method

Figure 4.11: The average number of iterations solved by SNAR, Two-Phase

method and Arsham’s method for 5 variables

0

0.1

0.2

0.3

0.4

0.5

0.6

25 50 100 150 200 250

T
he

 a
ve

ra
ge

ru
nn

in
g

ti
m

e
(s

ec
.)

The number of constraints

SNAR in Primal

Two-Phase Method

Arsham's Method

Figure 4.12: The average running time solved by SNAR, Two-Phase method and

Arsham’s method for 5 variables

115

0

50

100

150

200

250

300

350

400

50 100 200 300 400 500

T
he

 a
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

The number of constraints

SNAR in Primal

Two-Phase Method

Arsham's method

Figure 4.13: The average number of iterations solved by SNAR, Two-Phase

method and Arsham’s method for 10 variables

0

1

2

3

4

5

6

50 100 200 300 400 500

T
he

 a
ve

ra
ge

ru
nn

in
g

ti
m

e
(s

ec
.)

The number of constraints

SNAR in Primal

Two-Phase Method

Arsham's Method

Figure 4.14: The average running time solved by SNAR, Two-Phase method and

Arsham’s method for 10 variables

116

0

100

200

300

400

500

600

700

800

900

1000

100 200 400 600 800 1000

T
he

 a
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

The number of constraints

SNAR in Primal

Two-Phase Method

Arsham's Method

Figure 4.15: The average number of iterations solved by SNAR, Two-Phase

method and Arsham’s method for 20 variables

0

10

20

30

40

50

60

100 200 400 600 800 1000

T
he

 a
ve

ra
ge

ru
nn

in
g

ti
m

e
(s

ec
.)

The number of constraints

SNAR in Primal

Two-Phase Method

Arsham's Method

Figure 4.16: The average running time solved by SNAR, Two-Phase method and

Arsham’s method for 20 variables

117

0

500

1000

1500

2000

2500

3000

3500

250 500 1000 1500 2000 2500

T
he

 a
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

The number of constraints

SNAR in Primal

Two-Phase Method

Arsham's Method

Figure 4.17: The average number of iterations solved by SNAR, Two-Phase

method and Arsham’s method for 50 variables

0

200

400

600

800

1000

1200

1400

250 500 1000 1500 2000 2500

T
he

 a
ve

ra
ge

ru
nn

in
g

ti
m

e
(s

ec
.)

The number of constraints

SNAR in Primal

Two-Phase Method

Arsham's Method

Figure 4.18: The average running time solved by SNAR, Two-Phase method and

Arsham’s method for 50 variables

118

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

500 1000 2000 3000 4000 5000

T
he

 a
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

The number of constraints

SNAR in Primal

Two-Phase Method

Arsham's Method

Figure 4.19: The average number of iterations solved by SNAR, Two-Phase

method and Arsham’s method for 100 variables

0

2000

4000

6000

8000

10000

12000

14000

16000

500 1000 2000 3000 4000 5000

T
he

 a
ve

ra
ge

ru
nn

in
g

ti
m

e
(s

ec
.)

The number of constraints

SNAR in Primal

Two-Phase Method

Arsham's Method

Figure 4.20: The average running time solved by SNAR, Two-Phase method and

Arsham’s method for 100 variables

119

4.2.2 Computational Results on Problem D

For comparison, we report only the average number of total iterations of four

algorithms and their standard deviations. The average number of iterations of the

relaxed problem for SNAR, Dual SNAR and Arsham’s method and the average

number of iterations of Phase-I for the simplex method were not reported. Then,

we report the average running time as the table 4.10, and ratios of the average

number of iterations and the average running time solved by SNAR to Dual SNAR,

by Two-Phase method to Dual SNAR and by Arsham’s method to Dual SNAR

are shown in Table 4.11.

