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CHAPTER I

INTRODUCTION

Natural phenomena, such as tsunamis, cyclone storms, tornado storms, etc.,

bring damages to the assets and loss of lives. Moreover, extreme phenomenon

with high casualties could cause a national disaser.

Insurance companies that do not have systematic plans in place especially

on maximum payouts to their clients might face serious problems from paying

larger amount of money than they could. If the problem persists, it could lead

to bankruptcy.

One example of how an insurance company might avoid such a problem is

to set a maximum threshold, say 50,000 baht, for which the company is directly

responsible. Responsibility of all claims over the threshold, e.g. 150,000 baht,

shall be splitted into two parts. The first 50,000 is covered by the company.

However, the excess of 100,000 baht is covered by a larger insurance company

from which the first company has bought a reinsurance. This way, the first

insurance company can protect itself from unexpectedly large claims.

From the above example, we let X denote the amount of each claim and u

denote the maximum threshold. The larger insurance company is surely inter-

ested in the distribution of the conditional excess over the threshold. As the

threshold u increases to infinity, the distribution of the conditional excess can

be approximated by the generalized Pareto distribution (Gξ,β) for some β > 0

and ξ ∈ R. For ξ > 0, Gξ,β is defined by

Gξ,β(x) = 1−
(

1 +
ξx

β

)− 1
ξ

for x ∈ [0,∞). (1.1)

For ξ < 0, Gξ,β is defined on
[
0,−β

ξ

]
by the same formula. And G0,β is defined

as the limit of (1.1) as ξ → 0+, i.e., G0,β(x) = 1− exp(−x
β
).
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In the case of two separate claims, of which the amounts are denoted by X

and Y , the study of the joint distribution of conditional excesses over a common

threshold leads to simpler limit theorems for extreme tail dependence copulas

([6], 2002). The copula of two continuous random variables is the marginal-free

joint distribution function. It captures dependence structure and discards the

marginal distributions. Juri and Wüthrich proved that the extreme tail depen-

dence copulas relative to an Archimedean copula C satisfying certain condi-

tions always converge to a Clayton copula. Note that the extreme tail depen-

dence copulas in [6] are defined by conditioning that both random variables are

less than the same threshold u.

In this thesis, we study the convergence of extreme tail dependence copulas

relative to a strict Archimedean copula where tails need not be squares, i.e., dif-

ferent thresholds may be used for two random variables. We show that these

extreme tail dependence copulas still converge to a Clayton copula as tails con-

verge to (0, c) along any path for some c ∈ [0, 1]. We also define extreme tail

dependence copulas relative to a non-strict Archimedean copula but are not

successful in proving a convergence theorem in this case.



CHAPTER II

PRELIMINARIES

In this chapter, we will give basic concepts of copulas and Archimedean

copulas. Moreover, we will give concepts of regular variations used in our

thesis. An introduction on copulas can be found in [8].

Definition 2.1. [8, p.10] A copula is a function C from [0, 1]2 to [0, 1] with the

following properties.

(1) For every u ∈ [0, 1], C(u, 0) = 0 = C(0, u) and C(u, 1) = u = C(1, u).

(2) C is 2-increasing, i.e., for every u1, u2, v1, v2 ∈ [0, 1] such that u1 ≤ u2 and

v1 ≤ v2,

VC([u1, u2]× [v1, v2]) = C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

Example. [8, p.11] Some examples of copulas are

(1) M(u, v) = min(u, v) ;

(2) W (u, v) = max(u+ v − 1, 0) ; and

(3)
∏

(u, v) = uv.

Remark. [8, p.11] Let C be a copula. Then for every (u, v) ∈ [0, 1]2,

W (u, v) ≤ C(u, v) ≤M(u, v).

Theorem 2.2. [8, p.11] Let C be a copula. Then for every u1, u2, v1, v2 ∈ [0, 1],

|C(u2, v2)− C(u1, v1)| ≤ |u2 − u1|+ |v2 − v1| .

Hence C is uniformly continuous on [0, 1]2.
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Definition 2.3. [8, p.21] Let F be a distribution function. Then a quasi-inverse

of F is any function F [−1] with domain [0, 1] such that

(1) if t ∈ F ([0, 1]), then F [−1](t) is any number x ∈ R̄ such that F (x) = t, i.e.,

for all t ∈ F ([0, 1]), F (F [−1](t)) = t;

(2) if t /∈ F ([0, 1]), then

F [−1](t) = inf{x|F (x) ≥ t} = sup{x|F (x) ≤ t}.

If F is strictly increasing, then it has but a single quasi-inverse, which is of

course the usual inverse, for which we use the customary notation F−1.

Definition 2.4. [8, p.63] Let {Ji}i∈Λ denote a partition of [0, 1], that is, a (possibly

infinite) collection of closed, non-overlapping (except at common endpoints)

nondegenerate intervals Ji = [ai, bi] whose union is [0, 1]. Let {Ci} be a collec-

tion of copulas with the same indexing as {Ji}i∈Λ. Then the ordinal sum of {Ci}

with respect to {Ji}i∈Λ is the copula C given by

C(u, v) =

 ai + (bi − ai)Ci( u−aibi−ai ,
v−ai
bi−ai ) if (u, v) ∈ J2

i ;

M(u, v), otherwise.

Definition 2.5. [8, p.110] Let ψ : [0, 1] → [0,∞] be continuous, strictly decreas-

ing such that ψ(1) = 0. The pseudo-inverse ψ[−1] : [0,∞]→ [0, 1] of ψ is defined

by

ψ[−1](s) =

 ψ−1(s) if 0 ≤ s ≤ ψ(0);

0 if ψ(0) ≤ s ≤ ∞.

Lemma 2.6. [8, p.110] Let ψ : [0, 1]→ [0,∞] be continuous, strictly decreasing such

that ψ(1) = 0, and let ψ[−1] be the pseudo-inverse of ψ defined as in Definition 2.5.

Define Cψ : [0, 1]2 → [0, 1] given as

Cψ(x, y) = ψ[−1](ψ(x) + ψ(y)) (2.1)

for x, y ∈ [0, 1]. Then Cψ satisfies the conditions as in Definition 2.1(1) for a copula.
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Lemma 2.7. [8, p.111] Let ψ, ψ[−1] and Cψ satisfy the hypotheses of Lemma 2.6. Then

Cψ is 2-increasing if and only if for all y ∈ [0, 1], if 0 ≤ u1 ≤ u2 ≤ 1, then Cψ(u2, v)−

Cψ(u1, v) ≤ u2 − u1.

Theorem 2.8. [8, p.111] Let ψ : [0, 1] → [0,∞] be continuous, strictly decreasing

such that ψ(1) = 0, and let ψ[−1] be the pseudo-inverse of ψ defined as in Definition

2.5. Then Cψ : [0, 1]2 → [0, 1] given by (2.1) is a copula if and only if ψ is convex.

Definition 2.9. [8, p.112] A copula Cψ as (2.1) is called an Archimedean copula.

The function ψ is called a generator of the copula. If ψ(0) = ∞, then ψ and Cψ

are called strict and ψ[−1] is the usual inverse of ψ.

Example. [6, p.408] The Clayton copula with parameter α > 0 is the Archimedean

copula generated by ψ(t) = t−α − 1 for t ∈ [0, 1] and has the corresponding form

Cα(x, y) = (x−α + y−α − 1)−1/α

for x, y ∈ [0, 1]. Then the Clayton copula is strict.

Theorem 2.10. [8, p.113] LetC be an associative copula, i.e.,C(C(u, v), w) = C(u,C(v, w))

for all u, v, w ∈ [0, 1], such that C(t, t) < t for all t ∈ (0, 1). Then C is Archimedean.

Theorem 2.11. [8, p.130] Let C be an Archimedean copula with generator ψ. Then,

for almost all u, v ∈ [0, 1],

ψ′(u)
∂C(u, v)

∂v
= ψ′(v)

∂C(u, v)

∂u
.

Theorem 2.12. [8, p.139] Let {Cθ|θ > 0} be a family of Archimedean copulas with

differentiable generators ψθ. Then C = lim
θ↓0

Cθ is an Archimedean copula if and only if

there exists a function ψ such that, for all s, t ∈ (0, 1),

lim
θ↓0

ψθ(s)

ψ′θ(t)
=
ψ(s)

ψ′(t)
.
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Theorem 2.13. [8, p.140] Let {Cθ|θ > 0} be a family of Archimedean copulas with

differentiable generators ψθ. Then lim
θ↓0

Cθ(u, v) = M(u, v) if and only if

lim
θ↓0

ψθ(t)

ψ′θ(t)
= 0

for t ∈ (0, 1).

Definition 2.14. [1, p.18,83] A measurable function f : (0,∞)→ (0,∞) is called

regularly varying at 0 with index ρ ∈ R if, for any x > 0,

lim
u↓0

f(ux)

f(u)
= xρ.

In the special case where ρ = 0, the function f is also called slowly varying at

0. If f is such that

lim
u↓0

f(ux)

f(u)
=


∞ if x < 1;

1 if x = 1;

0 if x > 1,

then f is said to be rapidly varying at 0 with index −∞. Similarly, if

lim
u↓0

f(ux)

f(u)
=


0 if x < 1;

1 if x = 1;

∞ if x > 1,

then f is said to be rapidly varying at 0 with index +∞.

Remark. [1, p.18][6, p.408] The set of functions which are regularly (rapidly) varying

at 0 with index ρ ∈ [−∞,+∞] is denoted by <ρ. In particular, for f ∈ <ρ, we have

lim
u↓0

f(ux)

f(uy)
=

(
x

y

)ρ
for all x, y > 0, where, for ρ = ±∞, the quotient (x

y
)ρ has to be interpreted as the limit

of (x
y
)ρ for ρ→ ±∞.
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Theorem 2.15. [1, p.17,18] Let f : (0,∞)→ (0,∞). If lim
t↓0

f(xt)

f(t)
= g(x) for all x in

a set of positive measure, then

1) lim
t↓0

f(xt)

f(t)
= g(x) for all x > 0,

2) there exists a real number α with g(x) ≡ x−α for all x > 0,

3) f(t) = t−α`(t) with ` slowly varying at 0.

Theorem 2.16. [1, p.39] Let U be given on (0, X], X ∈ R+, by

U(x) =

∫ x

0

u(y)dy

for some u ∈ L1[0, X]. If lim
x↓0

U(x)

cxρ`(x)
= 1, where c ∈ R, ρ ≥ 0, lim

x↓0

`(λx)

`(x)
= 1 for all

λ > 0, and if u is monotone in some right neighbourhood of 0, then

lim
x↓0

u(x)

cρxρ−1`(x)
= 1.

Definition 2.17. [6, p.410] For a copula C and u ∈ (0, 1) such that C(u, u) > 0,

let Fu : [0, 1]→ [0, 1] given as

Fu(t) :=
C(t ∧ u, u)

C(u, u)

for t ∈ [0, 1]. Moreover, define Cu : [0, 1]2 → [0, 1] is given as

Cu(x, y) :=
C(F−1

u (x), F−1
u (y))

C(u, u)

for x, y ∈ [0, 1] whenF−1
u (x) = inf{t ∈ [0, 1]|Fu(t) ≥ x} = sup{t ∈ [0, 1]|Fu(t) ≤ x}.

