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CHAPTER1
INTRODUCTION

Natural phenomena, such as tsunamis, cyclone storms, tornado storms, etc.,
bring damages to the assets and loss of lives. Moreover, extreme phenomenon
with high casualties could cause a national disaser.

Insurance companies that do not have systematic plans in place especially
on maximum payouts to their clients might face serious problems from paying
larger amount of money than they could. If the problem persists, it could lead
to bankruptcy.

One example of how an insurance company might avoid such a problem is
to set a maximum threshold, say 50,000 baht, for which the company is directly
responsible. Responsibility of all claims over the threshold, e.g. 150,000 baht,
shall be splitted into two parts. The first 50,000 is covered by the company.
However, the excess of 100,000 baht is covered by a larger insurance company
from which the first company has bought a reinsurance. This way, the first
insurance company can protect itself from unexpectedly large claims.

From the above example, we let X denote the amount of each claim and «
denote the maximum threshold. The larger insurance company is surely inter-
ested in the distribution of the conditional excess over the threshold. As the
threshold u increases to infinity, the distribution of the conditional excess can
be approximated by the generalized Pareto distribution (G¢ ) for some 3 > 0
and ¢ € R. For £ > 0, G¢ g is defined by

Geplx)=1— <1 + %) for = € [0, 00). (1.1)

e

For £ < 0, G¢ g is defined on [O, —%} by the same formula. And G g is defined
as the limit of (1.1) as { — 07, i.e., Go(z) = 1 — exp(—3).



In the case of two separate claims, of which the amounts are denoted by X
and Y/, the study of the joint distribution of conditional excesses over a common
threshold leads to simpler limit theorems for extreme tail dependence copulas
([6], 2002). The copula of two continuous random variables is the marginal-free
joint distribution function. It captures dependence structure and discards the
marginal distributions. Juri and Wiithrich proved that the extreme tail depen-
dence copulas relative to an Archimedean copula C' satisfying certain condi-
tions always converge to a Clayton copula. Note that the extreme tail depen-
dence copulas in [6] are defined by conditioning that both random variables are
less than the same threshold u.

In this thesis, we study the convergence of extreme tail dependence copulas
relative to a strict Archimedean copula where tails need not be squares, i.e., dif-
ferent thresholds may be used for two random variables. We show that these
extreme tail dependence copulas still converge to a Clayton copula as tails con-
verge to (0, c) along any path for some ¢ € [0,1]. We also define extreme tail
dependence copulas relative to a non-strict Archimedean copula but are not

successful in proving a convergence theorem in this case.



CHAPTER II
PRELIMINARIES

In this chapter, we will give basic concepts of copulas and Archimedean
copulas. Moreover, we will give concepts of regular variations used in our

thesis. An introduction on copulas can be found in [8].

Definition 2.1. [8, p.10] A copula is a function C from [0, 1]* to [0, 1] with the
following properties.

(1) For every u € [0, 1], C(u,0) = 0 = C(0,u) and C(u, 1) = u = C(1,u).

(2) C'is 2-increasing, i.e., for every uy, us, vy, v2 € [0,1] such that u; < uy and

v < Uy,
Ve ([ur, ug] X [vr, va]) = Clug, v2) — Cug, v1) — C(ur,v2) + C(ug,v1) > 0.
Example. [8, p.11] Some examples of copulas are
(1) M(u,v) = min(u, v) ;

(2) W(u,v) = max(u +v — 1,0) ; and
3) I [(u,v) = uv.

Remark. [8, p.11] Let C be a copula. Then for every (u,v) € [0,1]%,

W(u,v) < C(u,v) < M(u,v).

Theorem 2.2. [8, p.11] Let C be a copula. Then for every uy, us, vy, v2 € [0,1],

’O(UQ,UQ) — C’(ul,vl)\ S ’UQ — U1| + |U2 — U1’ .

Hence C'is uniformly continuous on [0, 1]2.



Definition 2.3. [8, p.21] Let F' be a distribution function. Then a quasi-inverse
of F is any function FI=1 with domain [0, 1] such that

(1) if t € F([0,1]), then FI=1(¢) is any number z € R such that F(z) =t, i.e.,
forallt € F([0,1]), F(F-U(t) = ¢;

(2)ift ¢ F([0,1]), then

FEU) = inf{z|F(z) > t} = sup{z|F(x) < t}.

If F is strictly increasing, then it has but a single quasi-inverse, which is of

course the usual inverse, for which we use the customary notation F1

Definition 2.4. [8, p.63] Let {J; },c denote a partition of [0, 1], that is, a (possibly
infinite) collection of closed, non-overlapping (except at common endpoints)
nondegenerate intervals .J; = [a;, ;] whose union is [0, 1]. Let {C;} be a collec-
tion of copulas with the same indexing as {.J; };ca. Then the ordinal sum of {C;}

with respect to {J; };ca is the copula C' given by

i+ (b — a;)Cy(#=2 =94 if (u, er?;
C(U, U) = { ¢ ( CL) (bi_ai bi—ai) (u U)

M (u,v), otherwise.

Definition 2.5. [8, p.110] Let ¢/ : [0, 1] — [0, oo] be continuous, strictly decreas-
ing such that 1)(1) = 0. The pseudo-inverse /[~ : [0, 0c] — [0, 1] of ¢ is defined
by
-1 : .
77b[—l](s) _ w (5> lf 0 S S S w(())’
0 if (0) < s < 0.

Lemma 2.6. [8, p.110] Let ¢ : [0, 1] — [0, co] be continuous, strictly decreasing such
that (1) = 0, and let = be the pseudo-inverse of 1 defined as in Definition 2.5.
Define Cy : [0,1]* — [0, 1] given as

Cy(z,y) = v ((x) +1(y)) (2.1)

or x,y € [0, 1]. Then C,, satisfies the conditions as in Definition 2.1(1) for a copula.
forz,y €| v p



Lemma 2.7. [8, p.111] Let «, ¥!= and C,, satisfy the hypotheses of Lemma 2.6. Then
Cy 1s 2-increasing if and only if for all y € [0, 1], if 0 < uy < uy < 1, then Cy(ug,v) —

Cy(ur,v) < ug — uy.

Theorem 2.8. [8, p.111] Let ¢ : [0,1] — [0, 00] be continuous, strictly decreasing
such that (1) = 0, and let =1 be the pseudo-inverse of 1 defined as in Definition
2.5. Then Cy : [0,1]* — [0, 1] given by (2.1) is a copula if and only if + is convex.

Definition 2.9. [8, p.112] A copula Cy, as (2.1) is called an Archimedean copula.
The function v is called a generator of the copula. If ¢/(0) = oo, then ¢ and C,,

are called strict and ¥/~ is the usual inverse of 1.

Example. [6, p.408] The Clayton copula with parameter o > 0 is the Archimedean
copula generated by 1(t) =t~ — 1 for t € [0, 1] and has the corresponding form

OC%(&, ) = (@7%+y=* =1)" "/

for z,y € [0, 1]. Then the Clayton copula is strict.

Theorem 2.10. [8, p.113] Let C' be an associative copula, i.e., C(C(u,v), w) = C(u, C(v,w))
forall w,v,w € [0, 1], such that C(t,t) <t forall t € (0,1). Then C is Archimedean.

Theorem 2.11. [8, p.130] Let C be an Archimedean copula with generator 1. Then,
for almost all u,v € [0,1],

Theorem 2.12. [8, p.139] Let {Cy|0 > 0} be a family of Archimedean copulas with
differentiable generators 1py. Then C' = 1011(1)1 Cy is an Archimedean copula if and only if

there exists a function 1 such that, for all s,t € (0,1),

Wo(s) _ (s)

RO IO}




Theorem 2.13. [8, p.140] Let {Cy|0 > 0} be a family of Archimedean copulas with
differentiable generators vg. Then 16%1 Co(u,v) = M(u,v) if and only if

lim Polt)

AT

fort e (0,1).

