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CHAPTER I

Introduction

In the studies of incubation of Acquired Immunodeficiency Syndrome (AIDS),
an important problem is the characterization of the distribution function of the
random time between infection with Human Immunodeficiency Virus (HIV) to
AIDS onset. This distribution function has been referred to as the AIDS incuba-
tion distribution function. We also know that the mean value of this distribution
function is usually very large taking a value of about 10 years for people between
age 20-50 (Anderson et al., 1989).

In this study, we will derive the probability distributions in two models as

follows.

Model 1
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AIDS

Model 2

The model 1 shows for the HIV epidemic in which f;, v;(> 0) and u; denote the
transition rates. In this model, S; corresponds to the exposure stage of the Walter-
Reed staging system (WRO stage, see Redfield and Burke, 1988) and is the HIV
infected but antibody negative stage defined in Longini et al.(1989a, 1989b, 1991,
1992). In Tan and Hsu (1989), S; was referred to as the latent stage (L-stage)
to account for the latency of HIV provirus. In model 1, AIDS denotes the AIDS
stage and S; denotes the (i = 1)st substage of the infective stage (i = 2,3,...,k).
The Walter-Reed staging system assumed k = 5; Hethcote et al.(1991) assumed
k = 6 whereas Longini et al.(1991) assumed k£ = 7 and 3; = 0 for 2 < ¢ < k and
if pj =0for 1 < j <k —1. Model 1 is more general than most of the models in

the literature in the following two aspects:

(a)~We assume that it-is possible to have backward transition from S; to S;_;.
The data reported by Nagelkerke et al.(1990) suggests that this is possible

and hence should be taken into account.

(b) We assume also that it is possible to develop AIDS from any substages of
infective stages, i.e., S; — AIDS for i < k. The MACS data (Multicenter

AIDS Cohort Studies) reported by Zhou et al.(1993) and the new revised



1993 AIDS defined by CDC (Center for Disease Control, Atlanta, GA) sug-
gest that it is possible to have S; — AIDS for i < k and hence should be

taken into account.

Notice that if 3; = 0 for 2 <7 < k and if y; = 0 for 1 < j < k — 1, then the
model 1 reduces to the model considered by Longini et al.(1989a, 1989b, 1991,
1992).

Model 1 is assumed that AIDS can be developed directly from any substages of
the infective stages. Since the average incubation period is usually very long, intu-
itively it is difficult to imagine that AIDS would be developed directly from early
substages of the infective stage. Because of this consideration, we will postulate a
state B for AIDS-related illness and consider a modified model 2. Notice that in
the CDC staging system (see CDC Report, 1986), the stage B has been suggested
as a stage between the infective stage and the AIDS stage. Hence the model 2 is
in essence a reformulation of the CDC staging system of the HIV epidemic.

We will obtain the probability function in form sz zk: cijtj e % for both mod-

j=0i=1
els.



CHAPTER I1

Preliminaries

In our work, we need some basic knowledges from matrix algebra and probability
theory as follows.

2.1 Basic knowledges in matrix algebra

A diagonal matrix is a square matrix in which the elements off the main
diagonal are zero.

A square matrix A is diagonalizable if there is an invertible matrix P such
that the matrix P~!AP is a diagonal matrix.

A square matrix A is said to be nilpotent if A" = 0, where 0 is the zero
matrix, for some natural number 7.

A square matrix A is called tri-diagonal if one in which nonzero entries
appear only on the main diagonal and the two adjacent diagonals, i.e., a;; = 0 if
li —j| > 1.

Let A be an 1 X n matrix with real entries: The number A (real or complex)

is called an eigenvalue of A if there exists a nonzero vector v € C" such that
Av = .

The vector v # 0 is called an eigenvector of A corresponding to the eigenvalue \.
A square matrix A is said to be positive definite if all eigenvalues of A are
positive.
Let A and A’ be any two square matrices. We say that A is similar to A’ if

there exists an invertible matrix P such that A’ = P~1AP.



Theorem 2.1.1 Let A be a k x k matrix with eigenvalues by, bs,...,b;. Then A

is similar to a k x k matrix J which is of the form

-Jl o 0o - 0 |
o J 0 - 0
J = (2.1)
0 0 J,.1 O
0 ... 0 Jn]
for some n € N and for { = 1,2,...,n, J; is of the form
_bi TR\ VRN O_
04 1 -+ 0
¥ &
- AN
WOy A, - 0 b

The matrix J is called the Jordan canonical form corresponding to A.

