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numerically by using boundary integral equation technique. After the discretization,
we obtain a system of nonlinear algebraic equations which can be solved by the
Newton’s method. When the upstream free surface separates at a stagnation point,
numerical results for inclined gate are presented for various values of y. These

solutions exist for certain values of gate inclination, in particular, y <y < > Here

y is the lower bound for gate inclination depending on the gate length and the

corresponding Froude number. As the gate length decreases, nonlinear effect on the
upstream waves becomes more pronounced in that the waves tend to develop narrow
crests and broad troughs. Difficulties arise in the numerical computation as we

attempt to calculate solutions for 7\ z. This is because the free surface near
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CHAPTER 1

Introduction

Free-surface flow under a sluice gate is one of the well known classical problem
in fluid mechanics. Analytical and numerical results have been proposed for differ-
ent flow configurations by many researchers. Such mathematical and numerical
techniques for solving this problem are, for examples, finite difference method,
finite element method, boundary integral method, conformal transformation and
etc.

Free streamline solutions of flow under a gate were studied by Rayleigh in the
mid nineteenth century. He neglected the effect of gravity and solved by using
conformal transformations. Pajer (1937) was the first to consider the influence of
gravity on this problem. Seriously numerical solutions of free-surface flows were
introduced by Southwell and Vaisey (1946). They included the effect of gravity
on the upstream free surface. The flow was governed by Laplaces equation for
which it was solved by finite difference. method with relaxation procedures. In
1952, Binnie suggested the use of nondimensional parameter, the Froude number,
and gave a tentative argument indicating that waves cannot be present on the
downstream side of the gate. McCorquodale and Li (1955) was among the first to
use finite element method to solve this problem. Approximately analytic solutions
were derived by Benjamin (1956) using the theories of jets and solitary wave and
compared with experimental results for the same sluice gate opening. Fangmeier
and Strelkoff (1968) formulated the problem via complex function theory as non-

linear integral equations and solved numerically. Cheng, et al. (1981) was one



of the first to formulate the problem using Boundary Integral Equation Method
(BIEM). He showed that to achieve the same solution accuracy as the results
from finite element technique, BIEM requires fewer numbers of iteration process.
A boundary-fitted coordinate method for vertical and radial sluice gates was em-
ployed by Masliyah, et al. (1985). This method can be used when the problem
has initial unknown discharge and unknown free surfaces. In 1986, Naghdi and
Vongsarnpigoon gave a thorough analysis of solutions of this problem using an
inviscid theory for a fluid sheet. Vanden-Broeck (1986) computed numerical so-
lution for various values of the downstream Froude number F' by the method of
series truncation. He found that there are two solutions for 1.80 < F < 1.87,
one solution for F'> 1.87, and no solutions for F' < 1.80. Xianyun and Chigong
(1987) used Muskelishvili’s theory to derive a system of nonsingular boundary
integral equation in the physical plane and solved by an iterative method. In
1996, Asavanant and Vanden-Broeck considered the complete sluice gate problem
with two free surfaces and constructed solutions for which the free surface leave
tangentially at both separation points by series truncation procedure. Their re-
sults could be obtained only for small values of gate inclination v. Vanden-Broeck
(1997) computed numerical solution for the fully nonlinear vertical sluice gate
problem using boundary integral method. He showed that there exist solutions
for which the flow does not approach a uniform stream far upstream. These solu-
tions are characterized by a train of waves on the upstream free surface. Analytic
solution of the smooth attachment problem was presented in the implicit form
by Petrila (2002). He reduced the problem to a boundary value problem of the
Hilbert type and employed Muskelishvili’s technique. Defina and Susin (2003)
used conservations of energy and momentum to predict behaviors of upstream

and downstream free surfaces and compared with experimental results.



In this study, we consider fully nonlinear problem of the steady free-surface
flows under an inclined sluice gate with possibilities of either a stagnation point
or a smooth attachment to occur. The fluid domain in the physical plane is
transformed onto the complex plane. Dynamic boundary condition (Bernoulli
equation) is applied on both upstream and downstream free surfaces subject to
gravitational force. We solve the problem numerically by the boundary integral
method introduced by Vanden-Broeck (1997). This integral equation provides a
relationship between the flow variables on the free surfaces. One of the advantages
of the technique is that mesh points in the numerical scheme need only be placed
on the free surface rather than throughout the entire low domain. We obtain
the numerical solutions by solving a system of nonlinear algebraic equations on
the free surface using Newton’s method. Details of the formulation and the nu-
merical procedure are given in chapters II and III, respectively. In chapter IV,
we discuss the numerical results of free-surface flows under an inclined sluice gate
with stagnation point. The case in which the free surfaces leave tangentially at
both separation points, the so called smooth attachment, is discussed in Chapter

V. Finally, the concluding remarks are presented in Chapter VI.



CHAPTER 11
Formulation of Free-Surface Flows under an Inclined

Sluice Gate

2.1 Dynamic and Kinematic Boundary Conditions

We consider the steady two-dimensional flow under an inclined sluice gate.
The fluid is treated as inviscid and incompressible and the flow is assumed to be
irrotational. The flow domain is bounded below by a rigid wall A’D’ and above

by the free surfaces AB and C'D and the gate BC' (see Figure 2.1).

B

Figure 2.1: Sketch of free-surface flows under an inclined sluice gate.

