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CHAPTER

INTRODUCTION

Any two sets have the same size or the same cardinality if there is a bijection between them.
We write | A| for the cardinality of a set A. For any sets A and B, we write A &~ B if there is a
bijection from A onto B, write A < B if there is a one-to-one function from A into B, and write
A <* B if there is a function from B onto A. We say |A| is less than or equal to | B|, written

|A| < |B|,if A < B and say |A| is less than | B|, written |A| < |B|, if |A| < |B| but |A| # | B]|.

The Axiom of Choice (AC) implies that every set can be well-ordered. As a result, every two
cardinals are comparable. It follows that if A is an infinite set, then 8¢ < |A| and so Ry <* |A].
However, AC causes some paradoxical situations. For example, the existence of a non-measurable
subset of R and the Banach-Tarski paradox (see [9]). To avoid these paradoxes, we have to reject

AC.

Without AC, we cannot guarantee that Xg < |A| for every infinite set A. Moreover, we
cannot even assert that 8¢ <* |A| for every infinite set A. Therefore, without AC, there are many
kinds of infinite sets. We call a set A Dedekind-infinite if Xg < |A| and weakly Dedekind-infinite if
No <* |A|, otherwise A is called Dedekind-finite and weakly Dedekind-finite, respectively. A is a
Dedekind set if A is infinite Dedekind-finite and A is a weakly Dedekind set if A is infinite weakly
Dedekind-finite. The cardinality of a Dedekind-finite set is called a Dedekind-finite cardinal.

Similarly for the cardinality of other sets defined above.

It is interesting to know that which properties of these different kinds of sets and cardinals
can be proved from ZF and which properties are consistent with ZF, provided that ZF is consistent,

and therefore their negations cannot be proved from ZF.

We investigate such sets and their cardinals and show which properties can be proved from
ZF. Furthermore, we show that some relations between cardinals are consistent with ZF, provided

that ZF is consistent, by showing that such relations hold in some specific permutation models.

This thesis is arranged as follows. Chapter Il provides some basic concepts needed for later
chapters. Chapter III gives definitions of different kinds of infinite sets in the absence of AC as
well as summarizes some known results. Chapter IV gives new results that can be proved from

ZF. Chapter V contains consistency results concerning relations between some cardinals.



CHAPTER II

PRELIMINARIES

This chapter gives some background needed for this thesis.
Some background in Set Theory

All the work in the first three chapters is done in Zermelo-Fraenkel Set Theory (ZF) (for
more details on ZF see [3]). All basic notions in set theory are defined in the usual way. All
proofs in this chapter will be omitted. They can be found in any elementary set theory textbook

(for example, [3, 15]).
2.1 Cardinal numbers
Definition 2.1.1. For any sets A and B, we say A is equinumerous to B, written A ~ B, if there

is a bijection from A onto B.

The cardinality of a set A, denoted by | A|, is the number of all elements of A whose exact
definition will be given later. Two sets have the same cardinality if they are equinumerous, i.e.,
for any sets A and B,

|A| = |B|iff A ~ B.

Definition 2.1.2. A set m is a cardinal (number) if m = | A| for some set A and we say that A is

of cardinality m.

Finite and infinite sets

Each natural number is constructed so that it is the set of all smaller natural numbers,
namely, 0 = @, 1 = {0}, 2 = {0,1}, 3 = {0,1,2},... and so on. Let w denote the set of all
natural numbers. The construction of natural numbers as well as their basic properties will be

omitted and will be used in the ordinary way. Full details can be found in [3].

Definition 2.1.3. A set is finite if it is equinumerous to some natural number. A set is infinite if it

is not finite.

Theorem 2.1.4. Every finite set is equinumerous to a unique natural number.

From the above theorem, we obtain the definition for cardinalities of finite sets.
Definition 2.1.5. For a finite set A, |A| is the unique natural number which is equinumerous to A.

Remark. nis a finite cardinal iff n € w.



Cardinal arithmetic

Definition 2.1.6. Let m and n be any cardinals, say m = |A| and n = | B|. We define

I.m+n=|AUB|where AN B =0,

2.m-n=|AxB|,

3. m" = |BA| where BA = {f | f is a function from B into A}.
Theorem 2.1.7. For any set A, |P(A)| = |42| = 2/4l,

Theorem 2.1.8. For any cardinals m, n, and p,

I. m4+n=n+mandm-n=n-m,

2m+Mm+p =m+n)+padm-(n-p)=(m-n)-p,
3m-(n+p)=m-n)+ (m-p),

4. m"P =m".mP,

5. (m-n)?P =mP . nb,

6. (m")P = m"P,

Ordering cardinal numbers

Notation. For any sets A and B, we write A < B if there is a one-to-one function from A into B,

and we write A <* B if there is a function from B onto A.
Theorem 2.1.9. For any sets A and B, if A < B, then A <* B.
Remark. The converse of the above theorem is not necessarily true.

Definition 2.1.10. Let m and n be any cardinals, say m = |A| and n = |B|. We define m to be
less than or equal to n, written m < n,if A < B,
m to be less than n, written m < n, if m < nand m # n, and

m<*nif 4 <* B.
Notation. We may write m > n if n < m. Similarly for > and >*.
Theorem 2.1.11. For any cardinals m and n, if m is finite and n is infinite, then m < n.
Theorem 2.1.12 (Cantor’s Theorem). For all cardinals m, m < 2™,

Theorem 2.1.13. Let m, n, and p be cardinals. Then



I. m<m, (Reflexivity)
2. ifm<nandn <9p, thenm < p. (Transitivity)
3. ifm<nandn <m, thenm =n. (Antisymmetry)

Theorem 2.1.14. Let m, n, and p be any cardinals. If m < n, then

I. m+p<n+p

4. p™ <phifm#OQorp #0.
Remark. Itis not necessarily true that < in the above theorem can be replaced by <. For example,

1 <2but 1+ Ry =Ry =2+ Ry where Ry = |w]| (see Corollary 2.3.13).
Theorem 2.1.15. Let m and n be any cardinals. If m < n, then there exists a cardinal p such that

m+p=n

2.2 Ordinals
Definition 2.2.1. A set A is a transitive set if every member of A is a subset of A.
Definition 2.2.2. For any set 4, let e4= {{x,y) € A X A | x € y}.
Definition 2.2.3. A set « is an ordinal if « is transitive and €, is a well-ordering on «.
Example. Every natural number and @ are ordinals.
Theorem 2.2.4. Every well-ordered set is isomorphic to a unique ordinal.
Definition 2.2.5. For any ordinal «, its successor a + 1 is defined by
a+1=aU{a}.
Definition 2.2.6. For ordinals @ and S,
« is less than B, written o < B, if o € B,
« is less than or equal to B, writtena < B,ifa < B ora = B.
Notation. We may write 8 > o for @ < 8 and write 8 > « for o < 8.
Remark. For any ordinal «, o + 1 is the least ordinal greater than «.
Definition 2.2.7. Let o be an ordinal.
« is a successor ordinal if « = B + 1 for some ordinal .

« is a limit ordinal if o # 0 and « is not a successor ordinal.