Furthermore, we know that the Jordan canonical form J of A can be repre-

sented in the form

by, dg 0 --- 0

0 by dy --- 0

0 0 br—1 dr—
_0 ....... 0 by, f

where d; € {0,1}.
Proof See, e.g., [6] Chapter 7.

Let P(t) = [pi;(t)] be a matrix with variable ¢ and assume that p;;(¢) is differ-

entiable for all 7, 7. Define

P = |G



For any square matrix A of real numbers,

CA = —'AJ
=0 7’

It is well known that e? is well-defined for any square matrix A.

Proposition 2.1.2 Let X and Y be arbitrary n x n matrices. Then
1. €% = I, where 0 is the zero n x n-matrix and I,, is the identity matrix,
2. if XY =YX, then eV = X . ¥ =¥ . X,

3. if Y is invertible, then "Y' = YeXy -1,

d
4. aetX = Xe¥ =™ X forall t € R.

Theorem 2.1.3 Let A be a tri-diagonal k& x k matrix of the form

[ MM S eh W .. ... 0 ]
—0Bs Ao =y 0 0
0 —f3 Az —9 0 0
A= ,
0 10 1 Q 0 0 —=0p=1c Apsy =Yt
0 0 B M|

where 3; >0, 7, > 0and \; > v + G; for i = 1,2,... k. Then A has the positive
determinant.

Proof We prove this theorem by induction. Let P(n) be the statement := An



n X n matrix of the form

-)\1 -y 0 0 ]
—0B2 Ay =y 0 L 0
0 =03 A3 —v 0 0
A, = )
O— . . 0B, Mt —yns
o, | & 0B A |

where 3; > 0, v; > 0 and \; =y, + 3; + ¢ for some ¢, > 0 fort=1,2,...,n has

a positive determinant.

Basis Step. Since det([\]) = A, > 0, P(1) is true.
Inductive Step. Let ¢ € N be such that P(1), P(2),..., P(q) are true. To prove

P(q+ 1), we need the fact that

Ag oW I0 ISR, . . . . .. 0
e i L § e 0
det Ay > (B + 1) : +7Y2--- M
0 i 0.1 N1~
@ 19 1A € 0 <87 25
for il =2,3,...,q+ 1. (2.2)

We will prove (2.2) by finite induction on {2,3,..., ¢+ 1}. Observe that

Al M
det Ay = det = (71 + b1+ €1) A2 — 1102
—B2 A

> (B +e)da+ 172

which implies that (2.2) holds for [ = 2. Next, suppose that (2.2) is true for

1=2,3,...,m where m € {2,3,...,q}. Then



)\2 —Y2 0 . 0

det Appy1 =(m+pi+e)]|

)\m —Tm

pa— r‘ym

)\m—l—l

WUia—vw 0 &a............

NOU ’J‘V]&I‘Uﬁﬂ']‘i




+ M

M52

(B +€)

(B2 + €2)

Y152

0 o 0

—Ya 0 ..o 0
........ _/Bm )\m _f)/m
........ 0 Bt Amst
)2 ) L ... 0
)\3 —3 0 . . 0
............ —Bm A —Vm
............ ALY B
—23 G wh 4 . 0
)\4 el 1 03dda, ... % .. .. 0
............ —Bm A —Ym
............ 0 _ﬁm+1 >‘m+1
—3 0 0
)\4 — V4 DP.1Q | £ 0
............ —= 0B Am “Vm
............ 0 _ﬁerl >\m+1

+ Y273 Ymr1
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Ao =y 0 0
—0B3 A3 —v3 0 ..., 0
2 (Br+er)]| oMY Ym
0 .. —Bm Am —Ym
0 ...kl 0 —Omi1 Amat

where we have used the truth of P(m — 1) in the last inequality. Thus (2.2) is

proved.
By (2.2),
/\2 — NSNS ™S 0
—ﬂg )\3 —73 OSSN ... ... 0
det A1 > (81 + €1)
=—— . % B, A Vg
777 il - 0 =01 gt
+7NY2 Vel
2 MMY2 - - VYgtl

>0

where we have used the fact that P(q) holds in the second inequality. Hence, by
the induction hypothesis, A, has a positive determinant. Then the theorem is

proved. #

Theorem 2.1.4 If P(t) and Q(t) are matrices having differentiable entries, then

d d d

= (P0)Q() = — (P()) Q1) + P(t) 7 (Q(F)).
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2.2 Basic knowledges in Probability Theory

A probability space is a measure space (2,3, P) in which P is a positive
measure such that P(€2) = 1. The set Q will be referred to as a sample space.
The element of & are called events. For any event A, the value P(A) is called
the probability of A.