The notation Cu is called the extreme tail dependence copula relative to C at

the level u.

Theorem 2.18. For u ∈ (0, 1), if Fu is continuous, then Fu(F−1
u (x)) = x for x ∈ [0, 1].

Proof Let u ∈ (0, 1) and x ∈ [0, 1]. Assume that Fu is continuous. We will show

that Fu(F−1
u (x)) = x. Set x0 = F−1

u (x) = inf{t|Fu(t) ≥ x} = sup{t|Fu(t) ≤ x}.

For all n ∈ N, there exists bn ∈ {t|Fu(t) ≥ x} such that x0 ≤ bn < x0 + 1
n

, so
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we have Fu(bn) ≥ x. By Squeeze theorem, we have lim
n→∞

bn = x0 and so by the

continuity of Fu,

Fu(x0) = Fu( lim
n→∞

bn) = lim
n→∞

Fu(bn) ≥ lim
n→∞

x = x.

Similarly, for all n ∈ N, there exists cn ∈ {t|Fu(t) ≤ x} such that x0− 1
n
< cn ≤ x0,

so we have Fu(cn) ≤ x. By Squeeze theorem, we have lim
n→∞

cn = x0 and so by the

continuity of Fu,

Fu(x0) = Fu( lim
n→∞

cn) = lim
n→∞

Fu(cn) ≤ lim
n→∞

x = x.

Then Fu(F−1
u (x)) = Fu(x0) = x. �

Theorem 2.19. Let ψ be defined as in Definition 2.5. If ψ is strict, then ψ−1 is strictly

decreasing on [0,∞].

Proof Assume that ψ is strict. Let x, y ∈ [0,∞]. Assume that x < y. We will

show that ψ−1(x) > ψ−1(y). Suppose that ψ−1(x) ≤ ψ−1(y). If ψ−1(x) = ψ−1(y),

then x = ψ(ψ−1(x)) = ψ(ψ−1(y)) = y, a contradiction. If ψ−1(x) < ψ−1(y), then

we set s = ψ−1(x) and t = ψ−1(y). Then s, t ∈ [0, 1] and s < t. Since ψ is strictly

decreasing, we have ψ(s) > ψ(t), i.e., ψ(ψ−1(x)) > ψ(ψ−1(y)). Since ψ is strict,

we have x > y, a contradiction. Then ψ−1(x) > ψ−1(y). Hence ψ−1 is strictly

decreasing on [0,∞]. �

Theorem 2.20. [6, p.410] Let C be a strict Archimedean copula. Then Cu is also a

strict Archimedean copula and its generator ψu is given by

ψu(t) = ψ(F−1
u (t))− ψ(u) = ψ(tψ−1(2ψ(u)))− 2ψ(u),

for t ∈ [0, 1], where ψ is the generator of C.

Theorem 2.21. [2] Let C be a strict Archimedean copula with generator ψ, whose

the derivative is denoted by ψ′. Let 0 ≤ α ≤ ∞. Then ψ ∈ <−α if and only if

lim
u↓0

uψ′(u)

ψ(u)
= −α.
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Theorem 2.22. [6, p.413] Let C be an Archimedean copula having a differentiable

generator ψ ∈ <−α with 0 < α <∞. Then, for all x, y ∈ [0, 1],

lim
u↓0

Cu(x, y) = Cα(x, y).

Theorem 2.23. [6, p.415] Let C be an Archimedean copula with a differentiable gen-

erator ψ ∈ <−∞. Then, for all x, y ∈ [0, 1],

lim
u↓0

Cu(x, y) = M(x, y).



CHAPTER III

EXTREME TAIL DEPENDENCE COPULAS OF ORDINAL

SUMS

In this chapter, we study an ordinal sum of a strict Archimedean copula, and

any copula. We will prove that the extreme tail dependence copula of the above

ordinal sum at the level u is strict Archimedean when restricted to an area of

the strict Archimedean copula and converges to a Clayton copula.

Let C be a strict Archimedean copula with a generator ψ, D any copula,

a ∈ (0, 1), and E an ordinal sum of C and D as given by

E(x, y) =


aC(x

a
, y
a
) if (x, y) ∈ [0, a)2;

(1− a)D(x−a
1−a ,

y−a
1−a) if (x, y) ∈ [a, 1]2;

M(x, y) otherwise.

(3.1)

It is easy to check that E is a copula.

Definition 3.1. For u ∈ (0, 1) such that E(u, u) > 0, let F̃u : [0, 1] → [0, 1] be

given as

F̃u(t) =
E(t ∧ u, u)

E(u, u)

for t ∈ [0, 1]. Moreover, define Eu : [0, 1]2 → [0, 1] given as

Eu(x, y) =
E(F̃−1

u (x), F̃−1
u (y))

E(u, u)

for x, y ∈ [0, 1].

Before we will prove that Eu is a strict Archimedean copula, we know that

F̃−1
u (1) ≤ u because F̃u(u) = 1. Now, we will show that F̃u is equal to F̃u0 when

u0 = F̃−1
u (1).
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Lemma 3.2. Let u ∈ (0, a). Then F̃u ≡ F̃u0 when u0 = F̃−1
u (1).

Proof Observe that

F̃u(x) =
E(x ∧ u, u)

E(u, u)
=

 1 if x > u;
E(x,u)
E(u,u)

if x ≤ u.

Let x ∈ [0, 1]. If x > u, then F̃u(x) = 1 = F̃u0(x) because u ≥ u0. If x ≤ u,

then F̃u(x) =
E(x, u)

E(u, u)
and F̃u0(x) =

E(x, u0)

E(u0, u0)
. It suffices to show that E(u, u) =

E(u0, u0) and E(x, u) = E(x, u0).

To show that E(u, u) = E(u0, u0), we will show that F̃u(u0) = 1.

Clearly, F̃u(u0) ≤ 1. Since u0 = F̃−1
u (1) = inf{t|F̃u(t) ≥ 1}, for each n ∈ N,

there exists an ∈ {t|F̃u(t) ≥ 1} such that u0 ≤ an < u0 + 1
n

. Then F̃u(an) ≥ 1. By

Squeeze theorem, we have lim
n→∞

an = u0 and so by the continuity of F̃u,

F̃u(u0) = F̃u( lim
n→∞

an) = lim
n→∞

F̃u(an) ≥ lim
n→∞

1 = 1.

Then F̃u(u0) = 1. Thus
E(u0, u)

E(u, u)
= F̃u(u0) = 1 = F̃u(u) =

E(u, u)

E(u, u)
. Since C is

strict Archimedean, so C is symmetric. Then, for u0 ≤ u < a, we have

E(u, u) = E(u0, u) = aC
(u0

a
,
u

a

)
= aC

(u
a
,
u0

a

)
= E(u, u0).

Then

VE([u0, u]2) = E(u, u)− E(u, u0)− E(u0, u) + E(u0, u0)

= E(u, u0)− E(u, u0)− E(u, u0) + E(u0, u0)

= E(u0, u0)− E(u, u0).

Since VE([u0, u]2) ≥ 0, we have E(u0, u0) ≥ E(u, u0). Since E is increasing,
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we have E(u0, u0) ≤ E(u, u0). Then E(u0, u0) = E(u, u0) = E(u, u). Thus

VE([0, u]2\[0, u0]2) = VE([0, u]2)− VE([0, u0]2)

= E(u, u)− E(u0, u0)

= 0.

We know that [0, x]× [0, u]\[0, x]× [0, u0] ⊆ [0, u]2\[0, u0]2.

Then 0 = VE([0, x] × [0, u]\[0, x] × [0, u0]) = E(x, u) − E(x, u0). That is,

E(x, u) = E(x, u0). Thus

F̃u(x) =
E(x, u)

E(u, u)
=

E(x, u0)

E(u0, u0)
= F̃u0(x).

Hence, F̃u ≡ F̃u0 . �

Lemma 3.3. Let C be a strict Archimedean copula with a generator ψ, and F̃u defined

as in Definition 3.1 for each u ∈ (0, 1). Then, for a ∈ (0, 1) and u < a, F̃u is strictly

increasing on [0, u].

Proof Let u, a ∈ (0, 1) and u < a. Recall that, for t ∈ [0, u],

F̃u(t) =
E(t, u)

E(u, u)
=
C( t

a
, u
a
)

C(u
a
, u
a
)
.

Since C is a strict Archimedean copula with a generator ψ, we have

F̃u(t) =
ψ−1(ψ( t

a
) + ψ(u

a
))

ψ−1(2ψ(u
a
))

.

We will show that F̃u is strictly increasing on [0, u], i.e., for x, y ∈ [0, u], if x < y,

then F̃u(x) < F̃u(y).

Let x, y ∈ [0, u]. Assume that x < y. Since ψ is strict, by Theorem 2.19, ψ−1 is
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strictly decreasing on [0,∞]. Then

x

a
<

y

a

ψ
(x
a

)
> ψ

(y
a

)
ψ
(x
a

)
+ ψ

(u
a

)
> ψ

(y
a

)
+ ψ

(u
a

)
ψ−1

(
ψ
(x
a

)
+ ψ

(u
a

))
< ψ−1

(
ψ
(y
a

)
+ ψ

(u
a

))
ψ−1

(
ψ(x

a
) + ψ(u

a
)
)

ψ−1
(

2ψ(u
a
)
) <

ψ−1
(
ψ(y

a
) + ψ(u

a
)
)

ψ−1
(

2ψ(u
a
)
)

F̃u(x) < F̃u(y).

Hence F̃u is strictly increasing on [0, u]. �

Next, we will prove that Eu is a strict Archimedean copula.

Theorem 3.4. LetC be a strict Archimedean copula with a generatorψ and u, a ∈ (0, 1),

and D any copula. Let E, F̃u and Eu be defined as in equation (3.1) and Definition 3.1,

respectively. Assume that u < a. Then Eu is a strict Archimedean copula with a

generator

ψEu(x) = ψ

(
F̃−1
u (x)

a

)
− ψ

(u
a

)
for x ∈ [0, 1].

Proof First, we will show that Eu is a copula.

Note that, for x ∈ [0, 1], F̃−1
u (x) ∈ [0, u] ⊆ [0, a) and F̃−1

u (0) = 0. Then

Eu(x, 0) =
E(F̃−1

u (x), F̃−1
u (0))

E(u, u)
=
C( F̃

−1
u (x)
a

, F̃
−1
u (0)
a

)

C(u
a
, u
a
)

= 0.

Similarly, Eu(0, x) = 0.

By Lemma 3.2, without loss of generality, we assume that F̃−1
u (1) = u. Be-

cause F̃u(u) = 1 ≥ x, we have F̃−1
u (x) ≤ u. Because F̃u is continuous, by
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Theorem 2.18, we have

Eu(x, 1) =
E(F̃−1

u (x), F̃−1
u (1))

E(u, u)
=
E(F̃−1

u (x), u)

E(u, u)
= F̃u(F̃

−1
u (x)) = x.

Similarly, Eu(1, x) = x.