Table 4.9: The average number of iterations solved by SNAR, Dual SNAR, Two-

Phase method and Arsham’s method.
SNAR Dual SNAR Two-Phase Method Arsham’s Method

m n iterations SD1 iterations SD2 iterations SD3 iterations SD4

5 5 9.16 2.93 7.79 2.22 5.08 0.27 7.80 1.98
10 5 8.79 2.92 6.81 1.97 7.14 1.19 8.07 2.66
25 5 9.44 2.61 5.95 1.53 8.41 1.48 7.18 1.91
50 5 9.55 2.58 5.74 1.28 8.73 1.80 7.60 2.31
100 5 9.95 2.62 5.59 1.20 9.10 2.04 7.54 2.43
150 5 10.38 2.92 5.46 1.08 8.62 1.90 7.71 2.78
200 5 10.45 3.26 5.30 0.72 8.93 1.83 7.56 2.24
250 5 10.03 3.05 5.46 0.98 8.87 2.03 7.66 2.24
10 10 26.93 7.84 21.44 5.63 10.43 0.70 24.05 6.38
20 10 23.08 8.41 17.51 4.74 15.69 1.98 23.03 5.85
50 10 24.99 6.82 16.73 4.90 20.11 3.17 21.29 7.07
100 10 26.00 8.34 13.97 4.06 19.82 3.49 21.87 12.27
200 10 28.17 8.86 13.16 3.85 20.08 3.06 20.34 7.72
300 10 26.79 6.98 12.02 2.96 19.87 3.80 24.46 14.93
400 10 25.33 6.74 11.95 2.41 19.86 3.21 20.59 8.80
500 10 26.75 7.68 11.50 1.80 19.93 3.59 22.61 9.31
20 20 97.61 32.65 56.38 13.01 22.24 1.83 76.32 14.84
40 20 69.25 18.03 44.70 9.71 36.55 4.25 80.40 16.63
100 20 82.40 26.97 40.30 10.59 47.64 5.80 75.69 28.78
200 20 91.08 44.27 34.67 9.81 48.52 5.97 84.46 67.17
400 20 88.75 32.44 29.63 8.12 47.78 6.79 94.31 85.48
600 20 92.66 36.12 28.04 6.39 48.46 6.90 98.12 83.41
800 20 92.59 38.30 25.85 4.94 47.10 6.00 88.02 82.25
1000 20 92.82 32.59 25.89 3.91 47.43 6.76 96.30 85.75

120

Table 4.10: The average running time solved by SNAR, Dual SNAR, Two-Phase

method and Arsham’s method.
SNAR Dual SNAR Two-Phase Method Arsham’s Method

m n iterations SD1 iterations SD2 iterations SD3 iterations SD4

5 5 0.0015 0.0005 0.0009 0.0003 0.0005 0.0001 0.0014 0.0002
10 5 0.0016 0.0004 0.0008 0.0004 0.0007 0.0002 0.0027 0.0003
25 5 0.0040 0.0005 0.0008 0.0004 0.0013 0.0003 0.0121 0.0006
50 5 0.0133 0.0006 0.0009 0.0004 0.0023 0.0004 0.0534 0.0009
100 5 0.0723 0.0020 0.0010 0.0006 0.0057 0.0013 0.3049 0.0030
150 5 0.2319 0.0040 0.0011 0.0006 0.0093 0.0016 1.0342 0.0106
200 5 0.4933 0.0098 0.0013 0.0006 0.0152 0.0024 2.3548 0.0173
250 5 0.9968 0.0812 0.0014 0.0006 0.0234 0.0040 3.8536 0.1502
10 10 0.0047 0.0017 0.0025 0.0007 0.0009 0.0004 0.0043 0.0008
20 10 0.0049 0.0013 0.0022 0.0009 0.0018 0.0005 0.0094 0.0009
50 10 0.0172 0.0018 0.0027 0.0013 0.0043 0.0012 0.0507 0.0020
100 10 0.0810 0.0043 0.0027 0.0014 0.0097 0.0016 0.2758 0.0059
200 10 0.5653 0.0156 0.0038 0.0020 0.0293 0.0042 2.2965 0.0288
300 10 1.8107 0.0759 0.0046 0.0017 0.0694 0.0088 6.7843 0.2559
400 10 5.0841 0.1028 0.0054 0.0018 0.1317 0.0193 14.8202 0.5061
500 10 9.9067 0.2008 0.0063 0.0022 0.1947 0.0323 27.4845 0.6710
20 20 0.0259 0.0116 0.0089 0.0021 0.0026 0.0002 0.0199 0.0034
40 20 0.0316 0.0064 0.0090 0.0032 0.0071 0.0020 0.0495 0.0052
100 20 0.1513 0.0205 0.0102 0.0040 0.0214 0.0026 0.3529 0.0207
200 20 0.7621 0.0740 0.0148 0.0061 0.0672 0.0075 2.4944 0.1102
400 20 5.6864 0.1816 0.0200 0.0077 0.2816 0.0435 15.1222 0.4899
600 20 18.6959 0.5454 0.0249 0.0056 0.7159 0.1047 46.7817 1.3912
800 20 44.4151 0.9826 0.0315 0.0104 1.1433 0.1489 109.2029 2.2615
1000 20 92.0105 1.3487 0.0391 0.0106 1.8178 0.2583 215.7660 3.7612