A collection of sets with some property is called a class. Some class is too big to be a set
since its existence causes some paradoxes. A class which is not a set is called a proper class. For

example, the class of all sets, denoted by V, is a proper class.

Definition 2.2.8. Let ON denote the class of all ordinals.

2.3 Cardinal numbers and the Axiom of Choice

The Axiom of Choice (AC) was introduced by Zermelo in 1904. It states that every set can
be well-ordered. The full theory ZFC is ZF with AC.

Cardinal numbers with AC
The following theorem follows straightforwardly from Theorem 2.2.4.
Theorem 2.3.1 (Numeration Theorem). The Axiom of Choice implies that every set is equinumer-
ous to some ordinal.
The converse of Theorem 2.1.9 also holds if we assume AC.
Theorem 2.3.2. (AC) For any sets A and B, if A <* B, then A < B.

Definition 2.3.3. (AC) The cardinality of a set A is the least ordinal equinumerous to A.

Cardinal numbers without AC

Without the Axiom of Choice, we cannot guarantee that a set is equinumerous to some

ordinal. One may define the cardinality of a set A by
|A| ={B | B ~ A}
but, for A # @, it is too big to be a set. It is a proper class.

A concept of constructing a set is that every set is constructed from sets that have already
been defined. This idea can be obtained by iterating various set-theoretic operations starting
from 0. The class of well-founded sets is an example of such classes that is built up by such

construction.

Definition 2.3.4. For each ordinal o, we define R (o) recursively as follows.

R(0) = 0,
R(a + 1) = P(R(w)),
R(@)= U R(B) (xisalimit),

B<a



and let

WF = (J R(w).
a€ON
We call each element of WF a well-founded set.
Note that WF is a proper class while each R(«) is a set.
The Axiom of Foundation is one of Zermelo-Fraenkel axioms. It states that every set is a

well-founded set, i.e., V. = WF. Therefore, in ZF, every set is in R(«) for some ordinal «.

Definition 2.3.5. For any infinite set A, we define
|A] = €(4) N R(),

where €(A) is the class {B | A ~ B} and « is the least ordinal such that €(A4) N R(«x) # 0.

Alephs

Definition 2.3.6. The cardinal number of an infinite well-ordered set is called an aleph.
Remark. R is the least aleph.

Theorem 2.3.7. The class of all alephs is a proper class.

Lemma 2.3.8. For any infinite cardinal m and aleph R, if m < R, then wmv is also an aleph.
Theorem 2.3.9. If m and n are alephs, then m < norn <m.

Theorem 2.3.10. Every nonempty class of alephs has a least element.

Theorem 2.3.11 (Hartogs’ Theorem). For every cardinal w, there exists a least aleph, denoted

by R(m), such that X(m) £ m.
Theorem 2.3.12. For all alephs R, R - R = R,

Corollary 2.3.13. If m is an aleph and v is a cardinal such that n < m, then

I. m+n=m
2 m-n=m, ifn#0.

Theorem 2.3.14. The Axiom of Choice holds iff every infinite cardinal is an aleph.

More details about alephs can be found in [9].



Some background in Logic

We assume some basic knowledge on first-order logic. For a fixed language .Z, a structure
M for .Z, a sentence ¢, and a set of sentences T of .2, we write M F ¢ if ¢ is true in M or
M is a model of ¢, T = ¢ if T proves ¢, and Con(T) if T is consistent. All details about these
terminologies can be founded in [4]. The following theorems will be needed in Chapter V (for

proofs, see [10]).

Theorem 2.1. Let T and T be sets of sentences and M be a class. Suppose we can prove from T

that M # @ and M is a model for T'. Then if T is consistent, so is T'.

Theorem 2.2. For any sets of sentences T and any sentence ¢, T U {—¢} is consistent if and only

if T ¥ .



CHAPTER III

INFINITY WITHOUT CHOICE

Without the Axiom of Choice, it is not necessarily true that for any infinite set A, ® < A
(see [1, 2, 13]). Therefore, without AC, there are many kinds of infinite sets and the following

definitions are needed.
3.1 Definitions and some basic properties

Definition 3.1.1. A set A is Dedekind-infinite if ® < A. Otherwise A is Dedekind-finite. A
cardinal number is Dedekind-infinite (finite) if it is the cardinality of a Dedekind-infinite (finite)

set.

Remark. A Dedekind-infinite set is infinite but an infinite set is not necessarily Dedekind-infinite.

Therefore a Dedekind-finite set could be infinite.

Definition 3.1.2. A Dedekind set is an infinite Dedekind-finite set. A cardinal number is a

Dedekind cardinal if it is the cardinal number of a Dedekind set.
Theorem 3.1.3. [9] A set A is Dedekind-finite iff there is no bijection from A onto a proper subset
of A.
The next corollary follows.
Corollary 3.1.4. If a set A is Dedekind-finite and B C A, then |B| < |A|.

Theorem 3.1.5. [9] The union of a Dedekind-finite family of mutually disjoint Dedekind-finite

sets is Dedekind-finite.

Theorem 3.1.6. [14] If m and n are Dedekind-finite cardinals, then so are m + n and m - n.

The following theorem is needed for the proof of Theorem 5.3.1.7.

Theorem 3.1.7. [14] For all Dedekind-finite cardinals p # 0, if m < n where each of m and n is

either a natural number or an aleph, thenm -p < n-p.

Remark. It is easy to see that for any cardinal m, if 2™ is Dedekind-finite, then m is also
Dedekind-finite since m < 2™. But the converse is not necessarily true since it is consistent

with ZF that there is a cardinal m such that Xg £ m and Xg < 2™ (see Subsection 5.3.2).

Without AC, it cannot be proved that every infinite set A can be mapped onto w (see [8, 12]).

This leads to the following definitions.



Definition 3.1.8. A set A is weakly Dedekind-infinite if v =<* A. Otherwise A is weakly
Dedekind-finite. A cardinal number is weakly Dedekind-infinite (finite) if it is the cardinality

of a weakly Dedekind-infinite (finite) set.

Definition 3.1.9. A weakly Dedekind set is an infinite weakly Dedekind-finite set. A cardinal

number is a weakly Dedekind cardinal if it is the cardinal number of a weakly Dedekind set.

Remarks.

1. Every Dedekind-infinite set is weakly Dedekind-infinite but the converse is not necessarily

true (see [11, 13]).

2. Every finite set is weakly Dedekind-finite and so it is Dedekind-finite.

3.2 Cardinal relations in ZF

Notation. Let A be a set. We let

1. fin(A) denote the set of all finite subsets of A.
2. inf(A) denote the set of all infinite subsets of A.
3. dfin(A) denote the set of all Dedekind-finite subsets of A.
4. dinf(A) denote the set of all Dedekind-infinite subsets of A.
5. dfin*(A) denote the set of all weakly Dedekind-finite subsets of A.
6. dinf*(A) denote the set of all weakly Dedekind-infinite subsets of A.
7. ded(A) denote the set of all Dedekind subsets of A.
8. ded*(A) denote the set of all weakly Dedekind subsets of A.
9. part(A) denote the set of all partitions of A.
10. [A]" denote the set of all n-element subsets of A, where n € w.