Assume that x1, x2, y1, y2 ∈ [0, 1], x1 < x2 and y1 < y2. As u < a and F̃−1
u is

increasing, we have 0 ≤ F̃−1
u (x1) ≤ F̃−1

u (x2) ≤ u < a < 1 and 0 ≤ F̃−1
u (y1) ≤

F̃−1
u (y2) ≤ u < a < 1. Since C is a copula, we have

VEu([x1, x2]× [y1, y2]) = Eu(x2, y2)− Eu(x2, y1)− Eu(x1, y2) + Eu(x1, y1)

=
E(F̃−1

u (x2), F̃−1
u (y2))

E(u, u)
− E(F̃−1

u (x2), F̃−1
u (y1))

E(u, u)

− E(F̃−1
u (x1), F̃−1

u (y2))

E(u, u)
+
E(F̃−1

u (x1), F̃−1
u (y1))

E(u, u)

=
C
(
F̃−1
u (x2)
a

, F̃
−1
u (y2)
a

)
C(u

a
, u
a
)

−
C
(
F̃−1
u (x2)
a

, F̃
−1
u (y1)
a

)
C(u

a
, u
a
)

−
C
(
F̃−1
u (x1)
a

, F̃
−1
u (y2)
a

)
C(u

a
, u
a
)

+
C
(
F̃−1
u (x1)
a

, F̃
−1
u (y1)
a

)
C(u

a
, u
a
)

≥ 0.

Then Eu is a copula. Next, we will prove that Eu is strict Archimedean

by the same arguments as in Theorem 2.20. First, we will show that Eu is

Archimedean by using Theorem 2.10. That is, we will show that,

1) Eu(x, x) < x for x ∈ (0, 1), and

2) Eu(Eu(x, y), z) = Eu(x,Eu(y, z)) for x, y, z ∈ [0, 1].

To show that Eu(x, x) < x for any x ∈ (0, 1), let x ∈ (0, 1). By Lemma 3.3 and

the continuity of F̃u, we have x = F̃u(t) for some t ∈ (0, u). Then t = F̃−1
u (x) and

x = F̃u(t) =
E(t, u)

E(u, u)
=
C( t

a
, u
a
)

C(u
a
, u
a
)

=
ψ−1(ψ( t

a
) + ψ(u

a
))

ψ−1(2ψ(u
a
))

.
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Therefore

xψ−1

(
2ψ
(u
a

))
= ψ−1

(
ψ

(
F̃−1
u (x)

a

)
+ ψ

(u
a

))

ψ

(
xψ−1

(
2ψ
(u
a

)))
= ψ

(
F̃−1
u (x)

a

)
+ ψ

(u
a

)
. (3.2)

Since ψ is strict, by Theorem 2.19, ψ−1 is strictly decreasing on [0,∞]. Be-

cause F̃−1
u (x) < u, we have

F̃−1
u (x)

a
<

u

a

ψ

(
F̃−1
u (x)

a

)
> ψ

(u
a

)
2ψ

(
F̃−1
u (x)

a

)
> ψ

(
F̃−1
u (x)

a

)
+ ψ

(u
a

)
2ψ

(
F̃−1
u (x)

a

)
> ψ

(
xψ−1

(
2ψ
(u
a

))) (
by (3.2)

)
ψ−1

(
2ψ

(
F̃−1
u (x)

a

))
< xψ−1

(
2ψ
(u
a

))
.

This implies that

Eu(x, x) =
C
(
F̃−1
u (x)
a

, F̃
−1
u (x)
a

)
C(u

a
, u
a
)

=
ψ−1

(
2ψ
(
F̃−1
u (x)
a

))
ψ−1(2ψ(u

a
))

< x. (3.3)

Next, we will show that Eu(Eu(x, y), z) = Eu(x,Eu(y, z)) for x, y, z ∈ [0, 1].
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Let x, y, z ∈ [0, 1]. By (3.2),

ψ

(
F̃−1
u (Eu(x, y))

a

)
= ψ

(
Eu(x, y) · ψ−1

(
2ψ
(u
a

)))
− ψ

(u
a

)

= ψ

(
C
(
F̃−1
u (x)
a

, F̃
−1
u (y)
a

)
ψ−1(2ψ(u

a
))

· ψ−1

(
2ψ
(u
a

)))
− ψ

(u
a

)
= ψ

(
C

(
F̃−1
u (x)

a
,
F̃−1
u (y)

a

))
− ψ

(u
a

)
= ψ

(
ψ−1

(
ψ

(
F̃−1
u (x)

a

)
+ ψ

(
F̃−1
u (y)

a

)))
− ψ

(u
a

)
= ψ

(
F̃−1
u (x)

a

)
+ ψ

(
F̃−1
u (y)

a

)
− ψ

(u
a

)
.

Therefore,

C

(
F̃−1
u (Eu(x, y))

a
,
F̃−1
u (z)

a

)
= ψ−1

[
ψ

(
F̃−1
u (Eu(x, y))

a

)
+ ψ

(
F̃−1
u (z)

a

)]

= ψ−1

[
ψ

(
F̃−1
u (x)

a

)
+ ψ

(
F̃−1
u (y)

a

)

− ψ
(u
a

)
+ ψ

(
F̃−1
u (z)

a

)]

= ψ−1

[
ψ

(
F̃−1
u (x)

a

)
+ ψ

(
F̃−1
u (y)

a

)

+ ψ

(
F̃−1
u (z)

a

)
− ψ

(u
a

)]

= ψ−1

[
ψ

(
F̃−1
u (x)

a

)
+ ψ

(
F̃−1
u (Eu(y, z))

a

)]

= C

(
F̃−1
u (x)

a
,
F̃−1
u (Eu(y, z))

a

)
.
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Thus

Eu(Eu(x, y), z) =
E
(
F̃−1
u (Eu(x, y)), F̃−1

u (z)
)

E(u, u)

=
aC
(
F̃−1
u (Eu(x,y))

a
, F̃
−1
u (z)
a

)
E(u, u)

=
aC
(
F̃−1
u (x)
a

, F̃
−1
u (Eu(y,z))

a

)
E(u, u)

=
E
(
F̃−1
u (x), F̃−1

u (Eu(y, z))
)

E(u, u)

= Eu(x,Eu(y, z)). (3.4)

By (3.3) and (3.4), Eu is Archimedean. Now, we will find a generator ψEu

corresponding to Eu. We note that

∂1Eu(x, y) =
∂

∂x

[
E(F̃−1

u (x), F̃−1
u (y))

E(u, u)

]

=
∂

∂x

[
C
(
F̃−1
u (x)
a

, F̃
−1
u (y)
a

)
C(u

a
, u
a
)

]

=
1

C(u
a
, u
a
)
· ∂

∂
(
F̃−1
u

a

)
(x)

[
C

(
F̃−1
u (x)

a
,
F̃−1
u (y)

a

)
·

(
F̃−1
u

a

)′
(x)

]

and

∂2Eu(x, y) =
∂

∂y

[
E(F̃−1

u (x), F̃−1
u (y))

E(u, u)

]

=
∂

∂y

[
C
(
F̃−1
u (x)
a

, F̃
−1
u (y)
a

)
C(u

a
, u
a
)

]

=
1

C(u
a
, u
a
)
· ∂

∂
(
F̃−1
u

a

)
(y)

[
C

(
F̃−1
u (x)

a
,
F̃−1
u (y)

a

)
·

(
F̃−1
u

a

)′
(y)

]
.

By Theorem 2.11, the generator ψEu of Eu satisfies
ψ′Eu(x)

ψ′Eu(y)
=
∂1Eu(x, y)

∂2Eu(x, y)
for
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x, y ∈ [0, 1]. Then ψEu necessarily satisfies

ψ′Eu(x)

ψ′Eu(y)
=
∂1C

(
F̃−1
u (x)
a

, F̃
−1
u (y)
a

)
·
(
F̃−1
u

a

)′
(x)

∂2C
(
F̃−1
u (x)
a

, F̃
−1
u (y)
a

)
·
(
F̃−1
u

a

)′
(y)

=
ψ′
(
F̃−1
u (x)
a

)
·
(
F̃−1
u

a

)′
(x)

ψ′
(
F̃−1
u (y)
a

)
·
(
F̃−1
u

a

)′
(y)

=

(
ψ ◦ F̃

−1
u

a

)′
(x)(

ψ ◦ F̃
−1
u

a

)′
(y)

for all x, y ∈ [0, 1]. Choose y =
1

2
. Thenψ′Eu(x) =

ψ′Eu(1
2
)(

ψ ◦ F̃
−1
u

a

)′
(1

2
)
·

(
ψ ◦ F̃

−1
u

a

)′
(x).

Thus
∫ 1

x

ψ′Eu(t)dt =
ψ′Eu(1

2
)(

ψ ◦ F̃
−1
u

a

)′
(1

2
)

∫ 1

x

(
ψ ◦ F̃

−1
u

a

)′
(t)dt. By ψEu(1) = 0, we have

ψEu(x) = cEu

[
ψ

(
F̃−1
u (x)

a

)
− ψ

(u
a

)]
when cEu is a constant. Since

cEu

[
ψ

(
F̃−1
u (x)

a

)
− ψ

(u
a

)]
and ψ

(
F̃−1
u (x)

a

)
− ψ

(u
a

)
generate the same cop-

ula, we choose cEu = 1 and ψEu(x) = ψ

(
F̃−1
u, (x)

a

)
− ψ

(u
a

)
. Note that ψEu is

a continuous strictly decreasing function and

ψEu(t) = ψ

(
F̃−1
u (t)

a

)
− ψ

(u
a

)
= ψ

(
tψ−1

(
2ψ
(u
a

)))
− 2ψ

(u
a

)
. (3.5)

To show that ψEu is a generator of Eu, we will prove that

Eu(x, y) = ψ−1
Eu

(ψEu(x) + ψEu(y))

for all x, y ∈ [0, 1].
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Let x, y ∈ [0, 1]. Since ψEu is continuous, x = ψEu(t) for some t ∈ [0, 1]. Then

x = ψ

(
tψ−1

(
2ψ
(u
a

)))
− 2ψ

(u
a

)
ψ

(
tψ−1

(
2ψ
(u
a

)))
= x+ 2ψ

(u
a

)
tψ−1

(
2ψ
(u
a

))
= ψ−1

(
x+ 2ψ

(u
a

))
t =

ψ−1
(
x+ 2ψ(u

a
)
)

ψ−1
(
2ψ(u

a
)
)

That is, ψ−1
Eu

(x) =
ψ−1

(
x+ 2ψ(u

a
)
)

ψ−1
(
2ψ(u

a
)
) . Thus, for u < a,

Eu(x, y) =
E(F̃−1

u (x), F̃−1
u (y))

E(u, u)

=

C

(
F̃−1
u (x)
a

, F̃
−1
u (y)
a

)
C(u

a
, u
a
)

=

ψ−1

(
ψ
(
F̃−1
u (x)
a

)
+ ψ

(
F̃−1
u (y)
a

))
ψ−1(2ψ(u

a
))

=
ψ−1

(
ψ
(
xψ−1(2ψ(u

a
))
)

+ ψ
(
yψ−1(2ψ(u

a
))
)
− 2ψ(u

a
)
)

ψ−1(2ψ(u
a
))

(
by (3.2)

)
=
ψ−1

(
ψEu(x) + ψEu(y) + 2ψ(u

a
)
)

ψ−1(2ψ(u
a
))

(
by (3.5)

)
= ψ−1

Eu
(ψEu(x) + ψEu(y)).