Definition 2.14. [1, p.18,83] A measurable function f : (0,00) — (0, c0) is called

regularly varying at 0 with index p € R if, for any = > 0,

li f(uz) .

wlo £ (1)
In the special case where p = 0, the function f is also called slowly varying at
0. If f is such that

x ifx<1;

lim fluz) 1 ife=1;

w0/ flu)

0 ifzx>1,

then f is said to be rapidly varying at 0 with index —oo. Similarly, if

0 ifz<l;
1 pr— —_— .
1551 f(u) L ifrsl;

oo ifx>1,

then f is said to be rapidly varying at 0 with index +oc.

Remark. [1, p.18][6, p.408] The set of functions which are regularly (rapidly) varying

at 0 with index p € [—oo, +00] is denoted by R,. In particular, for f € R, we have

- fluz) (x)"

lim =|-

o fluy)  \y
forall z,y > 0, where, for p = %00, the quotient ()" has to be interpreted as the limit
of (3)” for p — Foc.




f(t)
f(t)

Theorem 2.15. [1, p.17,18] Let f : (0, 00) — (0, 00). Ul}fg = g(x) forall x in

a set of positive measure, then

f(xt)

1) ltigl F@) = g(x) forall z > 0,

2) there exists a real number o with g(x) = x~“ forall x > 0,

3) f(t) = t=U(t) with ¢ slowly varying at 0.

Theorem 2.16. [1, p.39] Let U be given on (0, X|, X € R*, by

()
((x)

. U(z)
1
for some u € L'[0, X]. Ifll%l T

A > 0, and if u is monotone in some right neighbourhood of 0, then

=1, wherec € R, p >0, hg)l =1 for all

KT NN,
210 cpxP~1l(x)

Definition 2.17. [6, p.410] For a copula C' and u € (0, 1) such that C(u,u) > 0,
let F,, : [0,1] — [0, 1] given as

Culz,y) =

forz,y € [0, 1] when F, ' (z) = inf{t € [0, 1]|F,(t) > 2} = sup{t € [0, 1]|F,(t) < z}.
The notation C,, is called the extreme tail dependence copula relative to C' at

the level w.

Theorem 2.18. For u € (0,1), if F,, is continuous, then F,(F, ! (x)) = z forz € [0,1].

Proof Letwu € (0,1) and z € [0, 1]. Assume that F), is continuous. We will show

that F,(F['(z)) = z. Set zy = F,'(z) = inf{t|F,(t) > x} = sup{t|F,(t) < z}.

u

For all n € N, there exists b, € {t|F,(t) > z} such that zy < b, < xo + %, SO



we have F,(b,) > z. By Squeeze theorem, we have lim b, = z, and so by the

n—o0

continuity of F,,,

Fy(z9) = F,(lim b,) = lim F,(b,) > lim = = x.

n—oo n—oo n—oo

Similarly, for all n € N, there exists ¢, € {t|F,(t) < z} such thatzp— < < ¢, < o,
so we have F,(¢,,) < z. By Squeeze theorem, we have lim ¢, = 2, and so by the
n—o0

continuity of £,

Fu(z9) = F,(lim ¢,) = lim F,(¢,) < lim x = x.

n—o0 n—00 n—oo
Then F,(F;(z)) = Fu(x) = . O

Theorem 2.19. Let ¢ be defined as in Definition 2.5. If v is strict, then 1~ is strictly

decreasing on [0, 0o].

Proof Assume that ® is strict. Let z,y € [0,00]. Assume that z < y. We will
show that v™!(z) > ¢~!(y). Suppose that ¥~ !(z) < ¥~ '(y). If v} (z) = ¥ '(y),
then z = (¢! (x)) = ¥ (¥ (y)) = y, a contradiction. If v~ (z) < ¢~!(y), then
we set s = ¢~ (z) and ¢ = »"*(y). Then s,¢ € [0,1] and s < t. Since v is strictly
decreasing, we have ¢ (s) > ¥(t), i.e., (¢ (z)) > ¥ (¢! (y)). Since ¢ is strict,
we have z > y, a contradiction. Then ¢ '(z) > ¢~ *(y). Hence ¢! is strictly

decreasing on [0, co]. O

Theorem 2.20. [6, p.410] Let C be a strict Archimedean copula. Then C, is also a

strict Archimedean copula and its generator 1), is given by

bu(t) = (F7H() = d(u) = ¥t~ (2¢(w))) — 2¢(u),

fort € [0, 1], where 1 is the generator of C.

Theorem 2.21. [2] Let C' be a strict Archimedean copula with generator 1), whose

the derivative is denoted by ¢'. Let 0 < a < oo. Then v € R_, if and only if
lim uy(w)
w0 (u)




Theorem 2.22. [6, p.413] Let C be an Archimedean copula having a differentiable

generator i € R_, with 0 < a < oo. Then, for all z,y € [0, 1],
lim Cu(2,y) = C*(z,y)-

Theorem 2.23. [6, p.415] Let C be an Archimedean copula with a differentiable gen-
erator 1 € R_.. Then, for all z,y € [0, 1],

li?g Culr,y) = M(2,y).



CHAPTER III

EXTREME TAIL DEPENDENCE COPULAS OF ORDINAL

SUMS

In this chapter, we study an ordinal sum of a strict Archimedean copula, and

any copula. We will prove that the extreme tail dependence copula of the above

ordinal sum at the level u is strict Archimedean when restricted to an area of

the strict Archimedean copula and converges to a Clayton copula.

Let C be a strict Archimedean copula with a generator 1), D any copula,

a € (0,1), and E an ordinal sum of C' and D as given by

aC(%, %) if (,y) € 0,a)%;
E(r,y) = (1—a)D(£5,4=2) if (z,y) € [a,1]%
M(z,y) otherwise.

It is easy to check that F is a copula.

(3.1)

Definition 3.1. For v € (0,1) such that E(u,u) > 0, let £, : [0,1] — [0,1] be

given as
E(t A u,u)

fort € [0, 1]. Moreover, define E,, : [0,1]? — [0, 1] given as

forz,y € [0,1].

Before we will prove that £, is a strict Archimedean copula, we know that

Uy = Fﬁl(]_)

u

~1(1) < ubecause F,(u) = 1. Now, we will show that F,, is equal to F,, when
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Lemma 3.2. Let u € (0,a). Then F, = F,, when ug = F;'(1).

Proof Observe that

. 1 if v > u;
Fu(x):E(a:/\u,u): r>u
E(u, u) P if o < u.
Let z € [0,1]. If z > u, then F,(z) = 1 = F, () because u > ug. If z < u,
2 E(z,u) E(x, uo) - _
then F,(x) = and F, (z) = ———=. It suffices to show that E(u,u) =
E u) E(ug, uo)

E(ugp,up) and E(z,u) = E(x,up).

To show that E(u, u) = E(ug, u), we will show that F,(ug) = 1.

Clearly, F,(uo) < 1. Since uy = F, (1) = inf{t|F,(t) > 1}, for each n € N,
there exists a,, € {t|F,(t) > 1} such that ug < a, < up + 1. Then F,(a,) > 1. By

Squeeze theorem, we have lim a,, = uy and so by the continuity of F,,

n—oo

Fu(up) = ﬁu( lim a,) = lim Fu(an) > lim 1 =1.

n—0o0 n—0o0 n—oo

Then F,(uo) = 1. Thus l;(gi’%) = Fu(UO) =1=F,(u) = ‘ggzz Z;

strict Archimedean, so (' is symmetric. Then, for uy < u < a, we have

Since C'is

E(u,u) = E(uo, )-aC(E 2) :aC(E,@> = E(u,up).

CLCL a a

Then

Ve ([uo, u]?) = E(u,u) — E(u,ug) — E(ug, u) + E(ug, ug)
(u,up) — E(u,up) — E(u,ug) + E(ug, up)

(ug, up) — E(u, up).