A real-valued function X from a probability space (€2, P) is said to be a
random variable if for each 2 € R, {w € Q| X(w) <z} € 3.

Let X be a random variable on a probability space (€2, 3, P). The expected
value F(X) is defined by

B(X) = / XdP.
Q
We often refer to the expected value as the mean or average or first moment
of X.
For a random variable X, we define F' : R — [0,1] as the distribution

function of X by
F(z) = P{uw] X(w) < z}),

It is convenient to abbreviate this expression by
F(z)=P(X <ux).

If there exists f : R — [0, 00) such that the distribution function F' of X can

be represented in the form of

Fa) = [ " @,

we will say that X is a continuous random variable and f is the probability
function of X.

A continuous random variable X will be said to have a gamma distribution
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function with parameters («a, 3) if its probability function of X is given by
0, if x <0,

@ le7 s, if x >0,

where a and (3 are positive constants, and the Gamma function I' : RT — R is
defined by

I(r) = / ' e dx for all r € R*.
0

A stochastic process is a family of random variables {X;| t € I} , where ¢
is a parameter running over an index set I and a probability space (Q, F, P),
which take values in a measurable space (S, S), called the state space. I is called
a parameter space.

If I is a countable set, then a stochastic process {X;| t € I} is said to be a
discrete stochastic process and in the case that [ is an interval, {X;| t € I} is
said to be a continuous stochastic process.

In this research, we assume that every Markov process has a finite state space.

A continuous stochastic process {X; | ¢t € [0,00)} is said to be a Markov

process if for all s,¢,u > 0 such that v < s and¢,j5,k € S
P({XSH =) Xy =i, X, = k}) - P({Xs+t — )X, = z}).

Let {X; | t € [0,00)} be a Markov process with a state space S. For any

s,t > 0andi,j €5, we call areal number pgj») (t), defined by
p@(';)(t) = P(Xspt =J | X5 =1),
the t-step transition probability at time s and call the matrix

POt) = [p) (1) jes
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the t-step transition matrix at time s .

A state ¢ of a Markov process is called absorbing if it is imposible to leave
it (i.e., pgf) (t) = 1 for every s,t > 0). A Markov process is absorbing if it has
at least one absorbing state, and if from every state it is possible to go to an
absorbing state (not necessarily in one step).

In an absorbing Markov process, a state which is not absorbing is called tran-

sient.

Let t > 0. If all pgj) (t) are equal for every s > 0, then {X; | ¢t € [0,00)} is said
to be a homogeneous Markov process or Markov process with stationary
transition probability. We also denote pgj) (t) and P®(t) by p;;(t) and P(t),
respectively.

Let {X; | t € [0,00)} be a homogeneous continuous-time Markov process with

state space S and transition matrix [p;;(t)].

The matrix () = [v;;]; jes which satisfies the following conditions:

1. for ¢ # j, the entry v;; = rate at which X; jumps from i to 7,

i
ie., p;(t) =wv,t +o(t) fort— 0 where %im ? =0,

—0

2. vy = — Zvij for each 1,
J#i
is called a generator matrix or a rate matrix of {X; |t € [0,00)}.

Note that a generator matrix () satisfies the following properties:

1. v; >0 for i # 7,

2. ZvijzoforiES.

jes
For a homogeneous Markov process {X; | t € [0,00)} and i,k € S, if i # k,

the first passage time of ¢ is defined to be

Ty =inf{t>0: X, =k | Xo=1i};
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the mean first passage time is
pir = E(Tik).

Proposition 2.2.1 Let {X; | ¢t € [0,00)} be a homogeneous Markov process
with finite state space. Then

P(t) = e,

where P and @) are the transition and generator matrices of {X; | t € [0,00)},

respectively.

Proof See, e.g., [17] page 388.



CHAPTER III

Main Results

The purpose of this chapter is to find the probability function of the first passage
time of each state of AIDS incubation, i.e., the HIV incubation function. We will

consider the HIV epidemics in two models as follows.

