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CHAPTER I

Introduction

In the studies of incubation of Acquired Immunodeficiency Syndrome (AIDS),

an important problem is the characterization of the distribution function of the

random time between infection with Human Immunodeficiency Virus (HIV) to

AIDS onset. This distribution function has been referred to as the AIDS incuba-

tion distribution function. We also know that the mean value of this distribution

function is usually very large taking a value of about 10 years for people between

age 20-50 (Anderson et al., 1989).

In this study, we will derive the probability distributions in two models as

follows.
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γ2

. . . . .
βk−1←−−−−−−−−→
γk−2

Sk−1

βk←−−−−−−−−→
γk−1

Sk

B

HHH
HHH

HHHj

Z
Z

Z
Z

Z~

�
�

�
�

�=

���
���

�����

µ1 µ2 µk−1 µk

AIDS
?

γB

Model 2

The model 1 shows for the HIV epidemic in which βi, γi(> 0) and µi denote the

transition rates. In this model, S1 corresponds to the exposure stage of the Walter-

Reed staging system (WRO stage, see Redfield and Burke, 1988) and is the HIV

infected but antibody negative stage defined in Longini et al.(1989a, 1989b, 1991,

1992). In Tan and Hsu (1989), S1 was referred to as the latent stage (L-stage)

to account for the latency of HIV provirus. In model 1, AIDS denotes the AIDS

stage and Si denotes the (i− 1)st substage of the infective stage (i = 2, 3, . . . , k).

The Walter-Reed staging system assumed k = 5; Hethcote et al.(1991) assumed

k = 6 whereas Longini et al.(1991) assumed k = 7 and βi = 0 for 2 ≤ i ≤ k and

if µj = 0 for 1 ≤ j ≤ k − 1 . Model 1 is more general than most of the models in

the literature in the following two aspects:

(a) We assume that it is possible to have backward transition from Si to Si−1.

The data reported by Nagelkerke et al.(1990) suggests that this is possible

and hence should be taken into account.

(b) We assume also that it is possible to develop AIDS from any substages of

infective stages, i.e., Si → AIDS for i ≤ k. The MACS data (Multicenter

AIDS Cohort Studies) reported by Zhou et al.(1993) and the new revised
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1993 AIDS defined by CDC (Center for Disease Control, Atlanta, GA) sug-

gest that it is possible to have Si → AIDS for i < k and hence should be

taken into account.

Notice that if βi = 0 for 2 ≤ i ≤ k and if µj = 0 for 1 ≤ j ≤ k − 1, then the

model 1 reduces to the model considered by Longini et al.(1989a, 1989b, 1991,

1992).

Model 1 is assumed that AIDS can be developed directly from any substages of

the infective stages. Since the average incubation period is usually very long, intu-

itively it is difficult to imagine that AIDS would be developed directly from early

substages of the infective stage. Because of this consideration, we will postulate a

state B for AIDS-related illness and consider a modified model 2. Notice that in

the CDC staging system (see CDC Report, 1986), the stage B has been suggested

as a stage between the infective stage and the AIDS stage. Hence the model 2 is

in essence a reformulation of the CDC staging system of the HIV epidemic.

We will obtain the probability function in form
k−1∑
j=0

k∑
i=1

cijt
je−bit for both mod-

els.



CHAPTER II

Preliminaries

In our work, we need some basic knowledges from matrix algebra and probability

theory as follows.

2.1 Basic knowledges in matrix algebra

A diagonal matrix is a square matrix in which the elements off the main

diagonal are zero.

A square matrix A is diagonalizable if there is an invertible matrix P such

that the matrix P−1AP is a diagonal matrix.

A square matrix A is said to be nilpotent if Ar = 0, where 0 is the zero

matrix, for some natural number r.

A square matrix A is called tri-diagonal if one in which nonzero entries

appear only on the main diagonal and the two adjacent diagonals, i.e., aij = 0 if

|i− j| > 1.

Let A be an n× n matrix with real entries. The number λ (real or complex)

is called an eigenvalue of A if there exists a nonzero vector v ∈ Cn such that

Av = λv.

The vector v 6= 0 is called an eigenvector of A corresponding to the eigenvalue λ.

A square matrix A is said to be positive definite if all eigenvalues of A are

positive.

Let A and A′ be any two square matrices. We say that A is similar to A′ if

there exists an invertible matrix P such that A′ = P−1AP .
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Theorem 2.1.1 Let A be a k × k matrix with eigenvalues b1, b2, . . . , bk. Then A

is similar to a k × k matrix J which is of the form

J =



J1 0 0 · · · 0

0 J2 0 · · · 0

...
. . . . . .

...

0 · · · 0 Jn−1 0

0 . . . . . . . 0 Jn


(2.1)

for some n ∈ N and for l = 1, 2, . . . , n, Jl is of the form

Jl =



bi 1 0 · · · 0

0 bi 1 · · · 0

...
. . . . . .

...

0 · · · 0 bi 1

0 . . . . . . . 0 bi


.

The matrix J is called the Jordan canonical form corresponding to A.

Furthermore, we know that the Jordan canonical form J of A can be repre-

sented in the form 

b1 d1 0 · · · 0

0 b2 d2 · · · 0

...
. . . . . .

...

0 · · · 0 bk−1 dk−1

0 . . . . . . . 0 bk


where di ∈ {0, 1}.

Proof See, e.g., [6] Chapter 7.

Let P (t) = [pij(t)] be a matrix with variable t and assume that pij(t) is differ-

entiable for all i, j. Define

P ′(t) =

[
d

dt
pij(t)

]
.
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For any square matrix A of real numbers,

eA =
∞∑

j=0

1

j!
Aj.

It is well known that eA is well-defined for any square matrix A.

Proposition 2.1.2 Let X and Y be arbitrary n× n matrices. Then

1. e0 = In, where 0 is the zero n× n-matrix and In is the identity matrix,

2. if XY = Y X, then eX+Y = eX · eY = eY · eX ,

3. if Y is invertible, then eY XY −1
= Y eXY −1,

4.
d

dt
etX = XetX = etXX, for all t ∈ R.

Theorem 2.1.3 Let A be a tri-diagonal k × k matrix of the form

A =



λ1 −γ1 0 . . . . . . . . . . . . . . . . . . 0

−β2 λ2 −γ2 0 . . . . . . . . . . . . 0

0 −β3 λ3 −γ3 0 · · · 0

...
. . . . . . . . .

...

...
. . . . . . . . .

...

0 . . . . . . . . . . 0 −βk−1 λk−1 −γk−1

0 . . . . . . . . . . . . . . . 0 −βk λk



,

where βi ≥ 0, γi > 0 and λi ≥ γi + βi for i = 1, 2, . . . , k. Then A has the positive

determinant.

Proof We prove this theorem by induction. Let P (n) be the statement := An
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n× n matrix of the form

An =



λ1 −γ1 0 . . . . . . . . . . . . . . . . . . 0

−β2 λ2 −γ2 0 . . . . . . . . . . . . 0

0 −β3 λ3 −γ3 0 · · · 0

...
. . . . . . . . .

...

...
. . . . . . . . .

...