Let us introduce Cartesian coordinates with the = - axis along the bottom
and the y - axis directed vertically upwards through the upstream contact point
between the free surface and the gate, i.e. the point B. Gravity ¢ is acting in the

negative y - direction. The gate inclination is denoted by 7 measured clockwise



from the negative = - axis. At the point B, we denote by 7 the angle between
free surface and gate (see Figure 2.1). The velocity components in the x - and
y - direction are denoted by u and v, respectively. The flow is subcritical far
upstream and is supercritical far downstream. As x — oc, the flow is assumed to
approach a uniform stream with constant velocity U and constant depth H.

For inviscid fluid, it is well known that the governing equation for fluid motion
are Euler equation. Due to the incompressibility and irrotationality of fluid flow,
we have

1
§(u2+v2)+%+gy:B* (2.1)

on the free surfaces. This result is known as Bernoulli equation or dynamic
boundary condition. Here p is the constant atmospheric pressure, y is the vertical
displacement measured from the bottom to the free surface, p is the constant fluid

density and B* is the Bernoulli constance. Equation (2.1) can be rewritten as
1 2, 2 ok
i(u + o) Fgy=B (2.2)

where B*™* = B* — %. On the rigid wall A'D’ and the gate, the normal velocity
must be zero. This is called kinematic boundary condition. They are, on the rigid
wall A'D’,

v =0, — 00 <x<oo ‘and y=170, (2.3)

and on the gate,

usiny +vcosy =0 (2.4)

or

v = —utan-. (2.5)



2.2 Dimensionless Variables

It is convenient to normalize the physical problem by introducing appropriate
scaling variables. This is done by choosing downstream velocity U as the unit
velocity and downstream depth H as the unit depth. The dimensionless variables
are

V' = — T Yyt == (2.6)

Hence, after dropping *, equation (2.2) can be expressed in nondimensional form

as

u’+ v’ + —y=B (2.7)

where F = - is the downstream Froude number, and B = %—2 is the dimen-

VoH

sionless Bernoulli constance.

2.3 Potential Function and Stream Function

The problem is generally difficult to solve. However it can be simplified further
by using complex function theory. Due to the incompressibility of the fluid it
follows that

ou  Ov
— + —=0_0. 2.8
ox i oy (28)

A suitably differentiable function 1(x,y) can be chosen such that
u=— and v=——. (2.9)

Thus (2.8) is automatically satisfied. The function 1 is known as the stream
function and is useful in the problem formulation. For irrotational flow, we have

the following relationship

Vxq=2 — = =0. (2.10)



where q = (u,v) is the velocity vector. This equation can be satisfied by letting

9. 9.

qZUWwﬁ+v@wM=V¢=5?+ay (2.11)

where ¢ is known as the potential function. From (2.9) and (2.11), we can deduce

that
dp oY
=— a

ox Oy

P _

mi@“m‘

(2.12)

Relations (2.12) are the well known Cauchy-Riemann equations from the the-
ory of functions of complex variables.

We introduce the complex potential function f by

f =0z, y) + (v, y) (2.13)

and the complex velocity w by

d
w:d—ézu—iv (2.14)

where z = z + iy. Both f and w are analytic functions of 2.

Without loss of generality, we choose ¢ = 0 at B and ) = 0 on the streamline
ABCD and the bottom defines another streamline on which ¢» = —UH. By the
choice of our dimensionless variables we will have ¢y = —1 on the bottom A’'D’.
We denote by ¢¢ the value of the potential function at the separation point C.
The flow configurations in the f - plane is sketched in Figure 2.2. The flow domain

in the complex f - plane is simply an infinite strip defined by

D ={(¢,9)] —oc < ¢ < c0,—1 <9 < 0}.
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Figure 2.2: Flow configurations in the complex potential f - plane.

The nonlinear free surface condition for this problem can be expressed by the
Bernoulli equation (2.7). We determine the constant term on the right hand side
of (2.7) by using flow condition in the far field, i.e., z — 0o, so |[q| = Vu2 + 02 =1
and y = 1. That is,

u2+v2+%y:1+%
u2+v2—l—%(y— 1)=1. (2.16)

In the complex potential f - plane, the kinematic boundary conditions (2.3)

and (2.5) become

v=0 on Pp=-1 and —oo0<¢p <0 (2.17)
on the rigid wall A’D’ and

v=-—utany on =0 and 0< ¢ < ¢¢ (2.18)

on the gate BC.
This concludes the mathematical formulation of the problem. We seek w as
an analytic function of f in the strip —1 < ¢ < 0. This function must approach

1 as ¢ — oo and satisfy (2.16) - (2.18).



2.4 Conformal Mapping

We map the flow domain from the complex potential f - plane onto the lower

half plane in the complex ( - plane. It can be done by using the conformal mapping

(=a+if=¢e"

Table 2.1 shows the position of the major points in the complex potential f -

— oT(otid)

= ™ (cos(mep) +isin(ry))).

plane and the complex ¢ - plane.

Cartesian plane f - plane ( - plane
A Y =0,0=0¢y=—00 a=a,=0,=0
B YvV=0,0=0¢p =0 a=ag=1,6=0
C Y=0,0=¢c> 0 a=ac>1,=0
D Pv=0,0=¢p =00 a=ap=00,0=0
A’ p=—1l,p=¢p=-00| a=ay=0,=0
D’ YvV=—-1,0=¢p =—x |a=ap = —00,5=0

Table 2.1: Values of major points in f - plane and ( - plane.

Therefore, the gate and free surfaces have been mapped onto the positive

real axis of the ¢ - plane and the rigid wall has been mapped onto the negative

real axis of the ¢ - plane (see Figure 2.3).
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Figure 2.3: The flow in the complex ¢ - plane.

A new complex function, 7 — i = ln(%), is introduced, and is related to

the complex velocity by
L ey ’iv = 67_i0. (220)

This equation is used to express (2.7) in terms of new complex variables 7 and 6.