This proved that ψEu is a generator of Eu. Since ψ is strict, we have

ψEu(0) = ψ

(
F̃−1
u (0)

a

)
− ψ

(u
a

)
= ψ

(
0

a

)
− ψ

(u
a

)
= ψ(0)− ψ

(u
a

)
=∞.

Then ψEu is strict. Hence, for 0 < u < a < 1, Eu is strict Archimedean with the

generator ψEu . �

Moreover, we can verify that Eu converges to a Clayton copula as u ↓ 0.
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Theorem 3.5. Let C be a strict Archimedean copula having a differentiable generator

ψ ∈ <−α with 0 < α <∞, and D any copula. Let E and Eu be defined as in equation

(3.1) and Definition 3.1, respectively. Then, for all x, y ∈ [0, 1],

lim
u↓0

Eu(x, y) = Cα(x, y).

Proof We follow exactly the same arguments as Theorem 2.22.

Since ψ ∈ <−α, ψ is measurable, ψ > 0 and, for any t > 0, we have

lim
v↓0

ψ(vt)

ψ(v)
= t−α. By Theorem 2.15, ψ(t) = t−α`(t) for some ` ∈ <0. Then t−α 6= 0

and lim
t↓0

ψ(t)

t−α`(t)
= 1. Since ψ is convex, ψ′ is increasing and monotone in some

right neighbourhood of 0. By Theorem 2.16, we have lim
t↓0

ψ′(t)

−αt−α−1`(t)
= 1. We

know that Eu is strict Archimedean with the generator

ψEu(t) = ψ

(
F̃−1
u (t)

a

)
− ψ

(u
a

)
= ψ

(
tψ−1

(
2ψ
(u
a

)))
− 2ψ

(u
a

)
,

so this implies that, for s, t ∈ (0, 1),

lim
u↓0

ψEu(s)

ψ′Eu(t)
= lim

u↓0

ψ(sψ−1(2ψ(u
a
)))− 2ψ(u

a
)

ψ−1(2ψ(u
a
))ψ′(tψ−1(2ψ(u

a
)))
.

Let v = ψ−1

(
2ψ
(u
a

))
. Because ψ−1

(
2ψ
(u
a

))
= C

(u
a
,
u

a

)
and C is continu-
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ous, u ↓ 0 implies v = C
(u
a
,
u

a

)
↓ 0. Then

lim
u↓0

ψEu(s)

ψ′Eu(t)
= lim

v↓0

ψ(sv)− ψ(v)

vψ′(tv)

= lim
v↓0

(sv)−α`(sv)− v−α`(v)

−αv(tv)−α−1`(tv)

= lim
v↓0

s−α`(sv)− `(v)

−αt−α−1`(tv)

=
limv↓0

s−α`(sv)
`(v)

− 1

limv↓0
−αt−α−1`(tv)

`(v)

=
s−α − 1

−αt−α−1
(since ` ∈ <0)

=
φα(s)

φ′α(t)
.

Since φα(t) = t−α − 1 is the generator of Cα, by Theorem 2.12, Eu converges

to Cα as u ↓ 0. �

Theorem 3.6. Let C be a strict Archimedean copula with a differentiable generator

ψ ∈ <−∞, and D any copula. Let E and Eu be defined as in equation (3.1) and

Definition 3.1, respectively. Then, for all x, y ∈ [0, 1],

lim
u↓0

Eu(x, y) = M(x, y).

Proof We follow exactly the same arguments as Theorem 2.23.

By Theorem 2.13, it suffices to show that, for t ∈ (0, 1), lim
u↓0

ψEu(t)

ψ′Eu(t)
= 0. Ap-

plying Theorem 3.5, we have for ψ ∈ <−∞, lim
v↓0

ψ(tv)

ψ(v)
= +∞ and, by Theorem

2.21, lim
v↓0

vψ′(v)

ψ(v)
= −∞when v = ψ−1

(
2ψ
(u
a

))
. Then

lim
u↓0

ψEu(t)

ψ′Eu(t)
= lim

v↓0

ψ(tv)− ψ(v)

vψ′(tv)

= lim
v↓0

t

(
ψ(tv)

tvψ′(tv)
− ψ(tv)

tvψ′(tv)

ψ(v)

ψ(tv)

)
= 0.
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By Theorem 2.13, Eu converges to M as u ↓ 0. �



CHAPTER IV

EXTREME TAIL DEPENDENCE COPULAS ALONG

ARBITRARY CONVERGENCE PATHS

Let C be an Archimedean copula having a generator ψ. Juri and Wüthrich

[6] studied tail copulas of C conditioning on [0, u] × [0, u] as u goes down to

0. In this chapter, we assume that C is strict and investigate tail copulas of

C conditioning on [0, u] × [0, v] as (u, v) approaches (0, 0) along any path. We

obtain the same results as those in [6].

Let two random variablesX , Y be uniformly distributed on the unit interval

[0, 1] and have joint distribution function C.

Definition 4.1. For u ∈ (0, 1), we define Fu, : [0, 1]→ [0, 1] as

Fu,(t) ≡ FC
u, (t) ≡ P [X ≤ t|X ≤ u, Y ≤ 1] = P [X ≤ t|X ≤ u] =

min(t, u)

u

for t ∈ [0, 1], and define Gu, : [0, 1]→ [0, 1] by

Gu,(t) ≡ GC
u,(t) ≡ P [Y ≤ t|X ≤ u, Y ≤ 1] = P [Y ≤ t|X ≤ u] =

C(u, t)

u

for t ∈ [0, 1]. Then define Cu, : [0, 1]2 → [0, 1] as

Cu,(x, y) =
C(F−1

u, (x), G−1
u, (y))

u

for x, y ∈ [0, 1] whenF−1
u, (x) = inf{t ∈ [0, 1]|Fu,(t) ≥ x} = sup{t ∈ [0, 1]|Fu,(t) ≤ x}.
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Fig.4.1 A copula Cu,

Proposition 4.2. For every u ∈ (0, 1),

(1) F−1
u, (0) = 0, G−1

u, (0) = 0,

(2) F−1
u, (1) = u, G−1

u, (1) = 1.

Proof We shall only prove the statements involving Fu, as the equations con-

cerning Gu, can be shown in a similar fashion.

(1) Since Fu,(0) = 0, we have F−1
u, (0) = inf{t|Fu,(t) ≥ 0} ≤ 0. Clearly,

F−1
u, (0) ≥ 0. Then F−1

u, (0) = 0.

(2) Since Fu,(u) = 1, we have F−1
u, (1) = inf{t|Fu,(t) ≥ 1} ≤ u and

F−1
u, (1) = sup{t|Fu,(t) ≤ 1} ≥ u. Then F−1

u, (1) = u. �

Lemma 4.3. Let C be a strict Archimedean copula with a generator ψ, Fu, and Gu,

defined as in Definition 4.1 for each u ∈ (0, 1). Then

(1) Fu, is strictly increasing on [0, u], and

(2) Gu, is strictly increasing on [0, 1].

Proof Let u ∈ (0, 1). Recall that, for t ∈ [0, u], Fu,(t) =
t

u
.

(1) We will show that Fu, is strictly increasing on [0, u], i.e., for x, y ∈ [0, u],

if x < y, then Fu,(x) < Fu,(y). Let x, y ∈ [0, u]. Assume that x < y. Then

Fu,(x) =
x

u
<
y

u
= Fu,(y).
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Hence Fu, is strictly increasing on [0, u].

(2) Since C is strict Archimedean with a generator ψ, we have

Gu,(t) =
C(u, t)

u
=
ψ−1(ψ(u) + ψ(t))

u

for t ∈ [0, 1]. We will show that Gu, is strictly increasing on [0, 1], i.e., for x, y ∈

[0, 1], if x < y, then Gu,(x) < Gu,(y). Let x, y ∈ [0, 1]. Assume that x < y. Since ψ

is strict, by Theorem 2.19, ψ−1 is strictly decreasing on [0,∞]. Then

ψ(x) > ψ(y)

ψ(u) + ψ(x) > ψ(u) + ψ(y)

ψ−1(ψ(u) + ψ(x))

u
<

ψ−1(ψ(u) + ψ(y))

u

Gu,(x) < Gu,(y).

Hence Gu, is strictly increasing on [0, 1]. �

Now, we will prove that Cu, is a strict Archimedean copula.

Theorem 4.4. Let C be a strict Archimedean copula with a generator ψ, Fu,, Gu, and

Cu, defined as in Definition 4.1 for each u ∈ (0, 1). Then Cu, is a strict Archimedean

copula with the generator

ψu,(x) = ψ(F−1
u, (x))− ψ(u) = ψ(G−1

u, (x)) = ψ(xu)− ψ(u)

for x ∈ [0, 1].

Proof We will show that Cu, is a copula. Firstly, by Proposition 4.2(1), we have

Cu,(x, 0) =
C(F−1

u, (x), G−1
u, (0))

u
=
C(F−1

u, (x), 0)

u
= 0

and

Cu,(0, y) =
C(F−1

u, (0), G−1
u, (y))

u
=
C(0, G−1

u, (y))

u
= 0
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for x, y ∈ [0, 1]. Secondly, because of Proposition 4.2(2), F−1
u, (x) ≤ u and the

continuity of Fu,, by Theorem 2.18, we have

Cu,(x, 1) =
C(F−1

u, (x), G−1
u, (1))

u
=
C(F−1

u, (x), 1)

u
= Fu,(F

−1
u, (x)) = x

for x ∈ [0, 1]. Similarly, because of Proposition 4.2(2) and the continuity of Gu,,

by Theorem 2.18, we have

Cu,(1, y) =
C(F−1

u, (1), G−1
u, (y))

u
=
C(u,G−1

u, (y))

u
= Gu,(G

−1
u, (y)) = y

for y ∈ [0, 1]. Finally, let (x1, y1), (x2, y2) ∈ [0, 1]2 be such that x1 ≤ x2 and y1 ≤ y2.

As F−1
u, and G−1

u, are increasing, we have 0 ≤ F−1
u, (x1) ≤ F−1

u, (x2) ≤ u < 1 and

0 ≤ G−1
u, (y1) ≤ G−1

u, (y2) ≤ 1. Since C is a copula, we have

VCu,([x1, x2]× [y1, y2]) = Cu,(x2, y2)− Cu,(x2, y1)− Cu,(x1, y2) + Cu,(x1, y1)

=
C(F−1

u, (x2), G−1
u, (y2))

u
−
C(F−1

u, (x2), G−1
u, (y1))

u

−
C(F−1

u, (x1), G−1
u, (y2))

u
+
C(F−1

u, (x1), G−1
u, (y1))

u

=
VC([F−1

u, (x1), F−1
u, (x2)]× [G−1

u, (y1), G−1
u, (y2)])

u

≥ 0.

Hence Cu, is a copula.