11. A" denotetheset A x A X ... x A, where n € w.
—,_/

n copies

The cardinals of those (1)—(10) above are denoted by the same notation as the corresponding

sets with A replaced by |A4]|.

Theorem 3.2.1. For any infinite cardinal m, we have the following:

1. m < fin(m) < dfin*(m) < dfin(m) < 2™
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2. ded*(m) < ded(m) < inf(m) < 2™.
3. dinf(m) < dinf*(m) < inf(m) < 2™
4. ded*(m) < dfin*(m) and ded(m) < dfin(m).

5. fin(m) <inf(m).

6. 2™ < part(m).

7. ifm>5and Rg £ 2™, then 2™ < part(m).

8. fin(m) < 2™,

Proof. (1)—(4) follow directly from the definitions. For the proof of (6)—(7), see Proposition 8.3
in [6] and for the proof of (8), see Theorem 3 in [5]. To prove (5), let A be an infinite set such
that m = |A|. Tt is easy to see that the map S +— A \ S is an injection from fin(A) into inf(A), so
fin(m) < inf(m). O

The relations (1)—(5) from Theorem 3.2.1 can be shown by the following diagram. The

cardinal below a line is less than or equal to the one above it.

part(m)
2m
inf(m)
~
dfin(m) dinf*(m)
ded(m)
dfin* (m) dinf(m)
~
ded*(m)
fin(m)
m \



CHAPTER IV

SOME RESULTS IN ZF

This chapter gives new results concerning different kinds of finite and infinite sets that can

be proved from ZF. We start with some basic properties.

It has been shown that if there is an injection from a set to some of its proper subsets, then
such a set is Dedekind-infinite (see [9]). The following theorem shows the analogous property for

weakly Dedekind-infinite sets.

Theorem 4.1. For any set A, if there exists a surjection from a proper subset of A onto A, then A

is weakly Dedekind-infinite.

Proof. Let A be a set. Assume there are S C A and a surjection f:S — A. Define

e x] = £ 7"X]]  foralln € w \ {0} and X C A.

Claim 1. For all m,k € w \ {0} and X C A4,

STOOX] = T

Let X € A. We will prove by induction on k. The case k = 1 follows directly from the
definition. Assume k > 1. Then k =/ + 1 for some / € w \ {0}. By the induction hypothesis,
[ IX] = 77" [X]). Thus

f—(m+k)[X] - f—(m-l-l—i-l)[X]
= [T
= [T
= [P X
= [ XL

Claim 2. For any m,n € w \ {0}, if m % n, then f~™"[A\ S]N f7"[4A\ S] = 0.

Letm,n € w\ {0}. Assume m < n, then there exists k € w \ {0} such that k + m = n. By
Claim 1, f"[A\ S] = f~™[f¥[A\ S]]. Since f*[4\ S]C S, f*[A\S]N(A\S) = 0.
Thus f~"[A\ S]N f7*[A\S] = f7"[A\SIN f7[f T[4\ S]] = 0.

Define g: S — o by

n ifae f~@FD[A\ S] for some n € w;

gla) =
0 otherwise.
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By Claim 2, g is well-defined. Since S C A4, A\S # 0. Since f is surjective, f "![4\S] # @ and

50, by induction, f~"*+D[A4\ S] # @ forall n € w. It follows that g is onto and so w <* A. [

In [9], it has been shown that the union of a Dedekind-finite family of mutually disjoint
Dedekind-finite sets is Dedekind-finite. Such property for weakly Dedekind-finite sets is stronger

since the union need not be disjoint.

Theorem 4.2. A weakly Dedekind-finite union of weakly Dedekind-finite sets is weakly Dedekind-

finite.

Proof. Let I be a weakly Dedekind-finite set and, for each i € I, let X; be a weakly Dedekind-
finite set. It is trivial if I is empty. Without loss of generality, we may assume all X;’s are

nonempty.

Suppose | J;<; Xi is weakly Dedekind-infinite, i.e., there is a surjection f:|J;c; Xi — o.
For eachi € I, since X; is weakly Dedekind-finite, f[X;] must be a finite subset of w (otherwise

X; can be mapped onto w).

Suppose {| f[X;i]| | i € I} is infinite. Define g: I — w by g(i) = | f[X;]|. Then ran(g)
is an infinite subset of w, so w & ran(g) <* I, but I is weakly Dedekind-finite, a contradiction.

Hence {| f[X;]| | i € I} is finite.

Since | J;¢; f[Xi] = w and each f[X;] is finite for all i € I, I is infinite and there exists
n € wsuchthat I' := { f[X;] | | f[Xi]| = n and i € I} is infinite.

Since I' € [w]" and [w]" =< " by the map {my,ms,...,m,} +— {(my,ma,...,
my) where m; < mp < ... < m, and 0" is countable, I" is countable. Thus w ~ I'. Let
a € I'. Define g: I — I by

. SIXi] if fXi] el
gi) =
a otherwise.
It is easy to see that g maps [ onto I'. Then w ~ I' <* [ but I is weakly Dedekind-finite, a

contradiction.
Hence | J;<; Xi is weakly Dedekind-finite. O
We have shown in [14] that if m and n are Dedekind-finite cardinals, then so are m + n

and m - n. The following corollary shows that the property also holds for weakly Dedekind-finite

cardinals.

Corollary 4.3. If m and n are weakly Dedekind-finite cardinals, then so are m + nand m - n.
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Proof. Let m and n be any weakly Dedekind-finite cardinals, say m = |M| and n = |N| where

M and N are disjoint. By Theorem 4.2, M U N is weakly Dedekind-finite and so is m + n.

For the case m - n, since M x N = | J{M x {n} | n € N} where each M x {n} is weakly
Dedekind-finite (if not, M is weakly Dedekind-infinite) and N is weakly Dedekind-finite, by
Theorem 4.2, m - n is weakly Dedekind-finite. O

Corollary 4.4. Let m be a cardinal and n € w. If m is (weakly) Dedekind-finite, then so is
m”. This statement also holds if we replace “(weakly) Dedekind-finite” by “(weakly) Dedekind-

infinite” for the case n # Q.
Proof. The case m is (weakly) Dedekind-finite follows straightforwardly from Theorem 3.1.6 and
Corollary 4.3 by induction.

The case m is (weakly) Dedekind-infinite follows directly from the fact that m < m” for all

ne€w\ {0} O

Theorem 4.5. For any cardinals m and n, if m > 2 and n is infinite, then m" is weakly Dedekind-

infinite. In particular, 2" is weakly Dedekind-infinite for all infinite cardinals n.

Proof. Let m be a cardinal such that m > 2 and n be any infinite cardinal, say m = |M| and

n=|N|.Letm,m’ € M be such that m # m’. Define F: ¥ M — w by

|/ im0l £ [{m)] ds finite;

0 otherwise.

F(f) =

Since N is infinite, by Theorem 2.1.11, for each k € w, there exists N € N such that | Ni| = k

and then F ((Ng x {m}) U ((N \ Ng) x {m’})) = |Nx| = k. Hence F is onto, so w <* ¥ M,

i.e., m" is weakly Dedekind-infinite. O
Next we will give some results concerning relations between some cardinals.

