WANINATINITNYUTOTIBTUNANTTLTUNISLA e LU sl fiugY

UEARANIE JUNTAS

¥ !
1 = a LY

enfinusiidudruniwesnisnwnunangnsusayainerrmansumdadio
g1UIVIANAAIER SUSTENALAEINGINITAU
ANAIYIAANFIFNTLAZINGINITADNNIADS
ANEINEIANENT INAINTAUMTINE Y

Un1s@nue 2556

a A Q‘ P 6 ay %
unAntiauazuiludiayaaiiiiinne ATFENDINIVNAFA BB TR R\ uad Ty n9sinT (CUIR)
Huuilsdiayarestdnidnaadnednusndeiumisinugsmingas
The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.



SIMPLEX PIVOT RULE EMPHASIZING INCREMENT OF NONBASIC
VARIABLES

Mr. Kittiphong Chankong

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in Applied Mathematics and
Computational Science
Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2013
Copyright of Chulalongkorn University



Thesis Title SIMPLEX PIVOT RULE EMPHASIZING INCREMENT
OF NONBASIC VARIABLES

By Mr. Kittiphong Chankong
Field of Study Applied Mathematics and Computational Science
Thesis Advisor Boonyarit Intiyot, Ph.D.

Thesis Co-advisor  Assistant Professor Krung Sinapiromsaran, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Master’s Degree

...................................... Dean of the Faculty of Science

(Professor Supot Hannongbua, Dr.rer.nat.)

THESIS COMMITTEE

...................................... Chairman

(Associate Professor Pornchai Satravaha, Ph.D.)

...................................... Thesis Advisor

...................................... Thesis Co-advisor

(Assistant Professor Krung Sinapiromsaran, Ph.D.)

...................................... Examiner

(Phantipa Thipwiwatpotjana, Ph.D.)

...................................... External Examiner

(Associate Professor Peerayuth Charnsethikul, Ph.D.)



iv

AnAnay Junsas : ndnnainIsryuvesIsTLIANdIiunsNAve U sllNugw.

(SIMPLEX PIVOT RULE EMPHASIZING INCREMENT OF NONBASIC VARIABLES)

=3

8. IUSnuIngndnusvdn: 8.3 Ygans duiter, 8. 1USnuInendnussiu : nA.AT.Nge

Auofsudasigy, 64 wu.

]
ada

Tuneudsdunandiluseideuitngnlvegraunsuanglunisuddymnsimuanisidadu

Y

(% (%
[ o [

Fauauonsiusnley 9039 wawndn Tuseudidyluduneudsumdndfenisuszanddn

a ::4'

I3 PN A A v o 19 o s A a a
Lﬂm%ﬂ’]ﬁﬁﬂgumlﬁﬂqgaﬂLWEJVI‘\]%IGULaEJﬂW'JLLﬂiLGU’] ‘ViaﬂLﬂm%ﬂﬂi%yuwmmzm}ﬁmwmmmw

1% '
o a

snihlUgnaansimnzaaveslymnisimuanis@aduiednnunisvienfidesus lidndu

Nagilinanlumsmuntdes iusay nsidlgnaiunn ludgmnismedesgn wan

I3 fa A ) Y v Y A & Ql'
Lﬂm%ﬂqiﬁlﬁlu%‘UU LAUNTALADAALUT IWINABAAADINU reduced cost V]L‘Uua'Ull']ﬂV]?zﬂ IWEJ

a

a A v A LY ! & 1 1 Y v 14 1 @
wwIRnFefBIN1INATUSuUTIAInUsEasAso mita vasiwls i I launfan eaealsfiny
Y ¢ ¢ = | o v ea & 1% o
VANNAI NI NLULUULA TN 819 9ziadeu LU danuu vasuTnamadns Midululaviane ass

i = = o & a a «& o ) ¢ ada 2 eaa
nounayludmadnsminggn Tuinetinusi dauenannasinsyuveIsgumandnisen
TvaninaEinsuyuiuuMsWasuduysal eanunsafazanduunisidrlidesniivdn
NIINITVYURUULALYIBN wiifinfafeInsUTulTaAmvasilandugnUssasnliunniianlny
msfusuUseeniviiavesilsidugadsyasadsululidesliunnanwinidululed 35003
mukuULUasudNysalininnageulay iWIguLiiguUseAnsnmAunan nasi NI viuLuu LA

UNBNUAENENNINNITUYULUUDUT)

a 6 |
A1AIY AUAMNERS Was ANTDUDUAN e eneeeeeeeeeeaaaannnn

.......................... AP0 2. NUSNEINGITNUSHAN  vevrnnnnnnn.
ANVNIVT eeneeevrinrni e A19319%0 8.MUSABINGTNUSIIN  vrrnnnnnnn.

UYNsAnET 4220



# # 5571920923 : MAJOR APPLIED MATHEMATICS AND COMPUTATIONAL
SCIENCE KEYWORDS : LINEAR PROGRAMMING / SIMPLEX ALGORITHM
/ PIVOT RULE / ABSOLUTE CHANGE PIVOT RULE
KITTIPHONG CHANKONG : SIMPLEX PIVOT RULE EMPHASIZING
INCREMENT OF NONBASIC VARIABLES. ADVISOR : BOONYARIT
INTIYOT, Ph.D., CO-ADVISOR : ASST. PROF. KRUNG SINAPIROM-
SARAN, Ph.D., 64pp.

The simplex algorithm, first presented by George B. Dantzig, is a widely
used method for solving a linear programming (LP) problem. One of the important
steps of the simplex algorithm is applying a pivot rule, the rule to select an entering
variable. An effective pivot rule can lead to an optimal solution of an LP problem
with a small number of iterations but not necessarily small computational time if
each iteration spends a lot of time. In a minimization problem, Dantzig’s pivot
rule selects an entering variable corresponding to the most negative reduced cost.
The concept is to have the maximum improvement in the objective value per unit
change of an entering variable. However, in some problems, Dantzig’s rule may
visit a large number of extreme points before reaching the optimal solution. In
this thesis, we propose a pivot rule, called the absolute change pivot rule, that
could reduce the number of such iterations over the Dantzig’s pivot rule. The idea
is to have the maximum improvement in the value of an objective function by
trying to block a leaving variable that makes a little change in the objective value
as much as possible. This absolute change pivot rule is tested and compared the

efficacy with Dantzig’s original pivot rule and other pivot rules.

Department ~ : Mathematics and Student’s Signature ................
.............................................. Advisor’s Signature ................

Field of Study Applied Mathematics and Co-advisor’s Signature ...........

Academic Year : 2013



vi

ACKNOWLEDGEMENTS

I would like to express my thanks to my advisor and co-advisor, Dr. Boonyarit
Intiyot and Assistant Professor Dr. Krung Sinapiromsaran, for their invaluable
help and encouragement throughout the course of this thesis. I am most grateful
for their suggestions and teaching, not only research methodologies but also many
methodologies in life. Without their support, this thesis could not have been
completed.

I also would like to give thanks to my thesis committees, Associate Profes-
sor Dr. Pornchai Satravaha and Dr. Phantipa Thipwiwatpotjana, and my thesis
external examiner, Associate Professor Dr. Peerayuth Charnsethikul who is the
lecturer at Department of Industrial Engineering, Faculty of Engineering, Kaset-
sart University. Moreover, I would like to thank all lecturers who instructed and
taught me for valuable knowledge.

Additionally, I would like to thank those whose names are not mentioned here
but greatly inspired and encouraged us until this thesis comes to the end.

Finally, I most gratefully acknowledge my parents and my friends for all their
support throughout the period of this thesis. I also most gratefully thank to the
Applied Mathematics and Computational Science, Faculty of Science and Grad-
uate school, Chulalongkorn University for financial support to the international

conference.



CONTENTS

ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH \%
ACKNOWLEDGEMENTS vi
CONTENTS viii
LIST OF TABLES ix
LIST OF FIGURES xi
1 INTRODUCTION 1
1.1 The Linear Programming Problem . . .. .. ... .. ... ... 1
1.1.1  Definition . . . . . . . ... 1

1.1.2  Maximization and Minimization Problems . . . . . . . .. 2

1.1.3 Standard and Canonical Formats . . . . . .. .. ... .. 2

1.1.4 The Matrix Notation of a Linear Programming Problem . )

1.2 Linear Programming Modelling . . . .. .. ... ... ... ... 6

1.3 Solution to Linear Programming Problem . . . .. . .. ... .. 7

1.4 Motivation and Problem Description . . . .. ... .. ... ... 11

1.5 The Objective of the Thesis . . . . . . .. ... ... ... .... 12

1.6 The Scope of the Thesis . . . . . . ... ... ... .. ...... 12

1.7 Thesis Overview . . . . . . .. . ... 12

2 PRELIMINARIES 13
2.1 Basic Feasible Solution . . . . . . .. ... ... 13
2.2 The Simplex Method . . . . . .. .. .. ... ... ... 14
2.2.1 Algebra of the Simplex Method . . . . . . ... ... ... 15

2.2.2  The Simplex Algorithm . . . .. ... ... ... .. ... 17

2.3 The Simplex Method in Tableau Format . . . . . . ... ... .. 18



24 Pivot Rule . . . . . . ... 19
24.1 Pivot Operation . . . . .. ... .. ... ... .. ... 20
2.4.2 Entering Variable . . . . . ... ..o 21
24.3 Leaving Variable . . . . ... ... ... 21

2.5 Literature Review on Pivot Rules . . . . . . .. ... ... .. .. 22

3 ABSOLUTE CHANGE PIVOT RULE FOR THE SIMPLEX AL-

GORITHM 25

3.1 The Concept of Absolute Change Pivot Rule . . . . . . . ... .. 25
3.1.1  Geometric Motivation of the Simplex Method with Absolute

Change Pivot Rule . . . . . .. ... ... ... .. .... 26

3.1.2  The Simplex Algorithm with the Absolute Change Pivot Rule 27

3.2 Illustration of the Method . . . . . . ... ... ... ... . ... 29

4 EXPERIMENTS AND ANALYSIS 39

4.1 Problem Generation . . . . . . .. ... 39

4.2 CompariSon . . . . . . . ..o 40

4.3 Analysis . . .o . L LU 49

4.3.1 Analysis of Numerical Results . .. . . ... ... ..... 50

4.3.2 Domain of Problems . . . . . ... ... ... ... ... 56

4.3.3 Comparison of the Number of Operations . . . . .. ... 56

5 SUMMARY OF RESULTS 60

REFERENCES 62

BIOGRAPHY 64



LIST OF TABLES

LIST OF TABLES ix
1.1  The details about the delicatessen. . . . . . . . .. .. ... ... 6
2.1 The initial simplex tableau before pivoting. . . . . . ... .. .. 20
2.2 The simplex tableau after pivoting. . . . . . . .. ... ... ... 22
4.1 The average number of iterations + standard deviation (u + o)

4.2

4.3

4.4

4.5

4.6

4.7

from solving LLP problems by the simplex method with DZP, LDP,
SEP, DVP and ACP with problem sizes from 10 x 10 to 120 x 120. 41
The average time + standard deviation (u £ o) from solving LP
problems by the simplex method with DZP, LDP, SEP, DVP and
ACP with problem sizes from 10 x 10 to 120 x 120.. . . . . . . . 42
The average number of iterations + standard deviation (u + o)
from solving LP problems by the simplex method with DZP, LDP
and ACP with problem sizes from 150 x 150 to 650 x 650. . . . . 43
The average time £ standard deviation (¢ =+ o) from solving LP
problems by the simplex method with DZP, LDP and ACP with
problem sizes from 150 x 150 to 650 x 650. . . . . . . . ... .. 44
The average number of iterations + standard deviation (u + o)
from solving LP problems by the simplex method with DZP, LDP
and ACP with problem sizes from 150 x 200 to 300 x 400. . . . . 45
The average time + standard deviation (p 4+ o) from solving LP
problems by the simplex method with DZP, LDP and ACP with
problem sizes from 150 x 200 to 300 x 400. . . . . .. .. .. .. 46
The average number of iterations + standard deviation (pu + o)
from solving LP problems by the simplex method with DZP, LDP
and ACP with problem sizes from 200 x 150 to 400 x 300. . . . . 47



4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15

The average time + standard deviation (p 4+ o) from solving LP
problems by the simplex method with DZP, LDP and ACP with
problem sizes from 200 x 150 to 400 x 300. . . . .. .. ... ..
The number of iterations and time from solving Klee and Minty
problem by the simplex method with DZP, LDP and ACP with
n=2,3,...,20. . . ...
The average time ratio between ACP and DZP from Table 4.4 . .
Pricing operations from steepest-edge pivot rule . . . . . . . . ..
Pricing operations from Devex rule . . . . . . . . . ... ... ..
Pricing operations from the largest-distance pivot rule . . . . . .
Comparison of the number of operations. . . . . ... ... ...