0 . . . . . . . . . . 0 −βn−1 λn−1 −γn−1

0 . . . . . . . . . . . . . . . 0 −βn λn



,

where βi ≥ 0, γi > 0 and λi = γi + βi + εi for some εi ≥ 0 for i = 1, 2, . . . , n has

a positive determinant.

Basis Step. Since det([λ1]) = λ1 > 0, P (1) is true.

Inductive Step. Let q ∈ N be such that P (1), P (2), . . . , P (q) are true. To prove

P (q + 1), we need the fact that

det Al ≥ (β1 + ε1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ2 −γ2 0 . . . . . . . . . . . . . . 0

−β3 λ3 −γ3 0 . . . . . . . . . . . 0

...
...

0 . . . . . . . . . . . . −βl−1 λl−1 −γl−1

0 . . . . . . . . . . . . 0 −βl λl

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ γ1γ2 . . . γl

for l = 2, 3, . . . , q + 1. (2.2)

We will prove (2.2) by finite induction on {2, 3, . . . , q + 1}. Observe that

det A2 = det

 λ1 −γ1

−β2 λ2

 = (γ1 + β1 + ε1)λ2 − γ1β2

≥ (β1 + ε1)λ2 + γ1γ2

which implies that (2.2) holds for l = 2. Next, suppose that (2.2) is true for

l = 2, 3, . . . ,m where m ∈ {2, 3, . . . , q}. Then
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det Am+1 = (γ1 + β1 + ε1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ2 −γ2 0 . . . . . . . . . . . . . . . . 0

−β3 λ3 −γ3 0 . . . . . . . . . . . . . 0

...
...

0 . . . . . . . . . . . . −βm λm −γm

0 . . . . . . . . . . . . 0 −βm+1 λm+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ γ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−β2 −γ2 0 . . . . . . . . . . . . . . . . 0

0 λ3 −γ3 0 . . . . . . . . . . . . . 0

...
...

0 . . . . . . . . . . . . −βm λm −γm

0 . . . . . . . . . . . . 0 −βm+1 λm+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (β1 + ε1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ2 −γ2 0 . . . . . . . . . . . . . . . . 0

−β3 λ3 −γ3 0 . . . . . . . . . . . . . 0

...
...

0 . . . . . . . . . . . . −βm λm −γm

0 . . . . . . . . . . . . 0 −βm+1 λm+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ γ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ2 −γ2 0 . . . . . . . . . . . . . . . . 0

−β3 λ3 −γ3 0 . . . . . . . . . . . . . 0

...
...

0 . . . . . . . . . . . . −βm λm −γm

0 . . . . . . . . . . . . 0 −βm+1 λm+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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− γ1β2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ3 −γ3 0 . . . . . . . . . . . . . . . . 0

−β4 λ4 −γ4 0 . . . . . . . . . . . . . 0

...
...

0 . . . . . . . . . . . . −βm λm −γm

0 . . . . . . . . . . . . 0 −βm+1 λm+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≥ (β1 + ε1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ2 −γ2 0 . . . . . . . . . . . . . . . . 0

−β3 λ3 −γ3 0 . . . . . . . . . . . . . 0

...
...

0 . . . . . . . . . . . . −βm λm −γm

0 . . . . . . . . . . . . 0 −βm+1 λm+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ γ1


(β2 + ε2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ3 −γ3 0 . . . . . . . . . . . . . . . . 0

−β4 λ4 −γ4 0 . . . . . . . . . . . . . 0

...
...

0 . . . . . . . . . . . . −βm λm −γm

0 . . . . . . . . . . . . 0 −βm+1 λm+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ γ2γ3 · · · γm+1



− γ1β2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ3 −γ3 0 . . . . . . . . . . . . . . . . 0

−β4 λ4 −γ4 0 . . . . . . . . . . . . . 0

...
...

0 . . . . . . . . . . . . −βm λm −γm

0 . . . . . . . . . . . . 0 −βm+1 λm+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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≥ (β1 + ε1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ2 −γ2 0 . . . . . . . . . . . . . . . . 0

−β3 λ3 −γ3 0 . . . . . . . . . . . . . 0

...
...

0 . . . . . . . . . . . . −βm λm −γm

0 . . . . . . . . . . . . 0 −βm+1 λm+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ γ1γ2γ3 · · · γm+1

where we have used the truth of P (m − 1) in the last inequality. Thus (2.2) is

proved.

By (2.2),

det Aq+1 ≥ (β1 + ε1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ2 −γ2 0 . . . . . . . . . . . . . . . 0

−β3 λ3 −γ3 0 . . . . . . . . . . . . 0

...
...

0 . . . . . . . . . . . . −βq λq −γq

0 . . . . . . . . . . . . 0 −βq+1 λq+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ γ1γ2 . . . γq+1

≥ γ1γ2 . . . γq+1

> 0

where we have used the fact that P (q) holds in the second inequality. Hence, by

the induction hypothesis, Aq+1 has a positive determinant. Then the theorem is

proved. #

Theorem 2.1.4 If P (t) and Q(t) are matrices having differentiable entries, then

d

dt
(P (t)Q(t)) =

d

dt
(P (t)) Q(t) + P (t)

d

dt
(Q(t)).
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2.2 Basic knowledges in Probability Theory

A probability space is a measure space (Ω,=, P ) in which P is a positive

measure such that P (Ω) = 1. The set Ω will be referred to as a sample space.

The element of = are called events. For any event A, the value P (A) is called

the probability of A.

A real-valued function X from a probability space (Ω,=, P ) is said to be a

random variable if for each x ∈ R, {ω ∈ Ω | X(ω) ≤ x} ∈ =.

Let X be a random variable on a probability space (Ω,=, P ). The expected

value E(X) is defined by

E(X) =

∫
Ω

XdP.

We often refer to the expected value as the mean or average or first moment

of X.

For a random variable X, we define F : R → [0, 1] as the distribution

function of X by

F (x) = P ({w| X(w) ≤ x}).

It is convenient to abbreviate this expression by

F (x) = P (X ≤ x).

If there exists f : R → [0,∞) such that the distribution function F of X can

be represented in the form of

F (x) =

∫ x

−∞
f(t)dt,

we will say that X is a continuous random variable and f is the probability

function of X.

A continuous random variable X will be said to have a gamma distribution
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function with parameters (α, β) if its probability function of X is given by

f(x) =


0, if x ≤ 0,

1

βαΓ(α)
xα−1e−

x
β , if x > 0,

where α and β are positive constants, and the Gamma function Γ : R+ → R is

defined by

Γ(r) =

∫ ∞

0

xr−1e−xdx for all r ∈ R+.

A stochastic process is a family of random variables {Xt| t ∈ I} , where t

is a parameter running over an index set I and a probability space (Ω,F , P ),

which take values in a measurable space (S,S), called the state space. I is called

a parameter space.

If I is a countable set, then a stochastic process {Xt| t ∈ I} is said to be a

discrete stochastic process and in the case that I is an interval, {Xt| t ∈ I} is

said to be a continuous stochastic process.

In this research, we assume that every Markov process has a finite state space.