Lemma 4.6. [5] fin(«) &~ « for all infinite ordinals o.

Corollary 4.7. For any aleph R,

0 = ded*(R) = ded(¥) < & = fin(R) = dfin*(R) = dfin(R)

< dinf(R) = dinf*(R) = inf(R) = 2¥.

Proof. Let R be an aleph, say X = |«| for some infinite ordinal «. Then fin(X) = R follows from

Lemma 4.6.
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Since R = fin(R) < inf(R), by Theorem 2.1.15, there exists a cardinal p such that R +p =
inf(R). Thus 2% = fin(R) + inf(R) = R + R + p = R + p = inf(R).

Since every infinite subset of « is Dedekind-infinite and so it is weakly Dedekind-infinite,
dinf(R) = dinf*(R) = inf(R). It follows that all weakly Dedekind-finite and Dedekind-finite
subsets of « are finite. Hence dfin*(X) = dfin(R) = fin(R) and ded* (R) = ded(R) = 0. O

Theorem 3 in [5] shows that for all infinite cardinals m, fin(m) < 2™. We show that this
cannot be proved from ZF if we replace fin(m) by dfin* (m). Moreover we show that dfin*(m) <

2™ provided that m is weakly Dedekind-infinite. We first need the following lemma.

Lemma 4.8. For any set M and ordinal o, if o < a < dfin*(M), then o = TI for some partition

T of M.

Proof. Let M be any set and « be an ordinal such that ® < o < dfin*(M). Then there is a
one-to-one -sequence (mg, my, My, ..., M B - .} of dfin*(M). Define an equivalence relation
~onMbyx ~yift VB <a(x e mg <> y € mg). Forany x € M and 0 < p < «, define
Dy, by

(V{m, | x em,} ifx € mg forsome f < u;
Dy = {t<n

M otherwise;

and define g: M — P(a) by g(x) ={u <a | x € my and Dy, € m,}.
Claim 1. x ~ y iff g(x) = g(y) forall x,y € M.

It is easy to see that if x ~ y, then g(x) = g(y). The converse also holds since if
x 7t y and B is the least ordinal such that x € mg but y ¢ mg,theny € D, g = Dy g, so
Dyg & mg and thus B € g(x) but B ¢ g(y). Hence there is a one-to-one correspondence
between {[x]~ | x € M} and {g(x) | x € M}.

Claim 2. g(x) is finite for all x € M.

Suppose for a contradiction that g(x) is infinite for some x € M. Note that for all 1, u, €
g(x) such that ;1 < 2, Dy, C Dy, because Dy, € my, and Dy, S Dy yy € my,.
Since g(x) is an infinite set of ordinals, there is a one-to-one w-sequence {flg, tt1, 42, .. .)e Of
g(x) where g < p1 < po2 < .... Then we have my, 2 Dy, D Dxyu, D .... Define
fimy, — w by
n ify € Dy, \ Dxp, , forsomen € ;

fy) =

0 otherwise.

Then f is a surjection, so Xg <* |m,,,| which contradicts m,,, € dfin*(M).
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Hence {g(x) | x € M} C fin(«). Since, by Lemma 4.6, fin(a) =~ o, {g(x) | x € M} < .
Thus {g(x) | x € M} ~ y for some y < . Now we will show that « < y. Since {[x]~ | x €
M} ~ {g(x) | x € M} ~ y and there are @ > w m,’s which are union of ~-classes, y is infinite.

Let n:{g(x) | x € M} — y be a bijection.

Suppose for a contradiction that {n(g(x)) | x € m,} is infinite for some ¢t < «. Since
{[x]~ | x e m} ~ {g(x) | x € m;} =~ {n(g(x)) | x € m,} which is an infinite set of ordinals,
o < {[x]~ | x € m,}, so there is a one-to-one w-sequence {[xo]~, [X1]~, [*¥2]~,...)». Define a
function f':m, — w by
n if x € [xu]~;

f(x) =

0 otherwise.

Again we get a contradiction from the fact that f” is a surjection but m, is weakly Dedekind-finite.

Hence {n(g(x)) | x € m,} is a finite subset of y for all 1 < «. Define h:o« — fin(y) by
h() = {n(g(x)) | x € m,}. Since 7 is an injection and all m,’s are distinct, 4 is an injection. Thus
a = fin(y) ~ y. Hence ¢ ~ y and so {[x]~ | x € M} is the partition as desired. Finally, since the

bijections @ & fin(«) and y ~ fin(y) are canonical, so is the bijection {[x]~ | x e M} > «. [

Theorem 4.9. For any cardinal m, Ry <* m iff dfin*(m) < 2™.

Proof. Let M be a set such that m = | M |.

(<) Assume dfin*(m) < 2™. Then dfin*(M) C P(M). Thus there exists X C M such

that w <* X,sow <* M, ie., Rg <* m.

(=) This follows closely to the proof of Theorem 3 in [5]. It is clear that dfin*(m) < 2™,
Suppose Ry <* m and dfin*(m) = 2™. We will get a contradiction to Hartogs’ Theorem by

constructing a one-to-one a-sequence of dfin* (M) for any «.

Let B:dfin*(M) — P(M) be a bijection. Let my = B~!(M) and for any k € w, let
Mgy, = B~ (my). Since M ¢ dfin*(M) and B is an injection, the sequence (mg,m,ma, .. .)e

is a one-to-one w-sequence of dfin*(M).

Assume there exists a one-to-one a-sequence (mo,my,ms, ..., mg,...)q of dfin*(M). We

will construct an m, by Cantor’s diagonal proof that X < P(X) for any X, as follows.

Since a < dfin* (M), by Lemma 4.8, there is a partition IT of M such that [T ~ a ~ {m, |

L <ol

Let H:{m, | t < a} — II be a bijection. Define h: M — {m, | 1 < a} by h(x) = m, if
x e Him,)). Let F = Boh,so F: M — P(M) and, as in the usual proof of Cantor’s Theorem,
My :={x € M | x ¢ F(x)} ¢ ran(F). Note that % is a surjection and so B(m,) € ran(F)
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forallt < a. Let mq = B~1(My). Then myq ¢ {m, | t < a}. Hence we have a one-to-one

(o + 1)-sequence of dfin*(M ). This completes the proof. O
Theorem 4.10. For any cardinal m and any aleph R, if ® < dfin*(m), then o8 < om

Proof. Let m be a cardinal number, say m = |M |, X be an aleph, and let « be the least ordinal such
that |o| = N. Assume R < dfin*(m). Then @ < dfin*(M). By Lemma 4.8, there exists a partition
IT of M such that « & II. Let f : « — II be a bijection. Define a function F : P(a) — P(M)

by F(x) = | f[x] for all x € P(«). Since f is an injection, so is F. Hence P(a) < P(M), so
28 <om, O

Since X¢ <* m for all infinite m is a consequence of AC which is not provable in ZF (see
[8, 12]), Theorem 4.9 tells us that dfin*(m) < 2™ cannot be proved from ZF for an arbitrary
m. A condition that makes the statement provable from ZF is that dfin*(m) is Dedekind-infinite.
This is Corollary 4.12 which immediately follows from Theorem 4.10, by letting X = Ry, and
Corollary 4.11.