Total comparison of the number of operations. . . . . .. .. ..

48

49
55
57
o8
o8
29
29



LIST OF FIGURES

LIST OF FIGURES

1.1

3.1
3.2
3.3
3.4
3.5

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Solving LP problem by graphical method. . . . . . . ... .. ..

The feasible region of Example 3.1. . . . . . . .. ... ... ...
The feasible region of Example 3.1. . . . . . . ... .. ... ...
Flowchart of the step 2 for identifying an entering variable.
The feasible region of Klee and Minty problem with n = 3.
The feasible region of Klee and Minty problem with n = 3.

Comparison between the average number of iterations from solving
LP problems by the simplex algorithm with DZP, LDP and ACP
when A is a square matrix. . . . . . . ... ...
Comparison between the average time from solving LP problems
by the simplex algorithm with DZP, LDP and ACP when A is a
square matrix. . . ...
Comparison between the average number of iterations from solving
LP problems by the simplex algorithm with DZP, LDP and ACP
whenm <mn. . ... ..
Comparison between the average time from solving LP problems
by the simplex algorithm with DZP, LDP and ACP when m < n.
Comparison between the average number of iterations from solving
LP problems by the simplex algorithm with DZP, LDP and ACP
whenm >mn. . .. ..o
Comparison between the average time from solving LP problems
by the simplex algorithm with DZP, LDP and ACP when m > n.
Average time ratio between ACP and DZP from Table 4.4. . . . .

xi

10

27
28
29
30
31

20

ol

o2

23

o4

o4
26



CHAPTER I
INTRODUCTION

Mathematical programming is one of mathematical tools used to optimally allocate
limited resources such as money, materials, labor and machines to meet certain
constraints. The goal of mathematical programming is to obtain the optimal re-
sult, such as maximum profit or minimum cost, under those conditions effectively.
Typical example would be solving optimization problems of the limited money,
supplies, materials, labor and machines in various industries.

Linear programming (LP) is a special case of mathematical programming. This
field of study involves techniques for optimizing a linear objective function subject
to finite number of linear equality and inequality constraints. To solve an LP
problem, we need to consider the computational complexity that depends on the
number of constraints and variables.

In this chapter, we will give some general background of linear programming
problems. The topics presented in this chapter are: definition of linear program-
ming, linear programming modeling, solution to linear programming, motivation
and problem description of our propose technique, objective of this thesis and the

scope of the thesis.

1.1 The Linear Programming Problem

The discussion begins by introducing basic definitions of a linear programming

problem.

1.1.1 Definition

The mathematical model of a linear programming problem is to find the value of

decision variables x1, xs, ..., z, that achieve the minimum of the objective value



under a set of constraints. This model is defined as

Minimize cr1 + ez + + ¢,
subject to aypx1 + ax xo +---4 awr, > b
a1 + Qoo To + -+ T, > bo
(1.1)
+ 4+ >
Am1T1 + Am2 T2 + + AmnTy Z bm
1, To, cee z, > 0

n

The i** constraint can be written in the form Z a;jx; > b;. The coefficients a;;
j=1
fori=1,2,....m, 5 =1,2,...,n are called the technological coefficients. These

technological coefficients form the constraint matrix A. The decision variables
x1,%a,...,T, must be greater than or equal to zero, which are called nonneg-
ative constraints. If the decision variable z; can be negative, x; is said to be

unrestricted in sign.

1.1.2 Maximization and Minimization Problems

The maximization of the objective function can be converted into the minimization

of the objective function as follows:
n n
Maximize Z c;x; = —Minimize Z —CjT;j.
j=1 j=1
It is easy to change a maximization problem into a minimization problem by
multiplying the coefficients of the objective function by —1. After the solution

of the minimum linear programming problem is achieved, the optimal objective

function is its negative value.

1.1.3 Standard and Canonical Formats

The linear programming problem can be written in two formats. These formats

are standard form and canonical form.



Standard Form

A linear programming problem in the standard form is a linear program that
all restrictions are equalities and all variables are nonnegative. The objective
function may be in a minimization form or a maximization form. The values of
the right-hand-side vector (b;) of all constraints are greater than or equal to zero
(b; > 0).

The standard form of a linear programming problem with n variables and m

constraints is defined by:

Minimize (or Maximize) c¢jz1 + coxg + -+ ¢y
subject to a1 + appre + -+ anx, = b
anTi + ants + -+ G, = b
(1.2)
5 N T =
A1 FAmaXs + -+ AppT, = bm
1, Ta, cee T, > 0.

Canonical Form

In this form, if a linear program is a minimization problem then all variables are
nonnegative and all the constraints are of the type >. On the other hand, if a
linear program is a maximization problem then all variables are nonnegative and
all the constraints are of the type <.

The canonical form of a linear programming problem with n variables and m

constrants is defined by:

Minimize ar1 + coxTy +---4+  cpa,
subject to a11x1 + ag o Foo+ appx, > b
1Ty + Q2 To + -+ aox, > by
(1.3)
+ S >
Am1T1 + Am2 T2 + -+ AmnTn Z bm
Z1, X9, Cey T, Z 0



or
Maximize ciz1 + Cc X9 +---+  CuTn
subject to aj1ry + a1p ro + -+ apr, < by
ATy + Ay Ty ot AT, < by
(1.4)
+ R <
Am1T1 + Am2 T2 + + Amn Ty S bm
xy, T, cey In > 0.

Any linear programming problem can be converted to the standard form and

canonical form by the following transformations [1]:

1. The maximization problem can be converted to the minimization problem

as follows:

Maximize c1r1 +coxy + -+ cpan,

Minimize —c¢j@y —CoXy — -+ — Cplnp.

2. The inequality sign (< or >) can be changed to the opposite inequality sign

(> or <) by multiplying each inequality by —1 such as

a1T1 + asxo > b is equivalent to —a1x1 — asxry < —b
or

a171 + asxo < b is equivalent to —aixy — asrs > —b.

3. Each equation can be changed to two inequlities as follows:

a1T1 + asre = b is equivalent to

a1r1 + asrs <b and ajxy + asxy > b.

4. If the variable z; can be positive or negative (unrestricted in sign), we define

1
79

x; = o) — xf where o}, 2] > 0. If 2} > ], x; is negative. If 2] > 2, x; is

positive.

5. The inequality constraints can be changed into equality constraints by



o If a constraint is in the form <, it can be changed to an equation by
adding a variable which is greater than or equal to zero on the left-hand-
side in order to increase the value on the left-hand-side to be equal to

the value on the right-hand-side. For example
a1x1 + asxo < b is changed to ajx; + aswrs + x3 =0,

where x3 > 0. x3 is called a slack variable.

o If a constraint is in the form >, it can be changed to an equation by
subtracting the value on the left-hand-side by a variable which is greater
than or equal to zero in order to decrease the value on the left-hand-side

to be equal to the value on the right-hand-side. For example
a1r1 + asxo > b is changed to ajx; 4+ asrs — w3 =0,

where x3 > 0. x3 is called a surplus variable.

1.1.4 The Matrix Notation of a Linear Programming Prob-

lem

A linear programming problem can be written in the matrix notation.

Consider .
Minimize Z CjT;
j=1
- 1
subject to Zaijxj = bl‘, 1= 1,2,...,m ( 5)
j=1
z; = 0, J=12,....n
Letting
ay; G2 - Aip x by C1
Q21 Q22 - QA2 X2 by Co
A_ = " s X = s b fry s C =

m1 Om2 = Qmp T, bn Cn



The given linear programming problem can be written as follows:

Minimize ¢Tx
subject to Ax=Db (1.6)
x > 0.

Moreover, the j column of A is denoted by A;, so A = [A}, Ay, ..., A,].

1.2 Linear Programming Modelling

A real-world problem can be formulated or translated into a set of mathematical
function, inequalities and equations that represent the objective function and the
set of constraints, respectively. Often, data gathering, problem definition, and

problem formulation are the most important information.

Example 1.1. A delicatessen company tries to produce two types of products
which are types A and B. The details are shown in the Table 1.1. The company
makes a contract with a supplier that in each week the supplier will send 15,000
kg of Type 1 material and 20,000 kg of Type 2 material. Any material left by
the end of each week must be discarded. The marketing gurantees that they can
sell both types of goods at once but the boxing capacity for the type B product
is 2,500 boxes/week. What is the maximum profit that the company could profit

from both types of product in each week.

Table 1.1: The details about the delicatessen.

Types of products

Type A | Type B
Materials needed to | Type 1 5 3
produce one box. (kg.) | Type 2 4 5
Profit ($)/box 4 4

A thorough understanding of the real-world problem is necessary in order to

formulate it correctly. During the formulation stage, an LP problem specialist may



discover new insights into the problem that may change the scope of the original
problem.

From Example 1.1, let z1, x5 be the decision variables which represents the
amount of type A and the amount of type B to be produced, respectively.

The linear programming model is defined by:

Maximize 4z, + 4x9

subject to bHxy + 3xo < 15000

42, + 529 < 20000 (1.7)
5 < 2500
xy, 22 = 0.

The graphical method can be used to solve an LP problem which is introduced

briefly below.

1.3 Solution to Linear Programming Problem

The standard definitions involving solution to an LP problem are stated as follows
[3]:

Definition 1.2. (Feasible Region).
A feasible region is the set of all nonnegative solutions that satisfy all constraints
of an LP problem. Given an LP problem in its canonical form (1.3). The feasible
region is given by

F={xeR'Ax <b,x >0}
We called x € F', a feasible solution.
Definition 1.3. (Optimal Solution).
Consider an LP problem in the canonical form (1.3). If the feasible region is
nonempty, an optimal solution is a feasible solution that has the smallest value

of the objective function for the minimization problem.

Let x* be an optimal solution to the LP problem. Then

cTx* < cTx,vx € F.



The value of the objective function corresponding to an optimal solution is

called the optimal value.

Definition 1.4. (Extreme Point).
A point x in a convex set X is called an extreme point of X, if x cannot be
represented as a strict convex combination of two distinct points in X. In other

words, if x = X x; + (1 — A\)xo with A € (0,1) and x1,x2 € X, then x = x; = Xs.

Definition 1.5. (Infeasible).
A linear program is infeasible if it has no feasible solution, i.e. the feasible region

is empty.

Definition 1.6. (Unbounded optimal value).
A linear program has an unbounded optimal value if the optimal solution is
unbounded, i.e. it is either co or —oco. Note that an unbounded feasible region

may not yield an unbounded optimal value.

Theorem 1.7. Every linear programming problem must be in one of the following
four cases:
1. LP problem has the unique optimal solution.

This unique optimal solution must be an extreme point.

2. LP problem has alternative optimal solutions.

If there are two extreme points xj and x} being optimal, then any convex

combination of xj and x3 is also optimal.

3. LP problem has an unbounded optimal value.

For a maximization problem, the feasible region is unbounded and the plane
c’x = z can be increased along the unbounded direction of the feasible
region. In this case, the objective value is unbounded and no optimal solution

exists.

4. LP problem has an empty feasible region.



In this case, the system of equations and/or inequalities defining the feasi-
ble region is inconsistent. This means that there is no point satisfying all

constraints of the LP problem. Therefore, no optimal solution exists.

Because the linear programming model for Example 1.1 containing only two
decision variables (n = 2), the graphical method can be used to find the optimal
solution.

To solve an LLP problem by the graphical method, the polyhedron of the feasible
solution has to be constructed by all constraints. The optimal solution is the point
in the feasible region that achieve the maximum or minimum value of the objective
function.

From Example 1.1

Maximize 4z, + 4x9

subject to 5xy + 3z < 15000

Aty + 5y < 20000 (1.8)
T < 2500
TT, 22 2 9)-

The two dimensional polyhedron are constructed on xjxs-plane. The non-
negative constraints indicate that the values of x; and x, are lying in the 1%
quadrant of the plane. Consider the constraint 5x; + 3xo < 15000, to create the
feasible region we have to draw the line bx; + 322 = 15000. All points lying
on the straight line of the equation 5x; + 35 = 15000 and below this line are
coresponded to the constraint 5x; + 3z, < 15000 (see Figure 1.1(a)). Graph of
constraints 4x; + 5xe < 20000 and x9 < 2500 can be drawn in the same manner
(see Figure 1.1(b)&(c)). From the Figure 1.1(d), the shaded area indicates the
feasible region and all points in the feasible region are the feasible solutions.