A continuous stochastic process {Xt | t ∈ [0,∞)} is said to be a Markov

process if for all s, t, u ≥ 0 such that u ≤ s and i, j, k ∈ S

P
(
{Xs+t = j | Xs = i, Xu = k}

)
= P

(
{Xs+t = j | Xs = i}

)
.

Let {Xt | t ∈ [0,∞)} be a Markov process with a state space S. For any

s, t ≥ 0 and i, j ∈ S, we call a real number p
(s)
ij (t), defined by

p
(s)
ij (t) = P (Xs+t = j | Xs = i),

the t-step transition probability at time s and call the matrix

P (s)(t) = [p
(s)
ij (t)]i,j∈S
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the t-step transition matrix at time s .

A state i of a Markov process is called absorbing if it is imposible to leave

it (i.e., p
(s)
ii (t) = 1 for every s, t ≥ 0). A Markov process is absorbing if it has

at least one absorbing state, and if from every state it is possible to go to an

absorbing state (not necessarily in one step).

In an absorbing Markov process, a state which is not absorbing is called tran-

sient.

Let t > 0. If all p
(s)
ij (t) are equal for every s > 0, then {Xt | t ∈ [0,∞)} is said

to be a homogeneous Markov process or Markov process with stationary

transition probability. We also denote p
(s)
ij (t) and P (s)(t) by pij(t) and P (t),

respectively.

Let {Xt | t ∈ [0,∞)} be a homogeneous continuous–time Markov process with

state space S and transition matrix [pij(t)].

The matrix Q = [vij]i,j∈S which satisfies the following conditions:

1. for i 6= j, the entry vij = rate at which Xt jumps from i to j,

i.e., pij(t) = vijt + o(t) for t→ 0 where lim
t→0

o(t)

t
= 0,

2. vii = −
∑
j 6=i

vij for each i,

is called a generator matrix or a rate matrix of {Xt | t ∈ [0,∞)}.

Note that a generator matrix Q satisfies the following properties:

1. vij ≥ 0 for i 6= j,

2.
∑
j∈S

vij = 0 for i ∈ S.

For a homogeneous Markov process {Xt | t ∈ [0,∞)} and i, k ∈ S, if i 6= k,

the first passage time of i is defined to be

Tik = inf{t ≥ 0 : Xt = k | X0 = i};
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the mean first passage time is

µik = E(Tik).

Proposition 2.2.1 Let {Xt | t ∈ [0,∞)} be a homogeneous Markov process

with finite state space. Then

P (t) = eQt,

where P and Q are the transition and generator matrices of {Xt | t ∈ [0,∞)},

respectively.

Proof See, e.g., [17] page 388.



CHAPTER III

Main Results

The purpose of this chapter is to find the probability function of the first passage

time of each state of AIDS incubation, i.e., the HIV incubation function. We will

consider the HIV epidemics in two models as follows.

S1
β2←−−−−−−−−→
γ1

S2
β3←−−−−−−−−→
γ2

. . . . .
βk−1←−−−−−−−−→
γk−2

Sk−1

βk←−−−−−−−−→
γk−1

Sk

AIDS

HH
HHH

HHH
Hj

Z
Z

Z
Z

Z~

�
�

�
�

�=

��
���

���
���

µ1 µ2 µk−1 γk=µk

Model 1

S1
β2←−−−−−−−−→
γ1

S2
β3←−−−−−−−−→
γ2

. . . . .
βk−1←−−−−−−−−→
γk−2

Sk−1

βk←−−−−−−−−→
γk−1

Sk

B

HHH
HHH

HHHj

Z
Z

Z
Z

Z~

�
�

�
�

�=

���
���

�����

µ1 µ2 µk−1 µk

AIDS
?

γB

Model 2

The given models are for the HIV epidemic in which βi is the backward transition

rate from Si to Si−1, γi > 0 is the forward transition rate from Si to Si+1 and

µi is the transition rate from Si to AIDS. In model 1, AIDS denotes the AIDS

stage, S1 is the HIV infected but antibody negative stage and Si( i = 2, 3, . . . , k)

denotes the (i− 1)st substage of the infective stage.
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Model 1 is more general than most of the models in the literature in the

following two aspects :

(a) We assume that it is possible to have backward transition from Si to Si−1 (i =

2, 3, . . . , k).

(b) We assume also that it is possible to develop AIDS from any substage of

infective stages, i.e., Si → AIDS for i ≤ k.

Model 1 is assumed that AIDS can be developed directly from any substage

of the infective stages. Since the average incubation period is usually very long,

intuitively it is difficult to imagine that AIDS would be developed directly from

early substages of the infective stages. Because of this consideration, we will

postulate a state B for AIDS-related illness and consider a modified model 2.

Notice that in the CDC staging system (see CDC Report, 1986), the stage B

has been suggested as a stage between the infective stages and the AIDS stage.

Hence model 2 is in essence a reformulation of the CDC staging system of the

HIV epidemic.

3.1 Proof of Model 1

From model 1, for every t > 0, we let Xt be a random variable of which the value

is the state of HIV epidemic at the time t. So the state space of {Xt | t ≥ 0} is

{S1, S2, . . . , Sk+1} where Sk+1 is the AIDS state. Hence the (k + 1)st stage is an

absorbing state and by the fact that γi > 0 for i = 1, 2, . . . , k, we see that the

states S1, S2, . . . , Sk are transition states. Starting at time s = 0, let Ti be the

random time that Si is absorbed into Sk+1, i = 1, 2, . . . , k. Then Ti is referred to

as the first passage time of Si and fi(t), the probability function, the first passage
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probability of Si. In what follows, we put

f(t) = [f1(t), . . . , fk(t)]
T ,

where T denotes the transpose operator.

In this work, we assume that {Xt|t ≥ 0} is a homogeneous continuous Markov

process and let the transition matrix P (t) = [pij(t)]. By Chapter 5 of [17] we have

that:

pij(t) = vijt + o(t) where t→ 0 and i 6= j,

pii(t) = 1− viit + o(t) where t→ 0,

vij ≥ 0, vii =
∑
j 6=i

vij,


(3.1)

where vij is the transition rate at which Xt jumps from i to j.

From (3.1), we know that the generator matrix of (Xt) is of the form

−v11 . . . v1k v1(k+1)

...
. . .

...
...

vk1 . . . −vkk vk(k+1)

v(k+1)1 . . . v(k+1)k −v(k+1)(k+1)


.

Remark From model 1, for every i, j = 1, 2, . . . , k, we see that vij = 0 for

|i− j| > 1, vi(i+1) = γi, vi(k+1) = µi and vi(i−1) = βi (i 6= 1). Since the (k + 1)st

state is an absorbing state, v(k+1)j = 0 for j = 1, 2, . . . , k. So the generator matrix

of {Xt | t ≥ 0} is −Q where
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Q =



λ1 −γ1 . . . 0 0 −µ1

−β2 λ2 −γ2 . . . 0 −µ2

...
. . . . . . . . .

...
...

0 0 . . . λk−1 −γk−1 −µk−1

0 0 . . . −βk λk −γk

0 0 . . . 0 0 0


(3.2)

Proposition 3.1 Let λi = βi + γi + µi for i = 1, 2, . . . , k − 1, λk = βk + γk and

β1 = 0. Let

A =



λ1 −γ1 . . . 0 0

−β2 λ2 −γ2 . . . 0

...
. . . . . . . . .