Corollary 4.11. Let m be a cardinal. The following are equivalent.

3. 2% <om,

4. dfin*(m) < 2™,
Proof. (1 & 2) follows from Lemma 4.11 in [7], (2 < 3) follows from Fact 8.1 in [6], and
(1 < 4) follows from Theorem 4.9. O

Corollary 4.12. For any cardinal wm, if Rg < dfin*(m), then dfin*(m) < 2™.
Proof. Follows from Theorem 4.10 and Corollary 4.11. O

As mentioned earlier, it has been shown in [5] that fin(m) < 2™ for any infinite cardinal m.

This fact also follows from Theorem 4.9 and Corollary 4.11.

Corollary 4.13. For any infinite cardinal m, fin(m) < 2™,

Proof. Let m be an infinite cardinal, say m = |M|. If Rg <* m, then, by Theorem 4.9, fin(m) <

dfin*(m) < 2™,
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Assume R £* m. By Corollary 4.11, 8y £ 2™, i.e., P(M) is Dedekind-finite. Since M
is infinite, fin(M) C P(M). By Corollary 3.1.4, fin(m) < 2™. O

Corollary 4.14. For any cardinal m, ded* (m) < 2™,

Proof. Let m be a cardinal, say m = |M|. If m is finite, then ded*(m) = 0 < 2™. Since
ded*(m) < dfin*(m) and ded*(M) C P(M), the proof for the case m is infinite is similar to

proof of the previous corollary. O
Corollary 4.15. For any cardinal m > 5, dfin* (m) < part(m).
Proof. Let m be a cardinal number such that m > 5. By Theorem 3.2.1(6), 2™ < part(m) and

so if dfin*(m) < 2™, we’re done. Assume dfin*(m) £ 2™. By Corollary 4.11, 8¢ £ 2™. By
Theorem 3.2.1(7), 2™ < part(m), so dfin*(m) < part(m). O

Cantor’s Theorem, stating that m < 2™ for all cardinals m, can be improved for infinite
cardinals as follows.
Theorem 4.16. For any infinite cardinal m, m < inf(m).
Proof. Let m be an infinite cardinal, say m = |M|. Suppose m = inf(m). Then there exists

a bijection f:inf(M) — M. We will show that there is an injection from ON into M which

contradicts Hartogs’ Theorem. Therefore we can conclude that m < inf(m) since m < inf(m).

Define g: ON — M recursively by

gla) = f(M\{gP)|p <a})
for all « € ON.
In order to justify the definition of g, we first prove the following claim.
Claim. M \ {g(B) | B < «} is infinite for all « € ON.

If « is finite, we’re done. Assume « is infinite. Suppose M \ {g(B) | B < a} is finite. Note
that [{g(B) | B < a}| < |a|. By Corollary 2.3.13, m = [M| = [M \{g(B) | B < a}| + [{g(B) |
B <a} <|M\{gB)| B < a}| + |¢|] = |e|. Thus m is an aleph and so, by Corollary 4.7,
2™ = inf(m). By the assumption, m = inf(m) = 2™. This contradicts Cantor’s Theorem. Hence

M\ {g(B) | B <} is infinite.

Now we will prove by transfinite induction that g is one-to-one. Let « € ON. Assume that

for all ordinals B and y such that y < B8 < «, g(B) # g(y). Fix B < . Then g(8) € M \{g(y) |
y <Bybutg(B) € M\{g(y) |y <a}. Thus M\{g(y) |y < B} # M \{g(y) | y <aj. Since



18

Jf is an injection, g(B) = fF(M \{g(y) | v < B} # f(M \{g(y) | v <a}) = g(a). Thus g is

one-to-one. O



CHAPTER V

CONSISTENCY RESULTS FROM PERMUTATION MODELS

5.1 ZFA

The set theory with atoms, denoted by ZFA, is characterised by the fact that it admits objects

other than sets.

Definition 5.1.1. Atoms or urelements are objects which do not have any elements and which are

distinct from the empty set.

The language of ZFA is 2z = {€,A} where € is a binary relation symbol and A is a
constant symbol representing a set of atoms. The axioms of ZFA are like the axioms of ZF, except

the following.

Axiom of Empty Set (for ZFA):
Ix(x ¢ AAVZ(z ¢ x)).

Axiom of Extensionality (for ZFA):

VxVy((x¢A/\y¢A)—>(Vz(z€x<:>z€y)—>x=y)).

Axiom of Atoms:

Vx(x € A o (x # 0 A—Jz(z € x))).
Theorem 5.1.2. [9] Con(ZF) implies Con(ZFA + A is infinite).
Definition 5.1.3. For any set S and ordinal o, we define
PoS) =S,
PEEL(S) = PU(S) U P(P(S)).
PYS) = |J PB(S) (aisalimit ordinal).

B<a

Further let
Pe(S) = U PS).

a2 €ON
Theorem 5.1.4. [4] If M is a model of ZFA and A is the set of atoms of M, then M = P> (A).

The class P°° (@) which is a subclass of M is a model of ZF.

Notation. Let V denote P> (9). We call V the kernel or pure part and call members of \Y pure

sets.

Note that ON C V.
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5.2 Permutation models
In this section, A is a fixed but arbitrary set of atoms in a model M of ZFA.

Definition 5.2.1. Let G be a group of permutations of A. A set F of subgroups of G is a normal
filter on G if for all subgroups H and K of G:

(i) GeF,

(i) if H € Fand H C K, then K € F,
(iii) if H € Fand K € F,then H N K € F,
(iv) if r € Gand H € F,thenmHn ™' € F,

(v) foreacha € A, {w € G| n(a) =a} € F.

Throughout this section, G is a group of permutations of A and F is a normal filter on G.

Definition 5.2.2. Let 7 € G. Using the hierarchy of P*(A4)’s, we can define 7 (x) for every x in
M as follows:

n(@) =0, n(x)=mn[x]={n(y)|yexj

Remarks.

1. We sometimes write 7 x for 7(x).

2. It can be proved by induction that 7 is one-to-one.

Lemma 5.2.3. Let w € G. Then, for any x and y in M,

1. w{x,y}={nx,ny}and n{x,y) = (wx,wy).
2. if f is a function, then rwf is a function and (xf)(wx) = w(f(x)).

3. nx = Xx forall x eV.

Proof. Let x and y be any elements in M.

1. Clearly w{x, y} = {mx,wy}. We have

m(x,y) = w{ix}{x, yi} = {mix} wix, yi} = {{mxh {nx, wy}} = (nx, wy).

2. Let f be a function. Then, by 1, 7 f = {{(mx, 7 (f(x))) | x € dom(f)} is a relation. Since &

is one-to-one, i f is a function and hence (7 f)(wx) = w(f(x)).

3. This can be proved straightforwardly by induction on V. O
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Definition 5.2.4. For each x in M, we define a symmetric group of x
symg(x) ={m € G| mx = x}.

Then symg(x) is a subgroup of G. We say x is symmetric (with respect to F) if symg(x) € F.

Define a permutation model
Y = {x | x is symmetric and x C V}.