Let z be the profit value of the objective function in Example 1.1 i.e. z =
4x1+4x,. Consider any point in the feasible region that achieves a certain objective
value, for example z = 4000. In Figure 1.1(d), there are so many points (x1,x2)

in the feasible region having values greater than 4000 i.e., all the points above
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X

Figure 1.1: Solving LLP problem by graphical method.

the line 4x; + 425 = 4000. If the value of z is increased to, for example, z =
8000, the graph of equation 4z, 4+ 425 = 8000 will be moved up from and parallel
with the line 4z, + 425 = 4000. Thus, the value of z increases. In the figure
1.1(d), the dashed lines are defined as the lines parallel to the objective function.
In case of maximization problem, the dashed line will be moved up and parallel
in the direction that the objective function value increases (or decreases in case
of minimization problem) until the dashed line of the objective function intersect
with an endpoint of the feasible region. Hence, this endpoint which is always the
corner point of the feasible region is the optimal solution.

In Example 1.1, the optimal solution is the corner point (1, x2) = (1500, 2500)
of the feasible region. This point gives the maximum objective value of 16,000. So
the delicatessen company should produce 1,500 boxes of Type A and 2,500 boxes
of Type B with the maximum profit of $16,000.

In fact, an optimal solution always occurs at a corner point (or an extreme
point) of the feasible region. A corner point of the feasible region is the intersection
of two linearly independent contraints. It is easy to find an optimal solution by
identifying all corner points of the feasible region for small LP problems and then

comparing all the objective values at those points.
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Generally, an LP problem contains more than two decision variables and a
large number of constraints. So the graphical method is not practical. George
B. Dantzig (1947) introduced the simplex method [2, 3|, a popular method for
solving a linear program. The simplex method is an iterative method to obtain

the optimal solution. The details are explained in Chapter 2.

1.4 Motivation and Problem Description

Although the simplex method is a popular method to solve LP problems, in some
problems this may not be the best approach to find an optimal solution since
there are too many extreme points involved. In 1972, Klee and Minty[4] created
collection of LP problems with the worst case running time, i.e., exponential run-
ning time, of the simplex method. Nowadays, there are many studies trying to
improve the simplex method by reducing the number of the iterations and the
solution time. Those techniques include detecting the redundant constraints [5],
improving the initial basis [6] and improving a pivot rule [7, 8, 9, 10]. In this
thesis, we focus on improving a pivot rule. Pivot rule is an important step of the
simplex method for selecting an entering variable. An effective rule can lead to
the solution of an LP problem with small number of iterations. Dantzig’s original
rule is the standard pivot rule, but this rule is efficient only for LP problem with
small number of constraints. Moreover Dantzig’s rule may take a lot of iterations
in some cases. The details of the simplex method and pivot rule are described in
Chapter 2 and 3. In this thesis, a new pivot rule is proposed and is called absolute
change pivot rule. The concept is to have maximum improvement in objective
value by trying to block a leaving variable that make little change in the objective
value as much as possible. If such variables can be prevented from leaving the
basis, it could make the objective value improved further than using a regular

Dantzig’s pivot rule and therefore lead to fewer number of iterations.
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1.5 The Objective of the Thesis

The objective of this thesis is to design a pivot rule based on the absolute change
for the simplex method. The simplex method with this pivot rule is tested with
several simulated LP problems and the number of iterations, time, the number
of operation, i.e., multiplications and additions are compared with the simplex
method using Dantzig’s original pivot rule and other rules. Finally, the domain of

LP problems that are suitable for this pivot rule is suggested.

1.6 The Scope of the Thesis

In this thesis, if the tableau does not contain zero entries or entries with negative
value in the coefficient matrix, this rule is the same as the Dantzig’s rule. There-
fore, to take advantage of the proposed pivot rule, LP problems with some zero
or negative entries that correspond to entering columns in the coefficient matrix

will be considered.

1.7 Thesis Overview

This thesis is divided into five chapters. Chapter 1 gives a brief introduction to
a linear programming problem, linear programming modelling, solution to linear
programming problem, motivation and problem description, the objective of the
thesis, the scope of the thesis and thesis overview. Chapter 2 describes the pre-
liminaries of linear programming problem, the simplex method and a pivot rule.
Chapter 3 explains the main idea of our pivot rule and applies to the Klee and
Minty problem [4]. Chapter 4 deals with computational results by testing and
comparing the number of iterations, time, the number of multiplications and ad-
ditions from this new pivot rule with other pivot rules and the domain of LP
problems that are suitable for this pivot rule. The conclusion has been drawn at

the end.



CHAPTER II
PRELIMINARIES

In this chapter, the definitions and theorems related to linear programming prob-
lems, the simplex method and pivot rules are introduced [1, 2, 3, 11, 12].

In Chapter 1, the graphical method for solving two dimensional LP problems
is introduced. George B. Dantzig (1947) [13] presented a method to solve n di-
mensional LP problems called the simplex method, which is described in this
chapter.

The discussion of the simplex method is started by introducing the basic fea-
sible solution. Then the simplex method, the simplex method in tableau format,

pivot rules and literature reviews about pivot rules are described.

2.1 Basic Feasible Solution

Consider a linear programming (LP) problem in the standard form (4.1), where

A e R™"(m < n),b € R™ ¢ € R" and rank(A) = m:

Minimize ¢Tx

subject to Ax =Db

x > 0.

After possibly rearranging the column of A, let A = [B N] where B is an
m x m invertible matrix and N is m X (n — m) matrix. Here B is called the
basic matrix and N is called the associated nonbasic matrix. Let Iz and Iy
be the indices of the variables associated with the columns of matrix B and N,
respectively. Variables associated with the index set I are called basic variables,
denoted by xg. Variables associated with the index set I are called nonbasic

variables, denoted by xn. Therefore coefficients in objective function associated
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with xg and xn will be denoted by cg and cy, respectively.
Let x = [xg xy] T, ¢ = [cg cx]T, and A = [B NJ. Then the LP problem can

be rewritten as follows:

Minimize cgXp + CNXN
subject to Bxp + Nxx =Db (2.1)

XB, xy >0

The solution x of the equation Ax = b, where xg = B7!'b and xx = 0 is called a
basic solution of the system. If xg > 0, x is called a basic feasible solution

of the system.

Theorem 2.1. If a linear programming problem has a feasible solution, then it

has a basic feasible solution.

Theorem 2.2. The set of extreme points of the feasible region corresponds to the
set of basic feasible solutions. In other words, extreme points are basic feasible

solutions, and vice versa.

Theorem 2.3. If the optimal solution exists (is finite), then the optimal extreme-

point solution exists.

2.2 The Simplex Method

The simplex method is an iterative algorithm used to solve LP problems. This
method starts with a corner point of the feasible region and moves to the next
adjacent corner point that improves the objective value. The simplex method will
continue moving in this fashion and stop when the corner point of the feasible

region is the optimal solution if one exists.
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2.2.1 Algebra of the Simplex Method

. . . _|xB B~'b
Suppose that a basic feasible solution of the system (2.1) is = .
XN 0

Let zp be the objective value of the system (2.1), so z is given by

2 =c'x (2.2)

XB
[k <t (2.3)

XN

B~'b

X {cg cg] (2.4)

0
=cgB'b. (2.5)

X

Nowletx = |~ ° | without setting xn = 0 denote the set of basic and nonbasic

XN
variables for a given basis. Then the feasibility requires that xg > 0 and xn > 0.

We denote the 5 column of A by A ;. Then the system Ax = b can be rewritten

as follows:
Bxg + Nxy =b (2.6)
xg + B"!Nxy = B 'b (2.7)
xg = B™'b — B"'Nxy (2.8)
=B 'b— ) B'Ajz; (2.9)
JEIN
Then

x5 =b -3 (v0)) (2.10)

JjeIN

where b = B~'b and y; = B'lAj.
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Let z be the objective value, we get

z=ctx (2.11)
XB
_ [Cg cﬁ] (2.12)
XN
= CEXB + CNXN (2.13)
— C% (B_lb — Z B_lAjl'j> —f- Z Cj[Ej (214)
JEIN JEIN
= CEB_lb — Cg Z B_lAjl’j + Z le’j (215)
jely jeln
=cgB'b - Z (B A z; — cjx;) (2.16)
B B g Jlj
JjelN
= CEB_lb 7 Z (CEB_lAJ‘ Y Cj) CL’j (217)
SN
=20~ Y (2 =)z (2.18)
JEIN

where z; = cgB™A; for each nonbasic variable. The negative reduced cost is
obtained by z; — ¢;. The key result exhibits that the optimal solution is achieved
if the index set

J={jlzj —¢;>0,j € In} (2.19)

is empty. The key result now simply says that if (z; —¢;) < 0 for all j € I, then
the current basic feasible solution is optimal. From the definition we can write

¢; = zj — cj for all 7.

Definition 2.4. The subspace that contains only the nonbasic variables is referred
to as a reduced space. The components of the objective row in a reduced space

are called reduced costs, donoted be c:
¢l = (¢, cx) = (0T, cgB™'N —c) (2.20)

Note that the cost vector associated with the set of basic variables is a null

vector 0.



17

The simplex method consists of the following three crucial steps:
1. Initialization step: Find an initial basic feasible solution. Consider a

linear program in the following standard form:

Minimize c1xry + ca a2 +---4+  cpTp

subject to aj1x1 + a2 T2 + -+ ApTn + Tptl = b
a1y + azx w2 + -+ AT, + Tpio = by
(2.21)
Am1T1 + Am2 T2 + -+ GmnTn + Tpim = bm
T, T2, AN Tmy  Tpdls oo Tn+m = 0.

The simplex method starts with a corner point of the feasible region. From the
LP problem (2.21), the point (z1,xs,...,2,) = (0,0,...,0) are the starting ba-
sic feasible solution so x1,xs,...,x, is the nonbasic variables and the auxiliary
variables x,41, Tni9, ..., Tyem are the basic variables. Since the values 0 are as-
signed to all nonbasic variables, thus the result can be immediately obtained as
Tpt1 = b1, Tpio = ba, ..., Zpim = by, and hence the basic feasible solution is
(X1, T2y v oy Ty Tt 1, Tt 2y -+« oy Tn) = (0,0,...,0,01, b9, ..., bpy).

2. Iterative step: Find an adjacent basic feasible solution that improves
the objective value. The iterative step contains 3 steps that are determining an
entering variable (a nonbasic variable to enter the basis), determining the leaving
variable (a basic variable to leave the basis) and pivoting on the pivot element.
The details will be described in the next section.

3. Optimality test: In this step, the optimality of the current basic feasible
solution is tested. In a minimization problem, the optimality condition is satisfied

if all reduced costs are nonnegative.

2.2.2 The Simplex Algorithm

Consider the algorithm of the simplex method for solving the linear programming
problem of the system (2.21).
Initialization Step : Choose the starting basic feasible solution with the basis

B and the associated nonbasic IN.
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Main Step :

1. Determine the entering variable from the nonbasic variables: By Dantzig’s

rule, choose x), where z; — ¢, = max{z; —¢; | j € Iy}

XB
2. If zx, — ¢, <0, then is an optimal solution. Stop the algorithm.
XN

3. Determine the leaving variable from the basic variables by the minimum

ratio test.

4. Perform the pivot operation using the entering and the leaving variable, and

go to Step 1.

2.3 The Simplex Method in Tableau Format

To make the simplex method easier to handle, the algebra of the simplex method
can be transformed into row operations in the tableau format. Suppose that the
starting basic feasible solution x with basis B is given. The linear programming

problem can be represented as follows:

Minimize z

subject to 2 — cyXp — CXN= 0 (2.22)
BXB + NXN =b (2.23)
XB, XN > 0.