E
E

Since Vg([ug, u]?) > 0, we have E(ug,uo) > E(u,up). Since E is increasing,
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we have E(ug, ug) < E(u,ug). Then E(ug, ug) = E(u,ug) = E(u,u). Thus

Vie([0,ul\[0, uol*) = V([0, u]”) = Vi ([0, u]*)
= E(u,u) — E(ug, uo)

= 0.

We know that [0, z] x [0, u]\[0,z] x [0,ug] C [0, u]*\[0, uo]?.
Then 0 = Vg([0,z] x [0,u]\[0,2] x [0,u]) = E(z,u) — E(x,up). That is,
E(z,u) = E(x,up). Thus

F(z) === = =F,(z).

Hence, Fu = F,

uop

U

Lemma 3.3. Let C be a strict Archimedean copula with a generator 1, and F, defined
as in Definition 3.1 for each u € (0,1). Then, for a € (0,1) and u < a, F, is strictly

increasing on [0, u].

Proof Letu,a € (0,1) and u < a. Recall that, for ¢ € [0, u],

o
S
Q

We will show that F,, is strictly increasing on [0, u], i.e., for z,y € [0,u], if x < y,
then F,(z) < F,(y).
Let z,y € [0, u]. Assume that z < y. Since 1 is strict, by Theorem 2.19, ¢! is
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strictly decreasing on [0, co]. Then

(J > ¥
o(5)+e@) > v(3)+ ()
() (D) < o () ()
e (p@ @) e (B o)

Hence F, is strictly increasing on [0, u]. O
Next, we will prove that £, is a strict Archimedean copula.

Theorem 3.4. Let C' be a strict Archimedean copula with a generator 1 and u, a € (0,1),
and D any copula. Let E, F, and E, be defined as in equation (3.1) and Definition 3.1,

respectively. Assume that w < a. Then E, is a strict Archimedean copula with a

generator =
Yk (v) = U (FT@)> -v(2)

forz € [0, 1].

Proof First, we will show that E, is a copula.

Note that, for = € [0,1], F;, ' (z) € [0,4] C [0,a) and F,1(0) = 0. Then

By (e.0) = BEC @ B0 OS2 20
o E(u, u) (L, '

Similarly, £, (0, z) = 0.
By Lemma 3.2, without loss of generality, we assume that F~1(1) = u. Be-

cause F,(u) = 1 > x, we have F,'(z) < u. Because F, is continuous, by
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Theorem 2.18, we have

Similarly, E,(1,z) = x.
Assume that z1, 29, y1,y2 € [0,1], 21 < 29 and 31 < y2. Asu < a and Fu*l is
increasing, we have 0 < qul(:vl) < Fgl(xg) <u<a<land0 < F,ljl(yl) <

E'(y2) <u < a < 1. Since C'is a copula, we have

Vi, ([r1, 2] X [y1,92]) = Eu(z2,92) — Eu(z2,91) — Eu(1,92) + Eu(21, 1)

E(F, '(22), E M ) B(E; M (x2), F M (1))

E(u,u) E(u,u)
_E(F (@), P ) N E(F; (1), Fy (1)
E(u,u) E(u,u)
/ C(Fila(@)’ szla(yz)) - C(ﬁila(wz)’ ﬁ;;(yl)
&) ce, )
C 15771(11)’ Fil(y2) C F«fl(xl)’ Fily)
Y/ ( a -l a ) + ( a . a )
C(Zu a) C(Za 5)

> 0.

Then E, is a copula. Next, we will prove that E, is strict Archimedean
by the same arguments as in Theorem 2.20. First, we will show that E, is
Archimedean by using Theorem 2.10. That is, we will show that,

1) Ey(z,2) <z forz € (0,1), and

2) Ey(Ey(2,y),2) = Ey(z, E,(y, 2)) for z,y, 2 € [0,1].
To show that E,(z,z) < z forany z € (0,1),letz € (0,1). By Lemma 3.3 and

the continuity of F,, we have z = F,(t) for some t € (0,u). Thent = F;(z) and

&
e
N—
Q
Q2o |+
ISEESRISHES
S— | ~—
N
< | =
[HESS
=~
—~
g‘il?
A+
IS
el
N~— |
SIS
N—
N—

o= Bty = 200 _




wo () = ((52) )
(@) - () e e

Since 1 is strict, by Theorem 2.19, ¢! is strictly decreasing on [0, cc]. Be-

cause F['(r) < u, we have

—_

—~
8

~—

U

SacE

This implies that

C(F;;u)’ F;;<z>> P! <2¢(F;;(x>)>
Bulw, o) = =gy = gy < (33)

Next, we will show that E,(E,(x,y),2) = E.(z, E,(y, 2)) for z,y,z € [0,1].
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Letz,y,z € [0,1]. By (3.2),
¢<Fu1(Eu(x,y))> _ | Buwy) - (2¢<s>>> _¢(g)

= O<¢Z<2w<5>> L, (=
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Thus

B(F (Er.y). F(2))

Eu(Eu(z,y),2) =

E(u,u)
e, (Fgl(%@,y)), Fu—;(z))
E(u,u)
aC( @ F;1<iu<y,z>)>
E(u,u)
B(F M), B By, 2)))
E(u,u)
= Ey(z, Eu(y, 2)). (34)

By (3.3) and (3.4), E, is Archimedean. Now, we will find a generator v,

corresponding to £,. We note that

0B, (z,y) = aﬁ E(Fu1<w),Fu1(y>)]

x E(u,w)
Fyl(z) Filly)
_ a[e(E=E )
- Ox C(%, %)
1 0

and
O [E(E @), BN (y)
BB = 5y | T Bl
- FYz) E71'
) C( @) a(y))
dy C(%,4)

U, (2) _ 01Eu(z,y)

By Theorem 2.11, the generator ¢, of E, satisfies =
B 8 . wEu <y> 82l?u(x> y)
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z,y € [0,1]. Then g, necessarily satisfies

(=) (2o
w/(ﬁu’;(y)> (Ff)/(y)
Yo flt) (@)

11 A1\’
forallz,y € [0, 1]. Choosey = % Then ¢}, (x) = @¢i"—% ~ <¢ o F, 1) (@).
°= ) 5

Al o1\
¢—E1(12)/“ /1 <¢ o Fy 1) (t)dt. By g, (1) = 0, we have
(vofe) (h) 7 %

F—1
s (Fu ($)> i (E)] when ¢y, is a constant. Since
a

1
Thus/ U (t)dt =

Vg, () = cp, -

¢<Ff(a:)) — w(g)] and #) — ¢<g> generate the same cop-

CEg, a

E, (@)
ula, we choose cg, = 1 and ¢g, (z) =9 :

) — w(g). Note that ¢, is

a
a continuous strictly decreasing function and

Ve () = (FT“)> Dp(2) 2y (twl (w(g))) —2(2). 69

To show that 1, is a generator of £, we will prove that

Eu(z,y) = Vg, (e, (@) + V5, ()

forall z,y € [0, 1].
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Let z,y € [0, 1]. Since ¥ g, is continuous, x = 9, (t) for some t € [0, 1]. Then

v = w(w*(w(%))) -20(3)
w(w*(w(%))) = or2(y)
b (2() = o ren()

T (@ 20(8))
v (20(3)

. Thus, for u < a,

= - - (by (3-2))

Y (YE, () + Y, (y) + 20(2))
Y7 (29(2))
= Y (Y, (2) + VB, (1))

This proved that ¢z, is a generator of E,. Since 1) is strict, we have

o <o (B0 ) o) (1) < o(2) = v () =

Then g, is strict. Hence, for 0 < u < a < 1, E), is strict Archimedean with the

generator Vg, . O

Moreover, we can verify that £, converges to a Clayton copula as u | 0.
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Theorem 3.5. Let C be a strict Archimedean copula having a differentiable generator
e R_, with0 < o < 00, and D any copula. Let E and E,, be defined as in equation
(3.1) and Definition 3.1, respectively. Then, for all z,y € [0, 1],

li?g E,(z,y) = CYz,vy).