Theorem 5.2.5. [9] V is a transitive model of ZFA, \Y CV,and AeV.

The cardinality of a set M, denoted by m, in the model V, is defined by
m=&M)NPY(A) NV,
where €¢(M) = {x € V | x & M} and « is the least ordinal such that €(M) N P*(A) NV # 0.

We will work on the theory ZFA + AC (for the consistency, see [9]). Then we have that AC
holds in the kernel V (see [9]).

By Jech-Sochor Embedding Theorem (see [4]), we can embed a permutation model into
a well-founded model, so every relation between cardinals in a permutation model also holds in
a well-founded model. For example, if fin(m) < inf(m) holds in V for some cardinal m in V,
then, by Jech-Sochor Embedding Theorem, there is a well-founded model W of ZF such that

fin(n) < inf(n) holds for some cardinal nin W.

Hence, in order to prove that a relation between some cardinals is consistent with ZF, it is

enough to find a permutation model for the statement.

Definition 5.2.6. A set I of subsets of A is a normal ideal if for all £, F C A:

() vel,

(i) if Eeland F C E,then F € I,

(i) if Eeland F € I,then EU F €1,

(iv) if r e Gand E € I, then n(E) € I,

(v) foreacha € A, {a} € I.
Remark. fin(A) is a normal ideal.
Definition 5.2.7. For each S C A, let

fixg(S) ={m € G| n(a) =aforalla € S}.

Then fixg(S) is a subgroup of G.
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Theorem 5.2.8. [9] Given a normal ideal I, then
F ={H | H is a subgroup of G such that fixg(E) € H for some E € I}

is a normal filter.
Note that given a normal ideal 7, there is a corresponding normal filter F as defined above
and we say V is defined from I if V is the permutation model defined from such F.

Definition 5.2.9. For each x and each £ € I, we say that E is a support of x if fixg(E) C

symg(x).

Remarks.

1. x is symmetric iff there exists £ € I such that E is a support of x. As a result, we have that

x € VY iff x has a support and x C V.

2. For each x and each E, F € [, if E is asupport of x and E C F, then F is also a support

of x.

5.3 Some consistency results
5.3.1 The basic Fraenkel model

Definition 5.3.1.1. Let A be a countable infinite set and G be the group of all permutations of A.
Let VE, be the permutation model defined from the normal ideal fin(A4). We call Vg, the basic
Fraenkel model.

The following two lemmas are from [6].

Lemma 5.3.1.2. In Vp,, for any S C A with support E, S is either finite or co-finite, i.e., A\ S
is finite. Furthermore, if S is finite, then S C E, and if S is co-finite, then (A\ S) C E.

Lemma 5.3.1.3. Letm = |A|. Then Vf, F Ry £ 2™.

All proofs below in this subsection are done in Vf,. Throughout this subsection, let m =

| A| unless otherwise stated.

Corollary 5.3.1.4. A is weakly Dedekind-finite.

Proof. Follows from Lemma 5.3.1.3 and Corollary 4.11. O
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Theorem 5.3.1.5. In Vg, we have the following.

1. dfin*(m) = dfin(m) = 2™
2. fin(m) = inf(m) = ded(m) = ded™ (m).
3. 0 = dinf(m) = dinf*(m).

4. 0 <m < fin(m).

Proof. By Lemma 5.3.1.3, Ry £ 2™. By Corollary 4.11, Ry £* m,ie., v £* A. Thus w £* S
forall S C A, so P(A) C dfin*(A) and inf(A) C ded*(A). Since dfin*(A4) C dfin(A) € P(A)
and ded* (A4) C ded(A) C inf(A), dfin*(A4) = dfin(4) = P(A), so @ = dinf(A4) = dinf*(A4) and
ded*(A) = ded(A) = inf(A).

It remains to show that fin(m) = inf(m). Define f:fin(4A) — inf(A4) by f(S) = A\ S
for all S € fin(A4). Obviously f is one-to-one. Now let S € inf(A4). Since S has a support, by
Lemma 5.3.1.2, S is cofinite. Thus A\ S € fin(4) and f(A\ S) =4\ (4\ S) = S. Hence f

is onto, and so fin(m) = inf(m).

By Lemma 5.3.1.3, o £ P(A), so @ Z fin(A). Since the map a + {a} is one-to-one
and maps A onto a proper subset of fin(A) where fin(A4) is Dedekind-finite, by Theorem 3.1.3,
A < fin(A), i.e., 0 < m < fin(m). O

Remark. From the above theorem, we can conclude that
VF, E 0 = dinf(m) = dinf*(m) <m

< fin(m) = inf(m) = ded(m) = ded*(m)

< dfin*(m) = dfin(m) = 2™.
Corollary 5.3.1.6. Vg, F 2™ = 2 - fin(m).
Proof. By Theorem 5.3.1.5, Vg, F fin(m) = inf(m) and so 2™ = inf(m) + fin(m) = 2 -
fin(m). H
Theorem 5.3.1.7. Vg, F In(0 < ded*(n) = ded(n) < dinf(n) = 2").
Proof. Letn = Ry + m where m = |A|. By Lemma 5.3.1.3, 8¢ £ 2™. Thus 8¢ £ inf(m) and,

by Corollary 4.11, g £* m, i.e., @ £* A. Then A € ded*(w U A) where |w U A| = n, and so
0 < ded* (n).

Let S € ded(w U A). Then § is infinite and Dedekind-finite. Since @ A S and every

infinite subset of w is equinumerous to w, S N w is finite and so S N A is infinite. Since w £* A,
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w £* SN A Hence S = (S Nw) U (S N A) is a finite union of weakly Dedekind-finite sets
which is weakly Dedekind-infinite by Theorem 4.2. Then S € ded*(w U A). Thus ded(w U A) C
ded*(w U A), and so ded(w U A) = ded*(w U A). Hence ded(n) = ded*(n).

Next claim that ded(n) = Rg - inf(m).

Since the map S — (S Nw, S N A) from ded(w U A) onto fin(w) x inf(A) is a bijection,

ded(w U A) ~ fin(w) x inf(A). By Lemma 4.6, v ~ fin(w). Thus we have ded(n) = R - fin(m).

Since AC holds in V, 280 is an aleph. Since 8y < 2% and inf(m) is Dedekind-finite, by
Theorem 3.1.7, R - inf(m) < 2%0 . inf(m) < 2% . 2™ = 2¥o+m — 2" Hence ded(n) < 2°. It

remains to show that dinf(n) = 2".

Let S € dinf(w U A). Since A is Dedekind-finite, so is S N A. Since S is the disjoint union
of S Nw and S N A where S is Dedekind-infinite, S N w is infinite. Thus S Nw € inf(w). Hence
dinf(w U A) = inf(w) x P(A) by the map S — (S Nw,S N A), so dinf(n) = inf(Rg) - 2™. By
Corollary 4.7, dinf(n) = 280 .2m = 28o+m — o0, O

5.3.2 The second Fraenkel model

Definition 5.3.2.1. Let A be a set consists of countably many mutually disjoint 2-element sets,
1.€.,

A:U{Pn|n€a)},

where P, is a 2-element set for n € @ and all P,’s are mutually disjoint. Let G be the group of
all those permutations of A which preserve the pairs Py, i.e., 1(P,) = P, foralln € w. Let VF,
be the permutation model defined from the normal ideal fin(4). We call VF, the second Fraenkel

model.