...

0 0 . . . λk−1 −γk−1

0 0 . . . −βk λk


.

If A is invertible, then

f(t) = e−AtA1k.

Proof

We observe that

Q =

 A −µ

0k 0


(k+1)×(k+1)

where µ = [µ1, µ2, . . . , µk]
T and 0k = (0, 0, · · · , 0)︸ ︷︷ ︸

k

,

Q2 = Q×Q =

 A2 −Aµ

0k 0


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and

Q3 = Q2 ×Q =

 A3 −A2µ

0k 0

 .

Hence, by inductive reasoning, we have that

Qm =

 Am −Am−1µ

0k 0


where m = 1, 2, . . ..

By the fact that

A−1{Ik − e−At}µ = −A−1{e−At − Ik}µ

= −A−1{
∞∑

m=0

(−1)m tm

m!
Am − Ik}µ

= −
∞∑

m=1

(−1)m tm

m!
Am−1µ,

where Q0 = Ik+1, and by Proposition 2.2.1, we have

P (t) = e−Qt

=
∞∑

j=0

(−1)j tj

j!
Qj

= Ik+1 +
∞∑

j=1

(−1)j tj

j!

Aj −Aj−1µ

0k 0



= Ik+1 +


∞∑

j=1

(−1)j tj

j!
Aj −

∞∑
j=1

(−1)j tj

j!
Aj−1µ

0k 0


= Ik+1 +

e−At − Ik A−1[Ik − e−At]µ

0k 0

 ,

i.e.,

P (t) =

 e−At A−1[Ik − e−At]µ

0k 1

 . (3.3)
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Let

h(t) =

[
p1(k+1)(t) p2(k+1)(t) · · · · · · pk(k+1)(t)

]T

.

Hence, by (3.3) we have

h(t) = A−1[Ik − e−At]µ. (3.4)

For t > 0 and i = 1, 2, . . . , k we see that

[0, ..., 0, 1︸︷︷︸
ith

, 0, ..., 0](h(t))

= pi(k+1)(t)

= P ({Xt = k + 1 | X0 = i})

= P ({Xt = k + 1, Ti > t | X0 = i}) + P ({Xt = k + 1, Ti ≤ t | X0 = i})

= P ({Xt = k + 1, Ti ≤ t | X0 = i})

= P (getting into the (k + 1)st stage when we start at the state i, we spend time

less than or equal to t)

= P (Ti ≤ t)

= Fi(t)

where Fi(t) is the distribution function of Ti. If
d

dt
[0, ..., 0, 1︸︷︷︸

ith

, 0, ..., 0](h(t)) exists

for every i, then

f(t) =
d

dt
(h(t)). (3.5)
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By (3.4),(3.5) and the fact that

A1k =



λ1 −γ1 0 . . . . . . . 0

−β2 λ2 −γ2 . . . . . . . 0

0 −β3 λ3 . . . . . . . 0

...
...

0 . . . . . . . . . . 0 −βk λk





1

1

...

...

1


=

[
µ1 µ2 · · · µk

]T

= µ, (3.6)

we have,

f(t) =
d

dt
[A−1[Ik − e−At]µ]

=
d

dt
[A−1[Ik − e−At]A1k]

=
d

dt
[A−1 · A · 1k − A−1e−At · A · 1k]

= − d

dt
[e−At · 1k]

= e−At · A · 1k (by Theorem 2.1.2(4)). #

Next, we will consider the matrix A defined in Proposition 3.1. By Theorem 2.1.3,

we see that A has a positive determinant and then A−1 exists. By Proposition 3.1

we have

f(t) = e−AtA1k. (3.7)

From Theorem 2.1.1, there exist a k × k Jordan canonical form J of A such
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that

J =



b1 d1 0 . . . . . . . . 0

0 b2 d2 0 · · · 0

0 0 b3 d3 · · · 0

...
. . . . . .

...

0 . . . . . . 0 bk−1 dk−1

0 . . . . . . . . . . 0 bk


(3.8)

where b1, . . . , bk are eigenvalues of A and di ∈ {0, 1} for i = 1, . . . , k and an

invertible matrix P such that

A = PJP−1.

Moreover, we know that there exists n ∈ N such that J can be written in the

form, 

J1 0 0 . . . 0

0 J2 0 . . . 0

...
...

. . .
...

...

0 0 . . . Jn−1 0

0 0 . . . 0 Jn


(3.9)

where Ji’s are submatrices of J defined in (2.1). For each l = 1, 2, . . . , n, if

Jl =



bi 1 0 · · · 0

0 bi 1 · · · 0

...
. . . . . .

...

0 · · · 0 bi 1

0 . . . . . . . 0 bi


,
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let

Sl =



bi 0 0 · · · 0

0 bi 0 · · · 0

...
. . . . . .

...

0 · · · 0 bi 0

0 . . . . . . . 0 bi


and Nl =



0 1 0 · · · 0

0 0 1 · · · 0

...
. . . . . .

...

0 · · · 0 0 1

0 . . . . . . . 0 0


,

and if Jl = [bi], let

Sl = [bi] and Nl = [0].

Then

Jl = Sl + Nl and SlNl = NlSl for all l = 1, 2, . . . , n. (3.10)

Let

N =



N1 0 0 · · · 0

0 N2 0 · · · 0

...
. . . . . .

...

0 · · · 0 Nn−1 0

0 . . . . . . . 0 Nn


=



0 d1 0 · · · 0

0 0 d2 · · · 0

...
. . . . . .

...

0 · · · 0 0 dk−1

0 . . . . . . . 0 0


and

S =



S1 0 0 · · · 0

0 S2 0 · · · 0

...
. . . . . .

...

0 · · · 0 Sn−1 0

0 . . . . . . . 0 Sn


=



b1 0 0 · · · 0

0 b2 0 · · · 0

...
. . . . . .

...

0 · · · 0 bk−1 0

0 . . . . . . . 0 bk


.

From (3.8), (3.9) and (3.10), we see that

J = N + S and NS = SN.
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Let

N = PNP−1 and S = PSP−1.

Hence

N + S = P (N + S)P−1 = PJP−1 = A (3.11)

and

N S = P (NS)P−1 = P (SN)P−1 = S N (3.12)

Since

Sn =



bn
1 0 . . . 0 0

0 bn
2 . . . 0 0

...
...

. . .
...

...

0 0 . . . bn
k−1 0

0 0 . . . 0 bn
k


,

we have

e−St =
∞∑

n=0

(−St)n

n!

=



e−b1t 0 · · · 0

0 e−b2t · · · 0

...
. . .

...

0 . . . . . . . . . e−bkt


.

Observe that

N2 =



0 0 d1d2 0 · · · · · · 0

0 0 0 d2d3 · · · · · · 0

...
. . .

...

0 0 . . . . . . . . . . . . . . . . . . . . dk−1dk

0 0 . . . . . . . . . . . . . . . . . . . . 0

0 0 . . . . . . . . . . . . . . . . . . . . 0


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and by using mathematical induction, for every m we can see that Nm =
[
n

(m)
ij

]
where

n
(m)
ij =


i+m−1∏

l=i

dl if j = i + m and j < k,

0 otherwise.