In Table 4.9, the boldface numbers identify the smallest average number of

iterations and the italic numbers identify the smallest standard deviations while,

Table 4.10, the boldface numbers identify the smallest average running time and

the italic numbers identify the smallest standard deviations of the running time

for solving linear programming problems of the same size.

According to Table 4.10, since the average running time solved by SNAR and

Arsham’s method had very distinct time from the average running time solved by

Dual SNAR and Two-Phase method, we will report only the average running time

solved by Dual SNAR and Two-Phase method. Then, results in Tables 4.9 and

4.10 are plotted as follows.

121

Table 4.11: Ratios of the average number of iterations and the average running

time solved by SNAR to Dual SNAR, by Two-Phase method to Dual SNAR and

by Arsham’s method to Dual SNAR
Ratio of iterations Ratio of the running time

m n SNP/SND 2P/SND AM/SND SNP/SND 2P/SND AM/SND

5 5 1.1759 0.6521 1.0013 1.5945 0.5396 1.4868
10 5 1.2907 1.0485 1.1850 2.0172 0.8892 3.3128
25 5 1.5866 1.4134 1.2067 5.1163 1.6667 15.5736
50 5 1.6638 1.5209 1.3240 15.5093 2.6682 62.3692
100 5 1.7800 1.6279 1.3488 72.3050 5.6850 304.8650
150 5 1.9011 1.5788 1.4121 211.7763 8.5342 944.5068
200 5 1.9717 1.6849 1.4264 391.5159 12.0913 1868.9206
250 5 1.8370 1.6245 1.4029 701.9718 16.4507 2713.8028
10 10 1.2561 0.4865 1.1217 1.8827 0.3678 1.7137
20 10 1.3181 0.8961 1.3152 2.2140 0.8333 4.2140
50 10 1.4937 1.2020 1.2726 6.4906 1.6113 19.1434
100 10 1.8611 1.4188 1.5655 29.7721 3.5699 101.3860
200 10 2.1406 1.5258 1.5456 149.5608 7.7566 607.5397
300 10 2.2288 1.6531 2.0349 396.6484 15.2026 1486.1555
400 10 2.1197 1.6619 1.7230 946.7598 24.5279 2759.8138
500 10 2.3261 1.7330 1.9661 1583.8050 31.1327 4394.0048
20 20 1.7313 0.3945 1.3537 2.9207 0.2961 2.2498
40 20 1.5492 0.8177 1.7987 3.5246 0.7924 5.5246
100 20 2.0447 1.1821 1.8782 14.9064 2.1064 34.7685
200 20 2.6271 1.3995 2.4361 51.3544 4.5276 168.0863
400 20 2.9953 1.6126 3.1829 284.6046 14.0961 756.8669
600 20 3.3046 1.7282 3.4993 750.2368 28.7287 1877.2753
800 20 3.5818 1.8221 3.4050 1410.0032 36.2952 3466.7587
1000 20 3.5852 1.8320 3.7196 2353.2097 46.4910 5518.3120

Names of columns in this table are described in the following table:

Table 4.12: Description of columns in table 4.11
SNP The SNAR algorithm
SND The Dual SNAR algorithm
2P The Two-Phase Method
AM The Arsham’s method

122

0

2

4

6

8

10

12

14

16

5 10 25 50 100 150 200 250

T
he

 a
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

The number of constraints

SNAR in Primal SNAR in Dual

Two-Phase Method Arsham's Method

Dual SNAR

Figure 4.21: The average number of iterations solved by SNAR, Dual SNAR,

Two-Phase method and Arsham’s method for 5 variables

0

0.005

0.01

0.015

0.02

0.025

0.03

5 10 25 50 100 150 200 250

T
he

 a
ve

ra
ge

 r
un

ni
ng

ti
m

e
(s

ec
.)

