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CHAPTER

INTRODUCTION

In the recent years, there are numerous studies of p-harmonic maps motivated by their
importance in physics and geometry. A p-harmonic map is a generalization of harmonic functions
in classical analysis. From the point of view of the Calculus of Variation, p-harmonic maps,
unlike harmonic functions which are real- (or complex-) functions, are maps that take values in a
differential geometric space or even a metric space and are stationary points of some Dirichlet-like
energy integral. Thus p-harmonic maps are solutions of certain nonlinear elliptic PDE systems
(the Euler-Lagrange equation) of p-Laplace type. From classical complex analysis, it is well-
known that if a function is harmonic except at some singular points and it satisfies a pointwise
bound, then it can be extended to a harmonic function across the singularities. This fact does not
carry over to p-harmonic maps however. For harmonic maps (i.e. when p = 2), it was proved that

a certain e-regularity condition has to be satisfied so that such an extension will be true.

Many previous studies until recently of p-harmonic maps concentrated on maps into a
Riemannian manifold. The results in this direction can be seen from an inspiring paper by
F. Duzaar and M. Fuchs[1] where the authors proved a removable singularity theorem for p-
harmonic maps into a Riemannian Manifold. In this work, we consider p-harmonic maps into a
pseudosphere which is the standard sphere endowed with the pseudo-Riemannian metric from its
ambient Lorentz manifold. Motivated by the study of Riemannian-valued p-harmonic maps, we
are expecting some similarities in the properties of p-harmonic maps into Riemannian Manifolds
and pseudospheres. Because of the distinct geometric structures of pseudospheres and Rieman-

nian manifolds, we are also expect some dissimilarities as well.

In F. Duzaar and M. Fuchs[1], they investigated the regularity problem of p-harmonic
maps in higher dimensions. More precisely, they consider the following situation; the parameter
domain is the unit ball B;(0) in R™, m > 2 (equipped with the flat metric) and the target space
M is a Riemannian manifold of dimension n > 1 which is isometrically embedded in some
Euclidean space R¥, k > n. We are then interested in mappings u:B1(0) — M of Soblolev class
WLP(B;(0), M) being defined as the set of function u from the linear Sobolev space WP(B1(0),
R¥) such that u(x) € M a.e. on By (0). The p-energy of u is defined as

E,(u) := /B o | Dul|Pdz,

and u is said to be a weakly p-harmonic map if u is a weak solution of the Euler-Lagrange

equations associated with the p-energy, i.e. u satisfies for all ¢ € C& (B1, R¥) the equation

/B " |DulP~?(Dou - Dyu + ¢ - A(u)(Dau, Dyu))dz = 0,



where A(q)(.,.) is the second fundamental form of M at q. The purpose of this paper is to prove
some e-regularity theorem for p-harmonic maps. they prove that the point singularity at the origin
is removable provided the p-energy E; (u) is sufficiently small. There are no a priori assumption

on the image of w in M.

In N. Hungerbiihler[3], the author defined a mapping f : M — N C R to be weakly
p-harmonic if it satisfies the Euler-Lagrange equations for p-harmonic mappings in the sense of

distributions, i.e. for each coordinate chart 2 on M there holds

of of \: ' af oy
af L 2L —— —=/7dx=0
/Q (’y Oz 8305) Oz~ OxB Vv de
for all smooth mapping  with compact support in €2 and satisfying ¢(x) € T(,)N forallz € M

where M is a smooth Riemannian manifolds equipped with metric (y*?). This equation is linked

to the p-energy of f

B(f) = /N ()

such that the p-energy density of f is

1
e(f)(x) := ];Idfxlp~

But the main topic of this paper is p-harmonic flow. He consider the p-harmonic flow into spheres
and a priori estimate. He slightly attend to the weakly p-harmonic maps.
The definition of weakly p-harmonic map into pseudospheres for case p = 2 is defined in the

recent paper of M. Zhu[8] by the energy of u given by

= u T u
E(u) = /Bl(o)(v A

where £ is index matrix and u is said to be a weakly harmonic map if it is a critical point of
the energy. In this paper, they prove regularity for weakly harmonic maps from the unit ball into
certain pseudo-Riemannian manifolds from different points of view. Analytically, it is interesting
to know how the structure of the harmonic map system is affected when the target manifolds
become pseudo-Riemannian. The target pseudo-Riemannian in this paper are pseudospheres and
standard stationary Lorentzian manifolds. We focus on the pseudospheres

In this study, we consider weakly p-harmonic map into pseudospheres for all p > 2 by
extending idea from Zhu[8]. Theorems and Lemmas in this work are similar to the result from
that paper. In Chapter I, all basic knowledges are given. In Chapter III, we prove the main result.