Hence Nm = 0 for m ≥ k and

e−Nt =
k−1∑
m=0

(−tN)m

m!
=

k−1∑
m=0

(−t)m(n
(m)
ij )

m!

= Ik − t



0 d1 0 . . . 0

0 0 d2 . . . 0

...
...

...
. . .

...

0 0 0 . . . dk−1

0 0 0 . . . 0


+

t2

2!



0 0 d1d2 . . . 0

...
...

...
. . .

...

0 0 0 . . . dk−2dk−1

0 0 0 0 0

0 0 0 0 0



+ · · ·+ (−t)k−1

(k − 1)!



0 0 0 . . .
k−1∏
i=1

di

0 0 0 . . . 0

...
...

...
...

...

0 0 0 . . . 0

0 0 0 . . . 0


:= [nij] where

nij =



n
(p)
ij

(−t)p

p!
if j > i and j = i + p,

1 if j = i,

0 if j < i,
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i.e.,

e−Nt =



1 −n
(1)
12 t n

(2)
13

t2

2
. . . . . . n

(k−1)
1k

(−t)k−1

(k − 1)!

0 1 −n
(1)
23 t . . . . . . n

(k−2)
2k

(−t)k−2

(k − 2)!

...
...

0 0 0 · · · 1 −n
(1)
(k−1)kt

0 0 0 · · · 0 1


.

By (3.6) and (3.7), for i0 ∈ {1, 2, . . . , k} we have

fi0(t) = eT
i0
f(t) where eT

i0
= [0, . . . , 0, 1︸︷︷︸

ith0

, 0, . . . , 0]

= eT
i0
e−AtA1k

= eT
i0
e−At

[
µ1 µ2 · · · µk−1 µk

]T

; which by (3.11) and (3.12)

= eT
i0
e−Ste−Nt

[
µ1 µ2 · · · µk

]T

; which by Proposition 2.1.2(3)

= eT
i0
Pe−Ste−NtP−1

[
µ1 µ2 · · · µk

]T

=

[
e−b1tvi01 e−b2tvi02 · · · e−bktvi0k

]
[nij]

[
k∑

i=1

v′1iµi

k∑
i=1

v′2iµi · · ·
k∑

i=1

v′kiµi

]T

where P = [vij] and P−1 = [v′ij]

=

[
e−b1tvi01

2∑
l=1

(−1)2−le−bltvi0ln
(2−l)
l2

t2−l

(2− l)!
· · ·

k∑
l=1

(−1)k−le−bltvi0ln
(k−l)
lk

tk−l

(k − l)!

]
[

k∑
i=1

v′1iµi

k∑
i=1

v′2iµi · · ·
k∑

i=1

v′kiµi

]T

=
k−1∑
j=0

k∑
i=1

ci0
ijt

je−bit (3.13)

where

ci0
ij =


(−1)j

j!
vi0i

i+j−1∏
l=i

dl

k∑
r=1

µrv
′
(i+j)r, if i + j ≤ k,

0, otherwise,

and

j∏
l=i

dl = 1 for j < i.
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By the fact that ∫ ∞

0

tnebt dt =
n!

bn+1
,

we see that the average time of AIDS incubation is

E(Ti0) =

∫ ∞

0

tfi0(t) dt =
k−1∑
j=0

k∑
i=1

cij
(j + 1)!

bj+2
i

(3.14)

as the desired result.

3.2 Proof of Model 2.

In this section, we will derive the AIDS incubation function of model 2. The main

idea is the same as that of model 1. From model 2, for every t > 0, we let Xt be a

random variable whose value is the state of HIV epidemic at time t. So the state

space of {Xt | t ≥ 0} is {S1, S2, . . . , Sk+1, Sk+2} where Sk+1 is the B-state and

Sk+2 is the AIDS stage. Hence the state Sk+2 is an absorbing state and by the

fact that γi > 0 for i = 1, 2, . . . , k + 1, we see that the states S1, S2, . . . , Sk, Sk+1

are transition states. Starting at time s = 0, let Ti be the random time that Si is

absorbed into Sk+2, i = 1, 2, . . . , k + 1. Then Ti is referred to as the first passage

time of Si and gi(t), the probability function, the first passage probability of Si.

In what follows, we put

g(t) = [g1(t), . . . , gk+1(t)]
T .

In this work, we assume that {Xt | t ≥ 0} is a homogeneous continuous Markov

process and let the transition matrix P (t) = [pij(t)] satisfy (3.15) as follows :

pij(t) = vijt + o(t), where t→ 0 and i 6= j

pii(t) = 1− viit + o(t), where t→ 0

vij ≥ 0, vii =
∑
j 6=i

vij,


(3.15)
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when vij is the transition rate at which Xt jumps from i to j.

By using the same argument of Proposition 3.1, if we can show that

A =



λ1 −γ1 0 . . . −µ1

−β2 λ2 γ . . . −µ2

...
. . . . . . . . .

...

0 0 . . . λk −µk

0 0 . . . 0 λk+1


is invertible then we have

g(t) = e−AtA1k+1. (3.16)

To show that A is invertible, we can observe that

A =

R −µ

0k γB


where

R =



λ1 −γ1 0 . . . . . . . . . . 0

β2 λ2 −γ2 0 · · · 0

...
...

0 · · · 0 βk−1 λk−1 −γk−1

0 . . . . . . . . . 0 βk λk


,

µ =
[
µ1, µ2, . . . , µk

]T
and

0k = [0, 0, . . . , 0︸ ︷︷ ︸
k

].

By Theorem 2.1.3, R has a positive determinant. Since γB > 0, we have

det A = γB det R > 0, i.e., A is invertible. So (3.16) holds.
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Let

J =



b1 d1 0 · · · 0

0 b2 d2 · · · 0

...
. . . . . .

...

0 · · · 0 bk dk

0 . . . . . . . 0 bk+1


where bi, i = 1, 2, . . . , k + 1, are all eigenvalues of A and di ∈ {0, 1} be the Jordan

canonical form of A and P = [vij], P
−1 = [v′ij] be (k + 1)× (k + 1) matrices such

that

A = PJP−1.

By (3.16) we also use the same argument in proving model 1 to find the AIDS

incubation of model 2. The result is as follows for i0 ∈ {1, 2, . . . , k + 1},

gi0(t) = eT
i0
e−AtA1k+1 =

k∑
j=0

k+1∑
i=1

di0
ijt

je−bit (3.17)

where

di0
ij =


(−1)j

j!

(
i+j−1∏

l=i

dl

)
vi0iv

′
(i+j)(k+1)γB, if i + j ≤ k + 1,

0, otherwise.

We also know that the mean-time of model 2 is

E(Ti0) =
k∑

j=0

k+1∑
i=1

di0
ij

(j + 1)!

bj+1
i

. (3.18)



CHAPTER IV

Some Models on AIDS Incubation

In this chapter, we give a procedure to find AIDS incubation functions and the

AIDS Incubation of some special cases. The results follows from the procedure

given in 4.1.

4.1 Procedure to find an AIDS incubation distribution

function.