Proof We follow exactly the same arguments as Theorem 2.22.

Since ¢y € R_,, ¢ is measurable, ¢ > 0 and, for any ¢ > 0, we have

t
lig]l qi((v )) =t~ By Theorem 2.15, () = t~*{(t) for some ¢ € . Then t~* # 0
. (%
t
and lti%l ti(ﬁ ()t) = 1. Since v is convex, ¢’ is increasing and monotone in some

right neighbourhood of 0. By Theorem 2.16, we have lim ¢—(t) =1. We
10 —at— (1)

know that F, is strict Archimedean with the generator

b= o B Lot o1 (20(2)) ) - 20(2),

so this implies that, for s, ¢ € (0, 1),

Ve (s) L (s RU() - 20(2)

lim W (£)  ulo ¢—1<2¢<g>>w/<w*1<2w<§>>>'

Letv =1 ! (21/1(%)). Because ¢! (2@[}(%)) g C(g, g) and C'is continu-
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u u
-, =

ous, u | 0 implies v = C ( > 1 0. Then

a a

U)o w0 v
ulo Y (1) w0 w(tv)
— tim (sv)~%(sv) — v~ (v)
vl —aw(tv) " H(tw)
s (sv) — L(v)

b0 —at—o—10(tv)
lim, o i) 1
O
T —at——1¢(ty
hmvw T()
—a_ 1
= —% (Since (e §R0)
—at—o—
N Pa(s)
P (t)

Since ¢, (t) = t~* — 1 is the generator of C%, by Theorem 2.12, E,, converges
toC*aswu | 0. O

Theorem 3.6. Let C be a strict Archimedean copula with a differentiable generator
Vv € R_o, and D any copula. Let E and E, be defined as in equation (3.1) and
Definition 3.1, respectively. Then, for all x,y € [0,1],

Proof We follow exactly the same arguments as Theorem 2.23.

By Theorem 2.13, it suffices to show that, for ¢t € (0,1), lif(r)l Z,E“ g; = 0. Ap-
U. E,
plying Theorem 3.5, we have for ¢ € R_,, liﬂ)l % = 400 and, by Theorem
2.21, 11%1 U:f(g;) = —cowhenv =¢~! (21/)(%)). Then

bt i) b
wlo P (t)  wlo v (tv)
Stv) b)) D)
toy!(tv)  toy! (tv) P(tv)




By Theorem 2.13, E, converges to M as u | 0.
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CHAPTER IV
EXTREME TAIL DEPENDENCE COPULAS ALONG
ARBITRARY CONVERGENCE PATHS

Let C' be an Archimedean copula having a generator ¢. Juri and Wiithrich
[6] studied tail copulas of C' conditioning on [0,u] x [0,u] as u goes down to
0. In this chapter, we assume that C' is strict and investigate tail copulas of
C conditioning on [0, u] x [0,v] as (u,v) approaches (0,0) along any path. We
obtain the same results as those in [6].

Let two random variables X, Y be uniformly distributed on the unit interval

[0, 1] and have joint distribution function C.

Definition 4.1. For v € (0, 1), we define F,, : [0,1] — [0, 1] as

F, ()= FC(t)= PIX <t|X <u,Y <1]= P[X <t|X <u] = min (¢, u)
7 u
fort € [0, 1], and define G, : [0, 1] — [0, 1] by
Gu(t) = GS(t) = PIY <t[X <u,Y <1]=P[Y <t|X <u] = C(Z’t)

fort € [0, 1]. Then define C, : [0,1]*> — [0, 1] as

Cu(z,y) = —

forz,y € [0, 1] when F, '(z) = inf{t € [0,1]|F,,(t) > 2} = sup{t € [0,1]|F,,(t) < x}.
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Fig.4.1 A copula C,,

Proposition 4.2. For every u € (0, 1),
(1) F;1(0) = 0, G, 1(0) =0,
(2) F'(1) =u G'(1) =L

Proof We shall only prove the statements involving F,, as the equations con-
cerning G, can be shown in a similar fashion.

(1) Since F, (0) = 0, we have F,, '(0) = inf{t|F, (t) > 0} < 0. Clearly,
F,1(0) > 0. Then F,'(0) = 0.

(2) Since F,(u) = 1, we have F,'(1) = inf{t|F, (t) > 1} < u and
F, (1) = sup{t|F,,(t) < 1} > u. Then F, (1) = u. O

u,

Lemma 4.3. Let C be a strict Archimedean copula with a generator ¢, F, and G,
defined as in Definition 4.1 for each u € (0,1). Then
(1) F.,, is strictly increasing on [0, u], and

(2) G, is strictly increasing on [0, 1].

Proof Letu € (0,1). Recall that, for t € [0, u], F, (t) =

SR

(1) We will show that F), is strictly increasing on [0, u}, i.e., for z,y € [0, u],

if v <y, then F, (z) < F,, (y). Let 2,y € [0, u]. Assume that = < y. Then
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Hence F), is strictly increasing on [0, u).
(2) Since C'is strict Archimedean with a generator ¢, we have
—1
G (o) - G0 _ v W) + ()

u u

for t € [0,1]. We will show that G, is strictly increasing on [0, 1], i.e., for z,y €
0,1],if z < y, then G, () < G, (y). Let z,y € [0, 1]. Assume that x < y. Since ¢
is strict, by Theorem 2.19, ¢)! is strictly decreasing on [0, oc]. Then

u) +¢(z) > Pu) +(y)
V@) () () +4(y)

Hence G, is strictly increasing on [0, 1]. O

Now, we will prove that C, is a strict Archimedean copula.

Theorem 4.4. Let C be a strict Archimedean copula with a generator «, F,, , G, and
C., defined as in Definition 4.1 for each v € (0,1). Then C,, is a strict Archimedean

copula with the generator

forz € [0, 1].

Proof We will show that C,, is a copula. Firstly, by Proposition 4.2(1), we have

O, (2,0) = — 2 SRS ™ ~0

and
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for z,y € [0,1]. Secondly, because of Proposition 4.2(2), F,,'(z) < u and the

continuity of F),, by Theorem 2.18, we have

Cyu(z,1) = & & = & =F,(F'(2) ==

for z € [0, 1]. Similarly, because of Proposition 4.2(2) and the continuity of G,,,

by Theorem 2.18, we have
C(F,'(1),G.'(y)  Clu,G,(y)) _
Cu(Ly) = : : = : =G (G () =y

fory € [0, 1]. Finally, let (z1, y1), (z2,92) € [0, 1]? be such that z; < zo and y; < vs.
As F ' and G ! are increasing, we have 0 < F '(z1) < F,'(23) < u < 1 and

0 <G, (1) < Gl (y2) < 1. Since C'is a copula, we have

VCu,([fEhl’z] X [y1,92]) = Cu(22,92) — Cu(22,91) — Cu (21, 2) + Cu (71, 91)
C(F, (22), G, (y2))  C(F, ' (22), G, ()

U u

C(F, 1), G (y2)) N C(F,  (x1), G ()

> 0.

Hence C,, is a copula.

Now, we will show that C,, is Archimedean by using Theorem 2.10. That is,
we will show that,

1) Cy (z,x2) < xforz € (0,1), and

2) Cyu (Cu(x,y), 2) = Cy (z,Cy(y, 2)) for z,y, z € [0, 1].

First, we will show that C,, (z,z) < x for z € (0,1).

Let z € (0,1). We know that C'is strict Archimedean with a generator v, i.e.,
for s,t € [0, 1], C(s, £) = ¥(sb(s) + (1)). Recall that F, () — W _ % for

t < u. By Lemma 4.3(1), and the continuity of F),, we have = = F,, (¢) for some
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€ (0,u). Thent = F,'(z). Since F, ' (z) < u, we have

F N z) = au (4.1)
V(F () = Y(au). (4.2)
Similarly, recall that G,, () = C(Z’ 2 = w_l(ib(uz + ¢(t>). By Lemma 4.3(2), and

the continuity of G,,, we have z = G, (t) for some t € (0,1). Thent = G*(x).