The number of constraints

SNAR in Dual

Two-Phase Method

Dual SNAR

Figure 4.22: The average running time solved by Dual SNAR and Two-Phase

method for 5 variables

123

0

5

10

15

20

25

30

35

40

45

10 20 50 100 200 300 400 500

T
he

 a
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

The number of constraints

SNAR in Primal SNAR in Dual

Two-Phase Method Arsham's Method

Dual SNAR

Figure 4.23: The average number of iterations solved by SNAR, Dual SNAR,

Two-Phase method and Arsham’s method for 10 variables

0

0.05

0.1

0.15

0.2

0.25

10 20 50 100 200 300 400 500

T
he

 a
ve

ra
ge

 r
un

ni
ng

ti
m

e
(s

ec
.)

The number of constraints

SNAR in Dual

Two-Phase Method

Dual SNAR

Figure 4.24: The average running time solved by Dual SNAR and Two-Phase

method for 10 variables

124

0

20

40

60

80

100

120

140

160

180

200

20 40 100 200 400 600 800 1000

T
he

 a
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

The number of constraints

SNAR in Primal SNAR in Dual

Two-Phase Method Arsham's Method

Dual SNAR

Figure 4.25: The average number of iterations solved by SNAR, Dual SNAR,

Two-Phase method and Arsham’s method for 20 variables

0

0.5

1

1.5

2

2.5

20 40 100 200 400 600 800 1000

T
he

 a
ve

ra
ge

 r
un

ni
ng

ti
m

e
(s

ec
.)

The number of constraints

SNAR in Dual

Two-Phase Method

Dual SNAR

Figure 4.26: The average running time solved by Dual SNAR and Two-Phase

method for 20 variables

125

4.3 Summary of Results

4.3.1 Problem P

For a small number of constraints, in Table 4.1, the majority of average number

of iterations of SNAR are less than the average number of iterations of Two-Phase

method. When the number of variables increases, the average number of iterations

of SNAR is larger than the average number of iterations of Two-Phase method

while the average number of iterations of Arsham’s method are larger than the

average number of iterations of SNAR for all sizes. Similarly, the majority of

standard deviations of SNAR are less than the standard deviations of Two-Phase

method while the standard deviations of Arsham’s method are larger than the

standard deviations of SNAR for all sizes.

Consider the average number of running time, in Table 4.3, there is only one

size that the average running time solved by SNAR is less than the average running

time solved by Two-Phase method, that is, 5 variables and 5 constraints. However,

the average running time solved by SNAR are less than the average running time

solved by Arsham’s method for all sizes.

For a large number of constraints, in tables 4.5 and 4.6, the average number of

iterations and the standard deviations of SNAR are less than the average number

of iterations of Two-Phase method and Arsham’s method for all sizes. Moreover,

in Table 4.7, the average running time of SNAR are less than both of Two-Phase

method and Arsham’s method.

From the table of ratios, in Table 4.7, all ratios, both of the average number of

iterations and the average running time, by Two-Phase method to SNAR and by

Arsham’s method to SNAR are greater than one. The greatest ratio of the average

number of iterations by Two-Phase method to SNAR is 7.27 solving 5 variables

and 200 constraints while the smallest ratio is 2.06 with 20 variables and 100

constraints. Additionally, the greatest ratio of the average number of iterations

by Arsham’s method to SNAR is 11.01 solving 100 variables and 500 constraints

size while the smallest ratio is 1.66 with 5 variables and 100 constraints size.

126

For ratios of the average running time, the greatest ratio of it by the Two-Phase

method to SNAR is 6.67 solving 100 variables and 4000 constraints size while the

smallest ratio is 2.36 with 5 variables and 25 constraints size. Additionally, the

greatest ratio of the average running time by Arsham’s method to SNAR is 8.57

solving 100 variables and 500 constraints size while the smallest ratio is 2.75 with

5 variables and 25 constraints size.