From the proof of model 1, we can conclude the procedure to find AIDS incubation

function as follows :

1.) Find all eigenvalues b1, b2, . . . , bk of the matrix

A =



λ1 −γ1 . . . 0 0

−β2 λ2 −γ2 . . . 0

...
. . . . . . . . .

...

0 0 . . . λk−1 −γk−1

0 0 . . . −βk λk


.
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2.) Find an invertible matrix P and the Jordan canonical form

J =



b1 d1 0 . . . . . . . . 0

0 b2 d2 0 · · · 0

0 0 b3 d3 · · · 0

...
. . . . . .

...

0 . . . . . . 0 bk−1 dk−1

0 . . . . . . . . . . 0 bk


,

where di ∈ {0, 1} (see Appendix), which satisfy the condition A = PJP−1 .

3.) By substitution all of the constants from step 1 and step 2 in the formula

(3.13), we can solve the AIDS incubation distribution function.

In model 2, we also have the same procedure of model 1.

4.2 Examples for some models

Example 4.1. (Model 1 of Tan and Byers 1993) Assume that µi = 0 for i = 1, 2, . . . , k − 1

and βi = 0, γi = γ for i = 1, 2, . . . , k, then λi = γ.

S1 S2 S3
... Sk AIDS-

γ
-

γ
- - -

γ

Model 1 of Tan and Byers 1993

Step 1 We have

A =



γ −γ 0 . . . . . . 0

0 γ −γ 0 · · · 0

...
...

0 . . . . . . . . 0 γ −γ

0 . . . . . . . . . . . 0 γ


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and γ is the only eigenvalue of matrix A.

Step 2

From Appendix, we can find an invertible matrix P ,

P =



(−γ)k−1 0 . . . . . . 0

0 (−γ)k−2 0 · · · 0

...
...

0 · · · 0 −γ 0

0 . . . . . . . . . . . 0 1


,

P−1 =



1

(−γ)k−1
0 . . . . . . 0

0
1

(−γ)k−2
0 · · · 0

...
...

0 · · · 0
1

−γ
0

0 . . . . . . . . . . . 0 1


,

and

J =



γ 1 0 . . . . . . 0

0 γ 1 0 · · · 0

...
...

0 . . . . 0 γ 1

0 . . . . . . . 0 γ


such that A = PJP−1.

We observe that di = 1 for i = 1, 2, . . . , k − 1.

Step 3

cij =


γk−i0+1

(k − i0)!
, if i = i0 and j = k − i0,

0, otherwise.
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So fi0(t) =
γk−i0+1

(k − i0)!
tk−i0e−γt which is Gamma density. #

Example 4.2. (Model 1 of Longini et al. (1989a, 1989b, 1991) and Anderson et

al. (1989)) Assume that µi = 0 for i = 1, 2, . . . , k − 1, βi = 0 for i = 1, 2, . . . , k

and γi’s are all distinct.

S1 S2 S3
... Sk AIDS-

γ1 -
γ2 - - -

γk

Model 1 of Longini et al. (1989a, 1989b, 1991) and Anderson et al. (1989)

Step 1

A =



γ1 −γ1 0 . . . . . . . 0

0 γ2 −γ2 0 · · · 0

...
...

0 . . . . . . . . . 0 γk−1 −γk−1

0 . . . . . . . . . . . . 0 γk


,

which all eigenvalues are all entries in the main diagonal.

Step 2

We have

J =



γ1 0 . . . . . . . 0

0 γ2 0 · · · 0

...
...

0 · · · 0 γk−1 0

0 . . . . . . 0 γk


,

P = [vij] and P−1 = [v′ij] where vij and v′ij are defined by :

vij =


j−1∏
t=i

γt

γt − γj

, if i ≤ j,

0, if i > j,
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and

v′ij =



j−1∏
t=i

γt

j∏
t=i+1

(
γt − γi

) , if i ≤ j,

0, if i > j.

Hence di = 0 for i = 1, 2, . . . , k − 1.

Step 3

fi0(t) =
k∑

i=1

ci0
i0e

−γit

=
k∑

i=1

(
i−1∏
j=1

γj

γj − γi

) γiγi+1 · · · γk

k∏
j=i+1

(γj − γi)

 e−γit

=
k∑

i=1

k∏
j=1

γj

k∏
j=1
j 6=i

(γj − γi)

e−γit. #



Appendix

Procedure to find an invertible matrix P which can trans-

form a square matrix A into its Jordan canonical Form J

In what follows, the argument is considered in the field of complex numbers.

Our details are referred from “Matrix Methods, an Introduction” by Richard

Bronson in Chapter 8 Jordan Canonical Forms, page 176–207.

Let I be the identity matrix. To obtain an invertible matrix which can trans-

form a square matrix into its Jordan canonical form, we need the following defi-

nitions and theorems.

Definition 1 Given a positive integer m and a square matrix A, a vector xm is

a generalized eigenvector of rank m corresponding to the matrix A and the

eigenvalue λ if

(A− λI)mxm = 0 but (A− λI)m−1xm 6= 0.

We note that a generalized eigenvector of rank 1 is, in fact, an eigenvector

corresponding to λ but a generalized eigenvector of rank k 6= 1 is not necessarily

an eigenvector corresponding to λ.

Definition 2 Let xm be a generalized eigenvector of rank m corresponding to a

matrix A and an eigenvalue λ. The chain generated by xm is a set of vectors

{xm, xm−1, . . . , x1} given by

xm−1 = (A− λI)xm

xm−2 = (A− λI)2xm = (A− λI)xm−1

xm−3 = (A− λI)3xm = (A− λI)xm−2

...

x1 = (A− λI)m−1xm = (A− λI)x2.
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Thus, in general

xj = (A−λI)m−jxm = (A−λI)xj+1 (j = 1, 2, . . . ,m−1). (1)

Theorem 3 The vector xj(given in (1)) is a generalized eigenvector of rank j

corresponding to the eigenvalue λ.

Theorem 4 The chain generated by xm in Definition 2 is a linearly independent

set of vectors.

Theorem 5 Every n × n matrix A possesses n linearly independent generalized

eigenvectors. Generalized eigenvectors corresponding to distinct eigenvalues are

linearly independent. If λ is an eigenvalue of A of multiplicity (the number of

the repeated value of λ) ν, then A will have ν linearly independent generalized

eigenvectors corresponding to λ.

Definition 6 A set of n linearly independent generalized eigenvectors is a canon-

ical basis if it is composed entirely of chains.

Definition 7 Let A be an n×n matrix. A generalized modal matrix M for A

is an n × n matrix whose columns, considered as vectors, form a canonical basis

for A and appear in M according to the following rules:

M1 All chains consisting of one vector (that is, one vector in length) appear in

the first columns of M .

M2 All vectors of one chain appear together in adjacent columns of M .

M3 Each chain appears in M in order of increasing rank (that is, the generalized

eigenvectors of rank 1 appear before the generalized eigenvectors of rank 2

of the same chain, which appear before the generalized eigenvector of rank

3 of the same chain, etc.).
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The important fact, however, is that for any arbitrary n × n matrix A, there

exists at least one generalized modal matrix M corresponding to it. Furthermore,

since the columns of M considered as vectors form a linearly independent set, it

follows that the column rank of M is n, i.e., the rank of M is n. As a result the

determinant of M is nonzero, i.e., M−1 exists.