The first and second terms in (2.16) become
u? + 0 = |w|?

_ ‘67—i0‘2

Lg2 e 20|

A (2.21)
The final form of Bernoulli equation can now be rewritten as

2
e’ + ﬁ(y -1)=1 (2.22)

on free surfaces AB and CD.
On the ¢ - plane, the kinematic boundary conditions (2.17) and (2.18) have to

be conformally mapped to
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O(a) =0 for f=0 and a<0 (2.23)

on the bottom A’D’ and

() =—y for f=0 and 1<a<ac (2.24)

on the gate BC where a¢ = e(790),

2.5 Boundary Integral Equation

In this section, integral equation relating 7 and € on the free surfaces is derived.

Firstly, we consider a contour integral of the form

f T(aa ﬁ) A i@(a, ﬁ) dC (225)

¢ — ag

where «q is a point on the free surface, i.e. ag € AB or CD. The path I' can be
separated into 4 subpaths (see Figure 2.4):

C := the semi-circular arc of radius R centered at the origin,

C5 := the contour line between R to ag + e,

(53 := the semi-circular arc of radius € centered at «g, and

C} := the contour line between oy — € to —R.
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Figure 2.4: Contour I" in the complex ( - plane.

That is
7{ 7(a, B) — if(a, B) i 4 (e, B) = w(a"ﬁ)dg L TleB) - ’ig(oé,ﬁ)dC
T ¢ — ag o aCO; o ey ¢—ag
+/R T(O"(B:Z(O" 0 4o
7. ST

Cauchy theorem states that a contour integral along any closed contour not en-

closing a singularity, of an analytic and single-valued function, is equal to zero.

That is
T(a, B) — i6(c, B) 7(a, B) — i6(a, B)
20t r(a,0) — if(a, 0) (e, 0) —90(a, 0)
4 /R p—— da + /ao6 p—— da = 0. (2.27)

Consider the second integral in (2.27), the integral involving Cj.

Let ( = a+i8 = oy + €€, 50

A=0 at (=ay+e,

A=—m at (=ay—¢€
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and d< — ’ieei)\d)\.
Then
/ T(Oé,ﬁ) — Za(a:ﬁ)dc
C3 C—OCU
r A, esin \) — i Aesind), i
:/ T(a0+ecos , €SIn )661/\2 (Ozg+6(:os , €SIN )iee“\d)\
0

= Z/ [(T(cg + €cos A, esin \) = 10y + € cos A, esin A)] d\. (2.28)
0

Substituting (2.28) into (2.27), gives

/ 7(a, B) —ib(a, B)dg -Hj/7T [(7(eg + ecos A, esin \) — if (g + €cos A, esin \)] d\
o ¢— 0

N /0‘0"'6 7(,0) — if(c, 0) f % /_R 7(e, 0) —i6(a, 0) da = 0. (2.29)

R o — Q) o — Q)

0—¢€

Taking limit as € — 0,

/ 7(a, ) — if(e, §)

¢ = ag

dC + i{(+ (a0, 0) — i6(ap, 0)] /0 d\

+/—R 7(2,0) —i6(a,0) ,

R a — Qg

T(aa 5) — ZH(O&, ﬁ) . 5 R T(Oé, 0) — 2'0(04, 0) o
/C1 C — Q) dC 4 [(T(a()’ 0) i ZH(O&O, 0)] + /R a— g da = 0.
Then
7 (v, 0) — 16( v, 0)
_ 1 T(a, B) — i6(a, ﬁ)dC N L /R 7(c, 0) —i6(a, O)da
i) oy = a I a =y
1 7(a, B) = i0(a, B) 1 (% 7(a;0) = i0(a,0)
S d(—%/_R 20 o (230)

Taking limit as R — oo, the second integral on the right hand side of (2.30)

becomes
1 [E — i 1 [ — i
R—o00 1T R a — O 1T ) oo a —

This integral is of Cauchy principal values.
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As ¢ — oo, we have w — 1 or ™ — 1 implying 7 — i — 0. Hence, the first

integral on the right hand side of (2.30), vanishes as R — oo

lim i/ m(a.f) =@ B) o _ g (2.32)

C1 C_aU

Equation (2.30) can now be reduced to

(00, 0) — (09, 0) = — A~ T, 0) = 8(0,0) , (2.33)

1T o —

By taking the real part of (2.33) we obtain

o2 / AN, (2.34)

T ) oo O—

where 7(«) and () denote the value of 7 and € on the free surfaces.
The kinematic boundary conditions (2.23) and (2.24) can be applied to (2.34)

for further simplification. First, we write the integral as

= e
+/1ac So) da+/:o %D g0, (235)

o — (,(]1—0[0

The first integral on the right hand side vanishes due to the kinematic boundary

condition (2.23). The third integral reduce to

ac 9 ac | |
/ IO / AN
1 @— 0y 1 = Qg

lae —+ ay

it 2.36
by using (2.24). Equation (2.34) can be rewritten as
1 R 9 _ 1 1 9
o= 2 [T A g Dy loozed 110,
T J_ 0o @— Qg T |1 — o )y a—ag
1 [ 6
+ —/ (o) dao. (2.37)
m ac a— Q)