In Chapter IV, we present conclusion and discussion.



CHAPTER II

PRELIMINARIES

We collect, in this chapter, some basic definitions from both geometry and analysis. The notion
of p-energy for maps from a ball into pseudospheres is also introduced. Basic known results such
as the Hodge decomposition theorem and the existence theorem of uniformly elliptic systems are

also provided.
2.1 Geometry and Analysis

Throughout this work, we shall fix positive integers m, n and an integer 0 < v < n. Also, we

denote B = B;1(0) C R™ to be the unit ball.

Notation.

1. Let £ be the (n + 1) x (n + 1)-matrix given by

-1, 0
€= (ei5) = )
0 In—i—l—l/

where I, for each k, denotes the identity £ X k matrix.

2. The pseudo-Euclidean space of signature (n,v), denoted R"*1, is the set R"*! equipped

with the pseudo-Riemannian metric

v n+1
(T, y)gnir 1= ey = — Z:cjyj + Z xy®
7=1 a=v+1

forall z = (z1,..., 2T,y = (3!, ..., 9T € R*FL,

In this work, unless specified otherwise, R?*! always denotes the pseudo-Euclidean space

and (-, -)gn+1 is the above pseudo-Riemannian metric.

3. The n-dimensional pseudosphere is the subset S* C R%*! given by
Sp = {z e R} | (T, T)gn1 = aT€x =1}.

4. Let  C R™ be an open set and (X, d) a metric space. A map f :  — X is said to be
Holder continuous with exponent 0 < « < 1 provided there exist a constant C' > 0 such

that

d(f(x), f(y) < Cle =y

for all ,y € Q. We denote by C%7(Q, X) the space of all Holder continuous maps.



5. Let k € Nand 1 < p < co. The usual Sobolev space is denoted by W*»P ().

6. The vector-valued Sobolev space W*P(Q, RY) is defined by u € W*?(Q, RY) if and only
ifu/ € WhP(Q) forall j =1,..., N where u = (u}, ..., u).

7. Let M be a compact smooth manifold and i : M < R* is a smooth embedding (Whitney’s
theorem). The Sobolev space W1P(€, M) is defined by u € WHP(Q, M) if and only if
i =iou€ WLP(Q,RF). O
Next, we introduce some matrix groups.

Definition 2.1. For each k£ € N, GL(k) is the group of all invertible k£ x k matrices with real

entries. We also consider the subgroups
Ow,n+1—v)={AeGL(n+1)| AT =€A7'€}

SO(v,n+1—-v)={AcOwn+1—v)|detA=1}.

Let us recall the exponential of matrices. This will be used in our study of Wente type identity.

For each n x n matrix A, the exponential of A is the n X n matrix defined by the power series

00
san
k=0

Proposition 2.1. Let X, Y € M, (R) and let a,b € R. Then the matrix exponential satisfies the

| —

AR,

o

!

following properties:

(@) @ = I, 0XebX — gath)X X=X _ [

(b) If XY =Y X then eXe¥ = e¥eX = ¢(X+Y),

(¢) If'Y is invertible then ¥ XY " = YeXy 1.

(d) eX7) = ()T,

We close this section with some elementary inequalities which are used in this work.

Lemma 2.2, Let 1 < p < oo and Q) C R™ be an open set.