B2 Bs
Sl 71 SZ g
J75) w2
Model 1
B2 B3 Br—1 B
S 1 S2 ..... o S RS pamm— S 2
v = Yk—2 Yk—1

Model 2

The given models are for the HIV epidemic in which (; is the backward transition
rate from S; to S;_1, 7; > 0 is the forward transition rate from S; to S;;; and
1; is the transition rate from S; to AIDS. In model 1, AIDS denotes the AIDS
stage, S7 is the HIV infected but antibody negative stage and S;( i = 2,3,...,k)

denotes the (i — 1)st substage of the infective stage.
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Model 1 is more general than most of the models in the literature in the

following two aspects :

(a) We assume that it is possible to have backward transition from S; to S;_; (i =

2,3,....k).

(b) We assume also that it is possible to develop AIDS from any substage of

infective stages, i.e., S; — AIDS for i < k.

Model 1 is assumed that AIDS can be developed directly from any substage
of the infective stages. Since the average incubation period is usually very long,
intuitively it is difficult to imagine that AIDS would be developed directly from
early substages of the infective stages. Because of this consideration, we will
postulate a state B for AIDS-related illness and consider a modified model 2.
Notice that in the CDC staging system (see CDC Report, 1986), the stage B
has been suggested as a stage between the infective stages and the AIDS stage.
Hence model 2 is in essence a reformulation of the CDC staging system of the

HIV epidemic.

3.1 Proof of Model 1

From model 1, for every ¢t > 0, we let X; be a random variable of which the value
is the state of HIV epidemic at the time ¢. So the state space of {X; | ¢ > 0} is
{S1, 55, ..., Sk+1} where Sk, is the AIDS state. Hence the (k + 1)st stage is an
absorbing state and by the fact that v > 0 for ¢ = 1,2,... k, we see that the
states S1,S5s,..., S, are transition states. Starting at time s = 0, let T; be the
random time that S; is absorbed into Siy1, ¢ =1,2,..., k. Then T; is referred to

as the first passage time of S; and f;(t), the probability function, the first passage



probability of S;. In what follows, we put

f&) =), )],

where T' denotes the transpose operator.

17

In this work, we assume that { X;|t > 0} is a homogeneous continuous Markov

process and let the transition matrix P(t) = [p;;(t)]. By Chapter 5 of [17] we have

that:

Pij (t) = vt +0(t)

where t — 0 and 7 # 7,

pii(t)=1~=v;t + o(t) wheret — 0, (3.1)
vig > 0, “wy = sz‘j,
‘7#7’ b,
where v;; is the transition rate at which X; jumps from 7 to j.
From (3.1), we know that the generator matrix of (X;) is of the form
—U11 U1k U1(k+1)
Uk1 —Ukk Vk(k+1)
V(k+1)1 Vk+1)k  —Y(k+1)(k+1)
Remark From model 1, for every 7,5 = 1,2,...k, we see that v;; = 0 for

|’L - j| > 1, Vi(i+1). = Yiy Vi(k+1) — Hi and Vii—1) = 51 (l 7& 1) Since the (k’ + 1)St

state is an absorbing state, v(41); = 0 for j = 1,2,..., k. So the generator matrix

of {X;|t>0}is —Q where
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Al 0 0 —
B2 A2 =2 0 — o
Q= (3.2)
0 0 R )/ Wy 1/
0 0 IS S " Ak —Y
0 g o . 0 0 0

Proposition 3.1 Let \; = 6, + v +p; for i =1.2,... k. —1, \y = Bx + 1 and

ﬂl = 0. Let
) e, 0 0
—Ba i Xa 2 0
A=
0 0 cer Aol —Ve—1
| 0 0 —Ok . M

If A is invertible, then
f(t) == G_AtAlk.
Proof
We observe that

Q=

O
(k+1)x (k+1)

where p = [y, pio, - - ., )T and 0, = (0,0, -+ ,0),

k
A% —Ap



and

A3 — A%y
QP =Q*x Q=
0% 0

Hence, by inductive reasoning, we have that

A™ _Am—lM
Q=
Ox 0

where m =1,2,.. ..