This provides a relation between 7 and # on the free surfaces.
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Finally, we determine the free surface boundary by integrating the identity

d 1

E(x +iy) = w~ (2.38)
or
d d df
d—<($+ly) E(xﬂ”y)d—c
|, mend
1 (eT—iﬁ)—l
Tt
6_’7'
= 0 +isind). 2.39
7r<(cos + isinf) (2.39)
Taking the real and imaginary part of (2.39) for 5 = 0 gives
Q- Adde ™™
APy 0 2.40
S ot (2.40)
and
SIS D
= in 6. 2.41
da  ma " (241)
Hence, the x - coordinate on free surface AB (0 < o< 1) is
z(a) 1 [@ e—7(a0)
/ dx = —/ ‘ cos 0(ayg)dag
TR T.J1 Qg
1 [@ e T(20)
(@) —xp= —/ cos (o )day:
T J1 Qo
At B, a = 1. By choosing xg = 0, we have
L[ st(an)d 2.42
(o) = ;/1 o cos 0(ay)day. (2.42)

The y - coordinate on free surface AB (0 < a < 1) is

y(a) 1 [@ e T(a0)
/ dy = —/ sin 0(ayg)dag
YB 1

™ (&7}




1 o g-rlao)
/ ‘ sin 0(ayg ) da.
1

y(a) —Yp = p .

From Bernoulli equation (2.22)

Substituting (2.44) into (2.43), we obtain

jac 1 a ,—7(ag)
2T(aB)) g _/ < sin 9(ao)dao-
1

S e ey
ylo) =1 (1 S

The z - coordinate on free surface CD (a¢ < a < 00) is

« e*T(ao)

z(a) 1
/ de = —/ cos O(ay ) dag
Jao T Jae @0

1 @ g-rlao)
= / £ cos 0(ay)dag
T Ja (7))

C

1 [ e—7(0)
/ k cos O(ayg)dayg

z(a) =x0+ —
™ @ (7))

where x¢ is the position of separation point C.

The y - coordinate on free surface CD (ac < a < o0) is

« e_T(ao)

y(@) 1
/ dy = —/ sin O(ap)dag
YD T J oo Qo

1 a —T7(ag)
/6 sin O(ayp )dag.

y(a)_yD:; J V1,

Since yp = 1 far downstream, then

| fo e oo
yla) =1+ —/ sin 6 () davg.
T Joo (o))

16

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

Equations (2.22), (2.37), (2.42), (2.45), (2.46) and (2.47) define a system of

nonlinear equations for the unknowns #(«) on the free surfaces 0 < o < 1 and

a > Q¢.



CHAPTER II1
Numerical Procedure of Free-Surface Flows under an

Inclined Sluice Gate

In this chapter, we describe the numerical procedure to seek the nonlinear

solutions of (2.22) and (2.37) derived in chapter II. From
a=e™

on free surfaces, we can write (2.37) as

Tdc __ oTdo 0 / L)
v =l N e

|1 = €7T¢0| . 67"¢ — 67T¢0

< gg)e
% /4) = (3.1)

& e7r¢ 24 67T¢0

On the free surface AB, where —oc < ¢ < 0 and ¥ = 0, we have

¢
' (¢) = / e cos 0'(g0) oo (32)

0

and

2

¢
o) =1 ¥ F—(l =Ty £ / e ) sin'0' (¢g) deo: (3.3)
2 0

Similarly on free surface C'D, where ¢¢ < ¢ < oc and 1 = 0, we have

(b !
'(4) = xc +/ e 7 (9 cos ' () depy (3.4)
e}
and
(b !
y'(¢) =1+ / e~ 90 sin @' () debo. (3.5)
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Here 7'(¢) = 7(e™). 0'(¢) = 0(e™), 2'(¢) = x(e™) and y'(¢) = y(e™).

Next we introduce the equally spaced mesh points
PV =—(1—-1)A, I=1,.,N (3.6)

and

¢ID =3 ¢C Ui (I 1] 1)A27 I= 1: "'7N2 (37)

on the upstream and downstream free surfaces, respectively. Here A; > 0 and

Ay > 0 are the mesh sizes. The corresponding unknowns are

04 P (528, 2NN N (3.8)
and
0P =0'(¢7), I=1,.. N, (3.9)

We assign the values 07 = ¢ and 0 = —~, where § will be defined in chapters TV
and V. There are Ny + Ny — 2 unknowns: 07, I =2,..., N, and 0P, I =2,..., Ns.

We evaluate the values 7mY¥ and 7m? of 7/(¢) at the midpoints

U _ o7 + o711

dmb 5 I=1.N -1 (3.10)
and
D D
pmP = G0 | 942 1,0..{ Ny — i (3.11)

9 5
by applying the trapezoidal rule to-the first-and second integrals.in (3.1) with
summations over the ¢ and ¢}, respictively . Since the spacings are symmetric
with respect to the pole, the singularity is subtracted from the Cauchy principal

value integral (see Appendix). Next we replace (3.1) by

v, oo e / UCTi
¢

’ [ — e —
md) = I v e _ emdo
Ny

N 0'(B)e™®
+/¢C quﬁ. (3.12)

67"45 — 671'450
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Following Hocking and Vanden-Broeck (1996), we write the last integral in

(3.12) as

¢N2 0/ N2 9/ 9/ ¢0 7r¢ N9 9/ 7r¢
/450 6“5 — e7r¢0 d¢ = / — eT¢o d¢ + / eTd 67r¢0 b onde 0

_ /% <9'<¢>> — 0/(¢0))e™
é

67"¢ — 67T¢0

d¢

0’(¢0) | |67T¢£2 _ e7r¢0|
i . |e7r¢(7 — 67T¢0|

C

+ (3.13)

before applying the trapezoidal rule. The value of 7/ at the midpoints can be

calculate from

woc o mpmV g U 7T¢£2 _ o m¢mV
ol — o AN ] Bom) | [ — eren
m |] — em¢m; | s |67T¢C — em¢my |
Ny U ™%
CIN BN YN T
i z; e™ _ emomy A,
]:
No D / U\, moP
(0; = 0'(pmz))e™
+ ; ey A2 (3.14)

on the upstream free surface, and

D _ Py e X g IO ] ) | e - o)
T = TP )= 11— erom?] T jendc — erom? |
Ny GU 7T¢U
U
" Z €7r¢U 7r¢m] o > 1 1W;
7j=1
D
oL (0P j — 0 (¢pmp))e™s D
+; L ond Agw] (3.15)

on the downstream free surface. Here

: if ]:0 and Nl[NZ],
wlwP] =4 * (3.16)