(i) (Minkowski Inequality). If f,g € LP(S2), then

If +gllze <\ Fllze + llgllze
(ii) (Friedrichs Inequality). If u € W1P(Q) and u|sq = 0 in the sense of trace, then

ull £r () < diam(2)[|Vul| s (q)-



2.2 Energy of Maps and Harmonic Maps

First we recall the classical Dirichlet principle: On an open subset €2 of a Euclidean space,

every solution u : 2 — R to the Laplace equation
Au=0 in
is a critical point of the (Dirichlet) energy

1
Bolu] :Q/vam?dx.

From the point of view of the Calculus of Variations, the Laplace equation is the Euler-Lagrange
equation of the functional E». This consideration has the following generalization. Let 1 < p <

oo. We introduce the p-energy to be
1 r
E,lw] = v/ |Vwl|P dz,
P Jo
where w : 0 — R. The Euler-Lagrange equation of £, is the so-called p-Laplace equation:
Apu = div (|VuP~2Vu) = 0,

whose solutions are called p-harmonic functions. We remark that this informal discussion should
be made formal by specifying the space of functions forming the domain of E),. Sobolev spaces

are often the suitable choice in the preliminary study when there is no a priori regularity.

In the most general form, mathematicians and physicists are interested in the p-harmonic maps.
Let M, N be smooth Riemannian manifolds. Let2 < p < co. Amapwu : M — N is called a

p-harmonic map if it is a critical point of the p-energy defined by

1
Eylu] = » /M |Vul|P dvol .

Here Vu, at each point, is the dual tangent vector to the differential du and | - | is the norm of
tangent vectors to N. Thus « is p-harmonic if it satisfies the Euler-Lagrange equation associated

with E, -] which turns out to be the p-Laplace system of equations:

div(|VuP~2Vu) = 0.

We note that to be a harmonic map, a map v : M — N is required to be a smooth map. But
we have learned from above that finding harmonic maps is a sub-problem of finding solutions
to the p-Laplace system. So, alternatively, one is interested in finding the weakly p-harmonic
maps which are weak solutions, of course in some Sobolev spaces, to this p-Laplace system. An
immediate advantage of considering weakly p-harmonic maps is that the function space in this
case is a Banach space comparing with the non-Banach space C°°(M, N) for plain harmonic

maps. Thus, there are plenty of tools from functional analysis to get weakly p-harmonic maps.



In this work, inspired partly by the work of Zhu [see[8]], we introduce the p-energy for maps
into pseudospheres and then study the weakly p-harmonic maps. Since in this work we will prove

some regularity results, it is no loss of generality to assume M = B, the unit ball in R™.

Definition 2.3. For a map u € W'?(B,S"), we define the p-energy by

E,[u] ::;/B|(m)T5(m)|pﬁ(vU)T5(vU).

A mapu € WYP(B,S?) is called a weakly p-harmonic map from B into S, if it is a critical point

of the p-energy E,[-].

2.3 Elliptic PDEs

In this section, we quote some results from the theory of elliptic PDEs. For studying the
regularity aspects, the Morrey norm plays a very important role. Recall B = Bj(0) is the unit

ball in R™.

Definition 2.4. Let 1 < ¢ < oo. The Morrey norm of a function f € LY (B) is

loc

1

1 aeey/~] ol (R‘I*m / |f|q> |
Br(z)CB Br(zo)

Remark. /\2 R™ is the vector bundle of all alternating 2-tensors in R™, i.e. its elements are

w = Zwijdmi A da? (wij € R).
1<j
Lemma2.5. Letm > 2,1 < s < oo,and1 < g < cc. Let ¢’ € (1,00) be the Holder conjugate of
q, Le. %-l—% = 1. Let Br(z) C R™. Assume f € Wh9(Bg(x)) and g € Wh¢ <BR(:c), N> Rm)
satisfy

f‘aBR(x) =0 or g|8BR(x) =0
and h € Wh3(Bayg(x)) satisfies
VRl azs (Byr(a)) < 00

Then, there is a uniform constant C' > 0 independent of R such that
/B . (Vf-cuarlg) h < C|VfllLoBr@pll curl gl e (Br@) IVl a1 (Bon(a)-

Theorem 2.6 (Hodge Decomposition). If & € L4 (BR(xO)), Al Rm), then there exists unique
a € Wy (Bg(xo)), B € Wy (BR(gr:o),/\2 Rm>, and a harmonic h € C* <BR(ac0),/\1 ]Rm)
such that

® = da+ curl 5 + h.