From (2.23), we have
xg + B 'Nxy = B™'b. (2.24)

Multiplying (2.24) by cg, we get
cgxp + cgB 'Nxy = cgB™'b. (2.25)
Adding (2.25) to (2.22), we get

z+ (cgB™'N — cx)xn = cgB ™ 'b. (2.26)
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Curently, xx = 0, and from equation (2.24) and (2.26) we get xg = B™'b and
z = cgB7'b. The current basic feasible solution with basis B can be comveniently

represented in the following tableau.

z | XB XN RHS
z | 1] 0 |cgB N —cf | cgB™'b Row 0
xg |0 I BN B~'b | Rows 1 through m

From the above tableau format, it can be expanded into the simplex tableau
in Table 2.1. The simplex tableau gives the value of the objective function z =
cgB™ b, the basic variables xg = B7'b and the objective row cgB™'N — cg,
which consists of the ¢; = z; — ¢; value for nonbasic variable ;. Thus, row zero
tells us if z; —¢; <0, Vj, the current basis yields an optimal solution. Otherwise,
the objective can be improved by increasing the value of a nonbasic variable with
zj —c; > 0. If z;, for some k € Iy increases, then the vector y, = B'A,, which is
stored in the x; column from rows 1 through m, will determine how much z; can
be increased. If y, < 0, then the problem is unbounded since x; can be increased
indefinitely without being blocked. Conversely, if y, £ 0, that is, if the vector
v, has at least one positive component, then there exists one of the current basic
variables that blocks the increase in z; by dropping to zero first. The minimum

ratio test determines the blocking variable.

2.4 Pivot Rule

The important step for solving a linear programming problem with the simplex
method is to select an entering variable for each pivot operation. This method of
making such a selection is known as a pivot rule. Pivot rule aims to improve the
objective value. The best pivot rule would move along the path with the smallest

number of visited corner points from the starting solution to the optimal solution.
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Table 2.1: The initial simplex tableau before pivoting.

Basic XB XN

RHS
Variable 2z xp, .. zp. .. zp, - Xy . T
z 1 0 . 0 . 0 w G . & . cgB7'b
B, 0 1 0 0 Y1j Y1k Bl
Tp, o 0 .. 1 . 0 o UYrj e Yrk e b,
Tp,, o 0 . 0 . 1 v Ymj o Ymk - b

If an entering variable and a leaving variable are chosen, a new basic solution can

be obtained by performing the pivot operation.

2.4.1 Pivot Operation

In terms of the geometric motivation of the simplex method, the pivot operation
is equivalent to moving from a basic feasible solution to an adjacent basic feasible
solution. The pivot operation takes place after a pivot element is selected. The
column and the row containing the pivot element are called the pivot column and
the pivot row, respectively. A pivot element must be positive. If a nonbasis vari-
able z, is selected in the column k as a pivot column, the variable corresponding
to the pivot column enters the set of basic variable is called the entering vari-
able. If a basic variable zp, in the row r is selected as the pivot row, it is called
the leaving variable. The steps of the pivot operation are described as follows.
First, multiply all elements in the row r by the reciprocal of the pivot element in
order to change this element to 1. Then, all entries in the pivot column k except
the pivot element have to change to 0 by some row operations. Then the pivot
column k becomes one of the columns of the identity matrix. So the entering
variable is now a basic variable and the leaving variable now becomes a nonbasic

variable.
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2.4.2 Entering Variable

An entering variable xj, selected from a nonbasic variable is a variable that corre-
sponds to the pivot column k to enter the set of basic variables since the entering
variable will be, in general, increased from 0 to a positive value without exceeding
the resource availability on the right-hand-side of the equation. If x; is increased
by one unit, then zp,,zp,,...,zp, Wwill be decreased by yix, Yok, - - -, Ymr URIts
respectively. (If y; < 0, then zp, will be increased.)

It is well known that Dantzig’s pivot rule [13] is originally the first rule for
selecting the entering variable. Dantzig’s pivot rule picks a nonbasic variable
which provides the most improvement in the objective function to be an entering
variable. Thus if J # &, the entering variable x; based on the Dantzig’s pivot

rule is selected by the most per-unit negative reduced cost as follows:
k= argmax{z; —¢; | j € J}. (2.27)

Remark 2.5. For python programming, argmax stands for argument of the max-
imum, which returns the index of the first maximum element in the set. In a
similar fashion, argmin stands for argument of the minimum, which returns the

index of the first minimum element in the set.

2.4.3 Leaving Variable

After the pivot column has been chosen, the pivot row will be determined as the
result of the feasibility requirement of the solution. Since the entering variable
(xy) will be increased from 0 to a positive value without exceeding the resource
availability on the right-hand-side of the equation, the nonbasic variable x; cannot
be indefinitely increased (unless we have an unbounded problem). A basic variable
xp, that first drops to 0 becomes a leaving variable and blocks the further increase
of xy.

A leaving variable corresponds to only one of positive entries in the pivot

column k. If all entries in pivot column k is not positive then the problem is



22

unbounded. Otherwise, given a pivot column xj, the pivot row r is determined by

b

r:argmin{ Yk > 0,7 € {1,...,m}}

ik
This is called the minimum ratio test.
To update the simplex tableau 2.1, the pivot operation is performed as follows

2, 11]:
1. Divide row 7 by Y. (yrx > 0.)

2. Fori=1,2,...,m and i # r, update the ith row by adding to it —y;; times

the new r" row.

3. Update row zero by adding to its ¢ times the new 7" row.

After the pivot operation is performed, the simplex tableau after pivoting is ob-

tained by following tableau.

Table 2.2: The simplex tableau after pivoting.

Basic XB XN
RHS
Variable z zp, .. zp, ..2p, 4 S
2 1 0.—2%._.0 v G —dE 0 L by — g,
Yrk J Yrk Yrk
j b
T 1 .. -8k - Yp — L by — =
Bl O Yrk 0 yl‘j Yrk ylk 0 1 Yrk ylk
T 0 0. - .0 a 1. Lo
Yrk Yrk Yrk
x 0 0 .—bme ] L 0 by — L
Bm Yok " '--ym] yrkymk... m yrkymk

2.5 Literature Review on Pivot Rules

An effective pivot rule can lead to the solution of LP with small number of iter-
ations. Dantzig’s original rule is the standard pivot rule but this rule is efficient

only for LP with a small number of constraints. Moreover Dantzig’s rule may
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take a lot of iterations in some case. Klee and Minty [4] exhibited the worst case
running time of the simplex algorithm using Dantzig’s pivot rule. To avoid this
weakness, there are many studies trying to improve the simplex algorithm via the
pivot rule by reducing the number of iterations and the solution time. In 1977,
Forrest and Goldfarb [7] presented a pivot rule that reduces the number of iter-
ations which was called “steepest-edge rule”. Later, other rules followed such as
Devex rule by Harris [8] and the largest-distance pivot rule by Pan [9].

The following are pivot rules used to select an entering index in the simplex

algorithm for solving LLP problems.

1. Steepest-edge rule [7]
The set of edge directions can be written as:
~-B7IN _
dj = €i—my, ] S IN, (228)
I
where I € R(=m)x("=m) and ¢; is the unit (n — m) vector. Note that ¢; =
cTd;. When J is nonempty, the steepest-edge rule chooses an entering index

¢ such that :

Eq . Cj
RS — min { —==
I dqll2 %Mﬂz

If x, replaces x,, in the basis, then recurrence formulas of the edge direc-

jeJ}<O. (2.29)

tions are easily derived:
d, = " (2.30)
P aq q» :
- Q; , .
dj = dj - a_J>dq7 J € [Naj #pa (231)
q

— wT _ T
where o, = WA, wB = cj.

2. Devex rule [§]
This rule uses an approximate steepest-edge rule, in which the norms ||d;||2
of the edge directions are replaced by approximated weights w;. Initially,
a so called “reference framework” is set to the current set of nonbasic

indices, and all weights w; are set to one for all j in the set. In other
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iterations, it uses weights w; to approximate the norms of the subvectors &j
consisting of only those components of the edge direction d; associated with

the reference framework.

The weights w; are updated as follows:

d
W, = max {1, | QHQ} : (2.32)

Qq

o]

w; = max {wj,
q

. Th-1A
where ozj—epB A;.

. Largest-distance pivot rule [9]

If J is nonempty, select nonbasic index ¢ to become basic such that:

A~ Eq EJ .
7 A maX{HAjn j“}’ (2:34)

where ||A;|| denotes some norm of A ;.



CHAPTER III
ABSOLUTE CHANGE PIVOT RULE FOR THE
SIMPLEX ALGORITHM

Although the simplex algorithm with Dantzig’s pivot rule is popular for solving
LP problems, in some problems it may not take the best path to the optimal
solution. In this chapter the pivot rule that could reduce the number of iterations
of LP problem is proposed. The idea is to have the maximum improvement in the
objective value by trying to block a leaving variable that makes a little change in
the objective value as much as possible. If such variables can be prevented to leave
the basis, it could make the objective function value improved further than using

a regular Dantzig’s pivot rule and therefore lead to fewer number of iterations.

3.1 The Concept of Absolute Change Pivot Rule

To select the entering variable, Dantzig’s pivot rule considers only the most nega-
tive reduced cost. In some problems, it may not be an effective rule to choose the
entering variable. Thus there is a need to develop an efficient pivot rule to identify
an entering variable. It is possible that we can select an entering variable that
can improve the objective function value as much as possible. Hence we propose
a pivot rule to improve the objective value by trying to avoid all leaving variables
that cause small change in the objective function. We call it absolute change
pivot rule.

First, the row with the minimum right-hand-side value will be considered.
The motivation behind this is that, given an entering variable, the basic variable
associated with this row will have a tendency to become zero first and, as the
result, tends to block the increase of the objective value. By preventing this

variable from leaving the basis, the value of the entering variable can be increased
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further. To prevent that, we look for an entering variable that has zero or negative
value in that row so that the minimum ratio is not applicable for that row. If there
is more than one candidate for such entering variable, we look for the row with
the next minimum right-hand-side and repeat the process until we have only one
candidate or until we cannot find a row with zero or negative value anymore. If
we still end up with more than one entering candidate, we select the one with
the most negative reduced cost. In summary, this rule heuristically selects the

entering variable that can move the farthest.

3.1.1 Geometric Motivation of the Simplex Method with
Absolute Change Pivot Rule

To make it easier to understand the step of an algorithm for linear programming
problem, the concept of absolute change pivot rule is introduced in terms of ge-

ometry through the following example.

Example 3.1. Consider the following problem:

Minimize —10x, — @9,

subject to x1

IN
\.}—‘

20z + zo < 100,

Vv
o

Xy, Za,

Figure 3.1 shows a feasible region in 2 dimensions of Example 3.1. The simplex
method starts at the origin and moves in a feasible direction to an adjacent extreme

point along the x; axis or x5 axis. The objective function changes either at the

rate of change g—; = —(z1 — 1) = & < 0 when holding z5 = 0 and increasing x;
along the x; axis or at the rate of change a% = —(22 — ¢3) = ¢ < 0 when holding

x1 = 0 and increasing x, along the x, axis.
Herein ¢, = —10 and ¢; = —1. Since the most negative reduce cost is ¢y,
Dantzig’s rule select x; as the entering variable, which corresponds to moving

along the z; axis to visit the position number 1 in Figure 3.1. The pivot rule is
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100 R

Q\, Optimal

W Solution

20%,+ X,=100

Figure 3.1: The feasible region of Example 3.1.

then repeated, which results in the basic feasible solution moving from the position
number 1 to the position number 2 and finally achieving the optimal solution at
the position number 3.

As mentioned before, in some problem the simplex method with Dantzig’s pivot
rule may not give the best path to achieve the optimal solution since this rule may
visit a large number of extreme points before reaching the optimal solution. The
simplex method with the absolute change pivot rule does not consider moving
along the direction with the most rate of change. This rule tries to prevent basic
variable with small value from leaving the basis. For Example 3.1, this corresponds
to the slack variable in the first constraint. Hence, the slack variable for the second
constraint leaves the basis in stead. Thus this rule causes the algorithm to move
from the origin to the position number 1 as depicted in Figure 3.2 along z, axis

and achieve the optimal solution in one step.

3.1.2 The Simplex Algorithm with the Absolute Change
Pivot Rule

The simplex algorithm with the absolute change pivot rule starts from a basic

feasible solution with the basis [B NJ.
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X5
@
100 ‘\)
Optimal
Solution
o 1 > %

Figure 3.2: The feasible region of Example 3.1.

X
1. If zj —¢; <0 forall j € Iy, then Bl s the optimal solution. Stop the
XN
algorithm.