Since 1 is strict, we have

Y () + (G ()

u

vu = P (P) +9(G, (@)
Ylru) = (u) + (G, ()
(G ) = (zu) = Y(u). (4.3)

Since 1 is strict, by Theorem 2.19, ¢! is strictly decreasing on [0, o0]. Since

ru < u, we have

blaw) > Blw
20(eu) > plaw)+ ()
20(zu) = (w) > plau)
G (@) +9(Gyl (@) > wlauw)  (by (42)and 43))
U @) + (G @) < o
C(F,N(2),G N (z)) < =u
O(F 0).GMw)

Cy(z,z) < = (4.4)
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Now, let z,y, z € [0, 1]. Note that

V(F, (O (2,9))) = ¥(uCy (2,y))
= U(C(F, (2), G ()
= W (W(F, (2) + (G, (y))
= O(F, (2)) + (G () (4.5)
Similarly, we have
V(G HCu(2,y)) = V(F, (@) + (G () = P(u). (4.6)

Hence

Cu(Cu,(2,9), 2) = Cu (2, Cu,(y, 2))- (4.7)

By (4.4) and (4.7), C,, is Archimedean. Now, we will find a generator ,,
corresponding to C,, . By Theorem 2.11, the generator ¢) of C' must satisfy

V'(x) _ 0C(,y)
V'(y)  0,C(x,y)

(4.8)

V() 0O, (z,y)

o — , T,y €
U, (y)  0Cu(myy) Y

for all z,y € [0, 1] and likewise v, is the solution of

~—
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. . 1 — — —1\/
Similarly, 9,C,, (z,y) = o HC(F,  (x), G ) - (G, ()

Then 1, necessarily satisfies

Ui () O, (2),G (y) - () (2
U(y)  0C(F (), G y)) - (GLl)'(y
( (@) (Y (=)
PG HY)) - (GLY) (y)
~ W OFu V)'(x)
~WoG)
for all z,y € [0,1], where we have used (4.8) in the second equality. Putting
y = % gives ¢, (r) = (_1#% (o F ') (z). Integrating both sides yields
[ i - s oD |, o0t By il = Dand 520
we have i, (x) [;Z( ()= (u)] where ¢, is a constant. Since ¢, [¢)(F, ' (z))—

Y(uw)] and o (F, () ( ) are generators of the same copula, we put ¢, = 1
-1

and ¢, (x) = (£ (z)) — ¢ (u). Since (£, (z)) = ¥ (zu) and

(G () = w<xu>—w< ), wealso have ¢, () = ¢ (F, ! (x)) —t(u) = (G} (x).
Since ¢ is strict, we have v,,(0) = (G, (0)) = 1(0) = co. Then 1), is strict. Re-
call that

) =
C(

hu,(t) = Y(F (1) — () = d(tu) — ¥ (u). (4.9)

Let z,y € [0, 1]. We will show that C, (z,y) = ¥, (¢u,() + ¥u,(y)). Since v, is
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continuous, we have x = v, (t) for some ¢t € [0, 1]. Then

z = Y(tu) —P(u)
P(tu) = x+(u)

tu = ¢~ @+ P(u))
vz + ¢(u))

u

Y 4 1p(u))

That is, v, '(z) =
: u

. Thus, by (4.2), (4.3) and (4.9),

IS

Y (W (F (@) + (G ()

Y (W (u) + Y(yu) — ¥ (u))

P b, (7) + () + ¥, (1))

u

= IDJ,I (%, (:L') + l/Ju, (y))

Hence C,, is strict Archimedean with the generator v, . O

The next theorem investigates the convergence of C,, to a Clayton copula C* as

u 0.

Theorem 4.5. Let C be a strict Archimedean copula having a differentiable generator
Y € R_, for some a € (0,00), and C,, defined as in Definition 4.1. Then, for all
r,y S [07 1]/

lim G, (,y) = C%(z,y).

Proof Since ¢y € R_,, ¢ is measurable, ¢y > 0 and, for any ¢ > 0, we have

t
hﬁ’]l 12}((“ )> =t~ By Theorem 2.15, ¢)(t) = t~*{(t) for some ¢ € ;. Thent~* # 0
u u
t
and lti% t—wa(é()t) = 1. Since 1 is convex, v’ is increasing and monotone in some

right neighbourhood of 0. By Theorem 2.16, we have lim V()

——=1.B
1o —at—a-14(1) y
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Theorem 4.4, C,,, is strict Archimedean with the generator

u,(t) = ¥(tu) — ¢ (u)

fort € [0, 1]. Then, for s,t € (0, 1), we have

() vl — v
ul0 P, (t) ul0  u!(tu)
_ (su)~l(su) —u=“l(u)
ulo  —ou(tu) " (tu)

s~ (su) — £(u)

K lulﬁ)l —at=*"Y(tu)

 limgo i — 1

> limy, o —_atiz(;)l L)

7 %1—1 (since ¢ € Ry)
94(t)

where ¢,(t) =t~ — 1 is the generator corresponding to C*. By Theorem 2.12,

C,, converges to C“ as u | 0. O

Moreover, if C' is strict Archimedean with a generator ¢ € R_, then C,, con-

verges to M as u | 0.

Theorem 4.6. Let C be a strict Archimedean copula with a differentiable generator

Y € R_o, and C,,, defined as in Definition 4.1. Then, for all x,y € [0,1],

lim Cy (z,y) = M(z,y).

ul0
Proof By Theorem 2.13, it suffices to show that, for ¢ € (0, 1), lig]l Zlf Ei; =0.
Applying Theorem 4.5, we have fory € #_, hﬂ)l ZZ((ZSU)) = +o0 and, by Theorem
U Uu
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L) ()~ d(w)
wl0 ”%,(t) wlo  uR)(tu)
diw) i) )
tud)! (tu)  tud)’(tu) P (tu)

By Theorem 2.13, C,,, converges to M as u | 0. O

We shall also define tail copulas of C' conditioning on [0, 1] x [0, v] denoted

by C,.

Definition 4.7. For v € (0, 1), we define F,, : [0,1] — [0,1] as

Fult) = FE() = PIX < 1X < LY <o = PLY <y <o = Z2Y)
| v
fort € [0, 1], and define G, : [0, 1] — [0, 1] by
G,(t) =G (t)=PlY <tIX <1,Y <v]=P[Y <t]Y <v] = Hlln?(}t,v)

for t € [0, 1]. Then define C', : [0,1]*> — [0, 1] as

for z,y € [0, 1].
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Fig.4.2 A copula C,

Fort € [0, 1], we observe that

c _ ~CT
F ( ) v X v N Gv, (t)7
and
: T
GOt = C(1,t Av) a min(t,v) W (tAv,1) _ FfT(t).
' v v v :
Moreover,
C(F M), G (y))
CU(.T,:I/) —

C((Fy) (=), (GI) ()

OGS M (@), (F) ()
CT((E) ). (G (@)

(Y

= (CT)v,(y7 ),

where (CT), is a strict Archimedean copula with a generator (¢"), , by apply-
ing Theorem 4.4. Now, we will use the above properties to prove these theo-

rems.

Theorem 4.8. Let C' be a strict Archimedean copula with a generator 4, F,, G ,, and
C, defined as in Definition 4.7 for each v € (0, 1). Then C,, is also a strict Archimedean
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copula with a generator

forz € [0,1].

Proof Since C', = (C7),, we can apply Theorem 4.4 to show that C, = (CT),,

is a strict Archimedean copula with a generator v, = (¢'),. That is, for

v € [0,1], %) = (67 (1) = Y(GS) @) = $((FE)(2)) — (v). Because
GﬁT = F,and FST = G, wehave v, (z) = ¢((F,'(z)) = ¥(G, () — (v). O

Similarly, we can verify that C',, converges to the Clayton copula.