Moreover, we have

ldadl| La(Ba(we)) + I1curl Bl La(Br(ze)) < CNPILa(Ba(20))-

Theorem 2.7 (Morrey’s Dirichlet growth theorem). Let u € W14(B), 1 < g < m. Suppose that

there exist constants 0 < C' < oo and ~y € (0, 1] such that for all balls Br(zo) C B
/ |Vul? < CR™4H79,
Br(zo)

then u € C%7(B).

Theorem 2.8 (Existence theorem). Consider a linear system of PDEs with variable coefficients
of the form
—D, (Agﬁ(x)pﬁuj) —0. @2.1)

Suppose the leading coefficients Af‘jﬁ are in L>°(Q), for all i, j, o, 3, and are uniformly elliptic.

Then the system (2.1) has a solution.

Lemma 2.9. Assume the linear system (2.1) has the leading coefficients A%ﬁ in L>®(Q) and is
uniformly elliptic. If, in addition, A%ﬁ € C%Q), then

where

Q=

we(R) = sup ) (Z }Af‘]ﬁ(x) = A?‘jﬁ(mo)‘q)

z€BRr(zo

and C > 0 is a constant independent of R > 0.



CHAPTER III

MAIN RESULTS

3.1 Wente type identity
The following proposition is Wente type identity for p-harmonic maps into pseudospheres.
Lemma 3.1. Let u € WP(B,S?) be a weakly p-harmonic map. Then u satisfies the identity
div (!(Vu)TS(Vu)‘2%2 (u'Vu! — ujVui)> =0 inD'(B)
foralli,j=1,2,...,n+ L
Proof. Fixi # j € {1,2,...,n+1}. Let E;; be an (n+1) x (n+1) matrix whose all entries are zero

except the (i, j)-, and (j, i)-components which are 1 and —1, respectively. Since (E;;)T = —E;j,
we have E;; € so(n + 1). Note that £2 = [ and € = €7

Since —€& - (Eljg)g = _gEij == —gEij = ETEZ = (Eijg)T, Eljg S SO(V,n + 1-— I/).
Consider

€ (e748) ] € = ge Pt E = g Pute

— (B OET _ —E(B,E)E
0 (eEijf)T‘
So eFi¢ € O(v,n + 1 —v). For any ¢ € C5°(B), we introduce a variation
Ry = P4 € C8° (B,0(v,n+1—v)).
Using the property of the group O(v,n + 1 — v), we have
(Reu, Ryu)gnir = (Riu)TERu = uT RTERu = ul Eu = 1,

almost everywhere in B. Since u is weakly p-harmonic, we have

d

0= %‘tZOEp(Rtu) - wEijz?%L:OEp(u).
Additionally, we have
L B (Ru) = 1] ! / (VRa)TE(VR)| "= (VReu)TE(V Rpu)
dt lt=0 dtli=op Jp

— 2/ { ‘(VU)TS(VU){Z;Q ((VU)TgEijguV(p + (Vu)TEEEVu 0)
pPJB

+ (V)T E(Vu)| T <p;2(Vu)TS(Vu))(2)((Vu)T5(Vu)>

x (Vu)TEE;EuVp + (Vu)TEE;EVU ) }



Since (Vu)TEE;jEu = ;565 (uiVuw) — w/Vul) and (Vu)TE(Vu) = 0, we get that

d 2 - P
i tZOEP(RtU) =5 /B { |(Vu)T8(Vu)’ 2 giigji(u'Vu! —w!Vu') - Vo

+(p— 2)|(Vu)Tg(Vu)|p2;28iisjj(uiVuj SNTAVTOR Vgo}

p=2

= £4i€j; /B ’(VU)TE(VU)‘ * (u'Vi! — V') - V.
As g€ is either 1 or —1, we have
/B ‘(Vu)TE(Vu)‘%2 (u'Vu! —wVu') - Vi = 0.
Since ¢ € C§°(B) is arbitrary, we obtain that
div (y(vu)Tg(vu)\Lf(uivuj - ufvui)) —0 inD/(B),
foralli,j =1,2,...,n+ 1 with ¢ # j. The case = = j is trivial hence the proof of this lemma is