Theorem 5.3.2.2. [9]

1. Foreachn € w, P, belongs to VF,.
2. The set {P, | n € w} belongs to VF,. In particular, { P, | n € w} is countable in VE,.

3. There is no choice function on {P, | n € w}.

Throughout this subsection, all proofs are done in VF, and let m = |A|.

By modifying the proof of Theorem 5.3.2.2 (3) in [9], we have the following theorem.

Theorem 5.3.2.3. Vr, F Ry £ m.

Proof. Suppose there exists f € VF, such that f:w — A is one-to-one. Let E be a support of

f. Without loss of generality, we may assume that £ = {aqg, by, ..., ay, by} for some k € w
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(this can be done since, if E is a support of f, thensois | J{P, | n € w and P, N E # @} since
EC|{Py|n€e€ewand P, NE #0@}).

Since f[w] is infinite and E is finite, there exists a € f|w] \ E. Then a € P; for some
[ €ew.Leth € P;\ {a} and 7 € fixg(E) be such that 7(a) = b. Since a € f[w],a = f(m) for
some m € w. Since m € V, w(m) = m and so, by Lemma 5.2.3(2), (zf)(m) = (nf)(zm) =
w(f(m)) = w(a) = b # a = f(m). Hence n(f) # f. This contradicts the fact that E is a
support of f. Hence there is no such f in Vf,,sow £ A,i.e., 8o £ m. O

Theorem 5.3.2.4. Vp, F Ry < 2™
Proof. Note that A = | J{P, | n € w} where all P,’s are pairwise disjoint 2-element sets.
Define f:w — {P, | n € w}byn — P,. Clearly, f is one-to-one. Next we will show

that f € Vp,. Since w and {P, | n € w} are in VF, where Vp, is transitive and satisfies

the Axiom of Paring, f € Vp,. It remains to show that f is symmetric. Let ¥ € G. Then

(7f)(n) = (xf)(wn) = n(f(n)) = 7a(Py) = P, = f(n) foralln € w. Thus n(f) = f, so
symg(f) = G where G belongs to any normal filter. Then f is symmetric. Hence f belongs to
VFE,. Since {P, | n € w} € P(A), we can conclude that Vg, E Ry < 2™. O

Corollary 5.3.2.5. Vg, F Ry <* mand Vp, F dfin*(m) < 2™.

Proof. Follows from Theorem 5.3.2.4 and Corollary 4.11. O

Lemma 5.3.2.6. For any subset S of A in VF,,

Se=""[Cr s O] B,

neN meM
for some subsets M and N of @ such that N is finite and M N N = @ where ¢, € P, for all
neN.

Proof. 1t is easy to see that forany S € A4, S = |J{c,} U |J Py for some N C w and

nenN meM
M Cw\ N wherec, € P, foralln € N.

Since VF, F Ry £ m by Theorem 5.3.2.3 and N < A by the map n — ¢,, N must be
finite. -

Theorem 5.3.2.7. In VF, we have the following.
1. m < fin(m) = dfin*(m) < dfin(m) = 2™.

2. ded(m) = inf(m) = dinf*(m).

3. 0 = dinf(m) = ded*(m).
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Proof. By Theorem 5.3.2.3, Vg, FE 8¢ £ m. Then for any subset S of 4, o £ S.
Thus dfin(4) = P(A) and ¥ = dinf(A4), i.e.,, Vf, F dfin(m) = 2™ and Vg, F 0 = dinf(m).
Since every subset of A is Dedekind-finite, inf(A4) = ded(A4).

Note that a +— {a} maps A onto a proper subset of fin(A4). If fin(4) =~ A, then, by
Theorem 3.1.3, v < fin(A) = A4, i.e.,, Xo < m, a contradiction. Hence fin(4) % A and so

m < fin(m).

Now we will show that inf(A4) = dinf*(A4). Since dinf*(A4) C inf(A), it remains to show

that inf(A) C dinf*(A).

Let S € inf(4). By Lemma 5.3.2.6, S = |J {cx} U |J Pp, for some finite N C w
and some infinite M C w \ N where ¢, € P, fo;l ea]l\i n e Nﬁeﬁlus I[N U M| = K. Define
g:S - NUM by g(a) = kifa € Pg. Itis easy to see that g is onto. Thus Xy <* |S], so
S € dinf*(A). Hence dinf*(A) = inf(A) and so dfin*(A) = fin(A4) and ded*(A) = ¢.

Since fin(m) < 2™, Vp, F fin(m) = dfin*(m) < dfin(m) = 2™. O

5.3.3 The ordered Mostowski model

Definition 5.3.3.1. Let 4 be a countable infinite set with a linear order <™ on A such that 4
is densely ordered and does not have a smallest or greatest element, i.e., A is isomorphic to the
set of rationals Q. Let G be the group of all order-preserving permutations of A. Let Vs be
the permutation model defined from the normal ideal fin(A). We call Vs the ordered Mostowski

model.

Lemma 5.3.3.2. [4] <M belongs to V. Then for any atoms ai and a,, we can decide in Vg

whether a; <™ ay or a, <M aj.

All proofs in this subsection are done in Vs and let m = |A|.
The next lemma is modified from Lemma 7.12 in [4].

Lemma 5.3.3.3. Let E € fin(A), say |E| = n for some n € w. Then there are exactly 22" 1

subsets of A with support E where 2" of them are finite.

Proof. Let S C A be such that E is a support of S. Assume E = {ai,as,...,a,} where

M M M q,. Let

ap <7 ay < e <

Io={acA|a<May,
Ikz{aeAlak<Ma<Mak+1} for]l <k <n, and

I, ={acAl|a, <M a}.
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We will show that for all k < n, either [ NS = @ or [ € S. Let1 < k < n. Suppose
Iy NS #@,sayso € [z NS. Thenax <™ 5o <™ ap4q. Lets € Iy. Thenay <M s <M ap ;.
Let w € fixg(E) such that 7(s9) = 5. Thus s = 7 (s9) € 7(S) = 5,50 [ € S. The casesk =0

and k = n are similar.

Let N ={i|a; € Stand K ={j | I; € S}. Then

S = U{ai}U U Ij.

ieN jeK
Since N € {1,2,...,n}and K C {0,1,2,...,n}, there are 2" and 2"*! possible forms of N
and K, respectively. It follows that there are 2"+ ®*+1) = 227+1 pogsible forms of S where, when

K = @, 2" of them are finite. O
Theorem 5.3.3.4. [6] Vs F R £ 27

Lemma 5.3.3.5. For any cardinals m and n, if m <* n, then 2™ < 2"

Proof. Let m and n be cardinals, say m = |[M| and n = |[N|. Assume m <* n, i.e., there is

f: N — M which is onto. Define g: P(M) — P(N) by
g(X)= fYX] forall X C M.