Theorem 4.9. Let C be a strict Archimedean copula having a differentiable generator
Y € R_, for some o € (0,00), and C,, defined as in Definition 4.7. Then, for all
x,y €[0,1],

lin Ca(,9) = C*(,).

Proof We can prove similarly as Theorem 4.5 by using C, = (C7),,. 0

Moreover, if C is strict Archimedean with a generator ¢ € _.,, then C, con-

verges to M as v | 0.

Theorem 4.10. Let C be a strict Archimedean copula with a differentiable generator

Y € R_o, and C, defined as in Definition 4.7. Then, for all x,y € [0, 1],

lim Cy (,y) = M(z,y).

Proof We can prove similarly as Theorem 4.6 by using C', = (C7T),,. O

And then, we will define a new copula C,, ,.

Definition 4.11. For u,v € (0,1), we define F,, : [0,1] — [0, 1] as




for t € [0, 1], and define G, : [0, 1] — [0, 1] by

Cy,(1,t Av)  min(t,v)

Gu,v (t) = Cu,(l, ’U) - v

for t € [0, 1]. Then define C,,, : [0,1]> — [0, 1] as

Cu(Fuo(2), G (y) _ C(F N (Fr (2), G (G (1))

Cu7,u (x, y) — ) u,v . 5 — 5 5 o’ u, u,v

for z,y € [0, 1].

Fig.4.3 A copula C,,

Note that C,,, = (C,) -
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Theorem 4.12. Let C be a strict Archimedean copula with a generator 1, F, ., Gy,
and C.,,, defined as in Definition 4.11 for each u,v € (0,1). Then C,, is also a strict

Archimedean copula with a generator

Yup () = Pzuv) = P(uv)

forx € [0,1].



36

Proof Since (), and C, are strict Archimedean copulas, by Theorems 4.4 and
4.8, C,, is a strictly Archimedean copula. Next, we will find a generator 1, ,

tor C, ,. By definitions and equations (4.2) and (4.3),

C(F, (1), G, (v))

Fu,v(t) - = U;) =
_ TS ®) + U(GL (v))
U ) + o) — V()

Since F),, is continuous, we have © = F, ,(t) for some t € [0,1]. Then

t = F-1(x). Since ¢ is strict, we have

U,V

Y (W (uly(2)) + Y (vu) = ¥ (u))

vuv = U7 (uF,  (x) + 1 (vu) — 9 (u)
Y(aw) = P(uk,, () +p(vu) — P(u)
Y(uF,(2) = dlaw) + 9 (u) = (vu)

Since ¢(F, ' (z)) = ¥(xu) (equation (4.2)), we have

Y(F,H(F, (7)) = Y(uFy, (2)) = Ylzuww) + ¥(u) — 9 (vu).

. t X . .
By definition, G, ,(t) = — for t < v. Since G, is continuous, we have © =
v

G, (t) for some t € [0,v]. Then t = G} (). Since v is strict, we have

U,V

€T =
G l(x) = av

u,v

G, (Ghu(2) = Gl ()

u, u,v

V(G (Gu(@) = $(G, (@)

Since (G, ' (z)) = ¢(zu) — ¥(u) (equation (4.3)), we have (G, ' (zv)) =
Y(zuv) — Y(u). Then @/J(G;I(G;}](aﬁ))) = Y(zuv) — P(u). Since Y, ., = (Vy,) », We
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can apply Theorems 4.8 and 4.4 to obtain

Yuw () = Py, (20) = Yy, (v) = V(zwv) = Y(u) — P(uv) + P (u) = P(ruv) — P(uv).

Hence C,, , is strict Archimedean with the generator v, ,. O

Next, we will compare the copula C, , and Juri and Wuthrich’s copula C,,.

Theorem 4.13. Let C be a strict Archimedean copula with a generator v, C,, and

Cy.» defined as in Definition 2.17 and Definition 4.11, respectively. Then, for every

ue (0,1),C, = C,, wherev = Clu, u)
u

C(u, u)

Proof It suffices to show that ¢, = 1, , where v =

Clu,u) — ¢¥1(24(u))

Substituting v = — 7 )
Yuw() = Y(zuv) — P(UV)
= (ap (20 (w))) — (™ (29 (u))
= (e~ (20 (w))) — 2¢(u)
= Pu()
which is the generator of C,,. Hence C,, = C,, . O

It is shown by Juri et al. that C cww = C, converges to a Clayton copula.

C, is by definition the extreme tail dependence of C' given that X < u and

Y <. Soitisnatural to investigate the extreme tail dependence of C given that

X <wand Y < f(u). We shall show that the conditional copula is C, , where
= M and that OH,W converges to a Clayton copula as u | 0.

Let random variables X, Y be uniformly distributed on the unit interval

0, 1] and have joint distribution function C. Let f map (0, J) into (0, 1) for some

d € (0,1] and suppose that C'(u, f(u)) > 0 for all w > 0. For u € (0,6), define

Fu:f : [Oa ]-] — [07 1] by

L) — C(t Au, f(u))
B C(u, f(u))
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for t € [0, 1], and define G,..; : [0,1] — [0, 1] by

Clu,t A f(u))

Gur(t) =PlY <t|X <u,Y < f(u)] = C(u, f(u)

fort € [0, 1]. Then define C,,.; : [0,1]* — [0, 1] as

C(F, ;(x), G W)

Clu, J () (.10

Cu:f($a y) =

for z,y € [0, 1].
Applying the proof of Theorem 2.20, we have C,.; is a copula. Since C' is

strict Archimedean with the generator ), by definition, we have

C(t, f(u))
Clu, f(u))

Fus(t) = S jf

<
—~
S
_I_
=
=
£

fort < u.Setx = F,.f(t) so thatt = FJ}(x) Since 1) is strict, we have

MR =—

Y (W (Fyy () + 9(f ()
(1 (w) + 9 (f ()
v () + U(f(u) = v ((F (@) +U(f ()
ol )

Y™ (W(u) +9(Fw))) = e(F) + 0 (f(w)
Y(Fap() = v (@) + (f(w) — o(f(w).

Similarly, by definition, we have

Clu,t) 7 '(W(u) + (1))

Guy(t) = C(u, f(u)) =1 p(u) +(f(u)))

fort < f(u). Set x = G.4(t) so thatt = G .f( x). Since v is strict, we have

U W (u) + Y (f(G oy (2))))

P W (u) +o(f ( )

v () + (f(w) = v (W(u) +U(f(Gp(@))
Yy ((u) + ¥ (f(w)) = ¥(u) +¢(f(Gp(x))

U(Gp(@) = P () +o(f () — v (u).

Tr =
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Theorem 4.14. Let C be a strict Archimedean copula with a generator 1, C,,,, and C.y
defined as in Definition 4.11 and equation (4.10), respectively. Then, for 6 € (0,1],
u € (0,0) and f maps (0,9) into (0,1), Cy.y = Cy, is strict Archimedean where
~ Clu, f(u)

" .
Proof We will show that C,, s is strict Archimedean by using the process of C, .

Loty = (0] _ 97000+ $S0) gy

C(F, (Fuu (7)), G (G ()

Cu’,u (I’ y) — u, u,v u’; U, u,v
U (Weun) + dlyue) — (ow))
C(u, f(u))
_ YT W (Cu, f(w) + ¥ (yClu, f(w) = (0~ ((w) + ¢(f(w))))
Clu, f(u))
_ YT W (@C(u, f(w)) + ¥ (yC(u, f(1)) = d(u) = (f(u))
C(u, f(u)
_ YT W (=Cu, f(w)) = (f(w) + PyClu, f(w)) = ¢(u))
Clu, f(u))
T F () + (G ()
Clu, f(u))
C(F4(x), Gy )
Clu, f(u))
 Yu f(LE, y)
Hence C,, , = C,.;. Since C,,,, is strict Archimedean, so is C,.;. O
Then we can compute the generator ¢, from finding v, , when v = C’(u,j(u)) .

Yuw(T)

Y(zuv) — P(uv)
P(xC(u, f(u)) = (Clu, f(u)))
(@™ () + ¥ (f(u)) — v (u) — (f ().