complete. O

3.2 Divergence Equation
From the preceding lemma, we introduce for convenience the following matrix-valued (of rank
n + 1) vector field: Let © = (©%) where
0l = ’(VU)TS(VU)‘%Z (u'Vu! —u/Vu')
foralle,7 =1,2,....n+ 1.
Lemma 3.2. Let u € W'P(B,S?) where 1 < v < n. Then u satisfies
’(Vu)Tc‘J(Vu)‘p%2 Vu + 6Eu =40 a.e. in B.

Consequently, u satisfies

div (|(vu)T5(vu)|P%2vu + @Su> —0  inD(B).

Proof. By the definition of WP(B,S?), we have u’/ 5jkuk = 1 for almost every point in B.
Taking V both sides of the equation, we get Vu? sjku"‘ =0a.e.in B. So

(Vu)TE(Vu)| T Vil + 09 ¢ju

p—2

= (V) E(Vu)|"7 Vui + |(Vu)TE(Vu)| T (V! — ul Vi) jpu®

\(Vu)TE(VquT_Q(Vui + UV — ! Vu')ejpu”)

= [(Vu)TE(VW)|"T (Vi (1 — wejpul) + ul( wiejub))

=0 ae.in B.
Since u € WHP(B, S7), we have (Vu)TE(Vu)|*F Vui + OWe,u* € L'(B) for each i. Taking
— div on both sides of the above equation we get — div(|(Vu)TE(Vu)|*s Vu + O&u) = 0 in
D'(B). O
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3.3 Morrey’s norm Estimate

Lemma 3.3. Letu € W'P(B,S?), 1 < v < n. Assume that u is a weakly p-harmonic map such

that for any fixed 1 < q < ™5 there holds

p—2

[l(vwTevu)| =

2
ey IVl ) < o

Then we have the following estimate:

p—2

10155,y < C|||(Tu) E(Tu)|

2
‘LN(B) HVUHM;’(B)v

where C' > 0 is a constant independent of u.

Proof. Let s = q%l > m be the conjugate exponent of ¢ and let

Bp = Bg(ro) C By s.
For any & € L* (BR, /\HRm) with [|®]1-(5,) < Land 0 < p < R, let € C5° (Bg, [0, 1]) be
a cut-off function satisfying 7 = 1 on B,(z). Then 7® is supported in B (zo) and vanishes on
OBR(x0).
By Hodge decomposition, there exists a € W,*(Bg), 8 € W,"* <BR, A’ Rm> and a har-
monic function h € C'*° (B R, /\1 Rm> such that 7® = Va + curl 5 + h. Moreover, we have

IVallp sy + | carl Bll e () < CllT®|| Lo (By)
< Chl|®]| sy < Chs

where C; > 0 is a constant independent of p and R. Since Va‘ OBy = curl B’ 0By = 0, we get

h‘aBR = (T(I))‘BBR = 0. Since h is harmonic, it follows that & = 0 in Bg(xo).

Now using that u is a weakly p-harmonic map, we obtain that

p—2

6 = (|(Vu)"e(Vu)|'s* (u' Ve -/ V)

is divergence free. So fBR(zo) ©% . (Va) = 0. Then, we estimate for fixed i,j = 1,2,....,n + 1

the integral:

/ (TO9) . & = / QY. (1®) = / 0% . (Va + curl §) = / 0% . curl
Br(z0) Br(z0) Br(z0) Br(zo)

p—2

= / (Vu)TE(Vu) T (u'Vu! — I Vul) - curl B
Br(zo)
:/ (V! - curl B) (|(VU)T5(VU)|IJ2;21L’>
Br(zo)
—/ (Vau' - curl B) <\(VU)TE(VU)\pT_2uj>
Br(zo)

p—2

< G |[(Vu)TE(Vuw)]|

’L“(B) IVullago |l curl Bl s (8o VUl a2 (B, )

p—2

exe: H](Vu)TS(VU)\ ’

‘LW(B) [Vull a3l Vullazg (Bar)s
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where Cy > 0 is a constant independent of R and Bar = Bar(x). By the duality characteriza-

tion of LP functions, we have

TOY q - Sup / (T@ij) °
H HL (Br) @l za(z, <1 |/ Br(zo)
< 0,0y “(VU)TE(VU)}T ’LOO(B) ||VUHL‘1(BR)HVU)HM((II(B2R).