1 otherwise.
The 0'(¢m¥) and §'(¢m?P) are values of #' at the midpoints (3.10) and (3.11)
and are evaluated by the four-point interpolation, denote by #mY and OmP, re-

spectively. That is

5 15 5
omY = —0V + oY — 6V + 9 1
=167 T 1672 T 1608 T 1604 (3.17)



9 9 1
omY = ——0V | + 160, 169§f+1 — 1—69?+2, I=23.,N —2

Hm%ﬁl 160%1 160%1 1 169%1 9 T 169%1 3

and OmP is similar to (3.17) - (3.19) with N, replaced by Ns.

Next we evaluate
i =6,
3 y’(¢IU)7
p = a'(¢7)
and
=y (¢7)
by integrating (3.2) - (3.5) numerically. This yields
Toe0.0,
1 2 27’
=¥, — e cos(OmY ) Ay,
oY =y < (T ) sin(0m¥ ) A,

for- I = 2,3, ...,Nl

where 7 is 3rmY — LrmY, and

.’ElD = Tc,
2P =P 4T cos(OmP )Ny, T=2.3,.., Ny,
y]% = 1.0,

yr =y — e-mmr) sin(@mP)Ay,  T=Ny—1,Ny—2...

20

(3.18)

(3.19)

(3.20)
(3.21)
(3.22)

(3.23)

(3.24)
(3.25)
(3.26)

(3.27)
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We use y¥ and yP to evaluate y'(¢) at the midpoints (3.10) and (3.11) by four-
point interpolation formula, denote by ym¥ and ymP, respectively. We obtain
N1 + Ny — 2 nonlinear equations by satisfying Bernoulli equation (2.22) at the
midpoints (3.10) and (3.11).

The last equation is obtained by fixing the length L of the gate BC. Using

(2.20), (2.24) and (2.38), we obtain

ox

— =e 2
% €-".COoS Y (3.28)
and
8y A O\
% = e "siny (3.29)

on 0<¢< ¢c.
We use (3.1) to evaluate 7/(¢) for 0 < ¢ < ¢¢ and integrate (3.28) and (3.29)
numerically. This yields the length L of the gate BC' in terms on the unknows.

The last equation is then

L— \/ — 2P+ (yf — v )2 =0. (3.30)

For given values of ¢ and ~y, we solve this system of N;+ N, —1 nonlinear alge-
braic equations with N, + Ny — 1 unknowns, i.e., F, 0, I =2,...,N; and 0P I =
2,..., Ny by Newton’s method. It is convenient to write this system of equations

in the form

2

hi(X1s X2y ooos XN a 1) = €27 ﬁ(ym? —1)—1=0,

i=1,2,..., N, — 1 (3.31)

’Tm 2
PNy 4j=1(X15 X25 +os XN 4 No—1) = e+ ﬁ(ymjD -1)—-1=0,

j=1,2,., Ny — 1 (3.32)
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and
ANy N1 (X1 X25 oos XNy 4 N—1) = L — \/ —ap)2+ (y —yP)2=0 (3.33)
where
{XJ Nl i {HUL 2
601 oA [
and

XN1+N271 N F

Thus if ng) is an approximation to the solution, the next approximation Xg.kﬂ)

can be obtained from
XD B WA S 1 N+ Ny — 1 (3.34)

where the corrections Ag-k) are calculated from

Ni+No—1 s (k)
> [a ] AP = PGS N + N, - 1. (3.35)
j=1 LOX

The Jacobians 2% are determined by exact differentiation of (3.31) - (3.33), and

hi :hi(X1 :-"7XSV1)+N271)'



CHAPTER IV
Numerical Results of Free-Surface Flows under an

Inclined Sluice Gate with Stagnation Point

We use the numerical scheme described in the previous chapter to compute
solutions for two cases:

[. Separation point between the upstream free surface and the gate is a stag-
nation point.

I1. Free surfaces leave tangentially at both separation points (see chapter V).

Dagan and Tulin (1972) investigated the intersection angle n between the free
surface and a rigid boundary for small Froude number by using perturbation
technique. For a stagnation point to occur, there are two possible angles between
the free surface and the rigid boundary as follows.

(1) If the rigid boundary is inclined at an angle larger than 60° (v > 60°),
then the free surface in the neighborhood of the stagnation point is horizontal or
6V — 0.

(2) If the rigid boundary is inclined at an angle between 0° and 60° (0° < v <
60°), then the intersection angle between the free surface and the rigid boundary
is 120% (n = 120°) or 6 = & — .

For case (1), we consider 3 possible subcases:

1. The gate inclination is 90° (y = 90°) which is the vertical sluice gate
problem,

2. The gate inclination is between 60° and 90° (60° < v < 90°), and

3. The gate inclination is between 0° and 60° (0° < vy < 60°).
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In section 4.1 and 4.2, we present and discuss numerical results of the vertical
sluice gate problem and the gate inclination between 60° and 90° (60° < v < 90°),
respectively. In this case the free surface is horizontal at the stagnation point C,

so 0¥ = 0. The case of gate inclination between 0° and 60° (0° < v < 60°) is

™

discussed in section 4.3. In this case, 0 = 3 —7- Most of the results are obtained

with N, = 841, Ny = 501, A; = 0.01 and A, = 0.01.