2. Determine the entering variable by using absolute change pivot rule:

i. Set CI ={1,....m}. Let J={j| 2z, —¢; >0,j € In}
ii. Select index 7 such that r = argmin{b; | i € CI}
iii. Let J={jeJ |y, <0}
It J+ @, let J=J.
o If |J| =1, go to (iv). Else, remove r from CT and go to (ii).
iv. Else, choose zy, by 2z, — ¢, = max{z; —¢; | j € J}

3. Determine the leaving variable from the basic variables by the minimum

ratio test.

4. Perform the pivot operation using the entering and the leaving variables,

and go to Step 1.

This algorithm is different from the simplex algorithm with Dantzig’s pivot
rule at step 2, which is the step where an entering variable is determined. This

step can also be described in the following flowchart.
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Choosing Entering Variable

Cl=1{12 .. m
]:{]|Z]—CJ >O,jEIN}
I
| r = argmin{b;|i € CI} } { Cl = CI\{r} |

f={j€]|yerO}

z — ¢ = argmax{z; — ¢;|j € J}
|

| Choose x;, as Entering Variable J

Figure 3.3: Flowchart of the step 2 for identifying an entering variable.
3.2 Illustration of the Method

The proposed pivot rule is demonstrated with two examples: Klee and Minty [4]
problem and a randomly generated linear programming problem.

In 1972, Klee and Minty showed a collection of LP problems that cause the
worst-case running time for the simplex method using Dantzig’s pivot rule. The

collection of LP problems is given by

Minimize — Z 10" gy,
j=1
i—1
subject to 2 Z 10i_jxj + x; < 1007°Y, i=1,...

J=1

. (3.1)
z; >0, 1=1,... n.

The simplex method with the Dantzig’s pivot rule requires 2" — 1 iterations to
solve Klee and Minty problem. For example, if we let n = 4, the simplex method
using Dantzig’s pivot rule visits 15 corner points before reaching the optimal so-
lution.

The following examples (3.2 and 3.4) are presented to show the efficiency of
the proposed pivot rule. To illustrate the proposed pivot rule geometrically, Klee

and Minty problem with n = 3 is used.
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Example 3.2. Consider the following problem:

Minimize —100z;— 1025—2x3,

IN
\.H

subject to 1

2014+ a9

IN

100,

200x1+ 20z2+2x3 < 10000,

Y
o

X1, To, T3

Figure 3.4 shows the feasible region of Klee and Minty problem with n = 3.
If we follow the simplex method with Dantzig’s pivot rule, this rule moves from
the origin to the position numbers 1,2,....6, consecutively and achieves the optimal
solution at the position number 7, with the total of seven iterations. We can see
in Figure 3.5 that the simplex method with absolute change pivot rule moves from

the origin to the position number 1, with only one iteration.

Figure 3.4: The feasible region of Klee and Minty problem with n = 3.
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Figure 3.5: The feasible region of Klee and Minty problem with n = 3.

Example 3.2 can be written in the tableau format, where x4, x5, x¢ are the slack

variables, as follows:

z| x1 | ®a | x3 | 24| w5 | xg | RHS
z [1]100}10, 1 {0010 0
g |O] T OO0} 1040 1
x5 |0} 20 | 1 [ 0|0 10| 100
26 | 0120020 1 | 0 | O | 1 | 10000

Since Example 3.2 is the minimization problem, we can see from the above
tableau that x1,r, and x3 can be a candidate for the entering variable since the
negative reduce cost is greater than zero. If we follow the simplex algorithm with
absolute change pivot rule we can see that right-hand-side entries are already
sorted from the smallest to the largest values. Consider the first row (z,), since
the element in the third and fourth column are zero then x5 and x3 can be entering
variables. x; is not a candidate because the element in the column of z; is positive.
Since we still have two candidates, the second row has to be considered. The
second row has zero value at the third column so x3 is a candidate while x5 is
no longer a candidate since its entry is positive. As the result of this pivot rule,

the entring variable is 3. From the minimum ratio test we get x4 is the leaving
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variable. After pivot operation, the optimal solution is obtained which is shown

in the tableau below.

z| x1 | w9 | x3 | x4 | x5 | g | RHS
z | 1]-100|-10 0 | O | O |-1]-10000
g 0] 1 O (0] 1]0/|0 1
x5 | 0| 20 110101 1]0 100
23 [0]1200 20| 1|00 1] 10000

For this example the optimal solution is 1 = 0, 9 = 0 and x3 = 10000. The

optimal value is —10000 within one iteration.

Theorem 3.3. The simplex method using absolute change pivot rule achieves the

optimal solution within one iteration for any Klee and Minty problem.

Proof. Consider a Klee and Minty problem in the following standard form:

Minimize 10"y — 10" 2 29 — oo — ay,
subject to T + Tnt1 = 1,
20x1 + T + Tpyo = 100,
2x 10" ey +2x10" 229 -+ 2y + @9y = 10",
1, T2, ey Ty Tpgl,  -e e Top > 0,
(3.2)
where 41, Tpia,..., T2, are the slack variables associated with the n'* con-

straints. The initial simplex tableau of problem (3.2) is:
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z 1 T Tn  Tpil Ta, | RHS
z 1 1071 1072 1 0 0 0
Tpi1 | O 1 0 0 1 0 1
Tpio | O 20 1 0 0 0 100
Tom | 0] 2x 101 2x 1072 1 0 1 10nt

The right-hand-side entries are sorted from the smallest to the largest values.

By the simplex method using the absolute change pivot rule, z,, is chosen to be an

entering variable and x5, is a leaving variable by the minimum ratio test. After

the first iteration, the optimal solution is obtained which is shown in the tableau

below.
z T To Tn  Tpai Ton RHS
z 1| —10™t oy ()= 0 0 -1 | =10t
Tni1 | O 1 0 0 1 0 1
Tpio | O 20 i 0 0 0 100
Ty, 0]2x10mt 2x10"2 1 0 1 1071

Tableau above is the optimal tableau for Klee and Minty problem with any

size n. The optimal solution is 1 = 0,25 =0, ...,2,_1 = 0 and z,, = 10", The

optimal objective value is —10"! and is achieved within one iteration. ]
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Example 3.4. Consider the following generated linear programming problem :

Minimize —50x1— 2x9—462x3—40x4—15x5,
subject to 15x1— 3w9+22x3+ 3z4— 45
172x1+11x94+2323+1924—28x5

1021 —18x9+2123+28x4+ 65

—49x14+ 6x9+3623+34x4— 275
—33x1+25x9+48x3—14x4+12x5

Ty, T, T3, Ty, Ts

INININ A A

v

1467,
1733,
1758,
606,

1365,

Let xg, x7, x5, x9, x19 be slack variables associated with constraints. The initial

simplex tableau is :

z
Te
X7
Tg
Ty

Z10

z| x1 | T2 | X3 | T4 | x5 | T6 | T7 | T8 | T9 | 210 | RHS
1150 2 (46|40 | 150 0]0]0] O 0

O | -3 122 3 [-4|1]00]0/| 0 |1467
O 17|11 /23119 28, 0| 1 |0 ]| 0| O |1733
0|10 |-18 4121128} 6 OO0 | 1|0/ O |1758
0[-49| 6 |36 34 | -2 0]0/|0]|1| 0| 606
0[-33]25 48 |-14| 12 |0 |0 | 0|0 | 1 |1365

From the above initial simplex tableau, we can see that x1, xo, x3, x4 and x5 can

be a candidate for the entering variable since the negative reduce cost is greater

than zero. If we follow the simplex algorithm with the absolute change pivot rule,

it looks for the row with the minimum right-hand-side first. Since row x¢ has the

minimum right-hand-side, we look for zero or negative value in that row, which

are the entries in the column z; and z5. So x; and x5 are the candidates for the

entering variable. Because there is more than one candidate to be an entering

variable, we have to look for the row with the next minimum right-hand-side,

which is row x19. Since the zero or negative entries in this row are in the columns

of x1 and x4, the only candidate left is x1. Hence, after the first iteration we get x;
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is the entering variable and, with minimum ratio test, z¢ is the leaving variable.

After pivoting, the simplex tableau becomes

z
T
Xy
xs
Ty

Z10

z | x| Zo T3 Ty Ts Te T7 | s | Tg | 19 | RHS
10| 12 | =273 | 30 | 283 | =33 | 0| 0 |0 | O |-4890
01| -4+ | 1L | £ | =& | = |0][0O]O0] 0| 975
0|0 | 142 | =152 | 162 | -23& | -1 | 1[0 | 0| O | 702
0[0]-16| 65 | 26 | 82 -2 ]0[1]0/| 0] 78
0|0 |—33|10712 | 452 | —15%& | 35t | 0 | O | 1 | O | 53982
0| 0| 182 | 962 | —72| 31 2L 10| 0] 0| 1 45892

In a similar fashion, after the second iteration, x5 is the entering variable and

xg is the leaving variable. The result simplex tableau becomes

T
Z7
Ts
Tg

Z10

zZ | x T T3 Ty | w5 | x6 |17 | T8 | X9 | 19 | RHS
1] 0| 6475 | —485: |55 | 0 | —1& | 0 | =35 | O | O | -7440
0| 1| —% [ 12 (L]0} & |0 & |0] 0] 1215
0|0 |—282| 158 |8 | 0 | =28 | 1|28 | 0| 0 |21822
00| -1 | 2 311 =5 [0 & |0] 0] 9

00 | =313 | 1183 | 89 | 0 | 2 | 0 | 122 | 1 | 0 | 67541
00| 2455 | 94 |17/ 0 | 22 | 0| 2 | 0| 1 |43012

In the last iteration of this example, x5 is the entering variable and xg is the

leaving variable. The last simplex tableau is

zZ | x| 9 T3 Ta | x5 | X6 | x7 | 28 | X9 | T10 RHS
2110 |0 -2962-103 0 |72 0 |-282| 0 |-221 —18819%
0 1[0 ] 482 | 2 |0 |5|0]| 5|05 ]| 2447
27 0] 0| 0 [1272 |-65%5 0 |—5| 1 |257| O |12 | 730033
z 0] 00| 75 [12 1|20 |& |05 ] 4168
29 0] 0 | 0 [2412 6653 | 0 [52] 0 [12| 1 |13 | 123483
29 0] 0| 138 | =510 |5]0 -] 03] 1762
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This simplex tableau is the optimal tableau with the optimal solution x; =
244%, To = 7300%, r3 = 0, vy = 0 and x5 = 416%. The optimal value is
—18819% and the number of iterations is three while the simplex method with
Dantzig’s pivot rule uses five iterations to achieve the optimal solution as follows:

Consider the initial simplex tableau of the Example 3.4:

z2| x1 | T2 | x3 | T4 | x5 | T6 | T7 | X8 | X9 | 10 | RHS
z |1150] 2 46|40 |15 0] 00|00 O 0
¢ |0 15| -3 (22| 3 |-4|1[0]|0]0]| 0 |1467
x7 [0 17 |11 |23} 19 |28/ 0 (1|0 ] 0] O |1733
xg [0 10 |-18 21|28 ) 6 | O[O | 1] 0] O |1758
9 [0-49] 6 |36 34| -2{0/[0]0] 1] 0 | 606
0 [0]-33]25 |48 |-14 12 | 0 | O | O | O] 1 |1365

From the initial simplex tableau above if we follow the simplex algorithm with
Dantzig’s pivot rule, after the first iteration we get x; as the entering variable and

xg as the leaving variable. After pivoting, the simplex tableau becomes

z x| w9 T3 Ty T Te x7 | 28 | ®g | T10 | RHS

z |10 ] 12 | =275 30 | 285 | =35 |0 | 0| 0| O | -4890
z |0 1| =2 | 1L | £ | =% | £ |0|O0O]|O| O] 975
7 0] 0| 142 | =13 | 153 | —23L |12 | 1|0 |0 | 0 | 702
s |0 0] -16 | 63 | 26 | 82 —2]0[1]0/| 0] 78

z9 | 0] 0 | =32 10712 | 452 | =15 | 3% | O | O | 1 | O |5398;

210 | 0| 0 | 182 | 962 | 72| 31 2L L0 0] 0| 1 |45892

After the second iteration, x4 is the entering variable and x; is the leaving

variable. The result simplex tableau becomes



Ty
Ty
T
L9

Z10

z x| Ts | x4 | x5 | 6 | T7 | T3 | X9 | T10 RHS
1[0 |-152%-232 0 |[735|-13-1120 0 | 0 | O | —50253
01 |- |12 |0 |5 | = |—% 0]0] 0] 963
00| B | -4 |1 |-13-&|Z]|0]0]0 429
0| 0] -40 | 95 | 0 |47 12 |-12] 1 |0 | O | 6622
0|0 |—4431132| 0 (5032|632 |—224 0 | 1 | 0 | 520075
010|255 (94| 0 |—75/12 20 |0]| 1 | 46223
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In the third iteration, x5 is the entering variable and xg is the leaving variable.