It follows that

H@inL‘I(Bp) < HT@U”L‘I(BR)

< 010y H{(VU)TE(VU)‘ 2

N 7 PP L e

Since p € (0, R) is arbitrary, letting p * R, we get

pP—=2

107 lz0(5a) < C1Cs || (V) (V)| 7

e i 1V |Vl atg

Then by the definition of the Morrey norm || Vul| (B, ) and the fact that Bogr C B, we obtain

1

IVl ey = ( / rwq)
Br

4 Ry (Rq—m/ |Vu|q>
BR(IQ)

< Re |Vl s
We estimate

1Ol Ls(Ba) = D 107 | La(sn)
ij

p—2
2

< (n+ 1PCG|||(Ve)TE(Vw)

‘LW(B) IVullpaBa)lIVullazg (Bar)

p—2

<(n+1)2CR+" HI(VU)Tg(W)\ ’

‘Lw(B) [Vullpra gyl VUl ars By

Since the ball Br(xg) is arbitrary, it follows that

1Ollpg(By2) = sup (Rq_m/ !@!p>
BR(IO)CBl/z Br(zo)

< (n+12C1G||(Vu)TE(Vu)

2
ey Vel

Thus, we have completed the proof of the lemma. O

3.4 Regularity Results

The following Lemma is the main key to prove Theorem 3.6. The important idea of the proof

of this lemma is an elliptic system estimate from M. Giaquinta[2].
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Lemma34. Letm > 2,1 <qg< % and 0 > 0. There exists a constant &, 4 5 > 0 such that
ifQ e L? (B, M, (R) & A\ Rm) satisfies div Q) = 0 in D' (B), u € WHP(B, R") weakly solves
div ((‘(VU)T(S(VUN%VU) + Qu) = 0in D'(B) with ’(Vu)TE(Vu)‘ > § forall x € B, and

p—2

7w e

‘LW(B) + IVullvg ) + 1@ vy < Emagss

then u is Holder continuous in B.

Proof. Fixany 1 < g < "5 and 0 > 0. Since div 2 = 0, by Hodge decomposition there exists
Eewla (B, M,(R) ® A\? Rm> such that
w = curl &.

Let Bop = Baogr(xo) C B and as before By := Bg(x(). The assumption ‘(VU)TS(VUH > 6 on

B implies that the following equation is uniformly elliptic:

_div(\(vu)Ts(vun%w):o in  Bg(xo), o
w=wu in OBgr(zg).

Let w be the unique weak solution to the above problem.
Then v = u —w € WYP (Bg(z0), R") weakly solves
~div ((y(vu)Tg(vu)\Lva> + Qu) —0 in Bg(zo)
v=0 in OBgr(xo)
Let s = q% > m. Forany ¢ € W(}’S(BR((E())) with [|][ 1. (B (z0)) < 1, since
— div ((|(vu)T5(vu)|%W) 3 Qu> —0,
we estimate for each 4 that
/ <\(Vu)T€(Vu)\pT_2Vvi> -V = —/ (QYu!) - Vi
Br Br(wo)
= —/ (curl €9 - Vp)u?
Br(wo)

< Ctllewrl€7|| Lo,y IV

LB IVUllara(Bur)
< CUIQ | sy [Vl ar2 (Br)

where C7 > 0 is constant independent of R.