4.3.2 Problem D

From figures 4.21, 4.23 and 4.25, the average number of iterations solved by SNAR

are greater than the average number of iterations solved by Dual SNAR and

Two-Phase method for all sizes while almost average number of iterations solved

by SNAR are greater than the average number of iterations solved by Arsham’s

method except four sizes: 20 variables with 40, 400, 600 and 1000 constraints.

While the average number of iterations solved by Dual SNAR are less than the

average number of iterations solved by Arsham’s method for all sizes, the major-

ity of the average number of iterations solved by Dual SNAR are less than the

average number of iterations solved by Two-Phase method except a small sizes

as 5 variables with 5 constraints, 10 variables with 10 and 20 constraints and 20

variables with 20 and 40 constraints.

For comparing the average running time as shown in Table 4.10, solved by

SNAR and Arsham’s method much larger average running time than Dual SNAR

and Two-Phase method. So we will consider only the average running time solved

by Dual SNAR and Two-Phase method as Figures 4.21, 4.23 and 4.25 reported

only the average running time solved by Dual SNAR and Two-Phase method. We

found that, only small sizes as 5 variables with 5 and 10 constraints, 10 variables

with 10 and 20 constraints and 20 variables with 20 and 40 constraints, the average

running time solved by Dual SNAR are greater than the average running time

solved by Two-Phase method.

From the table of ratios, in Table 4.11, all ratios, both of the average num-

ber of iterations and the average running time, by SNAR to Dual SNAR and by

127

Arsham’s method to Dual SNAR are greater than one. The greatest ratio of the

average number of iterations by SNAR to Dual SNAR is 3.5852 solving 20 vari-

ables and 1000 constraints size while the smallest ratio is 1.1759 with 5 variables

and 5 constraints size. While the greatest ratio of the average number of itera-

tions by Arsham’s method to Dual SNAR is 3.7196 solving 20 variables and 1000

constraints size , and the smallest ratio is 1.0013 with 5 variables and 5 constraints

size. Additionally, the greatest ratio of the average number of iterations by Two-

Phase method to Dual SNAR is 1.8320 solving 20 variables and 1000 constraints

size while the smallest ratio is 0.3945 with a small size as 20 variables with 20

constraints.

For the average running time, the greatest ratio of the average running time

by SNAR to Dual SNAR is very high to 2353.2097 solving 20 variables and 1000

constraints size while the smallest ratio is 1.5945 with 5 variables and 5 constraints

size. While the greatest ratio of the average running time by Arsham’s method

to Dual SNAR is very high to 5518.3120 solving 20 variables and 1000 constraints

size , and the smallest ratio is 1.4868 with 5 variables and 5 constraints size.

Additionally, the greatest ratio of the average running time by Two-Phase method

to Dual SNAR is 46.4910 solving 20 variables and 1000 constraints size while the

smallest ratio is 0.2961 with a small size as 20 variables with 20 constraints.

4.4 Discussion

4.4.1 Problems P

From computational results, we found that SNAR outperforms Arsham’s method

for all problem sizes since SNAR initially solves only acute constraints which has

more chance to find the optimal solution than Arsham’s method. Moreover, we

found that a large proportion of the number of iterations of SNAR spent on solving

the relaxed problem. This implies that most constraints which form the optimal

solution are included in the relaxed problem while the number of iterations in

the relaxed problem of the Arsham’s method is small with respect to the whole

128

process. In addition, all standard deviations of SNAR are lower than the standard

deviations of Arsham’s method. This means that the total iterations of SNAR

solving the linear programming problems of that size are approximately the same

while this could not be concluded for Arsham’s method.

For comparing between Two-Phase method and SNAR, we found that both of

the average number of iterations and the average running time solved by SNAR

outperforms Two-Phase method for the large problem sizes which the relaxed

problems have optimal solutions. Additionally, the smallest ratio of the average

number of iterations by Two-Phase method to SNAR is 2.06, the minimum iter-

ations that SNAR can reduce to 2.06 of iterations solved by Two-Phase method.