4.1 The Vertical Sluice Gate

As mentioned in Chapter III, we calculate solution of the system of nonlinear
algebraic equations (3.31) - (3.33) for various values of ¢ and v = 90°. In this
case, we fully recover the results obtained by Vanden-Broeck (1997).

Typical free-surface profiles are shown in Figure 4.1 (a) - (i). The symbol
o for all figures indicates the position of the points at which the upstream and
downstream free surfaces separate from the gate. There is a train of waves on the
upstream free surface. For large values of F' (F' > 2.40), the waves are too small
to observe in the figures (see Figure 4.1 (a) - (e)). When F' < 2.40, the waves
are noticeable on the profiles (see Figure 4.1 (f) - (i)). As F' decreases, amplitude
of the wave increases with broad troughs and narrow crests (see Figure 4.1 (i)).

Additionally the wavelength of these waves increases as F' decreases (see Figures

4.1 (B) ().
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Figure 4.1 (b): ¢ = 1.50 (F = 6.3795).
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Figure 4.1 (f): ¢c = 0.26 (F = 2.0221).
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Figure 4.1 (i): ¢ = 0.016 (F = 1.3299).
Figure 4.1: Profiles of the free surfaces and the gate when v = 90°. The symbol

o indicates the position of the points at which the upstream and downstream free

surfaces separate from the gate.

9.7198 T T T T T

9.7197 -

9.7196 -

9.7195 |- .
Y

9.7194 - b

9.7193 b

9.7192 L ! ! ! L
-80 -70 -60 -50 -40 -30 -20

Figure 4.2: Upstream free surface of ¢ = 1.00.
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In Figure 4.2, we enlarge the upstream free surface for the case of ¢ = 1.0 so
that the oscillations can clearly be seen. The amplitude of these waves is finitely
small. In Figure 4.3, we show the relationship between the contraction coefficient
C., defined as the ratio of depth far downstream and yc (gate opening), and
z—g. Here yp and yc are the distance from the point B and C' to the bottom,
respectivity. The contraction coefficient €. constitutes an important check on
our numerical scheme. In case of zero gravity (Batchelor, 1967), the contraction

coefficient C, for the free-streamline solution is:

T
T+ 2

c =

~ 0.611015.

The crosses and squares in Figure 4.3 are represented numerical values taken from
the Figure 13 in Fangmeier and Strelkoff (1968) and Figure 5 in Vanden-Broeck
(1997). Fangmeier and Strelkoff assumed that the flow is uniform across a verti-
cal section far upstream. Our results agree with Fangmeier and Strelkoff for z—g
smaller than 0.3. The difference between our calculations and those of Vanden-
Broeck is approximately 0.44%. Table 4.1 show the numerical values of F' between
ours and Vanden-Broeck for some values of ¢¢.

From Figures 4.3 and 4.4, we can see that C, — C. of free-streamline = i

as Z—g — 0or F2 — oo. Figure 4.5 shows. the effect of mesh size on the upstream

free surface profile corresponding to ¢ = 0.19. This shows that our results are

independent of A;.
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Figure 4.5: Profiles of the upstream free surface with A; = 0.01 (broken line) and

A; = 0.02 (solid curve) for ¢ = 0.19.

¢c | F(Vanden-Broeck) F
0.71 3.2 3.2419
0.41 2.41 2.4084
0.26 2.03 2.0221
0.19 1.83 1.8389
0.075 1.51 1.5094

Table 4.1: Numerical values of the downstream Froude number F' between ours

and Vanden-Broeck.
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4.2 The Gate Inclination between 60° and 90° (60° < v <

90°)

In this case, the free surface is horizontal in the neighborhood of stagnation
point, so ¥ = 0. The numerical results are shown that there exist solutions
depending on two parameter, v and ¢¢.

Typical free-surface profiles are displayed in Figures 4.6, 4.7 and 4.8 for v =
80°, 70° and 60°, respectively. We find that there is a train of waves on the
upstream free surface similar to the results of the vertical sluice gate problem.
For a fixed value of 7, the amplitude of waves increases with broad troughs and
narrow crests as F decreases (see Figures 4.6 (e) - (h), 4.7 (e) - (h) and 4.8 (e) -
(h)). In Figure 4.9, we present an example of the checks so we used to test the
accuracy of the numerical results. Both curves show the computed profiles when
¢c = 0.26 and v = 60° for A; = 0.01 and A; = 0.02.

In Figure 4.10, we present numerical values of the contraction coefficient C.,
versus z—g for v = 80°, 70° and 60°. For a fixed ratio of y- and yp, the value of C,
increases as 7y decreases. This relationship shows that the contraction coefficient
C. is function of z—g and . Numerical values of C, versus F? for v = 80°, 70° and
60° are shown in Figure 4.11 (a) for F? >'2 and Figure 4.11 (b) for F? < 2. As
C, decreases, F? is close to 1.70 (see Figure 4.11 (b)).

In Figure 4.12, we present numerical values of the gate inclination v versus
F? for various values of ¢c. For a fixed ¢¢, F? decreases as v decreases. As ¢¢
is very small, there is little variation in F? for difference values of . Numerical
values of the gate length L versus F'? are shown in Figure 4.13. For a fixed F?,
the gate length L increases as v decreases. This gives the length L of the gate as

functions of F' and +.
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Figure 4.6 (b): ¢ = 1.50 (F = 5.3437).
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Figure 4.6 (f): ¢c = 0.26 (F = 1.8844).
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Figure 4.6 (h): ¢ = 0.075 (F = 1.4554).