By the definition of Morrey norm, we have

192 | oy = ( / miqu)
BR(I(])
=RV ! (Rq—m / |Qiqu>
BR(JJ())

< R%_IHQMHM;?(B)-



So
| (7@l = 9e) - o < R0 g Vg
S ClR%_lgmququMg(BQR)‘

Since v‘ OBn(n0) = 0, we have by Friedrich’s inequality and the LP-duality that

IVl Loy < C2 sup Vo - Ve,
lellwis (zp <1< Br

where Cy > 0 is constant independent of R. Since |(Vu)T&(Vu)| > § for all z € B, we have

C p—2
Cs sup / Vv - Ve < ; sup / |(Vu)TE(Vu)|Z Vo - Ve,
lellwis (g <1 Br g2 llellvwrs (g <1 Br
So
VUl La(Bg) < %,(,QJRQ “em.q,0 | VUl Az (Bar)-

Since w solves (3.1), we have that for any r < R that the following estimates hold:

[ vl < (Z) [ vl Gy [ (v
BT R BR(.’EQ) B

R(Io)

where

p—2

wp(R) = sup “(Vu)TS(Vu) " (2) — |(Vu)TE(Vu)

2E€BR(z0)

= (ao)|

and C3 > 0 is a constant independent of R.

Since u = v + w, applying the Minkowski and the Power Mean inequalities, we obtain

/ Vul? < (/ |Vw|‘1> +(/ |vv|q>
Br(fco) Br(fﬂo) Br(fﬁo)

< 2‘1—1/ |Vw|? + 2q—1/ |Vol?.
B,-(xo) B,-(l‘o)

/ |Vw|q§2q1/ |vu4+2q1/ |Vol?.
BR BR BR

q

Similary, we have

13
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So, for B, = B,(z¢) with 0 < r < R, we obtain

/ IVt §2‘1—1/ |vw|q+2q—1/ Vol
B, B, B,

< (20! (;)m/ |Vw|q+032q_1(wp(R))q/ |Vw|q+2q_1/ Vo
B B B,

R R

<ot (4)" / Vul? + €522 D (o (R))? / Va7 4 27! / Vol
Br B,

R

+ 032247 D (w, (R)) / |Vol? 4 22@=D [ |wyle
Br

B
<a (3)" [,

Y /13 Vel? + G522 || (V) e (V)T

—2 119
" el
L>=(B) J By
+22(q1)/ |Vl
Br

<Gt (£)" / Val? + C32% %2, / |Vl
BR R

r=2\ ¢
C1Cy(n+1) = -1 pm—
L (f‘ 22q 1R qgg%q’(SHvu”q 9(Bar)

0102(714-1) \ - m—
o (DO DY pamsen ATy,

IVl + C52% 2| (Va) TE (V)| 5[4 /B [V

p—2
2

Divide by "7 to get

1 7\49 1 1
g — q q q
rm—q /Br |Vul? < C (R) Rm—a /BR |Vul? + CRm—qgm,q,(S /BR |V

R\ R\,
+0 (B vy b o (5) e,

where C' = max {0323‘1_2, (C1Co(n + 1)/5%2)‘10323‘1—2},

UH(JI\H(BzR)’

Let

U(R) = sup Tqm/ |Vul? | .
B, (zo)CB,0<r<R B,.(z0)

Choose v € (0, 3) such that cy's < 1 and set 6;1717%6 := ~". Then for r := R, we have
1

rm—q

/ |vu‘q < C’quvu”Mq (B2r) + C’ym”quMq (B2r)
+ CYUIVUliy 3y + CYNVUll g1 5, )
< 40’)’q”VUHMg(BzR)

q+1
<7z HVU)H?wg(Bm)

<~ TU(2R)
so by taking the supremum, we find that

U(vR) < "= U(2R).
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Finally, for any r € [0, 2], let k € N be such that ()**! < r < (3)¥ and zy € B be such that
B,.(z9) C B. Then

By Morrey’s Dirichlet growth theorem, we now conclude that u € C%1/4 (B). O

Similarly to lemma 3.4, we can prove the following result.

Lemma 3.5. Letm > 2,1 < q < %, and 0 > 0. There exists €y, 45 > 0 such that if
QelP (B,Mn(R) @ N\ Rm) satisfies div Q = 0 in D'(B), u € WHP(B,R") weakly solves
div ((\(vu)Tg(vu)\”T”w) + Qu) = 0in D' (B) with |(Vu)TE(Vu)| > 6 > 0 forall x € B,
and

p—2

(V7w e

y 1 (B < Emugss

1
2

er(B )+ IVullae s

[SE

then u is Holder continuous in B.