The simplex tableau becomes

x1
Xy
Ts
Ty

Z10

z x| To | T3 | xa | x5 | T | TY g Tg | T10 RHS
1| 0 |45321—-3841 0 | O |35 22 | —12 | 0 | 0 | —60443
0|1 |-2|1£ /0|02 |-%| 0 |0]|O0 965
010 |—35| & | 1|0 |-2|&1] 5 |0 0] 252
010 |38 L 1ol |-2] 5 |00 132
0| 0 |-1851032| 0 | 0 |54 121 =12 | 1 | 0 | 44952
0|0 18219751 0 |0 (12| & [0 | 1 | 47322

Next iteration, z7 is the entering variable and x4 is the leaving variable.

simplex tableau is

T1
Ty
Ts
L9

Z10

The

z | x| o T3 | T4 | Ts Te T Ty To | T10 | RHS
1] 0 | 6455 4855 55| 0 | =15 | 0 | =355 | 0 | 0 | -7440
0|1 (-3 |12/ 1o & o] & |0] o0 | 1215
0| 0 |[-2833 156 | 86 | 0 | =202 | 1| 252 | 0| O |21822
00|13 2 |3 |1 | —% 0] & 0] 0| 9
0|0 [-3131183L) 89 | 0 | 2= | 0| 12 | 1 | 0 |6754%
00 [24% 942 |-17| 0 | 22 | 0| -2 | 0| 1 |43012
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In the last iteration, x5 is the entering variable and zy( is the leaving variable.

The simplex tableau is

x1
Z7
Ty
Ty

X2

This simplex tableau is the optimal tableau with optimal solution x; = 244

T = 176

zZ | x1 |ra| a3 T4 |Ts| Te |x7]  Tg To | 10 RHS
1] 0 [0-2962 —102 |0| —72 |0 —2&2 | 0 | —221 | —18819%2
0| 1|0 432 32 0] & 0] & | 0] 5 2445
0|0 (0[1275 | 65% |0 —55 [1| 24 | 0 | 18 | 730042
oo o] 72 | 12 1] 2 |o] & |0 | & 41632
0|0 |0[2412 | 665 |0 53 |0 13 | 1 | 13 | 1234833
00 (1] 38 | —L% |0] & (0] —& | 0| & 1762

22
237

4
137

23 =0, 4 = 0 and 75 = 416%. The optimal value is —18819% and

the number of iterations is five.

In this chapter the concept of the absolute change pivot rule is proposed. Then

we describe geometric motivation of the simplex method with absolute change

pivot rule, the simplex algorithm with the absolute change pivot rule and illustrate

the performance of the simplex method with this pivot rule by using Klee and

Minty problem with n = 3 and a randomly generated linear programming problem.

In the next chapter the effectiveness of the simplex method with this pivot rule

is tested by solving the randomly generated LP problems and is compared the

number of iterations and time with other pivot rules.



CHAPTER IV
EXPERIMENTS AND ANALYSIS

In this chapter, the absolute change pivot rule (ACP) was tested with randomly
generated linear programming problems of various sizes. the number of iterations,
time, the number of operations, i.e., multiplications and additions of this pivot
rule are compared with Dantzig’s pivot rule (DZP), steepest-edge pivot rule (SEP),
Devex rules (DVP) and the largest-distance pivot rule (LDP).

The programming language used was Python. All codes were run under an
Oracle VM VirtualBox version 4.3.4r91027 by software Sage [14] version 5.7 with
base memory 512 MB. The computer system processor is Intel(R) Core(TM)i7-
3770K CPU @3.50GHz, 8.00 GB of memory, and 64-bit Window 7 Operating

System. The time used in the experiments is measured in seconds.

4.1 Problem Generation

All randomly generated linear programming problems are minimization problems
and are generated according to the following specifications: The cost vector c is
generated with ¢; € [—10,10]. The matrix A is generated with a;; € [—10, 10]. To
guarantee a feasible problem, a feasible solution x is generated with z; € [0, 10]
and then the right-hand-side b is calculated by b = Ax. All constraints are in
the form <.

In this chapter, m and n represent the number of constraints and the number

of decision variables, respectively. The LP problems are in the following form:

Minimize cTx
subject to Ax <b (4.1)

x > 0.
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The size of matrix A, m X n, is used to indicate the size of the problem. Note
that these m and n are defined differently from m and n in the Section 2.1 since
the problems are in different forms.

The sizes of problems are varied from 10 x 10 through 650 x 650. For each

size, we generate 50 problems and find the mean results for each method.

4.2 Comparison

The absolute change pivot rule is compared with Dantzig’s original pivot rule and
other pivot rules. The performance measures used for comparison is the number
of iterations (pivot) and time. Moreover, the comparison of the operations, i.e.,
multiplications and additions, are shown in the next section.

Table 4.1 and 4.2 show the comparison of the average number of iterations and
average time from solving LP problems by the simplex algorithm with DZP, LDP,
SEP, DVP and ACP with problem sizes from 10 x 10 to 120 x 120. Moreover,
these tables also show standard deviation for average number of iterations and

average time for each problem size.



Table 4.1: The average number of iterations + standard deviation (u + ) from solving LP problems by the simplex method with
DZP, LDP, SEP, DVP and ACP with problem sizes from 10 x 10 to 120 x 120.

Problem size Average no. of iterations + Standard deviation (= o)

A I DZP LDP SEP DVP ACP

1 10 10 7.33+£3.42 6.23+£2.47 10.86+4.83 10.16+4.19 7.58£3.58
2 20 20 17.94+5.45 16.60£4.68 31.58+8.63 32.48+8.16 20.06£6.38
3 30 30 37.74£9.09 30.79+£6.80  73.11£18.80 65.49£13.98  38.57£9.68
4 40 40 51.90+15.61  44.51+£11.31 117.69£29.45 103.37£24.67 53.96+12.89
) 50 20 79.98422.02  65.60+13.73 167.88+28.83 153.204+29.15 78.38%£12.29
6 60 60 113.14+£24.12  86.52+15.11  225.04+£40.07 206.76+29.89 102.50+£16.96
7 70 70 141.46+£35.94 109.30414.54 298.68£44.95 267.644+45.44 131.38+21.48
8 80 80 184.66+40.82 136.824+16.74 385.82+56.01 337.94+£49.91 161.02£18.32
9 90 90 232.724+41.30 167.56£21.60 477.924£58.55 413.12+62.61 196.20£25.17
10 | 100 100 280.30+£51.98 199.28£25.46 539.82£81.95 483.64+£60.95 223.84+31.31
11 | 110 110 331.56+£63.00 231.78£34.65 641.80+83.49 565.68£62.07 258.961+34.50
12 ] 120 120 409.94+75.21 277.44£34.13 739.56+£74.55 662.24£67.32 292.584+35.45

Remark 4.1. No unbounded problem in Table 4.1.

17



Table 4.2: The average time + standard deviation (x+ o) from solving LP problems by the simplex method with DZP, LDP, SEP,

DVP and ACP with problem sizes from 10 x 10 to 120 x 120.

Problem size

Average time (sec) = Standard deviation

N m n DZP LDP SEP DVP ACP

1 |10 10 |000£0.01 001£0.01 0.06£0.06  0.03£0.02  0.0140.01
2 |20 20 |0.01£0.01 00340.01 0414011  0.2940.08  0.04+0.01
3 130 30 |0.044£0.01 0.09£0.03  1.904£047  1.16+£0.24  0.12+£0.04
4 |40 40 | 0.08+0.02 0.1640.04 5324116  3.18420.63  0.24-£0.06
5 | 50 50 | 0.14£0.04 0.2940.06 11.14+£1.93  7.07£1.52  0.43+0.07
6 | 60 60 |0.23£0.06 0.46+0.10 21.11+3.82  13.38+1.99  0.69-+£0.12
7 170 70 | 0.344£0.10 0.67£0.10 37.92+5.88  23.33+£3.98  1.05+£0.17
8 |80 80 |0.4840.14 0.90£0.13  59.97+9.70  35.9146.00  1.40-£0.19
9O | 90 90 |0.62+0.12 1.1540.15 85.97+£10.61  50.61£7.70  1.81+0.24
10 | 100 100 | 0.86£0.18 1.5840.21 123.62+18.98 75.784 9.79  2.4340.36
11 | 110 110 | 1.0940.21 2.0240.31 174.50423.55 105.59+12.04 3.1440.46
12 | 120 120 | 1.4440.26 2.55+0.30 231.61423.34 142.64+14.62 3.8140.47

4%
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Since DVP and SEP give a large number of iterations (see Table 4.1), they take
a lot of solution time (see Table 4.2) for solving LP problems for each problem
sizes. Hence, we reduce our comparison to only DZP, LDP and ACP for larger
LP problems.

Table 4.3 and 4.4 show the comparison of the average number of iterations
and average time with their standard deviations from solving LLP problems by the
simplex algorithm with DZP, LDP and ACP with problem size from 150 x 150
to 650 x 650. While generating the problems (where A is a square matrix), we
encountered a few unbounded problems, which are discarded when found and
then replaced by a new randomly generated bounded LP problem . So there is no

unbounded problem in both tables.

Table 4.3: The average number of iterations £ standard deviation (u + o) from
solving LP problems by the simplex method with DZP, LDP and ACP with prob-
lem sizes from 150 x 150 to 650 x 650.

Problem size | Average no. of iterations £+ Standard deviation (u + o)

A I DZP LDP ACP

1 150 150 607.964+104.86 400.34+55.82 405.20+45.64
2 | 200 200 1089.324+146.76 663.48+63.89 638.00£55.47
3 250 250 1581.46+217.37  1008.28+82.21 873.46£65.77
4 1300 300 2383.50+£297.00 1374.60+102.76 1120.60£74.05
5 350 350 3216.444+365.56  1810.704£138.23  1431.16£112.21
6 400 400 4218.00£517.35  2336.021+128.25  1782.744+137.22
7 | 450 450 0349.88+£610.45 2930.36£164.92  2067.66+£146.08
8 1500 500 6774.70£673.83  3581.94£233.35  2457.86£168.58
9 | 550 550 7976.80+748.22  4260.74£188.36  2792.06£170.39
10 | 600 600 9378.76£932.69 5004.62+£222.11  3213.22+141.35
11 | 650 650 11280.76+£1021.6 5906.76£287.62  3644.34+£215.71

Remark 4.2. No unbounded problem in Table 4.3.
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Table 4.4: The average time + standard deviation (u £ o) from solving LP prob-

lems by the simplex method with DZP, LDP and ACP with problem sizes from
150 x 150 to 650 x 650.

Problem size Average time (sec) £ Standard deviation

Al . DZP LDP ACP

1 | 150 150 2.63+0.47 4.51£0.65 6.69£0.84
2 1200 200 6.46£0.89 10.294+0.97 15.4941.38
3 250 230 11.9041.62 19.86+1.63 28.84+£2.27
4 | 300 300 25.87£2.97 37.25+3.66 58.13+4.29
5 | 350 350 42.67+5.23 60.06£5.12 97.12£7.65
6 |400 400 74.03£10.14 97.90£8.02  184.39415.20
7 | 450 450 107.50£12.35  143.83£10.48  263.51£19.93
8 | 500 500 112.91£13.36  158.04£15.39  258.98426.01
9 |550 550 139.71£13.78  196.67£10.20  321.17420.18
10 | 600 600 338.74+£43.94  492.254+389.95 698.14+73.73
11 | 650 650 | 483.35£582.66 511.74+40.56 859.09467.48

Tables 4.5 and 4.6 show the similar results to the previous tables but the

matrix A is not square.

In particular, m < n. The problem sizes are varied

from 150 x 200 to 300 x 400 in these tables. Unfortunately, once the matrix A is

no longer a square matrix, the randomly generated problems become unbounded

more frequently, especially when the number of constraints is much less than the

number of the decision variables.

In many cases, unbounded problems occurs

100% as seen Table 4.5. Hence the average number of iterations in this case are

the average number of iterations from solving an LP problem until unboundedness

is determined or an optimal solution is found.