Moreover, the maximum iterations that SNAR can reduce to 7.27 of iterations

solved by Two-Phase method. Not only it can reduce iterations but also the run-

ning time can be reduced. The minimum running time that SNAR can reduce to

2.36 of the running time solved by Two-Phase method. Moreover, the maximum

running time that SNAR can reduce to 6.67 of the running time solved by the

Two-Phase method.

From the Table 4.6, the average number of iterations for each size solved by

SNAR is in the relaxed NAR problem. This implies that most constraints which

form the optimal solution are included in the relaxed problem. Moving only a few

steps, the optimal solution is found. While Two-Phase method wasted most of

time to find a feasible solution in Phase I, SNAR can generate a feasible solution

for our relaxed problem and solve the smaller problem size among constraints

which form the optimal solution. Therefore, SNAR can reduce the iterations and

the running time to solve a linear programming problem.

For a small number of constraints, although the majority of average number of

iterations of SNAR are less than the average number of iterations of Two-Phase

method, most of average running time of SNAR are greater than the average

running time of the Two-Phase method. SNAR wastes the time computing dot

product values while Two-Phase method can start immediately. So SNAR uses

more time than Two-Phase method which the average number of iterations is not

129

different for small problem sizes.

For the problem size of 100 variables 200 constraints, the ratio of average num-

ber of iterations is 0.4 which is the smallest ratio of average running time for small

problem sizes. Although Two-Phase method needs to introduce artificial variables

to solve the linear programming problem, Two-Phase method outperforms SNAR

for the small problem size of constraints with respect to the number of variables

since SNAR spent more iterations after NAR is done. Two-Phase method deals

with all constraints at the same time while SNAR after NAR is completed with

unbounded optimal solution includes one constraint at a time. When it adds a

constraint from the collection of non-acute constraints, it will be used the dual

simplex to perturb the point from the relaxed problem for satisfying additional

constraints. So it takes more iterations than Two-Phase method. Consider the

following figure,

0

2x

1x

c

1:A

2:A
optimal solution

5:A

3:A

4:A

6:A

1

2

3

4

5

6

Figure 4.27: The original problem has the optimal solution.

In Figures 4.27, P = {1, 2} and N = {3, 4, 5, 6}. Then, NAR is drawn as the

following figure.

130

0

2x

1x

c

1:A

2:A

1

2

P1

Figure 4.28: NAR is unbounded.

We found that NAR is unbounded and the current solution is at the point P1.

Then, non-acute constraints from N will be added one by one which SNAR selects

by ascending order of the index. The next point is drawn as follows:

131

0

2x
c

1:A

2:A

3:A

1

2

3

1x

P1
P2

(a) Third constraint is added.

0

2x
c

1:A

2:A

4:A
1

2

3

4
3:A

1x

P3

P1
P2

(b) Fourth constraint is added.

0

2x
c

1:A

2:A

5:A

3:A

4:A
1

2

3

4

5

1x

P3

P1
P2

P4

(c) Fifth constraint is added.

0

2x

1x

c

1:A

2:A
optimal solution

5:A

3:A

4:A

6:A

1

2

3

4

5

6
P3

P1
P2

P4

P5

(d) Sixth constraint is added.

Figure 4.29: Example of NAR is unbounded and non-acute constraits are added.

From Figure 4.29a, the third constraints is added which causes the current

solution P1 being primal and dual infeasible. So we will perturb original costs of

objective function for dual feasibility and the dual simplex is performed to move

the point from P1 for satisfying this additional constraint. Then, the solution

moves to P2 and some perturbed costs are restored, but the relaxed problem is

still unbounded. Then, the next non-acute constraint is added and the algorithm

repeats by perturbing and using the dual simplex to move from P2 to P3 and P3

to P4 as shown in Figures 4.29b and 4.29c. Until the last constraint is added, the

optimal solution is found at P5.

If we know that the sixth constraint will be used to form the optimal solution,

and add this constraint first then the optimal solution is found immediately. We

can only check feasibility with another non-acute constraints then it is done. So

132

the order of reinsertion constraints is important.