3.5 Main Theorem

Finally, we prove the main theorem.

Theorem 3.6. Letm > 2,1 < q < %, and 6 > 0. There exists a constant 5;n 00> 0 such that

ifu € WYP(B,SP) is a weakly p-harmonic map satisfying |(Vu)'&(Vu)| > 6 > 0forallx € B
and

p—2

7w e

Vv q <é ,
ey IVl8) < s

then u is Holder continuous in B.

Proof. By lemma 3.2, we have
div (|(vu)T5(vu)|%vu + @gu) —0 inD/(B).

for all u € W1P(B,S"). By lemma 3.1, div© = 0. Since £ is a constant matrix, div(©&) = 0.
Note that [|©E|[rse(B,,,) = |©llae(B,,,)- By lemma 3.5, there exists €, 45 > 0 with for any
weakly p-harmonic map v € W1P(B, S?) such that |(Vu)TE(Vu)| > § for all z € B we have

p—2

(7w e

)+ ||9||Mg(3%) < Em,q,6-

1
2

\Y q
S v

1
2
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By lemma 3.3, we have the estimate
181l as2(B1,2) < CNI(VWTENVUWIZ || L) I VUl 42 ()

where C' > 0is a constant. We choose &7, , s = min {em7q75/3, \/27/40}. Letu € WP (B,SP)
be a weakly p-harmonic map such that |(Vu)"&€(Vu)| > 6 forall z € B and

[l(vae(wn)| =

+ IVullpzs) < €mgs-

‘LN(B)

Consider

[lvayTe@n)| ™

)LOO(BUQ) + [ Vullarg(s,2) + 1Ol (3,,2)

< H\(VU)TS(Vu)\%

e, 190, + CNT0) V0 )| Tl

By the arithmetic-geometric means inequality, we get

= ‘ ||VUHM3(B) 2
L>=(B) 2

[lvwT e
3
e Vel

i? (H’ (Vu TS(VU)‘ T
So

[l(vaTe(ww| ™

‘L“(Bl/z) ax HVUHM?(Bl/z) + H@HM(?(BUZ)

< H\(Vu)TE(Vu)\%

\Y q
iy F IVl s

p=2
2

ﬁ <H\(vu)T5(vu)

< Em,q,6 4C’ 27 Em,q,6

-3 27 4C 3

2em,q,6

= 73 < Em,q5-

3
i b))

Thus u is Holder continuous on By /5(0).

Finally, we use a rescaling argument to prove that « is Holder continuous on the whole B. Fix
w9 € B. Choose 0 < 7 < 1 such that B,.(z9) C B. Define & = u|pg, (5,) : Br(70) — S} and
define i : B — S! by a(z) = a(£=%2). Lety = £=%2. So that

IVl arz () = 7l Vyullae (B, (20))
and

J|w.8) e8]

=2 H‘(vyu)Té‘(vyu)‘%?

‘Lw(B) )L""(Br(zo)) '
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Thus we have

IViilasgy + ||| (V) eV

L*(B)

= 111V ulagg .o + 7772 | (V) e (V)|

L (B, (20))
< IVyullag (s, (z0)) + H‘(Vy“)TS(Vy“) N ’LOO(B (z0))
< 5;71,q,5‘

Thus @ is Holder continuous on B; /2. This implies that u is Holder continuous in B,.(zo) for

all zg € B. We therefore conclude that  is locally Holder continuous on 5. 0



CHAPTER IV

CONCLUSION AND DISCUSSION

The results of this work generalization some results from the paper of M. Zhu [8]. We
can prove some e-regularity for weakly p-harmonic maps into pseudospheres under assumption
on a strictly positive lower bound for the term |(Vu)”E(Vu)|. So € of the main result depends on
p, the dimension of the domain of the Euclidean Disk m, and a lower bound §. However, in [8],
epsilon of the main result depends only on p and m. The author does not know whether the strict
d-lower bound is a necessary condition or it can be derived a priori, so that our main e-regularity

result is true. It is therefore very interesting to settle this open question.
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