Table 4.5: The average number of iterations + standard deviation (u + ) from solving LP problems by the simplex method with
DZP, LDP and ACP with problem sizes from 150 x 200 to 300 x 400.

Problem size

Average no. of iterations (sec) + Standard deviation

No. %Unbounded
m n DZpP LDP ACP

1 150 200 911.84 £ 119.80 523.66 £ 44.46 543.30 £+ 61.13 0
2 150 250 775.16 4+ 294.49 562.48 4+ 96.58 530.94 + 120.56 62
3 150 300 354.66 + 78.87 451.30 £ 66.76 394.88 + 69.06 100
4 150 350 280.68 4+ 41.47 405.98 + 52.57 324.84 + 47.11 100
) 150 400 256.98 4+ 31.06 386.10 + 39.23 305.18 4+ 38.64 100
6 150 450 250.76 4+ 29.52 367.54 4+ 46.82 285.50 4+ 37.20 100
7 150 500 230.58 4+ 28.78 343.12 + 28.71 264.92 4+ 39.72 100
8 200 250 1395.42 + 185.27  818.52 + 52.43 770.96 4+ 51.82 0
9 200 300 1489.28 + 371.00 939.08 £ 109.11  871.96 4+ 126.44 38
10 | 200 350 880.88 + 408.19  855.30 £ 127.48  700.38 £ 158.06 94
11 | 200 400 506.58 £+ 133.01 723.06 £+ 89.37 556.18 4 86.76 100
12 | 200 450 429.64 + 52.35 681.08 4+ 68.85 502.46 + 61.03 100
13 | 200 500 395.89 + 42.40 656.60 + 67.27 476.40 + 60.68 100
14 | 300 350 2742.15 £+ 337.57 1560.00 £ 93.30  1312.47 4 94.28 0
15 | 300 400 3315.11 £ 462.93 1790.65 4+ 136.09 1528.36 + 118.60 0

i
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Table 4.6: The average time + standard deviation (u £ o) from solving LP prob-

lems by the simplex method with DZP, LDP and ACP with problem sizes from
150 x 200 to 300 x 400.

Problem size | Average time (sec) £ Standard deviation

Al . DZP LDP ACP

1 150 200 469 £1.26 7.62+£1.29 1271 £+ 2.05
2 | 150 230 3.62 £ 136 837+£1.30 13.77 £ 2.36
3 | 150 300 1.56 +£0.35 7.07 £1.056 12.10 &+ 1.91
4 |150 350 6.17 £ 9.60 15.63 &£ 3.49 34.71 £ 14.31
5 | 150 400 5.76 £2.27 17.78 £4.09 42.01 £ 8.47
6 | 150 450 4.61 £ 0.57 1516 4+ 2.42  34.55 £ 5.77
7 1150 500 480 £ 0.87 16.77 £ 3.41  40.55 £ 7.68
8 200 250 | 2339 £3.31 26.63+3.16 7882+ 5.56
9 (200 300 |10.22£2.59 19.82 4+ 250 33.54 £ 3.93
10 | 200 350 5.95 £ 2.69 1948 £2.86 32.45 £ 5.89
11 1200 400 421 +1.17 2117 £ 879 3293 £+ 4.49
12 1200 450 417 £ 091 22.09 £ 3.47 3840 £ 7.35
13 1200 500 4.00 £ 0.76 21.79 £ 2.68 36.78 £ 4.53
14 1300 350 |26.07 &£ 3.45 40.67 £+ 3.22 65.62 £ 5.66
15 1300 400 | 30.56 4+ 4.27 47.75 £ 3.63 81.89 + 6.46

Tables 4.7 and 4.8 show the similar results to the previous tables but the

matrix A is not square with m > n. The problem sizes are varied from 200 x 150

to 400 x 300. As before, any problem found to be unbounded will be discarded

and a new ramdomly generated problem will replace it. Therefore, Tables 4.7 and

4.8 contains no unbounded problem.
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Table 4.7: The average number of iterations + standard deviation (u £ o) from
solving LLP problems by the simplex method with DZP, LDP and ACP with prob-
lem sizes from 200 x 150 to 400 x 300.

Problem size | Average no. of iterations (sec) + Standard deviation
Al DZP LDP ACP
1 |200 150 727.84 £ 115.35  500.66 + 70.07 476.68 £ 50.92
2 1250 150 780.70 &£ 118.77  600.88 £ 74.47 519.16 + 49.45
3 300 150 834.78 £ 155.51 ~ 691.96 £ 76.73 561.60 + 71.71
4 1350 150 842.68 £ 117.47  752.26 £ 82.70 578.38 £ 65.61
5 |400 150 884.36 = 137.96  808.40 £ 114.91  610.02 £ 73.38
6 |450 150 912.96 + 141.60  889.30 £ 111.90  633.00 £ 76.79
7 | 500 150 946.14 £ 122.25  956.60 £ 129.73  637.44 £ 81.98
8 | 250 200 | 1275.00 £ 177.22  790.26 £ 87.73 724.06 £ 71.17
9 | 300 200 | 1340.72 £ 190.75  931.28 £ 94.99 757.96 £ 71.51
10 | 350 200 | 1385.08 & 181.39 1033.18 £ 104.27  797.86 + 76.44
11 | 400 200 | 1496.00 + 208.32 1156.80 £ 107.87  860.18 £ 76.66
12 | 450 200 | 1505.20 £ 226.51 1217.14 £ 136.42  863.06 £+ 75.94
13 | 500 200 | 1617.66 + 229.22 1357.00 £ 128.52  910.92 £ 92.23
14 | 350 300 | 2889.70 £ 345.09 1809.00 £ 149.56 1312.36 £ 86.49
15 | 400 300 | 3033.82 & 402.34 1945.10 £ 164.92 1391.50 £ 108.36

Remark 4.3. No unbounded problem in Table 4.7.
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Table 4.8: The average time + standard deviation (u £ o) from solving LP prob-

lems by the simplex method with DZP, LDP and ACP with problem sizes from

200 x 150 to 400 x 300.

Problem size Average time (sec) £ Standard deviation
Al I DZP LDP ACP
1 1200 150 4.30 £+ 0.66 7.00 £ 0.98 9.74 £ 1.09
2 250 150 5.89 £ 0.96 10.14 £ 1.24 12.90 + 1.27
3 | 300 150 7.82 £ 1.48 14.10 £ 1.69 16.62 £+ 2.16
4 1350 150 10.68 £ 1.79  19.48 £ 2.30 22.69 £ 2.91
5 [400 150 12.74 £1.99  23.49 £ 3.38 26.97 = 3.30
6 | 450 150 16.17 £ 3.056  30.70 £ 4.83 34.02 + 6.04
7 500 150 16.58 £ 2.25  33.27 £ 4.62 33.34 + 4.68
8 250 200 19.10 £9.92 44.41 £ 15849  78.15 £ 44.19
9 |300 200 19.78 £2.81  27.29 £ 3.29 94.37 £ 14.29
10 | 350 200 25.68 £ 3.70  35.28 £ 3.82  143.99 £ 18.24
11 400 200 3453 £ 531 4763 £481  230.20 £+ 31.49
12 1450 200 36.81 £ 6.29  54.39 £ 7.11 25849 £ 34.66
13 | 500 200 | 62.08 £27.86 86.34 &£ 28.42 514.53 £ 234.80
14 1350 300 | 74.91 £ 10.45 85.30 &£ 11.57  589.00 % 64.59
15 1400 300 |90.44 £+ 11.14 97.63 &£ 10.52  766.30 = 76.19

Table 4.9 shows the number of iterations and time from solving Klee and Minty

problem with n varied from n = 2,...,20.
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Table 4.9: The number of iterations and time from solving Klee and Minty problem

by the simplex method with DZP, LDP and ACP with n = 2,3,...,20.

Iterations Time (Sec)

No. | Problem size (n)

DZP LDP | ACP DZp LDP | ACP
1 2 3 1 1 0.0009 | 0.0005 | 0.0004
2 3 7 1 1 0.0011 | 0.0005 | 0.0001
3 4 15 1 1 0.0028 | 0.0006 | 0.0007
4 5 31 1 1 0.0124 | 0.0087 | 0.0013
5 6 63 1 1 0.0228 | 0.0054 | 0.0009
6 7 127 1 1 0.0515 | 0.0013 | 0.0013
7 8 255 1 1 0.0781 | 0.0011 | 0.0020
8 9 o1l 1 1 0.1990 | 0.0015 | 0.0019
9 10 1023 1 1 0.4440 | 0.0020 | 0.0025
10 11 2047 1 1 0.9280 | 0.0014 | 0.0030
11 12 4095 1 1 1.9967 | 0.0018 | 0.0030
12 13 8191 1 1 3.8323 | 0.0020 | 0.0036
13 14 16383 1 £ 8.7590 | 0.0019 | 0.0036
14 15 32767 1 1 17.6465 | 0.0020 | 0.0046
15 16 65535 1 1 34.2084 | 0.0021 | 0.0048
16 17 131071 1 ; 71.9518 | 0.0026 | 0.0051
17 18 262143 1 1 153.9014 | 0.0022 | 0.0063
18 19 024287 1 1 337.4665 | 0.0034 | 0.0069
19 20 1048575 1 1 724.2283 | 0.0054 | 0.0075

4.3 Analysis

In this section we discuss the performance analysis of ACP comparing to other
pivot rules. Then we introduce the domain of problems that are suitable for
applying the simplex method with ACP. Lastly, we analyze the operations involved

for each pivot rule.
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Figure 4.1: Comparison between the average number of iterations from solving LP
problems by the simplex algorithm with DZP, LDP and ACP when A is a square

matrix.

4.3.1 Analysis of Numerical Results

We analyze the numerical results by comparing the number of iterations from
solving LLP problems by the simplex method with ACP and the simplex method
with DZP, LDP, SEP and DVP. Table 4.1 shows the average number of iterations
of these pivot rule for small problems. The details in this table indicates the
number of iterations from solving LP problems using DVP and SEP are much
greater than DZP, LDP and ACP in most cases and on average. The average
number of iterations from LDP is minimum comparing with other pivot rules.
Table 4.2 shows the average time for solving LP problem from these pivot rules.
In this table, SEP and DVP spend a long of time to solve LP problem while DZP
uses minimum average time for solving LP problems. The next minimum average
time pivot rules are LDP and ACP, in that order.

Table 4.3 shows the average number of iterations from DZP, LDP and ACP

for larger problems. From this table ACP pivot rule uses less average number of
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mDZP mLDP = ACP

AVERAGE TIME (Sec)

Figure 4.2: Comparison between the average time from solving LP problems by

the simplex algorithm with DZP, LDP and ACP when A is a square matrix.

iterations than DZP in every case and less than the one from LDP in every case
except the first one. Moreover, Figure 4.1 shows the details of Table 4.3. In this
figure, the number of iterations between ACP, DZP and LDP is not significantly
different in small problems while in larger-scale problems ACP achieves a better
performance.

Table 4.4 indicates the average time from DZP, LDP and ACP. We found that
DZP uses the minimum time for solving LP problem with several sizes since DZP
only chooses the maximum negative reduced cost to be an entering variable while
LDP has to compute the norm of the column vector and finds the minimum ratio
between the current negative reduced cost and the norm of the column vector.
ACP spent largest time for solving LP when compared with DZP and LDP since
there are many steps involved in each iteration. First, ACP looks for the row with
the minimum right-hand-side. Then ACP looks for an entering variable that has
zero or negative value in its columns so that the minimum ratio is not applicable
for those rows. If there is more than one candidate for such entering variable,

ACP looks for the row with the next minimum right-hand-side and repeat the
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process until we have only one candidate or until we cannot find a row with zero
or negative value.

In Table 4.5, problem sizes of LP problems are varied by m < n from 150 x 200
to 300 x 400. The average number of iterations in Table 4.5 are the average
number of iterations from solving LLP problem until we found unbounded problem
or optimal solution. The average number of iterations from ACP is less than one
from DZP and LDP in some problem size. Figure 4.3 shows the details of Table 4.5
in terms of barchart. The details about average time used to solve LP problems in
Table 4.5 is indicated in Table 4.6 and is indicated in terms of barchart in Figure

4.4.

mDZP mLDP = ACP
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Figure 4.3: Comparison between the average number of iterations from solving

LP problems by the simplex algorithm with DZP, LDP and ACP when m < n.
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Figure 4.4: Comparison between the average time from solving LP problems by

the simplex algorithm with DZP, LDP and ACP when m < n.