Construction of an invertible matrix P

Let A be any square n× n matrix.

Step 1 From the characteristic matrix

C(x) = A− xI,

obtain the characteristic polynomial

f(x) = (x− λ1)
ν1(x− λ2)

ν2 . . . (x− λp)
νp ,

where λ1, λ2, . . . , λp are all distinct eigenvalues of A.

Fix i ∈ {1, 2, . . . , p}.

Step 2 Find the ranks of the matrices (A− λiI), (A− λiI)2, (A− λiI)3, . . . ,

(A − λiI)m where the integer m is determined to be the first integer for

which (A− λiI)m has rank n− νi.

Step 3 Now define

ρk = rank(A− λiI)k−1 − rank(A− λiI)k (k = 1, 2, . . . ,m).

Then, ρk designates the number of linearly independent generalized eigen-

vectors of rank k corresponding to the eigenvalue λi that will appear in a

canonical basis for A. Note that rank(A− λiI)0 = rank(I) = n.
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Step 4 Find the vectors defined in Definition 1 and Definition 2 explicitly to obtain

a canonical basis for A.

Step 5 Find a generalized modal matrix M by applying Definition 7 and let P = M−1.

Step 6 We can transform A to its Jordan canonical form J by setting J = PAP−1.

Example 1. Let

A =



1 1 0 −1

0 1 0 0

0 0 1 1

0 0 0 1


.

We will find a generalized modal matrix M by the above procedure.

Step 1 Obtain the characteristic matrix

C(x) =



1− x 1 0 −1

0 1− x 0 0

0 0 1− x 1

0 0 0 1− x


.

Then f(x) = (x − 1)4 is its characteristic function. Thus λ1 = 1 is the unique

eigenvalue of A of multiplicity 4; hence, n = 4, ν = 4 and n− ν = 0.

Step 2 We can see that

(A− 1I) =



0 1 0 −1

0 0 0 0

0 0 0 1

0 0 0 0


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has rank 2 and

(A− 1I)2 =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


has rank 0 = n− ν. Thus, m = 2.

Step 3 Then we know that ρ2 = rank(A− 1I)− rank(A− 1I)2 = 2− 0 = 2 and

ρ1 = rank(A−1I)0− rank(A−1I) = 4−2 = 2; hence, a canonical basis for A will

have two linearly independent generalized eigenvectors of rank 2 and two linearly

independent generalized eigenvectors of rank 1.

Step 4 In order for a vector 

w

x

y

z


to be a generalized eigenvector of rank 2, we will solve the equation

(A− 1I)[w x y z]T 6= 0 and (A− 1I)2[w x y z]T = 0.

We can see that either x or z must be non–zero and w and y are arbitrary. If we

first choose x = 1, w = y = z = 0 and then choose z = 1, w = x = y = 0, we

obtain that two linearly independent generalized eigenvectors of rank 2 are

x2 =



0

1

0

0


and y2 =



0

0

0

1


.
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Note that we could have chosen w, x, y, z in such a manner as to generate 4 linearly

independent generalized eigenvectors of rank 2. The vectors

1

1

0

0


and



0

1

1

0


together with x2 and y2 form such a set. Thus we immediately have found a set

of 4 linearly independent generalized eigenvectors corresponding to λ1. This set,

however, is not a canonical basis for A since it is not composed entirely of chains.

In order to obtain a canonical basis for A, we use only two of these vectors (we

will, in particular, use x2 and y2) and form chains from them.

By Definition 2, we obtain the two linearly independent generalized eigenvec-

tors of rank 1 to be

x1 = (A− I)x2 =



1

0

0

0


and y1 = (A− I)y2 =



−1

0

1

0


.

Thus, a canonical basis for A is {x2, x1, y2, y1}, which consists of the two chains

each containing two vectors {x2, x1} and {y2, y1}.

Step 5 Since this canonical basis has no chain consisting of one vector, (M1)

is not applied. From (M2), we assign either x2 and x1 to the first two columns

of M and y2 and y1 to the last two columns of M or, alternatively, y2 and y1 to

the first two columns of M and x2 and x1 to the last two columns of M . We

can not, however, define M = [x1 y1 y2 x2] since this alignment would split the

{x2, x1} chain and violate (M2). Due to (M3), x1 must precede x2 and y1 must
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precede y2; hence

M = [x1 x2 y1 y2] =



1 0 −1 0

0 1 0 0

0 0 1 0

0 0 0 1


or

M = [y1 y2 x1 x2] =



−1 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


.

Example 2. Find a Jordan canonical form of

A =



4 0 1 0

2 2 3 0

−1 0 2 0

4 0 1 2


.

Step 1 The characteristic equation for A is (λ − 3)2(λ − 2)2 = 0; hence, λ1 = 3

and λ2 = 2 are both eigenvalues of multiplicity 2.

Step 2 For λ1 = 3, we find that n − ν1 = 2, m1 = 2. For λ2 = 2, we find that

n− ν2 = 2, m2 = 1.

Step 3 For λ1 = 3, we find that ρ2 = 1, and ρ1 = 1, so that a canonical basis

for A has one generalized eigenvector of rank 2 and one generalized eigenvector of

rank 1.

For λ2 = 2, we find that ρ1 = 2; hence, there are two generalized eigenvectors

of rank 1.
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Step 4 For λ1 = 3, by Definition 1, we find that a generalized eigenvector of

rank 2 is

x2 =



1

3

0

1


.

By Definition 2, we have that

x1 = (A− 3I)x2 =



1

−1

−1

3


is a generalized eigenvector of rank 1.

For λ2 = 2, by Definition 1 and Definition 2, we obtain

y1 =



0

1

0

0


and z1 =



0

0

0

1


as the required vectors. Thus a canonical basis for A is {x2, x1, y1, z1} which

consists of one chain containing two vectors {x2, x1} and two chains containing

one vector apiece {y1} and {z1}. Note that once again, due to Theorem 5, we are

guaranteed that {x2, x1} are linearly independent of {y1, z1} since they correspond

to different eigenvalues.

Step 5 By Definition 7, the first two columns of M must be y1 and z1(however,

any order) due to (M1) while the third and fourth columns must be x1 and x2,
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respectively, due to M(3). Hence,

M = [y1 z1 x1 x2] =



0 0 1 1

1 0 −1 3

0 0 −1 0

0 1 3 1


or

M = [z1 y1 x1 x2] =



0 0 1 1

0 1 −1 3

0 0 −1 0

1 0 3 1


.

For M = [y1 z1 x1 x2], we compute

P := M−1 =



−3 1 −4 0

−1 0 2 1

0 0 −1 0

1 0 1 0


.

Step 6 Thus

PAP−1 =



−3 1 −4 0

−1 0 2 1

0 0 −1 0

1 0 1 0





4 0 1 0

2 2 3 0

−1 0 2 0

4 0 1 2





−3 1 −4 0

−1 0 2 1

0 0 −1 0

1 0 1 0



=



2 0 0 0

0 2 0 0

0 0 3 1

0 0 0 3


:= J

is the Jordan canonical form of A.
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Example 3. Find a matrix in Jordan canonical form that is similar to

A =



−1 0 −1 1 1 3 0

0 1 0 0 0 0 0

2 1 2 −1 −1 −6 0

−2 0 −1 2 1 3 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

−1 −1 0 1 2 4 1



.