Figure 4.6: Profiles of the free surfaces and the gate when v = 80°.
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Figure 4.7 (g): ¢ = 0.19 (F' = 1.6250).

Figure 4.7 (h): ¢ = 0.075 (F = 1.4064).

Figure 4.7: Profiles of the free surfaces and the gate when v = 70°.
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Figure 4.8 (g): ¢ = 0.19 (F = 1.5256).

X
Figure 4.8 (h): ¢ = 0.075 (F = 1.3641).

Figure 4.8: Profiles of the free surfaces and the gate when v = 60°.

45



46

2.35 T T T T T

1.85 1 L 1 1 1

Figure 4.9: Profiles of the upstream free surface with A; = 0.01 (broken line) and

A; = 0.02 (solid curve) for ¢ =0.26 and v = 60°.
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Figure 4.11: Relationship between the contraction coefficient C, and F2.
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4.3 The Gate Inclination between 0° and 60° (0° < v < 60°)

In this case, we fixed the value of € in the neighborhood of the stagnation
point to be T —~, ie. 0 =% —~.

Typical free-surface profiles are shown in Figures 4.14, 4.15 and 4.16 for v =
35°, 45° and 55°, respectively. However, for a given gate inclination v, solutions
exist for the Froude number F' greater than some critical value F. This critical
value F; depends on the gate inclination 7. For small v, it is difficult to find
the numerical solution because the free surface near upstream separation can no
longer satisfy the prescribed stagnation point behavior.

Amplitude of the waves increases as F' decreases. For larger value of F', the
amplitude of waves remains finite (see Figure 4.17). In addition, for a fixed value
of F', amplitude of the waves increases as the gate inclination decreases. In Figure
4.18 we present numerical values of the contraction coefficient C, versus yc/yp.
The contraction coefficient C'. increases as 7 decreases. It is found that both C.
and L are increasing functions of F? for a fixed values of v (see Figures 4.19 and
4.20). In Figure 4.21, we present numerical values of the gate inclination + versus

F? for various values of ¢¢. For a fixed ¢, F? decreases as vy decreases.



1
0

Rigure 4 1): do =2 \ — 4.4036).
W TIAE)

4 ROUUINLUINNG )
NRINITUNINENAY

X
Figure 4.14 (b): ¢¢ = 1.50 (F = 3.3821).

20



ﬁﬂ']‘i.l‘LL’]‘Vl‘c’J‘Lﬁﬂ']
QW’]NQ ﬂiﬂLﬂJW]'J‘VIEJ aﬁl

X
Figure 4.14 (d): ¢¢ = 0.71 (F = 2.1647).

ol



2.8

ﬁﬂ HAYBYINNg |
QW’]@\?ﬂimﬁJ‘ﬁq'}Wﬂqﬂﬂ

q14

1.2

1 1 1 1
-15 -10 -5 0 5
xZ

Figure 4.14 (f): ¢¢ = 0.35 (F = 1.7954).

Figure 4.14: Profiles of the free surfaces and the gate when v = 55°.
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Figure 4.15 (f): ¢c = 0.95 (F = 2.4005).

Figure 4.15: Profiles of the free surfaces and the gate when v = 45°.
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Figure 4.16: Profiles of the free surfaces and the gate when v = 35°.
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CHAPTER V
Numerical Results of Free-Surface Flows under an

Inclined Sluice Gate with Smooth Attachment

In this Chapter, we consider the problem of flows under a gate for which
the free surfaces leave tangentially at both separation points. The value of 6 at
both upstream and downstream separation points are —y (0¥ = 0P = —v). In
the previous work of Asavanant and Vanden-Broeck (1996), they obtained results
for small angles of gate inclination and small values of the downstream Froude
numbers. They could not, obtain solutions with waves on upstream free surface.
Here we can find solution for larger values of gate inclination and all numerical
solutions contain waves on the upstream. The numerical scheme derived in chapter
IIT is used to compute solutions for various values of ¢ and v. Most of the results
presented here are obtained with Ny = 1261, Ny = 801, A; = 0.02 and A, = 0.01.

Typical free-surface profiles are shown in Figures 5.1, 5.2 and 5.3 for v =
6°, 7° and 8%, respectively. These waves tend to-develop narrow crests and broad
troughs showing the nonlinearity of waves as F.increases (see Figures 5.2 (a) to
5.2 (e)). Magnified portions of the free surface near the upstream separation point
are shown in Figures 5.4 and 5.5 for v = 7° and 8°, respectively. As we can see,
the numbers of points on the first crest near the upstream separation decrease
as I increases. This is a possible cause of numerical difficulties to obtain the
converged solutions.

Numerical values of the contraction coefficient C, and F? shown in Figure 5.6.
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The contraction coefficient C. is an increasing function of F? for a fixed value
of v. However the contraction coefficient C, increases as the ratio of y- and yp
decreases (see Figure 5.7). For a fixed the ratio g—g or F?, C, increases as the gate
inclination v decreases. As F? increases, level of crests of the waves approaches
the maximum level y* of the free surface, i.e., y* = %2 + 1 (see Figure 5.8).
Figure 5.9 shows that the amplitude A of the waves, defined as the difference
between the levels of a successive crest and trough, increases as Fy decreases.

Here Fy; is an upstream Froude number, defined as

V
oo B\ 5
U /—gD

where V' is the average upstream velocity and D is the average upstream depth.