Now, we will show that Cu, is Archimedean by using Theorem 2.10. That is,

we will show that,

1) Cu,(x, x) < x for x ∈ (0, 1), and

2) Cu,(Cu,(x, y), z) = Cu,(x,Cu,(y, z)) for x, y, z ∈ [0, 1].

First, we will show that Cu,(x, x) < x for x ∈ (0, 1).

Let x ∈ (0, 1). We know that C is strict Archimedean with a generator ψ, i.e.,

for s, t ∈ [0, 1], C(s, t) = ψ−1(ψ(s) + ψ(t)). Recall that Fu,(t) =
min(t, u)

u
=
t

u
for

t < u. By Lemma 4.3(1), and the continuity of Fu,, we have x = Fu,(t) for some
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t ∈ (0, u). Then t = F−1
u, (x). Since F−1

u, (x) ≤ u, we have

F−1
u, (x) = xu (4.1)

ψ(F−1
u, (x)) = ψ(xu). (4.2)

Similarly, recall thatGu,(t) =
C(u, t)

u
=
ψ−1(ψ(u) + ψ(t))

u
. By Lemma 4.3(2), and

the continuity of Gu,, we have x = Gu,(t) for some t ∈ (0, 1). Then t = G−1
u, (x).

Since ψ is strict, we have

x =
ψ−1(ψ(u) + ψ(G−1

u, (x)))

u

xu = ψ−1(ψ(u) + ψ(G−1
u, (x)))

ψ(xu) = ψ(u) + ψ(G−1
u, (x))

ψ(G−1
u, (x)) = ψ(xu)− ψ(u). (4.3)

Since ψ is strict, by Theorem 2.19, ψ−1 is strictly decreasing on [0,∞]. Since

xu < u, we have

ψ(xu) > ψ(u)

2ψ(xu) > ψ(xu) + ψ(u)

2ψ(xu)− ψ(u) > ψ(xu)

ψ(F−1
u, (x)) + ψ(G−1

u, (x)) > ψ(xu)
(

by (4.2) and (4.3)
)

ψ−1(ψ(F−1
u, (x)) + ψ(G−1

u, (x))) < xu

C(F−1
u, (x), G−1

u, (x)) < xu

C(F−1
u, (x), G−1

u, (x))

u
< x

Cu,(x, x) < x. (4.4)
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Now, let x, y, z ∈ [0, 1]. Note that

ψ(F−1
u, (Cu,(x, y))) = ψ(uCu,(x, y))

= ψ(C(F−1
u, (x), G−1

u, (y)))

= ψ(ψ−1(ψ(F−1
u, (x)) + ψ(G−1

u, (y))))

= ψ(F−1
u, (x)) + ψ(G−1

u, (y)). (4.5)

Similarly, we have

ψ(G−1
u, (Cu,(x, y))) = ψ(F−1

u, (x)) + ψ(G−1
u, (y))− ψ(u). (4.6)

By (4.5) and (4.6),

C
(
F−1
u, (Cu,(x, y)), G−1

u, (z)
)

= ψ−1[ψ
(
F−1
u, (Cu,(x, y))

)
+ ψ(G−1

u, (z))]

= ψ−1[ψ(F−1
u, (x)) + ψ(G−1

u, (y)) + ψ(G−1
u, (z))]

= ψ−1[ψ(F−1
u, (x)) + ψ(yu)− ψ(u) + ψ(G−1

u, (z))]

= ψ−1[ψ(F−1
u, (x)) + ψ(F−1

u, (y)) + ψ(G−1
u, (z))− ψ(u)]

= ψ−1
[
ψ(F−1

u, (x)) + ψ
(
G−1
u, (Cu,(y, z))

)]
= C

(
F−1
u, (x), G−1

u, (Cu,(y, z))
)
.

Hence

Cu,(Cu,(x, y), z) = Cu,(x,Cu,(y, z)). (4.7)

By (4.4) and (4.7), Cu, is Archimedean. Now, we will find a generator ψu,

corresponding to Cu,. By Theorem 2.11, the generator ψ of C must satisfy

ψ′(x)

ψ′(y)
=
∂1C(x, y)

∂2C(x, y)
(4.8)

for all x, y ∈ [0, 1] and likewise ψu, is the solution of
ψ′u,(x)

ψ′u,(y)
=
∂1Cu,(x, y)

∂2Cu,(x, y)
, x, y ∈
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[0, 1]. Then

∂1Cu,(x, y) =
∂

∂x

[
C(F−1

u, (x), G−1
u, (y))

u

]
=

1

u
· ∂1C(F−1

u, (x), G−1
u, (y)) · (F−1

u, )′(x).

Similarly, ∂2Cu,(x, y) =
1

u
· ∂2C(F−1

u, (x), G−1
u, (y)) · (G−1

u, )′(y).

Then ψu, necessarily satisfies

ψ′u,(x)

ψ′u,(y)
=
∂1C(F−1

u, (x), G−1
u, (y)) · (F−1

u, )′(x)

∂2C(F−1
u, (x), G−1

u, (y)) · (G−1
u, )′(y)

=
ψ′(F−1

u, (x)) · (F−1
u, )′(x)

ψ′(G−1
u, (y)) · (G−1

u, )′(y)

=
(ψ ◦ F−1

u, )′(x)

(ψ ◦G−1
u, )′(y)

for all x, y ∈ [0, 1], where we have used (4.8) in the second equality. Putting

y =
1

2
gives ψ′u,(x) =

ψ′u,(
1
2
)

(ψ ◦G−1
u, )′(1

2
)
· (ψ ◦ F−1

u, )′(x). Integrating both sides yields∫ 1

x

ψ′u,(t)dt =
ψ′u,(

1
2
)

(ψ ◦G−1
u, )′(1

2
)

∫ 1

x

(ψ ◦ F−1
u, )′(t)dt. By ψu,(1) = 0 and F−1

u, (1) = u,

we haveψu,(x) = cu[ψ(F−1
u, (x))−ψ(u)] where cu is a constant. Since cu[ψ(F−1

u, (x))−

ψ(u)] and ψ(F−1
u, (x)) − ψ(u) are generators of the same copula, we put cu = 1

and ψu,(x) = ψ(F−1
u, (x))− ψ(u). Since ψ(F−1

u, (x)) = ψ(xu) and

ψ(G−1
u, (x)) = ψ(xu)−ψ(u), we also have ψu,(x) = ψ(F−1

u, (x))−ψ(u) = ψ(G−1
u, (x)).

Since ψ is strict, we have ψu,(0) = ψ(G−1
u, (0)) = ψ(0) =∞. Then ψu, is strict. Re-

call that

ψu,(t) = ψ(F−1
u, (t))− ψ(u) = ψ(tu)− ψ(u). (4.9)

Let x, y ∈ [0, 1]. We will show that Cu,(x, y) = ψ−1
u, (ψu,(x) + ψu,(y)). Since ψu, is
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continuous, we have x = ψu,(t) for some t ∈ [0, 1]. Then

x = ψ(tu)− ψ(u)

ψ(tu) = x+ ψ(u)

tu = ψ−1(x+ ψ(u))

t =
ψ−1(x+ ψ(u))

u

That is, ψ−1
u, (x) =

ψ−1(x+ ψ(u))

u
. Thus, by (4.2), (4.3) and (4.9),

Cu,(x, y) =
C(F−1

u, (x), G−1
u, (y))

u

=
ψ−1(ψ(F−1

u, (x)) + ψ(G−1
u, (y)))

u

=
ψ−1(ψ(xu) + ψ(yu)− ψ(u))

u

=
ψ−1(ψu,(x) + ψ(u) + ψu,(y))

u

= ψ−1
u, (ψu,(x) + ψu,(y)).

Hence Cu, is strict Archimedean with the generator ψu,. �

The next theorem investigates the convergence of Cu, to a Clayton copula Cα as

u ↓ 0.

Theorem 4.5. Let C be a strict Archimedean copula having a differentiable generator

ψ ∈ <−α for some α ∈ (0,∞), and Cu, defined as in Definition 4.1. Then, for all

x, y ∈ [0, 1],

lim
u↓0

Cu,(x, y) = Cα(x, y).

Proof Since ψ ∈ <−α, ψ is measurable, ψ > 0 and, for any t > 0, we have

lim
u↓0

ψ(ut)

ψ(u)
= t−α. By Theorem 2.15, ψ(t) = t−α`(t) for some ` ∈ <0. Then t−α 6= 0

and lim
t↓0

ψ(t)

t−α`(t)
= 1. Since ψ is convex, ψ′ is increasing and monotone in some

right neighbourhood of 0. By Theorem 2.16, we have lim
t↓0

ψ′(t)

−αt−α−1`(t)
= 1. By



31

Theorem 4.4, Cu, is strict Archimedean with the generator

ψu,(t) = ψ(tu)− ψ(u)

for t ∈ [0, 1]. Then, for s, t ∈ (0, 1), we have

lim
u↓0

ψu,(s)

ψ′u,(t)
= lim

u↓0

ψ(su)− ψ(u)

uψ′(tu)

= lim
u↓0

(su)−α`(su)− u−α`(u)

−αu(tu)−α−1`(tu)

= lim
u↓0

s−α`(su)− `(u)

−αt−α−1`(tu)

=
limu↓0

s−α`(su)
`(u)

− 1

limu↓0
−αt−α−1`(tu)

`(u)

=
s−α − 1

−αt−α−1
(since ` ∈ <0)

=
φα(s)

φ′α(t)

where φα(t) = t−α − 1 is the generator corresponding to Cα. By Theorem 2.12,

Cu, converges to Cα as u ↓ 0. �

Moreover, if C is strict Archimedean with a generator ψ ∈ <−∞, then Cu, con-

verges to M as u ↓ 0.

Theorem 4.6. Let C be a strict Archimedean copula with a differentiable generator

ψ ∈ <−∞, and Cu, defined as in Definition 4.1. Then, for all x, y ∈ [0, 1],

lim
u↓0

Cu,(x, y) = M(x, y).

Proof By Theorem 2.13, it suffices to show that, for t ∈ (0, 1), lim
u↓0

ψu,(t)

ψ′u,(t)
= 0.

Applying Theorem 4.5, we have for ψ ∈ <−∞, lim
u↓0

ψ(tu)

ψ(u)
= +∞ and, by Theorem
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2.21, lim
u↓0

uψ′(u)

ψ(u)
= −∞. Then

lim
u↓0

ψu,(t)

ψ′u,(t)
= lim

u↓0

ψ(tu)− ψ(u)

uψ′(tu)

= lim
u↓0

t

(
ψ(tu)

tuψ′(tu)
− ψ(tu)

tuψ′(tu)

ψ(u)

ψ(tu)

)
= 0.

By Theorem 2.13, Cu, converges to M as u ↓ 0. �

We shall also define tail copulas of C conditioning on [0, 1] × [0, v] denoted

by C,v.