4.4.2 Problem D

From computational results, we found that SNAR and Arsham’s method used

much more iterations and time to solve this problem than Dual SNAR and Two-

Phase method. Since the number of constraints of the standard double, the di-

mension of parameters solved by SNAR and Arsham’s method is very large. It

is different from Dual SNAR and Two-Phase method which do not increase the

number of constraints.

Consider Dual SNAR and Two-Phase method, the majority of the average

number of iterations and the average running time solved by Dual SNAR are

less than the average number of iterations solved by Two-Phase method except

the small problem sizes of constraints with respect to the number of variables.

The reason is similar to SNAR which wastes time computing dot product values

while Two-Phase method can start immediately. For the large problem size of

constraints with respect to the number of variables, computing dot product values

for classification constraints takes less time with respect to the total process. Dual

SNAR can generate a feasible solution for the relaxed problem and solve the

smaller problem size among constraints which form the optimal solution while

Two-Phase method wastes time in Phase I to find the feasible point. The increasing

number of constraints causes much more time to solve the problem by Two-Phase

method. Moreover, the standard deviations of iterations solved by Dual SNAR

are very low. This implied that the total iterations of Dual SNAR solving linear

programming problems of that size are approximately the same.

CHAPTER V

CONCLUSIONS

In this dissertation, we proposed the artificial-variable-free technique to improve

the simplex algorithm by relaxing the non-acute constraints. The relaxed problem

will be transformed for starting the simplex algorithm from the origin point with-

out using artificial variables. The collection of non-acute constraints are added to

determine the solution of the original linear programming problem.

From the computational results, SNAR outperforms Arsham’s method for all

sizes and all problem structures and Two-Phase method except the small size of

constraints which the relaxed problem has the unbounded optimal value. However,

SNAR is not efficient for the linear programming problem in the standard form

then we can use Dual SNAR instead the SNAR.

Additionally, if P and Ne are empty then we can conclude that the original

problem is unbounded.

However, for the small size problem, SNAR is not efficient with respect to Two-

Phase method since SNAR wasted the time in the non-acute constraint reinsertion.

If the non-acute constraint which forms the optimal solution is inserted early, the

optimal solution will be found rapidly.

In future work, we would like to choose the order of inserting. If the non-acute

constraint which forms the optimal solution is inserted early, the optimal solution

will be found quickly.

REFERENCES

[1] G.B. Dantzig.: Linear programming and extensions, Princeton Univ. Press,
Princeton, New Jersey, 1963.

[2] V. Klee, G. J. Minty, How good is the simplex algorithm? in inequalities,
New York: Academic Press. (1972) 159-175.

[3] N. Karmarkar, A new polynomial-time algorithm for linear programming,
Combinatorica. 4(1984) 373–395.

[4] R. Marsten, R. Subramanian, M. Saltzman, I. Lustig,D. Shanno, Interior
point methods for linear programming: Just call Newton, Lagrange, and
Fiacco and McCormick!, Interfaces. 20(1990) 105–116.

[5] H.A. Eiselt, C.L. Sandblom, Linear Programming and its Applica-
tions(online service), Berlin, Heidelberg : Springer Berlin Heidelberg, 2007.

[6] D. Goldfarb, K. Scheinberg, A product-form Cholesky factorization method
for handling dense columns in interior point methods for linear programming,
Math. Prog. 99(2004), 1-–34.

[7] C. Mészáros, Detecting “dense” columns in interior point methods for linear
programs, Comput. Optim. Appl. 36(2007) 309–320.

[8] L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and Real Computation,
Springer-Verlag (1997).

[9] S. Smale, Mathematical Problems for the Next Century, Math. Intell.
20(1998) 7–15.

[10] S. Zionts, The criss-cross method for solving linear programming problems,
Manage. Sci. 15(1969) 426-445.

[11] H. Arsham, An artificial-free simplex-type algorithm for general LP models,
Math. Comput. Modelling. 25(1997) 107-123.

[12] H. Arsham, Initialization of the simplex algorithm: an artificial-free ap-
proach, SIAM Rev. 39(1997) 736-744.

[13] A. Enge, P. Huhn, A counterexample to H. Arsham’s “Initialization of the
simplex algorithm: an artificial-free approach”, SIAM Rev. 40(1998) online.