The Froude number F' and Fj; are related by the identity
8 i)
()]

In addition, the steepness s of the waves, defined as the ratio of heights between

F2

2
Pisssg

(Binnie, 1952).

a crest and a trough and the wavelength, is shown to be a decreasing function
of Fy in Figure 5.10. As Fy decreases to the critical value Fy;, the elevation of
the crests tends to the maximum level FTUQ + 1 and the wayves reach their limiting
configuration characterized by a 120° angle at the crests. In order to obtain these
critical values, it is necessary to have a finer mesh to resolve the sharp crests.

This requires an extensive use of computer time. The dot-dash curve in this fig-

ure corresponds to the highest waves computed by Cokelet (1977).
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10

63



64

1.6

15

14

12

11

-30 5 10

1.6

15

14

.\'.'
AT

n NI ay

-30 -2IS -2IO -JI.5 -JI.O -I5 I0 :5 10
X
Figure 5.1 (d): ¢ = 3.50 (F = 1.2848).



17 T T T T T T T

-30 —2IS -2‘0 —]I.5 —iO —I5 ;) I5 10
X
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Figure 5.1: Profiles of the free surfaces and the gate when v = 6°.
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Figure 5.2: Profiles of the free surfaces and the gate when v = 7°.
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Figure 5.3: Profiles of the free surfaces and of the gate when = 8°.
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Figure 5.4: Blow up of the free surface near upstream separation point of Figure

5.2 (a), (c) and (e).
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Figure 5.5: Blow up of the free surface near upstream separation point of Figure

5.3 (a), (c) and (e).
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CHAPTER VI

Conclusions

We have presented accurate numerical solutions for the free-surface flows under
an inclined sluice gate by using boundary integral method. The results show that
there are two-parameter families of solutions, the gate inclination v and ¢¢.

When a stagnation recurs at the upstream separation, the angle between the
upstream free surface and the gate can be either 90° or 120°. Results of the
vertical sluice gate (y = 90°) treated by Vanden-Broeck (1997) are completely
recovered. This constitutes a check on our numerical scheme. It is found that
numerical solutions can be found for all value of v € (x,90°). Here x is some
lower bound depending on ¢¢. Amplitude of the upstream waves appears to be
a decreasing function of ¢ or the downstream Froude number F' for a given 7.
For large F', amplitude of the waves is finitely small and cannot see in figures. In
addition, the contraction coefficient C, and gate length L decrease as F' decreases.

Finally, we consider the inclined sluice gate problem with free surfaces leave
tangentially at both separation points. The main cause of numerical solution
divergence is numbers of mesh on the upstream first crests. Another one is crests
of the waves reach limiting configuration characterized by a 120° angle. As the
upstream Froude number Fy; decreases or F' increases, amplitude A and steepness
s of the waves increase to the limiting values of Cokelet (1977).

In general, the behavior of the downstream flow can be described by at least
two possible pattern, namely: hydraulic jump and jet flow. In this thesis, the

downstream jet flow is assumed in all calculations.
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For further study, one can include the surface tension effect into the problem.
This effect could help explain the value of contact angle between the upstream
free surface and the gate. One may use other numerical methods to solve this

problem or perform experiments to confirm these results.
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APPENDIX

Monacella (1961) proved that a singularity in the Cauchy principal value in-
tegrals can be ignored in the numerical integration. This is achieved by spacing
the mesh points symmetrically with respect to the pole. We show here by using
the trapezoidal rule to compute the Cauchy principal value integral. We can also
use the Simpson’s rule to approximate such integral.

Let f be a continuous function. We approximate the integral of f over a finite
interval [a, b] by partitioning [a,b] into N subintervals with ¢, = a and ty = b.

Thus
b N
a i=0
Here h = b_T“ and

5 .i=0 and N

1 otherwise.

t t
We consider a function % with f(z) # 0 and x € (a,b). The integral of tfﬁi

over the variable t is of Cauchy principal value form. For any € > 0, we can write

this integral as

/f L=t [/:C%dH xl%dt]. (3)

To compute this integral, we rewrite the integral on the left hand side of (3) as

b
) t—zdt / /() dt+f( )/a t—lxdt' (4)

Next we consider N + 1 equally spaced mesh point ¢;,7 =0, ..., N. Thus x is the

midpoint between ¢; and ¢;,,; for : = 0,1,..., N — 1. There are two possible cases

to be taken into account: (i)x = (’_T“ and (ii) = # ”_T“



80

Case (i) z = 5.

It can easily be shown that f; ~—dt = 0. Thus (4) becomes

RPN /b Li - i(x) dt. (5)

o t—2

Using the trapezoidal rule, we approximate the integral on the right hand side

of (5) by

| Tio— i S =1,

P — T
N N
/i f(ts) f(z)
_;ti—xh N o ,—:Eh !
N

The XN: /()

t, —x
i=0

suggests that the Cauchy principal value integral can be approximated as if it

hw; = 0 because x is midpoint of the interval [a,b]. Equation (6)

were an ordinary integral.
Case (i) z # 52
Assuming that  is a midpoint on any interval [¢, d| C [a,b]. We now rewrite

(3) as

bf(t)dt:/cf(t)dtJr/df(t)dtJr/dbf(t)dt. (7)

Lot A t—w t—x t—x

The first and third integral on the right hand side of (7) are not.Cauchy principal
values. Thus they can be approximated by trapezoidal rule. The second integral is
a Cauchy principal value with x as a midpoint of the interval [c, d]. The discussion

in case (i) shows that it can also be evaluated by the trapezoidal rule. Therefore
b N

t t;

F0) L, o ()

o t—x izoti_x

h’U)i

Which is the same as (6). Thus, the singularity is subtracted from the Cauchy

principal value integral leaving nonsingular integrals to evaluate as claimed.
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