Step 1 The characteristic equation of A is (λ − 1)7 = 0, hence, λ = 1 is an

eigenvalue of multiplicity 7.

Step 2 We find that rank(A−1I) = 3, rank(A−1I)2 = 1 and rank(A−1I)3 = 0

= n− ν . Then m = 3.

Step 3 Thus we can find ρ3 = 1, ρ2 = 2 and ρ1 = 4 which implies that a canon-

ical basis for A will consist of one linearly independent generalized eigenvector

of rank 3, two linearly independent generalized eigenvectors of rank 2 and four

linearly independent generalized eigenvectors of rank 1.

Step 4 and Step 5 From Step 3 we know that a canonical basis for A consists

of one chain of three vectors {x3, x2, x1}, one chain of two vectors {y2, y1}, and

two chains of one vector {z1}, {w1} (we can find a canonical basis for A from the

Definition 1 and Definition 2). Designating

M = [z1 w1 x1 x2 x3 y1 y2],
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we find that

M =



0 1 −1 0 0 −2 1

0 3 0 0 1 0 0

−1 1 1 1 0 2 0

−2 0 −1 0 0 −2 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 −1 0 −1 0



.

Thus,

M−1 =



0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 2 1 4 −2 2

0 0 1 1 3 −1 0

0 1 0 0 0 −3 0

0 0 −1 −1 −3 1 −1

1 0 0 −1 −2 −1 0



.

Let P := M−1.

Step 6 Thus,

J = PAP−1 =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 1

0 0 0 0 0 0 1



.



References

1. Anderson, R.M., Blythe, S.P., Gupta, S. and Konings, E., The transmission

dynamics of the human immunodeficiency virus type I in the male ho

mosexual community in the United Kingdom: the influence of changes

in sexual behavior, Philos. Trans. Roy. Soc. London Ser. B. Vol.325 (1989) :

7–60.

2. Bacchetti, P., Estimating the incubation period of AIDS by comparing pop

ulation infection and diagnosis patterns, J. Amer. Statist. Assoc. Vol.85

(1990), 1002–1008.

3. CDC, Classification systems for human T-lymphotropic virus Type-III/lym

phadenopathy-associated virus infections, MMWR. Vol.35 (1986), 334–

339.

4. CDC, AIDS Public Information Data Set, Centers for Disease Control, Cen

ter for Infectious Disease, Division of HIV/AIDS (Atlanta, GA) (1991).

5. Chiang, C.L., Introduction to Stochastic Processes and their Applications.

New York, Krieger, 2nd ed.,(1980).

6. Curtis, C.W., Linear Algebra : An Introductory Approach. New York,

Springer-Verlag, (1984).

7. Glaz, J., Probabilities and moments for absorption infinite homogeneous

birth-death processes, Biometrics. Vol.35(1979) : 813–816.



47

8. Hethcote, H.W., Van Ark, J.W. and Longini Jr., M., A simulation model

of AIDS in San Francisco: I. Model formulation and parameter estimation,

Math. Biosci. Vol.106(1991) : 203–222.

9. Longini Jr., I.M., Clark,W.S., Byers,R.H., et al., Statistical analysis of the

stages of HIV infection using a Markov model, Statist.Medicine. Vol.8(1989a) :

831–843.

10. Longini Jr., I.M., Clark, W.S., Haber, M. and Horsburgh, R., The Stages

of HIV infection: Waiting times and infection transmission probabilities,

in: C. Castillo-Chavez, ed., Lecture Notes in Biomath. No. 83, Mathematical

and Statistical Approaches to AIDS Epidemiology. New York, Springer,(1989b).

11. Longini Jr., I.M., Clark, W.S., Gardner, L.I. and Brundage, J.F., The

dynamics of CD4+ T-lymphocyte decline in HIV-infected individuals: A

Markov modeling approach, J. AIDS. Vol.4(1991) : 1141–1147.

12. Longini Jr., I.M., Byers, R.H., Hessol, N.A., and Tan, W.Y., Estimation

of the stage-specific numbers of HIV infections via a Markov model and

backcalculation, Statist. Medicine. Vol.11(1992) : 831–843.

13. Nagelkerke, N.J.D., et al., Transition dynamics of HIV disease in a cohort

of African prostitutes: A Markov model approach, AIDS. Vol.4(1990) :

743–747.

14. Rao (1973), Linear Statistical Inference and its Applications. John Wiley

& Sons, New York, 2nd ed.



48

15. Redfield, R.R. and D.S. Burke , HIV infection: The clinical picture, Sci. Amer.

Vol.259(1988) : 90–99.

16. Richard, B. (1969), Matrix Methods. Academic Press, New York and Lon

don, 1st ed..

17. Sidney, R. (2002), Adventures in Stochastic Processes. Hamilton Printing

Co., Rennselaer, New York, 3rd ed..

18. Tan, W.Y., On the absorption probability and absorption time of finite

homogeneous birth-death processes, Biometrics. Vol.32(1976) : 745–752.

19. Tan, W.Y., On the distribution of second degree polynomial in normal ran

dom variables, Canad. J. Statist. Vol.5(1977) : 241–250.

20. Tan, W.Y. and H. Hsu, Some stochastic models of AIDS spread, Statist.

Medicine. Vol.8(1989) : 121–136.

21. Tan, W.Y. and Byers, R.H., A stochastic model of

the HIV epidemic and the HIV infection distribution in a homosexual

population, Math. Biosci. Vol.113(1993) : 115–143.

22. Tan, W.Y., On the incubation distributions of the HIV epidemic, Statistics

and Probability Letter. Vol.18(1993) : 279–287.

23. Zhou, S.Y., Kingsley, L.A. and Leung, S., Time from HIV seroconversion to

CD4+≤ 200 using a Markov model, paper presented at the ASA-Biometric

Society Winter Conference. , Ft. Lauderdale, FL, Jan (1993) : 3–5.



49

VITA

Mr. Ratchanikorn Chonchaiya was born on May 10, 1980 in Buriram, Thai-

land. He graduated with a Bachelor Degree of Science in Mathematics with second

class honor from Chulalongkorn University in 2002. For his Master’s degree, he

has studied Mathematics at the Department of Mathematics, Faculty of Science,

Chulalongkorn University. Upon his graduation , he will serve as a lecturer at the

Faculty of Science, Burapa University.


	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (English)
	Abstract (Thai)
	Acknowledgements
	Contents
	CHAPTER I Introduction
	CHAPTER II Preliminaries
	2.1 Basic knowledges in matrix algebra
	2.2 Basic knowledges in Probability Theory

	CHAPTER III Main results
	3.1 Proof of Model 1
	3.2 Proof of Model 2.

	CHAPTER IV Some models and AIDS incubation
	4.1 Procedure to find an AIDS incubation distribution function
	4.2 Examples for some models

	Appendix
	References
	Vita