[14] P.Q. Pan, Primal perturbation simplex algorithms for linear programming,
J. Comput. Math. 18(2000) 587-596.

[15] H. Arsham, Big-M free solution algorithm for general linear programs, IJ-
PAM. 32(2006) 37-52.

135

[16] H. Arsham, A computationally stable solution algorithm for linear programs,
Appl. Math. Comput. 188(2007) 1549-1561.

[17] H.W. Corley, J. Rosenberger, W.C. Yeh, T.K. Sung, The cosine simplex
algorithm, IJAMT. 27(2006) 1047-1050.

[18] P.Q. Pan, Practical finite pivoting rules for the simplex method, OR Spek-
trum. 12(1990) 219-225.

[19] N.V. Stojkovic, P.S. Stanimirovic, Two direct methods in linear program-
ming, Eur. J. Oper. Res. 131(2001) 417-439.

[20] W. Li, A note on “two direct methods in linear programming”, Eur. J. Oper.
Res. 158(2004) 262-265.

[21] H.V. Junior, M.P.E. Lins, An improved initial basis for the simplex algo-
rithm, Comput. Oper. Res. 32(2005) 1983-1993.

[22] J.F. Hu, A note on “an improved initial basis for the simplex algorithm”,
Comput. Oper. Res. 34(2007) 3397-3401.

[23] W.C. Yeh, H.W. Corley, A simple direct cosine simplex algorithm, Appl.
Math. Comput. 214(2009) 178-186.

[24] W. Li, H. Li, On simplex method with most-obtuse-angle rule and cosine
rule, Appl. Math. Comput. 217(2011) 7867-7873.

[25] M. S. Bazaraa , J. J. Jarvis, H. D. Sherali, Linear programming and network
flows, New York : John Wiley & Sons, 1990.

[26] E. H. Moore, On the reciprocal of the general algebraic matrix, Bull. Amer.
Math. Soc. 26(1920) 394–395.

[27] R. Penrose, A generalized inverse for matrices, Proc. Camb. Philos. Soc.
51(1955) 406–413.

136

VITA

Name Miss Aua-aree Boonperm
Date of Birth 22 February 1981
Place of Birth Surin, Thailand
Education B.Sc.(Mathematics)(Second Class Honors), Khon

Kaen University, 2003
M.Sc.(Computational Science), Chulalongkorn
University, 2009

Scholarship Development and Promotion of Science and Technology
talents project (DPST)

Publications • A.-A. Boonperm and K. Sinapiromsaran: Linear time
Algorithm in term of Number of the Constraints for
Linear Programming in 2D, Proceeding of OR-NET 2010,
pp. 48-53.
• A.-A. Boonperm and K. Sinapiromsaran: The New Origin
Point for Starting Simplex Algorithm, Proceeding of
OR-NET 2012, pp. 148-152.
• A.-A. Boonperm and K. Sinapiromsaran: The Artificial-
free Technique along the Objective Direction for the
Simplex Algorithm, On-line in Journal of Physics:
Conference Series 490(2014) 012193.
• A.-A. Boonperm and K. Sinapiromsaran: Artificial-Free
Simplex Algorithm Based on the Non-acute Constraint
Relaxation, Applied Mathematics and Computation,
Vol. 234 (2014), pp. 385-401.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Introduction
	1.1 Introductiontolinearprograming
	1.2 Motivation
	1.3 Overviewofthedissertation

	Chapter II Literaturereviews
	2.1 Definitions and Theorems of Linear Programming
	2.2 the Simplex Method
	2.3 Artificialvariabletechniques
	2.4 Duality
	2.5 Thedualsimplexmethod
	2.6 Sensitivityanslysis
	2.7 The Artificial-Variable-Free Techniques

	Chapter III Artificial-Variable-Free Simplex Method
	3.1 Preliminaries
	3.2 Snar
	3.3 Dualsnar
	3.4 Comparisonthedimensionofparameters

	Chapter IV Experimental Results
	4.1 Experimental Designs
	4.2 Computational Results
	4.3 Summaryofresults
	4.4 Discussion

	Chapter V Conclusions
	References
	Vita