Since f is onto, g is one-to-one. Hence 2™ < 2", O

Corollary 5.3.3.6. V), E 2fin(m) — 22"

Proof. Follows from Theorem 5.3.3.4(3) and Lemma 5.3.3.5. ]

Theorem 5.3.3.7. In Vs we have the following.

1. dfin*(m) = dfin(m) = 2™
2. inf(m) = ded(m) = ded*(m).

3. 0 = dinf(m) = dinf*(m).

Proof. Since Vi E Ry £ 2™, the proof is similar to the proof of Theorem 5.3.1.5. U
Theorem 5.3.3.8. V) F 0 <m < fin(m) < inf(m) < 2™,

Proof. Since Vpr E Ry £ 2™ and inf(A4) C P(A), by Corollary 3.1.4, Vs F inf(m) < 2™. By
Theorem 5.3.3.4, 0 < m < fin(m).

Now we will show that Vs F fin(m) < inf(m). Since A is infinite, by Theorem 3.2.1 (5),

fin(m) < inf(m).
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Suppose there exists f € Vs such that f:inf(A4) — fin(A) is one-to-one. Let E € fin(A)
be a support of f,say |E| = n. By Lemma 5.3.3.3, there are 22" ! subsets of 4 with a support
E and there are 2" of them which are finite. Thus the remaining 22”1 — 2" are infinite subsets of
A with support E. Since there are 2" subsets of E and 22"T1 — 2" > 2" = |P(E)|, there exists
an infinite subset S of A with support £ such that f(S) Z E.

Leta € f(S)\ E. Since f(S) and E are finite, there is 7 € fixg(E) such that 7(a) €
A\ (f(S)UE). Since w(a) € n(f(S)), w(f(S)) # f(S). Since E is a supportof S, 7(S) = S,
o (mf)(S) = (f)(S) = n(f(S)) # f(S). This contradicts the fact that 7( f) = f. Hence

there is no such f in Vyy, so Vi E fin(m) < inf(m). O
Remark. From the above theorems, we can conclude that
Vu E 0 = dinf(m) = dinf*(m) <m
< fin(m)
< inf(m) = ded(m) = ded*(m)

< dfin*(m) = dfin(m) = 2™.



CHAPTER VI

CONCLUSIONS

In this chapter, we summarize all results that we have shown in Chapters IV and V.
The following are new results that can be proved from ZF.

1. For any set A4, if there exists a surjection from a proper subset of 4 onto A, then A4 is weakly
Dedekind-infinite (Theorem 4.1).

2. A weakly Dedekind-finite union of weakly Dedekind-finite sets is weakly Dedekind-finite
(Theorem 4.2).

3. If m and n are weakly Dedekind-finite cardinals, then so are m 4 nand m - n (Corollary 4.3).

4. Let m be a cardinal and n € w. If m is (weakly) Dedekind-finite, then so is m”. This state-
ment also holds if we replace “(weakly) Dedekind-finite” by “(weakly) Dedekind-infinite”
for the case n # 0 (Corollary 4.4).

For results concerning cardinal relations, we have shown that for any infinite cardinal m,

5. Rp <* m < dfin*(m) < 2™ (Theorem 4.9).

6. R < dfin*(m) — 2% < 2™ for any aleph R (Theorem 4.10).
7. Ro < dfin*(m) — dfin*(m) < 2™ (Corollary 4.12).

8. ded*(m) < 2™ (Corollary 4.14).

9. m > 5 — dfin*(m) < part(m) (Corollary 4.15).

10. m < inf(m) (Theorem 4.16).

Next, we will list new consistency results concerning cardinal relations.

First, note that, in ZF, for any infinite cardinal m,

(a) 0 < m < fin(m) < dfin*(m) < dfin(m) < 2™.
(b) 0 < ded*(m) < ded(m) < inf(m) < 2™,

(¢) 0 < dinf(m) < dinf*(m) < inf(m) < 2™.

(d) 0 <m < fin(m) < inf(m) < 2™.

(e) ded*(m) < dfin*(m) and ded(m) < dfin(m).
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11.

12.

13.

The following statements are consistent with ZF, provided that ZF is consistent.

. 3m(0 < m = fin(m) = dfin*(m) = dfin(m) < 2™) (see Corollary 4.7).
. 3m(0 < m < fin(m) < dfin*(m) = dfin(m) = 2™) (see Theorem 5.3.1.5).

. 3m(0 < m < fin(m) = dfin*(m) < dfin(m) = 2™) (see Theorem 5.3.2.7).

. 3m(0 = ded*(m) = ded(m) < inf(m) = 2™) (see Corollary 4.7).
. 3m(0 < ded*(m) = ded(m) = inf(m) < 2™) (see Theorem 5.3.1.5).

. 3m(0 = ded*(m) < ded(m) = inf(m) < 2™) (see Theorem 5.3.2.7).

. EIm(O < dinf(m) = dinf*(m) = inf(m) = 2"‘) (see Corollary 4.7).
. EIm(O = dinf(m) = dinf*(m) < inf(m) < 2"‘) (see Theorem 5.3.1.5).

. 3m(0 = dinf(m) < dinf*(m) = inf(m) < 2™) (see Theorem 5.3.2.7).

3m(0 < m = fin(m) < inf(m) = 2™) (see Corollary 4.7).
Im(0 < m < fin(m) = inf(m) < 2™) (see Theorem 5.3.1.5).

Im(0 < m < fin(m) < inf(m) < 2™) (see Theorem 5.3.3.8).

EIm(O < ded*(m) = ded(m) < dfin*(m) = dﬁn(m)) (see Theorem 5.3.1.5).
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The consistency results from (1)—(12) tell us that the relation < between each pair of cardi-

nals in (a)—(d) cannot be replaced by neither = nor <.

For (13), it is consistent with ZF that there is a cardinal m such that ded* (m) < dfin*(m)

and ded(m) < dfin(m). Furthermore, the relations are not trivial since ded*(m) and ded(m) are

not 0. Hence we cannot show in ZF that “for all infinite cardinal n, ded*(n) = dfin*(n)” or “for

all infinite cardinal n, ded(n) = dfin(n)”. However, we do not know whether it can be proved

from ZF that “for all infinite cardinals n, ded*(n) < dfin*(n)” or “for all infinite cardinals n,

ded(n) < dfin(n)” or not.

We summarize the results we got by listing all the possible relationships between m, fin(m),

dfin*(m), dinf(m), dinf* (m), ded* (m), ded(m), inf(m), 2™, and part(m), where m is some infinite

cardinal, in the following table.



One has to read the table from the left to the right and upwards.

~ g~ ~

-~ | E|l 2| | E| & 2 | = 2

=3 * N2 — * * = = N

~ =] [= = h= = S = =

= = o= k= R= o} D = £ 3

3= kS| kS| S S ! < R= N o

m | =<|=<|=<|><|><| >< > < < < | <

fin(m) =<|=<|><|><|>=<|>=<|=<| < | <

dfin*(m) =<|><|>< > > >< | =< | <
dfin(m) >< | >< > > >< | =<
dinf(m) =< |>=<| >< | =< | =<
dinf*(m) =< |>=<|=<| =<

ded* (m) =< |=<| < | <
ded(m) =<| <
=<

inf(m)
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