Definition 4.7. For v ∈ (0, 1), we define F,v : [0, 1]→ [0, 1] as

F,v(t) ≡ FC
,v (t) ≡ P [X ≤ t|X ≤ 1, Y ≤ v] = P [X ≤ t|Y ≤ v] =

C(t, v)

v

for t ∈ [0, 1], and define G,v : [0, 1]→ [0, 1] by

G,v(t) ≡ GC
,v(t) ≡ P [Y ≤ t|X ≤ 1, Y ≤ v] = P [Y ≤ t|Y ≤ v] =

min(t, v)

v

for t ∈ [0, 1]. Then define C,v : [0, 1]2 → [0, 1] as

C,v(x, y) =
C(F−1

,v (x), G−1
,v (y))

v

for x, y ∈ [0, 1].
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Fig.4.2 A copula C,v

For t ∈ [0, 1], we observe that

FC
,v (t) =

C(t, v)

v
=
CT (v, t)

v
= GCT

v, (t),

and

GC
,v(t) =

C(1, t ∧ v)

v
=

min(t, v)

v
=
CT (t ∧ v, 1)

v
= FCT

v, (t).

Moreover,

C,v(x, y) =
C(F−1

,v (x), G−1
,v (y))

v

=
C((FC

,v )−1(x), (GC
,v)
−1(y))

v

=
C((GCT

v, )−1(x), (FCT

v, )−1(y))

v

=
CT ((FCT

v, )−1(y), (GCT

v, )−1(x))

v

= (CT )v,(y, x),

where (CT )v, is a strict Archimedean copula with a generator (ψT )v,, by apply-

ing Theorem 4.4. Now, we will use the above properties to prove these theo-

rems.

Theorem 4.8. Let C be a strict Archimedean copula with a generator ψ, F,v, G,v and

C,v defined as in Definition 4.7 for each v ∈ (0, 1). ThenC,v is also a strict Archimedean
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copula with a generator

ψ,v(x) = ψ((F−1
,v (x)) = ψ(G−1

,v (x))− ψ(v) = ψ(xv)− ψ(v)

for x ∈ [0, 1].

Proof Since C,v = (CT )v,, we can apply Theorem 4.4 to show that C,v = (CT )v,

is a strict Archimedean copula with a generator ψ,v = (ψT )v,. That is, for

x ∈ [0, 1], ψ,v(x) = (ψT )v,(x) = ψ((GCT

v, )−1(x)) = ψ((FCT

v, )−1(x))− ψ(v). Because

GCT

v, = F,v and FCT

v, = G,v, we have ψ,v(x) = ψ((F−1
,v (x)) = ψ(G−1

,v (x))− ψ(v). �

Similarly, we can verify that C,v converges to the Clayton copula.

Theorem 4.9. Let C be a strict Archimedean copula having a differentiable generator

ψ ∈ <−α for some α ∈ (0,∞), and C,v defined as in Definition 4.7. Then, for all

x, y ∈ [0, 1],

lim
v↓0

C,v(x, y) = Cα(x, y).

Proof We can prove similarly as Theorem 4.5 by using C,v = (CT )v,. �

Moreover, if C is strict Archimedean with a generator ψ ∈ <−∞, then C,v con-

verges to M as v ↓ 0.

Theorem 4.10. Let C be a strict Archimedean copula with a differentiable generator

ψ ∈ <−∞, and C,v defined as in Definition 4.7. Then, for all x, y ∈ [0, 1],

lim
v↓0

C,v(x, y) = M(x, y).

Proof We can prove similarly as Theorem 4.6 by using C,v = (CT )v,. �

And then, we will define a new copula Cu,v.

Definition 4.11. For u, v ∈ (0, 1), we define Fu,v : [0, 1]→ [0, 1] as

Fu,v(t) =
Cu,(t, v)

v
=
C(F−1

u, (t), G−1
u, (v))

uv
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for t ∈ [0, 1], and define Gu,v : [0, 1]→ [0, 1] by

Gu,v(t) =
Cu,(1, t ∧ v)

Cu,(1, v)
=

min(t, v)

v

for t ∈ [0, 1]. Then define Cu,v : [0, 1]2 → [0, 1] as

Cu,v(x, y) =
Cu,(F

−1
u,v (x), G−1

u,v(y))

v
=
C(F−1

u, (F−1
u,v (x)), G−1

u, (G−1
u,v(y)))

uv

for x, y ∈ [0, 1].

Fig.4.3 A copula Cu,v

Note that Cu,v = (Cu,),v.

Theorem 4.12. Let C be a strict Archimedean copula with a generator ψ, Fu,v, Gu,v

and Cu,v defined as in Definition 4.11 for each u, v ∈ (0, 1). Then Cu,v is also a strict

Archimedean copula with a generator

ψu,v(x) = ψ(xuv)− ψ(uv)

for x ∈ [0, 1].
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Proof Since Cu, and C,v are strict Archimedean copulas, by Theorems 4.4 and

4.8, Cu,v is a strictly Archimedean copula. Next, we will find a generator ψu,v

for Cu,v. By definitions and equations (4.2) and (4.3),

Fu,v(t) =
C(F−1

u, (t), G−1
u, (v))

uv

=
ψ−1(ψ(F−1

u, (t)) + ψ(G−1
u, (v)))

uv

=
ψ−1(ψ(tu) + ψ(vu)− ψ(u))

uv
.

Since Fu,v is continuous, we have x = Fu,v(t) for some t ∈ [0, 1]. Then

t = F−1
u,v (x). Since ψ is strict, we have

x =
ψ−1(ψ(uF−1

u,v (x)) + ψ(vu)− ψ(u))

uv

xuv = ψ−1(ψ(uF−1
u,v (x)) + ψ(vu)− ψ(u))

ψ(xuv) = ψ(uF−1
u,v (x)) + ψ(vu)− ψ(u)

ψ(uF−1
u,v (x)) = ψ(xuv) + ψ(u)− ψ(vu)

Since ψ(F−1
u, (x)) = ψ(xu) (equation (4.2)), we have

ψ(F−1
u, (F−1

u,v (x))) = ψ(uF−1
u,v (x)) = ψ(xuv) + ψ(u)− ψ(vu).

By definition, Gu,v(t) =
t

v
for t < v. Since Gu,v is continuous, we have x =

Gu,v(t) for some t ∈ [0, v]. Then t = G−1
u,v(x). Since ψ is strict, we have

x =
G−1
u,v(x)

v

G−1
u,v(x) = xv

G−1
u, (G−1

u,v(x)) = G−1
u, (xv)

ψ(G−1
u, (G−1

u,v(x))) = ψ(G−1
u, (xv)).

Since ψ(G−1
u, (x)) = ψ(xu) − ψ(u) (equation (4.3)), we have ψ(G−1

u, (xv)) =

ψ(xuv)− ψ(u). Then ψ(G−1
u, (G−1

u,v(x))) = ψ(xuv)− ψ(u). Since ψu,v = (ψu,),v, we
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can apply Theorems 4.8 and 4.4 to obtain

ψu,v(x) = ψu,(xv)− ψu,(v) = ψ(xuv)− ψ(u)− ψ(uv) + ψ(u) = ψ(xuv)− ψ(uv).

Hence Cu,v is strict Archimedean with the generator ψu,v. �

Next, we will compare the copula Cu,v and Juri and Wuthrich’s copula Cu.

Theorem 4.13. Let C be a strict Archimedean copula with a generator ψ, Cu and

Cu,v defined as in Definition 2.17 and Definition 4.11, respectively. Then, for every

u ∈ (0, 1), Cu ≡ Cu,v where v =
C(u, u)

u
.

Proof It suffices to show that ψu = ψu,v where v =
C(u, u)

u
.

Substituting v =
C(u, u)

u
=
ψ−1(2ψ(u))

u
,

ψu,v(x) = ψ(xuv)− ψ(uv)

= ψ(xψ−1(2ψ(u)))− ψ(ψ−1(2ψ(u))

= ψ(xψ−1(2ψ(u)))− 2ψ(u)

= ψu(x)

which is the generator of Cu. Hence Cu ≡ Cu,v. �

It is shown by Juri et al. that C
u,
C(u,u)
u

= Cu converges to a Clayton copula.

Cu is by definition the extreme tail dependence of C given that X ≤ u and

Y ≤ u. So it is natural to investigate the extreme tail dependence ofC given that

X ≤ u and Y ≤ f(u). We shall show that the conditional copula is Cu,v where

v =
C(u, f(u))

u
and that C

u,
C(u,f(u))

u

converges to a Clayton copula as u ↓ 0.

Let random variables X , Y be uniformly distributed on the unit interval

[0, 1] and have joint distribution function C. Let f map (0, δ) into (0, 1) for some

δ ∈ (0, 1] and suppose that C(u, f(u)) > 0 for all u > 0. For u ∈ (0, δ), define

Fu:f : [0, 1]→ [0, 1] by

Fu:f (t) = P [X ≤ t|X ≤ u, Y ≤ f(u)] =
C(t ∧ u, f(u))

C(u, f(u))
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for t ∈ [0, 1], and define Gu:f : [0, 1]→ [0, 1] by

Gu:f (t) = P [Y ≤ t|X ≤ u, Y ≤ f(u)] =
C(u, t ∧ f(u))

C(u, f(u))

for t ∈ [0, 1]. Then define Cu:f : [0, 1]2 → [0, 1] as

Cu:f (x, y) =
C(F−1

u:f (x), G−1
u:f (y))

C(u, f(u))
(4.10)

for x, y ∈ [0, 1].

Applying the proof of Theorem 2.20, we have Cu:f is a copula. Since C is

strict Archimedean with the generator ψ, by definition, we have

Fu:f (t) =
C(t, f(u))

C(u, f(u))
=
ψ−1(ψ(t) + ψ(f(u)))

ψ−1(ψ(u) + ψ(f(u)))

for t < u. Set x = Fu:f (t) so that t = F−1
u:f (x). Since ψ is strict, we have

x =
ψ−1(ψ(F−1

u:f (x)) + ψ(f(u)))

ψ−1(ψ(u) + ψ(f(u)))

xψ−1(ψ(u) + ψ(f(u))) = ψ−1(ψ(F−1
u:f (x)) + ψ(f(u)))

ψ(xψ−1(ψ(u) + ψ(f(u)))) = ψ(F−1
u:f (x)) + ψ(f(u))

ψ(F−1
u:f (x)) = ψ(xψ−1(ψ(u) + ψ(f(u))))− ψ(f(u)).

Similarly, by definition, we have

Gu:f (t) =
C(u, t)

C(u, f(u))
=

ψ−1(ψ(u) + ψ(t))

ψ−1(ψ(u) + ψ(f(u)))

for t < f(u). Set x = Gu:f (t) so that t = G−1
u:f (x). Since ψ is strict, we have

x =
ψ−1(ψ(u) + ψ(f(G−1

u:f (x))))

ψ−1(ψ(u) + ψ(f(u)))

xψ−1(ψ(u) + ψ(f(u))) = ψ−1(ψ(u) + ψ(f(G−1
u:f (x))))

ψ(xψ−1(ψ(u) + ψ(f(u)))) = ψ(u) + ψ(f(G−1
u:f (x)))

ψ(G−1
u:f (x)) = ψ(xψ−1(ψ(u) + ψ(f(u))))− ψ(u).



39

Theorem 4.14. LetC be a strict Archimedean copula with a generator ψ, Cu,v andCu:f

defined as in Definition 4.11 and equation (4.10), respectively. Then, for δ ∈ (0, 1],

u ∈ (0, δ) and f maps (0, δ) into (0, 1), Cu:f ≡ Cu,v is strict Archimedean where

v =
C(u, f(u))

u
.