S0 Yup(x) = V(@™ (Y (u) +(f(w)))) — (u) — P(f(u)).

Now, we will show that C,.; converges to a Clayton copula as u | 0.
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Theorem 4.15. Let C' be a strict Archimedean copula having a differentiable generator
Y € R_, for some o € (0,00), C..5 defined as in equation (4.10) and, for § € (0, 1], let
f:(0,8) — (0, 1) have right limit at 0. Then, for all x,y € [0, 1],

hﬁ)l Cusl(z,y) = C%z,y).

Proof Since ¢y € R_,, ¢ is measurable, ¢ > 0 and, for any ¢ > 0, we have

t
lig)l 12)((1;)) =t~ By Theorem 2.15, ¢(t) = t~“/(t) for some ¢ € $y. Thent~* # 0
t
and lgg twa;()t) = 1. Since ¢ is convex, 1’ is increasing and monotone in some

right neighbourhood of 0. By Theorem 2.16, we have lim V() =1. We

t10 —at—o—1((t)
know that C,. is strict Archimedean with the generator

Yuss(t) = V0~ () + P (f () = P(u) — (f ()

fort € [0, 1]. Then, for s,t € (0,1),

o G (8) sy o) 6 (1)) — () ~
ol 00,0 Tl O ) + BT (W) +

Let v = 41 (1h(u) +(f(u))). Because v~ (u(u) + B(f(u))) = Clu, f(u)), C

is continuous on [0, 1]* and f has a right limit at 0,

lim v = lim ¢~} ($(w) + D(f(u)) = lim C'u, f(u)) = C(0, lim f(u)) =0.

ul0 ul0
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Hence, v = C(u, f(u)) | 0. Then

usls) . (sv) — $(0)

it RN (it T 7
(sv)~*(sv) — v~ (v)

w0 —av(tv)—o—1L(tv)

8T (sv) — £(v)

a 11}?01 —at=HY(tv)

B limvw S*Z(i()sv) -1

. —at——1(ty
lim, tt’T(t)
—a_ 1
= % (Since le 5]%0)
—at—o—
A Pals)
Pu(t)

where ¢,(t) = t~* — 1 is the generator corresponding to C*. By Theorem 2.12,

Cy.r converges to C* as u | 0. O

Furthermore, if C' is strict Archimedean with a generator ¢ € R_., then C,;

converges to M as u | 0.

Theorem 4.16. Let C be a strict Archimedean copula with a differentiable generator
Y € R_w, Cy.5 defined as in equation (4.10) and, for 6 € (0, 1], a function f mapping
(0,6) into (0, 1) have right limit at 0. Then, for all z,y € [0, 1],

lij%l Cuflz,y) = M(x,y).

usf (1
Proof By Theorem 2.13, it suffices to show that, for ¢ € (0,1), lim Puy ()

ul0 w;f (t)
Applying Theorem 4.15, we have for ) € R_, hJI})] 12((151))) = 400 and, by Theo-
v v
/
rem 2.21, lim "2 1%)

im = 7o = —oo when v = Y7 (¥(u) + (f(u)))- Then

¢u:f(t) 1; w(tv) - 1/J(U)

lim im
wlo P (t) w0 v (tv)

Ytv) — Y(tv) (v)
toy! (tv)  toy!(tv) P(tv)

= limt
v]0

= 0.
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O

As an example, we will construct a copula C,.; where f(u) = 2u by the
process of the copula C,,. We will consider the characteristic of C,.; when

f(u) = 2u. For u € (0, 5), define F,; : [0,1] — [0,1] given as

Fup(t) = PIX <t|X <u,Y < 2u] = %

Moreover, we define G,..; : [0, 1] — [0, 1] given as

Guys(t) = PIY <t|X <u,Y <2u] = %

Next, we define C,,.; : [0,1]> — [0, 1] when f(u) = 2u given as

C(F,;(x), G (y)) |

Cuslz,y) = C(u, 2u)

Note that C,.; when f(u) = 2u is a copula. Since C'is strict Archimedean
with the generator ), we have w(F;} (2)) = ¥(xp ((u) + ¥ (2u))) — ¥ (2u) and
D(Gop(y) = vy (U(u) +¢(2u))) — d(u).

It then follows from Theorem 4.14 that C,.; = C,,,, where v = Clu, 2u)

u

, 1s
strict Archimedean provided that C'is strict Archimedean.
Applying Theorem 4.15 and Theorem 4.16, we have, for f(u) = 2u, Cy:¢

converges to a Clayton copula as u | 0.



CHAPTER V
EXTREME TAIL DEPENDENCE COPULAS OF NON-STRICT
ARCHIMEDEAN COPULAS

In this chapter, we shall consider non-strict Archimedean copulas and study

its tail dependence copulas.

Definition 5.1. Let random variables X, Y be uniformly distributed on the unit
interval [0, 1] and have joint distribution function C. Assume that Ve ([uy, u]?) >

0for 0 < u; <u < 1and define F), : [0,1] — [0, 1] by

Vo([ur, u At] X [ug, u)

Fu(t) = Pluy < X <t|X,Y € [ug,u]] = Ve ([us, ul?)

for t € [0, 1]. Moreover, we define C,, : [0,1]* — [0, 1] by

Cu(x7y) = P[ul < X < Fu_l(x)vul < X < Fu_l(y)|X7Y € [uhu]]
_ Vo(luy, £ ()] x Jur, F (y)])
Ve(lua, uf?)

for z,y € [0, 1].

Before we prove that C, is a copula, we know that F'(1) < u because

F,(u) = 1. Now, we will show that F), is equal to F,, when uq = F;*(1).

Lemma 5.2. Let C be a symmetric copula for which there is vy, € (0,1) such that
Clu,uy) = 0and Vo(lur,u)?) > 0for 0 < uy < u < 1. Then F, = F,, when
Ug = Fu_1(1>

Proof Observe that

1 ifz >

Fu(x) = Ve([ur, u A x] X Jug, ul) _ ) Voluradx e

Ve ([ur, ul?) Ve ([u1ul?)
0 if0<z<u.

ifu, <a<uw
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Letz € [0,1]. If x > u, then F,(z) = 1 = F,,(z) because u > ug. If z < uy,

then F,(z) = 0 = F,,(z). Assume that u; < x < u. Then

Vo([ur, ] x [ug, u])
Ve([ur, ul?)

Fu(z) =

and
Vo ([u, @] X [us, uol)
VC([UD u0]2)

It suffices to show that Vo ([u, 2] % [u1, u]) = Ve ([ur, 2] X [ur, ue)) and Ve ([ug, u]?) =
Ve ([u1, uo)?).
To show that Vo ([uy, u)?) = Vo ([ur, ug)?), we will show that F,(ug) = 1.
Clearly, F,(ug) < 1. Since ug = F, *(1) = inf{t|F,(t) > 1}, for each n € N,
there exists a,, € {t|F,(t) > 1} such that uy < a,, < up + +. Then F,(a,) > 1. By

FUO(x) =

Squeeze theorem, we have lim a, = u, and so by the continuity of F,,,

n—oo

Fu(up) = F,(lim a,) = lim F,(a,) > lim 1 =1.

n—oo n— oo n—oo

Then F,(up) = 1. Since

Ve ([ur, uo] X [ug, ul)
Ve([ur, u]?)

— Fu(uo) = 1 = Fu(u) =

we have Vi ([ug, uo] X [ur,u]) = Ve([ur, u]?), which by definition of Vi implies
that C(ug,u) — Clug,u1) = C(u,u) — C(u,uy). Hence Vi ([ug, u] x [ui,u]) =
C(u,u) — C(u,u1) — Clug,u) + C(up,u;) = 0. Since C' is symmetric, we also

have
Ve([ur, u] x [ug, u]) = Clu,u) — C(uy, u) — C(u,ug) + C(ug, up) = 0.