Table 4.7 and 4.8 also show average number of iterations and time similar
to previous tables. In these tables, problem sizes of LP problems are varied by
m > n from 200 x 150 to 400 x 300. In every problem size in Table 4.7, ACP uses
minimum average number of iterations for solving LLP problems. In contrast, ACP
took the maximum average time in every problem size (see Table 4.8). Figure 4.5

and 4.6 show the details of Table 4.7 and Table 4.8, respectively.
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Figure 4.5: Comparison between the average number of iterations from solving

LP problems by the simplex algorithm with DZP, LDP and ACP when m > n.
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Figure 4.6: Comparison between the average time from solving LP problems by

the simplex algorithm with DZP, LDP and ACP when m > n.
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Even if ACP took the maximum average time in every problem (see Table 4.2,

4.4, 4.6 and 4.8), the average time in Table 4.4 tends to get closed to the average

time from DZP as the problem gets bigger (see Table 4.10).

Table 4.10: The average time ratio between ACP and DZP from Table 4.4

Problem size | Average time ratio

A I ACP:DZP
1 | 150 150 2.54

2 1200 200 2.40

3 1250 250 2.42

4 1300 300 2.25

5 1350 350 2.28

6 | 400 400 2.49

7 1450 450 2.45

8 | 500 500 2.29

9 |550 550 2.30

10 | 600 600 2.06

11 | 650 650 1.78

Table 4.10 shows average time ratio between ACP and DZP from Table 4.4.

In this table, the average time ratio tends to decrease (obviously seen Figure 4.7)

when the problem size is increased. This show a promise that, when the problem

size gets bigger the average time ratio will decrease until the average times from

ACP and DZP are not significantly different.

We can see from the Figure 4.3 and Figure 4.5 that, when the matrix A is

not square, the number of variables (columns) has more effect on the number of

iterations than the number of constraints (rows).

Table 4.9 indicates results from solving Klee and Minty problem with several

sizes of n. For all n, ACP and LDP achieve the optimal solution only one iteration

while DZP used 2™ — 1 iterations. The results are consistent with Theorem 3.3.
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Figure 4.7: Average time ratio between ACP and DZP from Table 4.4.

4.3.2 Domain of Problems

The domain of problems that is suitable for applying the simplex algorithm with
absolute change pivot rule are the problems which contain zero entries or entries
with negative values that correspond to nonbasic columns in the coefficient matrix.
This is because we want to prevent a leaving variable that causes small change in
the objective function. If the coefficient matrix does not contain zero or negative

entries, this rule is simply the Dantzig’s rule.

4.3.3 Comparison of the Number of Operations

Suppose there are m constraints and n decision variables in a standard form of
LP problem (4.1). If we transform the algebra of the simplex method into row
operations in the tableau format, the number of rows are m + 1 (the number
of constraints plus one row of objective function). The number of columns are

the number of decision variables plus one, which is the column of right-hand-side
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(b). The total is m + 1 columns. The number of multiplications elements to
update per iteration are (m + 1)(n —m + 1). This is because the basic variable
column are identity matrix and each nonbasic variable column is updated at each
pivot operation, even if this variable never enters the basis, to make the computer
implementations effectively we operate the pivot operation only on the column
of nonbasic variables that are n — m + 1 column. The number of additions/
subtractions per iteration are m(n —m + 1). We can say that the total number
of operations per iteration is of order O(mn). The number of operations from
this simplex method with the absolute change pivot rule is not different from the
number of operations from Dantzig’s pivot rules.

For the simplex method with the steepest-edge pivot rule, Devex rule and the
largest-distance pivot rule, before pivoting these rules calculate several terms such
as norm of directions, norm of column vectors and the quotient between cost vector
and norm of directions or norm of column vectors. These step is call pricing step.
The details of the number of operations of the simplex method with steepest-edge
pivot rule, Devex rule and the largest-distance pivot rule are shown in the Table

4.11, 4.12 and 4.13.

Table 4.11: Pricing operations from steepest-edge pivot rule

OPERATION
TERM
Multiplication Addition
l.¢;=c"d;, jely n(n —m) n(n —m)
2. ||djll2, 7 € In n(n —m) n(n —m)
3 gz = i { | € J} nom ]
Total (n—m)2n+1) | 2n(n —m)

After the pricing step, these pivot rules give the entering variable and operates
the pivot operation. In the pivot step the number of multiplications and additions
are the same as the pivot operation from the simplex method with Dantzig’s pivot

rule, which are (m + 1)(n — m + 1) and m(n —m + 1), respectively.
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Table 4.12: Pricing operations from Devex rule

OPERATION
TERM
Multiplication Addition
l.¢;=cldj, jely n(n —m) n(n —m)
2. ldjll2, j € In n(n —m) n(n —m)
3, wp:max{LaAq“dqnz} 1 ;
4. wj = max {wj, o dgll2 5 € In, j #p} n -
5.1;—{Z:min{z;—i jeIN} n—m -
Total (n—m)(2n+1)+n+ 12n(n —m)

Table 4.13: Pricing operations from the largest-distance pivot rule

OPERATION
TERM
Multiplication | Addition
Lo |4, mn mn
2. [y = max { A € J} Mgy M -
Total mn-—+n—m mn

Table 4.15 shows the comparison the total number of multiplications and addi-
tions from the simplex method with Dantzig’s pivot rule, the steepest-edge pivot
rule, Devex rule, the largest-distance pivot rule and absolute change pivot rule.
From this table, we can see that the number of operations from Dantzig’s pivot
rule and the absolute change pivot rule are the same and not different from the
steepest-edge pivot rule, Devex rule and the largest-distance pivot rule in terms

of time complexity.
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OPERATION
METHOD
PIVOTING PRICING
Multiplication | (m + 1)(n —m + 1)

DZP
Addition m(n —m+1)

SEp Multiplication | (m +1)(n —m+1) | (n —m)(2n + 1)
Addition m(n—m+1) 2n(n —m)

DVP Multiplication | (m+1)(n = m+1) | (n—m)(2n+1)+n+1
Addition m(n—m+ 1) 2n(n —m)
Multiplication | (m+ 1)(n —m+1) | mn+n —m

LDP
Addition m(n —m+ 1) mn
Multiplication | (m +1)(n —m + 1

ACP ( ) )

Addition m(n —m+ 1)

Table 4.15: Total comparison of the number of operations.

METHOD | OPERATION TOTAL
Multiplication | m(n —m) +n + 1
DZp
Addition m(n —m+ 1)
g Multiplication | (n —m)(m+2n+1)+n+ 1
EP
Addition m(n —m+ 1)+ 2n(n —m)
Multiplication | (n —m)(m +2n + 1) + 2n + 2
DVP
Addition m(n —m+ 1)+ 2n(n —m)
Multiplication | m(2n —m — 1) +2n +1
LDP
Addition m(2n —m+ 1)
Multiplication | m(n —m) +n + 1
ACP
Addition m(n—m+ 1)




CHAPTER V
SUMMARY OF RESULTS

In this thesis, we proposed a pivot rule called the absolute change pivot rule. The
idea of this rule is to have the maximum improvement in the objective value in
each iteration. The simplex method with ACP is tested with several simulated LP
problems and the number of iterations, time, the number of multiplications and
additions from the simplex method with this pivot rule are compared with the
simplex method using Dantzig’s original pivot rule and other rules. The results
show that the proposed algorithm can reduce the number of iterations over the
Dantzig’s pivot rule and other rules, especially for large problems.

Table 4.3, 4.7 and 4.9 offer a summary of the average number of iterations of
each method. We conclude that the simplex algorithm using the absolute change
pivot rule is very fast for solving linear programming problems in terms of the
number of iterations. But this pivot rule takes more time than other rules, i.e.,
DZP and LDP, as shown in Table 4.4, 4.6, 4.8 and 4.9. In addition, Figure 4.2,
4.4 and 4.6 show that the average time for solving LP problems by the simplex
method with ACP is much worse as the problem get larger comparing with DZP
and LDP. The reason of this is described in Chapter 4. Although, the average
time from ACP is much worse than DZP and LDP, Table 4.10 indicates that the
average time ratio between ACP and DZP tends to decrease (obviously seen Figure
4.7) when the problem size is increased.

The domain of problems that are suitable for applying the simplex algorithm
with the absolute change pivot rule are problems which contain zero entries or
entries with negative value that correspond to nonbasic columns in the coefficient
matrix. Moreover, the number of operations from this simplex method with the
absolute change pivot rule is of order O(mn). It is not different from the number

of operations from Dantzig’s pivot rule, SEP, DVP and LDP in term of time
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complexity.
Finally, absolute change pivot rule performs very well on Klee and Minty prob-

lems.



1]

[10]

REFERENCES

Trakantalerngsak S.:Operations Research 1, Silpakorn University printing

house, 2nd ed, Nakorn Pathom, 2550.

Bazara M., Jarvis J., Sherali H.: Linear programming and network flows,

John Whiley & Sons, 2nd ed, New York, 1990.
Gass S.1.: Linear programming, McGraw-Hill, 5th ed, New York, 1994.

Klee V. and Minty G.J.: How good is the simplex algorithm? in inequalities,
Academic Press, New York, (1972), 159-175.

Paulraj S., Chellappan C. and Natesan T.R. A heuristic approach for
identification of redundant constraints in linear programming model.
International Journal of Computer Mathematics Vol.83, Nos.8-9 (September
2006):675-683.

Junior H.V. and Lins M.P.E. An improved initial basis for the simplex algo-
rithm. Computer & Operations Research 32(2005):1983-1993.

Forrest J., Goldfarb D.: A practical steepest-edge simplex algorithm for linear
programming, Mathematical Programming 57, (1992), 341-374.

Harris P.M.J.: Pivot selection methods of the Devex LP code, Mathematical
Programming 5, (1973), 1-28.

Pan P.-Q., A largest-distance pivot rule for the simplex algorithm, Furopean

Journal of Operational research 187, (2008), 393-402.

Tipawanna M. and Sinapiromsaran K.: Max-out-in pivot rule with cycling
prevention for the simplex method, 2nd International Conference on Mathe-
matical Modeling in Physical Sciences 2013 (IC-MSQUARE 2013), 1-5 Sept.
2013, Prague, Czech Republic, On-line in Journal of Physics:Conference Se-
ries 490, (2014), pp 1-4.



63

[11] Chen D.-S., Batson R. G., Dang Y.:Applied Integer Programming : Modeling
and Solution, John Wiley & Sons,INC., New Jersey, 2010.

[12] Wu N., Coppins R.:Linear Programming and Extensions, McGraw-Hill, USA,
1981.

[13] George G.B.:Linear Programming and Extensions, Princeton University

Press, Princetion, 1963.

[14] Stein W. and Joyner D.: SAGE: System for Algebra and Geometry Experi-
mentation, ACM SIGSAM Bulletin, 2, 39th ed, (2005), 61-64.



Name
Date of Birth
Place of Birth

Education

Publication

64

BIOGRAPHY

Kittiphong Chankong

9 June 1989

Samut Songkhram, Thailand

B.Sc.(Applied Mathematics), (First Class Honors)

Silpakorn University, 2011

K. Chankong, B. Intiyot, K. Sinapiromsaran, Absolute Change
Pivot Rule for the Simplex Algorithm, Lecture Notes in
Engineering and Computer Science: Proceedings of The
International MultiConference of Engineers and Computer
Scientists 2014, IMECS 2014, 12-14 March, 2014, Hong Kong,
pp1209-1213.



	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter 1 Introduction
	1.1 Thelinearprogrammingproblem
	1.2 Linearprogrammingmodelling
	1.3 Solution to Linear Programming Problem
	1.4 Motivationandproblemdescription
	1.5 Theobjectiveofthethesis
	1.6 Thescopeofthethesis
	1.7 Thesisoverview

	Chapter 2 Preliminaries
	2.1 Basicfeasiblesolution
	2.2 Thesimplexmethod
	2.3 Thesimplexmethodintableauformat
	2.4 Pivotrule
	2.5 Literaturereviewonpivotrules

	Chapter 3 Absolute Change Pivot Rule for the Simplex Al-Gorithm
	3.1 the Concept of Absolute Change Pivot Rule
	3.2 Illustrationofthemethod

	Chapter 4 Experiments and Analysis
	4.1 Problemgeneration
	4.2 Comparison
	4.3 Analysis

	Chapter 5 Summary of Results
	References
	Vita