Proof We will show that Cu:f is strict Archimedean by using the process of Cu,v.

Let v =
C(u, f(u))

u
=
ψ−1(ψ(u) + ψ(f(u)))

u
. Then

Cu,v(x, y) =
C(F−1

u, (F−1
u,v (x)), G−1

u, (G−1
u,v(y)))

uv

=
ψ−1(ψ(xuv) + ψ(yuv)− ψ(vu))

C(u, f(u))

=
ψ−1(ψ(xC(u, f(u))) + ψ(yC(u, f(u)))− ψ(ψ−1(ψ(u) + ψ(f(u)))))

C(u, f(u))

=
ψ−1(ψ(xC(u, f(u))) + ψ(yC(u, f(u)))− ψ(u)− ψ(f(u)))

C(u, f(u))

=
ψ−1(ψ(xC(u, f(u)))− ψ(f(u)) + ψ(yC(u, f(u)))− ψ(u))

C(u, f(u))

=
ψ−1(ψ(F−1

u:f (x)) + ψ(G−1
u:f (y)))

C(u, f(u))

=
C(F−1

u:f (x), G−1
u:f (y))

C(u, f(u))

= Cu:f (x, y).

Hence Cu,v ≡ Cu:f . Since Cu,v is strict Archimedean, so is Cu:f . �

Then we can compute the generator ψu:f from finding ψu,v when v =
C(u, f(u))

u
.

ψu,v(x) = ψ(xuv)− ψ(uv)

= ψ(xC(u, f(u)))− ψ(C(u, f(u)))

= ψ(xψ−1(ψ(u) + ψ(f(u))))− ψ(u)− ψ(f(u)).

So ψu:f (x) = ψ(xψ−1(ψ(u) + ψ(f(u))))− ψ(u)− ψ(f(u)).

Now, we will show that Cu:f converges to a Clayton copula as u ↓ 0.
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Theorem 4.15. Let C be a strict Archimedean copula having a differentiable generator

ψ ∈ <−α for some α ∈ (0,∞), Cu:f defined as in equation (4.10) and, for δ ∈ (0, 1], let

f : (0, δ)→ (0, 1) have right limit at 0. Then, for all x, y ∈ [0, 1],

lim
u↓0

Cu:f (x, y) = Cα(x, y).

Proof Since ψ ∈ <−α, ψ is measurable, ψ > 0 and, for any t > 0, we have

lim
v↓0

ψ(vt)

ψ(v)
= t−α. By Theorem 2.15, ψ(t) = t−α`(t) for some ` ∈ <0. Then t−α 6= 0

and lim
t↓0

ψ(t)

t−α`(t)
= 1. Since ψ is convex, ψ′ is increasing and monotone in some

right neighbourhood of 0. By Theorem 2.16, we have lim
t↓0

ψ′(t)

−αt−α−1`(t)
= 1. We

know that Cu:f is strict Archimedean with the generator

ψu:f (t) = ψ(tψ−1(ψ(u) + ψ(f(u))))− ψ(u)− ψ(f(u))

for t ∈ [0, 1]. Then, for s, t ∈ (0, 1),

lim
u↓0

ψu:f (s)

ψ′u:f (t)
= lim

u↓0

ψ(sψ−1(ψ(u) + ψ(f(u))))− ψ(u)− ψ(f(u))

ψ−1(ψ(u) + ψ(f(u)))ψ′(tψ−1(ψ(u) + ψ(f(u))))
.

Let v = ψ−1(ψ(u) + ψ(f(u))). Because ψ−1(ψ(u) + ψ(f(u))) = C(u, f(u)), C

is continuous on [0, 1]2 and f has a right limit at 0,

lim
u↓0

v = lim
u↓0

ψ−1(ψ(u) + ψ(f(u))) = lim
u↓0

C(u, f(u)) = C(0, lim
u↓0

f(u)) = 0.
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Hence, v = C(u, f(u)) ↓ 0. Then

lim
u↓0

ψu:f (s)

ψ′u:f (t)
= lim

v↓0

ψ(sv)− ψ(v)

vψ′(tv)

= lim
v↓0

(sv)−α`(sv)− v−α`(v)

−αv(tv)−α−1`(tv)

= lim
v↓0

s−α`(sv)− `(v)

−αt−α−1`(tv)

=
limv↓0

s−α`(sv)
`(v)

− 1

limv↓0
−αt−α−1`(tv)

`(v)

=
s−α − 1

−αt−α−1
(since ` ∈ <0)

=
φα(s)

φ′α(t)

where φα(t) = t−α − 1 is the generator corresponding to Cα. By Theorem 2.12,

Cu:f converges to Cα as u ↓ 0. �

Furthermore, if C is strict Archimedean with a generator ψ ∈ <−∞, then Cu:f

converges to M as u ↓ 0.

Theorem 4.16. Let C be a strict Archimedean copula with a differentiable generator

ψ ∈ <−∞, Cu:f defined as in equation (4.10) and, for δ ∈ (0, 1], a function f mapping

(0, δ) into (0, 1) have right limit at 0. Then, for all x, y ∈ [0, 1],

lim
u↓0

Cu:f (x, y) = M(x, y).

Proof By Theorem 2.13, it suffices to show that, for t ∈ (0, 1), lim
u↓0

ψu:f (t)

ψ′u:f (t)
= 0.

Applying Theorem 4.15, we have for ψ ∈ <−∞, lim
v↓0

ψ(tv)

ψ(v)
= +∞ and, by Theo-

rem 2.21, lim
v↓0

vψ′(v)

ψ(v)
= −∞when v = ψ−1(ψ(u) + ψ(f(u))). Then

lim
u↓0

ψu:f (t)

ψ′u:f (t)
= lim

v↓0

ψ(tv)− ψ(v)

vψ′(tv)

= lim
v↓0

t

(
ψ(tv)

tvψ′(tv)
− ψ(tv)

tvψ′(tv)

ψ(v)

ψ(tv)

)
= 0.
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�

As an example, we will construct a copula Cu:f where f(u) = 2u by the

process of the copula Cu,v. We will consider the characteristic of Cu:f when

f(u) = 2u. For u ∈ (0, 1
2
), define Fu:f : [0, 1]→ [0, 1] given as

Fu:f (t) = P [X ≤ t|X ≤ u, Y ≤ 2u] =
C(t ∧ u, 2u)

C(u, 2u)
.

Moreover, we define Gu:f : [0, 1]→ [0, 1] given as

Gu:f (t) = P [Y ≤ t|X ≤ u, Y ≤ 2u] =
C(u, t ∧ 2u)

C(u, 2u)
.

Next, we define Cu:f : [0, 1]2 → [0, 1] when f(u) = 2u given as

Cu:f (x, y) =
C(F−1

u:f (x), G−1
u:f (y))

C(u, 2u)
.

Note that Cu:f when f(u) = 2u is a copula. Since C is strict Archimedean

with the generator ψ, we have ψ(F−1
u:f (x)) = ψ(xψ−1(ψ(u) +ψ(2u)))−ψ(2u) and

ψ(G−1
u:f (y)) = ψ(yψ−1(ψ(u) + ψ(2u)))− ψ(u).

It then follows from Theorem 4.14 that Cu:f = Cu,v, where v =
C(u, 2u)

u
, is

strict Archimedean provided that C is strict Archimedean.

Applying Theorem 4.15 and Theorem 4.16, we have, for f(u) = 2u, Cu:f

converges to a Clayton copula as u ↓ 0.



CHAPTER V

EXTREME TAIL DEPENDENCE COPULAS OF NON-STRICT

ARCHIMEDEAN COPULAS

In this chapter, we shall consider non-strict Archimedean copulas and study

its tail dependence copulas.

Definition 5.1. Let random variables X , Y be uniformly distributed on the unit

interval [0, 1] and have joint distribution function C. Assume that VC([u1, u]2) >

0 for 0 < u1 < u < 1 and define Fu : [0, 1]→ [0, 1] by

Fu(t) = P [u1 ≤ X ≤ t|X, Y ∈ [u1, u]] =
VC([u1, u ∧ t]× [u1, u])

VC([u1, u]2)

for t ∈ [0, 1]. Moreover, we define Cu : [0, 1]2 → [0, 1] by

Cu(x, y) = P [u1 ≤ X ≤ F−1
u (x), u1 ≤ Y ≤ F−1

u (y)|X, Y ∈ [u1, u]]

=
VC([u1, F

−1
u (x)]× [u1, F

−1
u (y)])

VC([u1, u]2)

for x, y ∈ [0, 1].

Before we prove that Cu is a copula, we know that F−1
u (1) ≤ u because

Fu(u) = 1. Now, we will show that Fu is equal to Fu0 when u0 = F−1
u (1).

Lemma 5.2. Let C be a symmetric copula for which there is u1 ∈ (0, 1) such that

C(u1, u1) = 0 and VC([u1, u]2) > 0 for 0 < u1 < u < 1. Then Fu ≡ Fu0 when

u0 = F−1
u (1).

Proof Observe that

Fu(x) =
VC([u1, u ∧ x]× [u1, u])

VC([u1, u]2)
=


1 if x > u;
VC([u1,x]×[u1,u])

VC([u1,u]2)
if u1 ≤ x ≤ u;

0 if 0 ≤ x < u1.
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Let x ∈ [0, 1]. If x > u, then Fu(x) = 1 = Fu0(x) because u ≥ u0. If x < u1,

then Fu(x) = 0 = Fu0(x). Assume that u1 ≤ x ≤ u. Then

Fu(x) =
VC([u1, x]× [u1, u])

VC([u1, u]2)

and

Fu0(x) =
VC([u1, x]× [u1, u0])

VC([u1, u0]2)
.

It suffices to show that VC([u1, x]×[u1, u]) = VC([u1, x]×[u1, u0]) and VC([u1, u]2) =

VC([u1, u0]2).

To show that VC([u1, u]2) = VC([u1, u0]2), we will show that Fu(u0) = 1.

Clearly, Fu(u0) ≤ 1. Since u0 = F−1
u (1) = inf{t|Fu(t) ≥ 1}, for each n ∈ N,

there exists an ∈ {t|Fu(t) ≥ 1} such that u0 ≤ an < u0 + 1
n

. Then Fu(an) ≥ 1. By

Squeeze theorem, we have lim
n→∞

an = u0 and so by the continuity of Fu,

Fu(u0) = Fu( lim
n→∞

an) = lim
n→∞

Fu(an) ≥ lim
n→∞

1 = 1.

Then Fu(u0) = 1. Since

VC([u1, u0]× [u1, u])

VC([u1, u]2)
= Fu(u0) = 1 = Fu(u) =

VC([u1, u]2)

VC([u1, u]2)
,

we have VC([u1, u0] × [u1, u]) = VC([u1, u]2), which by definition of VC implies

that C(u0, u) − C(u0, u1) = C(u, u) − C(u, u1). Hence VC([u0, u] × [u1, u]) =

C(u, u) − C(u, u1) − C(u0, u) + C(u0, u1) = 0. Since C is symmetric, we also

have

VC([u1, u]× [u0, u]) = C(u, u)− C(u1, u)− C(u, u0) + C(u1, u0) = 0.