Since [uy, up] X [ug, u] C [uy,u] X [ug, u], we have Vo ([u1, up] X [ug,u]) = 0. Then

Vo ([ur, u)®\[u1, uol?) = Ve([ug, u] x [ur,u]) + Ve([ug, ug] X [ug, u]) = 0. Note that

Ve([ur, ul?) = Ve ([ur, uo)®) + Ve([ur, u]*\[ur, uo)?).
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Since Vo ([ug, u)*\[uy, ug)?) = 0, we have Vi ([ug, u]?) = Vo ([u, upl?).
We know that Ve ([ur, u]?\[u1, uo)?) = 0 and <[u1,x]><[u1,u])\([ul,x]x[ul,UOD c

[uy, u)?*\[uy, uo]?. Then

0= VC(([ul,x]x[ul,u])\([ul,az]x[ul,UOD) — Vel[un, 2] x [ur, u])— Ve ([ur, 2] X [ur, o).

Thus Ve ([u, 2] % [ur, u]) = Ve(Jur, 2] x [u, uo]). Finally,

Vo(lur, o] x fug,u])  Ve([ur, 2] X [ug, ug))

Fu(z) = Ve ([ug, u)?) N Vo ([ur, uol?)

= F,,(x).

Then F,, = F,,,. O
Next, we will prove that C,, is a copula.

Theorem 5.3. Let C be a symmetric copula for which there exists u; € (0,1) such
that C'(uy,u1) = 0 and Ve([ug, uf?) > 0 for 0 < uy < u < 1, and C,, defined as in
Definition 5.1. Then, for u € (0, 1), C, is a copula.

Vo([ur, 0] x [uy, ul)

Proof Note that F,!(0) = inf {¢|F,(¢) > 0} and F,(0) = Ve([uy, u)?)
C 1

Then F;1(0) = 0. Thus, for 0 < a < 1, we have

= 0.

Cu(a,0) = Pluy < X < F_l(a),ul Y Fu_l(O)\X,Y € [ug,ul]

— — L

= Plu; < X <

FYa),u; <Y <0|X,Y € [up,u]] =0

= 0.

Similarly, C,(0,a) = 0.
Since C'is a symmetric copula, by Lemma 5.2, without loss of generality, we

assume that F, *(1) = u. Since F, is continuous, by Theorem 2.18, we have

Vel B @) o, B () _ Ve, B @ ) _ e
R A (TR T ey =

Now, let (z1,y1), (z2,y2) € [0, 1]*> be such that 7; < z5 and y; < y,. Since F !

is increasing, 0 < F,;'(z1) < F; Y (z9) <u<land 0 < FY(y1) < F Y (yo) <u <
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1. Since C'is a copula, we have

Ve, ([z1, x2] X [y1,92]) = Cul@2,y2) — Culza, y1) — Culz1,y2) + Cul@1,41)
_ Vo ([ur, Fy ' (22)] < [uy, F7 (y2)])
Ve([ur, ul?)
Vo ([ur, By ()] X fun, By (wn)])
Ve([ur, ul?)
 Ve(lu, Fy ()] < |
Ve([ur, ul?)
Vo ([uy, B ()] < fug, Fy (yn)])
Ve([ur, ul?)
_ O (22), () O (@2), B (1))

u u

Ve ([, u)?) B Ve ([uy, u)?)
C(F, M 21), B, M (y2)) n C(F, (x1), F ' (1))
Vo([ur, ul?) Ve([ur, ul?)

v

0.

Hence C,, is a copula. O

We are unable to show that C,, is Archimedean. However, we have the follow-

ing example for non-strict Archimedean copula C.

Example. If Cy(u,v) = max(1 — [(1 — u)? + (1 — v)?]7,0) where 6 > 1, then

lim (Cy)u(,y) = zy

uug

where u; =1 — (1)7.

Proof It is easy to show that Cy(u,u) = 0 if and only if u < 1 — (%)% Set
up =1-— (%)5. We have to check that Vg, ([u1, u]?) > 0, for all u > u;. Note that
Ve, ([ug, u]?) = 26 [142(1—u)?)s —28 (1—u)—1. Set f(u) = 26 [1+2(1—u)?]s —
20(1 —u) — 1. Then f'(u) = 20 — 2273 (1 — w)?~![1 + 2(1 — w)?]o L. If f/(u) = 0,
then 25 — 2274 (1 — u)?~'[1 4 2(1 — u)?]a ! = 0. By solving the equation, we have
u=1-(})".

Consider u > 1— (3) 7. We will show that f is strictly increasing by showing
that f’(u) > 0. First, note that 1 — u < (%)é Then (1 —u)? < 3 and (1 —u)’' <



47

(%)1_%. Thus

Then f is strictly increasing. Since f (1 -3 %) = 0 and f is strictly increasing,
1 1 2
flu)>0forallu >1—(3)°, ie., Vg, <{1 = (%)g,u] > > 0, or Vg, ([ug,u)?) > 0.

Setu; =1 — (%)% and u € (0, 1) such that u > u;. Therefore,

Ve, ([ur, uw A t] X [ug, ul)
VC@([U1’U]2)

1 ift >
(A=) + 118 41w’ +2]7 = [(1—1)?+(1—w)*] s -1
2175 [142(1—u)?] ¥ —28 (1—u)—1
0 fo<t<wu <u.

Fu(t) =

ifup <t <uy

Next, we will find (Cy),. Note that, for z,y € [0, 1],

_ Vo ([, 8] X [u, t])
VCQ([ulauP)
[(1—9)"+4]7 +[(1 = 1)" + ]
21751 4+ 2(1 — u)?)

o[-+ (1) -1

where s = F;'(z) and t = F['(y).

Casel: x =y. Then s = t. We have

21— ) + 413 — 20— 5)")P — 1

(OG)U(xvx) = 21,%[1 + 2(1 _ U)G]% -9

=
—~
—_
|
S
~
|
—_
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By L'Hospital’s rule and squeeze theorem, we have

lim (Cy)y(z, z) = lim

uuy uluy Du
where
Ay, = 20—2275(1—s)' 1 +2(1— )Y,
B, = 229(1-6)(1—s)"21+2(1-35)%2 and
D, = 22760 — 1)(1 —w) 21 +2(1 — )]s 2
Note that
d?s ds\” 2 ds\?
lim |Ay( =— ) =B, — ) | =204 —1)| lim ( —
wls S(du2> S(du) ] R )[ulfzﬂ <du) ]

2
and hm D, = 29’1(9 1). Then hm(Cg) (z,z) = lim (@> :

ulug uug ulur \ du
Since s = F'(x), we have
r = F,(s)
_ [0+l [ —w)’ + 5] — (1= 5)’ + (1 —w)]o — 1
2-5[1+2(1 —w)?)7 —20(1 —u) — 1 '
Then
[(1—3)%5] 6+[(1—u)9+;]  [(1—s)r(1—u)?)i —1 = (2 [142(1—w)?]? —2% (1—u)—1)a.

ds  xA,+(1— u)’~ 1B,

By implicit differentiation, we have - (1=s)y Dy, where
A, = 20 —220(1 —u)’ 1 4+2(1 —w)et,
11
0
Bus = [(1 —u)’ + —} —[(1=9)"+(1—-ws" and
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d
Next, we will find h¢m d_s by L'Hospital’s rule and squeeze theorem. Then
udur AU
. ds ) ds\? 9 ) 9
we have lim — = z,s0 lim | — | = z°. Hence, lim(Cy),(z,x) = x*.
ulu; dU uui U ulu

Case?2: x # y. Then s # t. We have

. o (A=) g+ (A=) 4 4] — (1= 5)" + (1= 1)]s — 1
dn(Coluly) = 21751+ 2(1 — u)f]s — 29(1 —u) — 1 '

By L'Hospital’s rule, squeeze theorem and the same method as Case 1, we have

: : ds\ (dt\|
iﬁﬁ(ce)u(xay) — iifﬁ [(@) (@)] =1Y.
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