Since [u1, u0] × [u0, u] ⊆ [u1, u] × [u0, u], we have VC([u1, u0] × [u0, u]) = 0. Then

VC([u1, u]2\[u1, u0]2) = VC([u0, u]× [u1, u]) + VC([u1, u0]× [u0, u]) = 0. Note that

VC([u1, u]2) = VC([u1, u0]2) + VC([u1, u]2\[u1, u0]2).
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Since VC([u1, u]2\[u1, u0]2) = 0, we have VC([u1, u]2) = VC([u1, u0]2).

We know that VC([u1, u]2\[u1, u0]2) = 0 and
(

[u1, x]×[u1, u]
)
\
(

[u1, x]×[u1, u0]
)
⊆

[u1, u]2\[u1, u0]2. Then

0 = VC

((
[u1, x]×[u1, u]

)
\
(

[u1, x]×[u1, u0]
))

= VC([u1, x]×[u1, u])−VC([u1, x]×[u1, u0]).

Thus VC([u1, x]× [u1, u]) = VC([u1, x]× [u1, u0]). Finally,

Fu(x) =
VC([u1, x]× [u1, u])

VC([u1, u]2)
=
VC([u1, x]× [u1, u0])

VC([u1, u0]2)
= Fu0(x).

Then Fu ≡ Fu0 . �

Next, we will prove that Cu is a copula.

Theorem 5.3. Let C be a symmetric copula for which there exists u1 ∈ (0, 1) such

that C(u1, u1) = 0 and VC([u1, u]2) > 0 for 0 < u1 < u < 1, and Cu defined as in

Definition 5.1. Then, for u ∈ (0, 1), Cu is a copula.

Proof Note that F−1
u (0) = inf {t|Fu(t) ≥ 0} and Fu(0) =

VC([u1, 0]× [u1, u])

VC([u1, u]2)
= 0.

Then F−1
u (0) = 0. Thus, for 0 ≤ a ≤ 1, we have

Cu(a, 0) = P [u1 ≤ X ≤ F−1
u (a), u1 ≤ Y ≤ F−1

u (0)|X, Y ∈ [u1, u]]

= P [u1 ≤ X ≤ F−1
u (a), u1 ≤ Y ≤ 0|X, Y ∈ [u1, u]] = 0

= 0.

Similarly, Cu(0, a) = 0.

Since C is a symmetric copula, by Lemma 5.2, without loss of generality, we

assume that F−1
u (1) = u. Since Fu is continuous, by Theorem 2.18, we have

Cu(x, 1) =
VC([u1, F

−1
u (x)]× [u1, F

−1
u (1)])

VC([u1, u]2)
=
VC([u1, F

−1
u (x)]× [u1, u])

VC([u1, u]2)
= Fu(F

−1
u (x)) = x.

Now, let (x1, y1), (x2, y2) ∈ [0, 1]2 be such that x1 ≤ x2 and y1 ≤ y2. Since F−1
u

is increasing, 0 ≤ F−1
u (x1) ≤ F−1

u (x2) ≤ u < 1 and 0 ≤ F−1
u (y1) ≤ F−1

u (y2) ≤ u <
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1. Since C is a copula, we have

VCu([x1, x2]× [y1, y2]) = Cu(x2, y2)− Cu(x2, y1)− Cu(x1, y2) + Cu(x1, y1)

=
VC
(
[u1, F

−1
u (x2)]× [u1, F

−1
u (y2)]

)
VC([u1, u]2)

−
VC
(
[u1, F

−1
u (x2)]× [u1, F

−1
u (y1)]

)
VC([u1, u]2)

−
VC
(
[u1, F

−1
u (x1)]× [u1, F

−1
u (y2)]

)
VC([u1, u]2)

+
VC
(
[u1, F

−1
u (x1)]× [u1, F

−1
u (y1)]

)
VC([u1, u]2)

=
C(F−1

u (x2), F−1
u (y2))

VC([u1, u]2)
− C(F−1

u (x2), F−1
u (y1))

VC([u1, u]2)

− C(F−1
u (x1), F−1

u (y2))

VC([u1, u]2)
+
C(F−1

u (x1), F−1
u (y1))

VC([u1, u]2)

≥ 0.

Hence Cu is a copula. �

We are unable to show that Cu is Archimedean. However, we have the follow-

ing example for non-strict Archimedean copula C.

Example. If Cθ(u, v) = max(1− [(1− u)θ + (1− v)θ]
1
θ , 0) where θ > 1, then

lim
u↓u1

(Cθ)u(x, y) = xy

where u1 = 1− (1
2
)
1
θ .

Proof It is easy to show that Cθ(u, u) = 0 if and only if u ≤ 1 −
(

1
2

) 1
θ . Set

u1 = 1 − (1
2
)
1
θ . We have to check that VCθ([u1, u]2) > 0, for all u > u1. Note that

VCθ([u1, u]2) = 21− 1
θ [1+2(1−u)θ]

1
θ−2

1
θ (1−u)−1. Set f(u) = 21− 1

θ [1+2(1−u)θ]
1
θ−

2
1
θ (1 − u) − 1. Then f ′(u) = 2

1
θ − 22− 1

θ (1 − u)θ−1[1 + 2(1 − u)θ]
1
θ
−1. If f ′(u) = 0,

then 2
1
θ − 22− 1

θ (1−u)θ−1[1 + 2(1−u)θ]
1
θ
−1 = 0. By solving the equation, we have

u = 1−
(

1
2

) 1
θ .

Consider u > 1−
(

1
2

) 1
θ . We will show that f is strictly increasing by showing

that f ′(u) > 0. First, note that 1− u <
(

1
2

) 1
θ . Then (1− u)θ < 1

2
and (1− u)θ−1 <
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(
1
2

)1− 1
θ . Thus

f ′(u) = 2
1
θ − 22− 1

θ (1− u)θ−1[1 + 2(1− u)θ]
1
θ
−1

> 2
1
θ − 22− 1

θ

(
1

2

)1− 1
θ
[
1 + 2

(
1

2

)] 1
θ
−1

= 2
1
θ − 22− 1

θ · 2
1
θ
−1 · 2

1
θ
−1

= 2
1
θ − 2

1
θ

= 0.

Then f is strictly increasing. Since f
(

1−
(

1
2

) 1
θ

)
= 0 and f is strictly increasing,

f(u) > 0 for all u > 1−
(

1
2

) 1
θ , i.e., VCθ

([
1−

(
1
2

) 1
θ , u
]2
)
> 0, or VCθ([u1, u]2) > 0.

Set u1 = 1−
(

1
2

) 1
θ and u ∈ (0, 1) such that u > u1. Therefore,

Fu(t) =
VCθ([u1, u ∧ t]× [u1, u])

VCθ([u1, u]2)

=


1 if t ≥ u;
[(1−t)θ+ 1

2
]
1
θ +[(1−u)θ+ 1

2
]
1
θ−[(1−t)θ+(1−u)θ]

1
θ−1

21−
1
θ [1+2(1−u)θ]

1
θ−2

1
θ (1−u)−1

if u1 < t < u;

0 if 0 ≤ t ≤ u1 < u.

Next, we will find (Cθ)u. Note that, for x, y ∈ [0, 1],

(Cθ)u(x, y) =
VCθ([u1, F

−1
u (x)]× [u1, F

−1
u (y)])

VCθ([u1, u]2)

=
VCθ([u1, s]× [u1, t])

VCθ([u1, u]2)

=
[(1− s)θ + 1

2
]
1
θ + [(1− t)θ + 1

2
]
1
θ − [(1− s)θ + (1− t)θ] 1θ − 1

21− 1
θ [1 + 2(1− u)θ]

1
θ − 2

1
θ (1− u)− 1

,

where s = F−1
u (x) and t = F−1

u (y).

Case 1 : x = y. Then s = t. We have

(Cθ)u(x, x) =
2[(1− s)θ + 1

2
]
1
θ − [2(1− s)θ] 1θ − 1

21− 1
θ [1 + 2(1− u)θ]

1
θ − 2

1
θ (1− u)− 1

.
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By L’Hospital’s rule and squeeze theorem, we have

lim
u↓u1

(Cθ)u(x, x) = lim
u↓u1

As(
d2s
du2

)−Bs(
ds
du

)2

Du

where

As = 2
1
θ − 22− 1

θ (1− s)θ−1[1 + 2(1− s)θ]
1
θ
−1,

Bs = 22− 1
θ (1− θ)(1− s)θ−2[1 + 2(1− s)θ]

1
θ
−2 and

Du = 22− 1
θ (θ − 1)(1− u)θ−2[1 + 2(1− u)θ]

1
θ
−2.

Note that

lim
u↓u1

[
As

(
d2s

du2

)
−Bs

(
ds

du

)2
]

= 2
2
θ
−1(θ − 1)

[
lim
u↓u1

(
ds

du

)2
]

and lim
u↓u1

Du = 2
2
θ
−1(θ − 1). Then lim

u↓u1
(Cθ)u(x, x) = lim

u↓u1

(
ds

du

)2

.

Since s = F−1
u (x), we have

x = Fu(s)

=
[(1− s)θ + 1

2
]
1
θ + [(1− u)θ + 1

2
]
1
θ − [(1− s)θ + (1− u)θ]

1
θ − 1

21− 1
θ [1 + 2(1− u)θ]

1
θ − 2

1
θ (1− u)− 1

.

Then

[
(1−s)θ+1

2

] 1
θ
+
[
(1−u)θ+

1

2

] 1
θ−[(1−s)θ+(1−u)θ]

1
θ−1 = (21− 1

θ [1+2(1−u)θ]
1
θ−2

1
θ (1−u)−1)x.

By implicit differentiation, we have
ds

du
=
xAu + (1− u)θ−1Bu,s

(1− s)θ−1Du,s

where

Au = 2
1
θ − 22− 1

θ (1− u)θ−1[1 + 2(1− u)θ]
1
θ
−1,

Bu,s =

[
(1− u)θ +

1

2

] 1
θ
−1

− [(1− s)θ + (1− u)θ]
1
θ
−1 and

Du,s =

[
(1− s)θ +

1

2

] 1
θ
−1

− [(1− s)θ + (1− u)θ]
1
θ
−1.
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Next, we will find lim
u↓u1

ds

du
by L’Hospital’s rule and squeeze theorem. Then

we have lim
u↓u1

ds

du
= x, so lim

u↓u1

(
ds

du

)2

= x2. Hence, lim
u↓u1

(Cθ)u(x, x) = x2.

Case 2 : x 6= y. Then s 6= t. We have

lim
u↓u1

(Cθ)u(x, y) = lim
u↓u1

[(1− s)θ + 1
2
]
1
θ + [(1− t)θ + 1

2
]
1
θ − [(1− s)θ + (1− t)θ] 1θ − 1

21− 1
θ [1 + 2(1− u)θ]

1
θ − 2

1
θ (1− u)− 1

.

By L’Hospital’s rule, squeeze theorem and the same method as Case 1, we have

lim
u↓u1

(Cθ)u(x, y) = lim
u↓u1

[(
ds

du

)(
dt

du

)]
= xy.

�
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