By the fact that
AHIg= e p=—AHe M — [
(o) tm
| _1\ym___ Am __
~—4 {z_%( DS AT = Ijp
o 4m -
= =S Ay,
= m!

where Q° = I, and by Proposition 2.2.1, we have

P(t) = e @
oo -tj
-3 -1vhe
j=0 &
0 AT —ATTY
=l 215
=1 T o, 0
- 00 ~tj (o) »tj
S Sy
=Tp1 + | i=1 T j=1 I
Ox 0
; . e—At _ [k A l[lk _ e‘At],u
- k+1 )
0% 0
ie.,
P(t) B efAt A I[Ik _ efAt]M

19
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Let
) _
h = P+ () Doy () oo oo D) (t)

Hence, by (3.3) we have
WY = A7YI, — e (3.4)
Fort>0and i=1,2,...,k we see that

®)
[0,...,0,_1 ,0,...,0](h®)

= pi(kJrl)(t)

=P{X;=k+1]|Xy=1i})

= PU{X, = k+ 1, 5 t | X = i}) = PAX, =k + 1T <t | Xo = i})
=P{X:=k+ 1T, <t|Xg=1})

= P(getting into the (k + 1)st stage when we start at the state i, we spend time

less than or equal to t)

_ P(T <)
= Fi(t)
where Fj(t) is the distribution function of 7;. If —[0,...,0, 1 ,0,...,0](h'") exists
dt v
for every i, then
@ 0
ft)= = (h'") (3.5)
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By (3.4),(3.5) and the fact that

/\1 —71 0 ....... 0 1
—/82 )\2 —Y2 ... 0 1
Al = 0 —ﬁg A3 0
NI/ 0 —0k )\k_ 1]
e
g =% Fk
= (3.6)
we have,
d. — At
£(t) = SIAT I ¢
d
= E[A_l[]k il €_At]_/41k]
= %[Al CA1 AT A ]
d
= —E[e_At - 1]
=e A1, (by Theorem 2.1.2(4)). #

Next, we will consider the matrix A defined in Proposition 3.1. By Theorem 2.1.3,

we see that A has a positive determinant and then A™! exists. By Proposition 3.1

we have
f(t) = e AL, (3.7)

From Theorem 2.1.1, there exist a k x k Jordan canonical form J of A such



that

_bl d 0 ........ 0

0 by do O 0

S 0 0 by ds 0

DRNA LY/ 0 br1 di

Wad .. Q.. 0 by
where by, ..., b, are eigenvalues of A and d; € {0,1} for ¢
invertible matrix P such that

A=PIP"

22

(3.8)

1,...,k and an

Moreover, we know that there exists n € N such that J can be written in the

form,
&)+ /24 0
0-Jy 0 0
0 0 Joo1 0
i 0 0 0 Jn_
where J;’s are submatrices of J defined in (2.1). For each [ =1,2,... n, if
b1aliq @ 0
0 b 1 0
Jl == )
0 0 b 1
0 0 b




let
_bl 0 0 0_ _0 1 0
0 b O 0 0 0 1
Sp=1: e and N, =
0 -~ 0 b 0 0 --- 0
[0 ... o 0 b 0 .......

and if J; = [b;], let

Then
Jl = SZ‘I’NZ and S;Nl :NZSZ for all [ = 1,2,...,71.
Let
Ny 0 0 0 0 d 0 0
0 Ny O 0 0 0 ds 0
N p— prd
0 0 N,1v O 0 0 0 di,
i 0 ....... 0 Nn_ _O ....... 0 0
and
S 0 0 0 by —~0 0 0
M \64 10d b I00N b ds¥ 10J 1o\ 4
S — —
o --- 0 S,.1 O 0O --- 0 by O
0 ....... 0 Sh 0 ....... 0 by

From (3.8), (3.9) and (3.10), we see that

J=N+S5 and NS = SN.

23

(3.10)



Let

Hence

and

Since

we have

Observe that

N =PNP!

and

S =PSp

N+S=P(N+S)P'=pPJP'=A

NS=P(NSP'=P(SN)P'=SN
by ¢ i)
0 0 0
STL E ,
0 AN
0 0 by
_ sy =
Coi =2 Z n!
n=0
_ —= . =
0 et 0
OF 1 &d L e bkt
0 0 dids O 0
00 O dods 0
N? =
0 0 ..o dje_1dy,
0 0 ..o 0
0 0 ..o 0
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(3.11)

(3.12)



and by using mathematical induction, for every m we can see that N™ =

where
i+m—1

0 otherwise.

Hence N™ =0 for m > k and

E—1 m k—1 my,,(m)
e—Nt_Z(_tN) ~. (=) (n” )
m) m!
m=0 m=0
FO d1 0 O O d1d2
0 0 ds 0
42
=L—t: & Sf s Sal 510,00 0
0 0 0 dp—1 0= 0
0 0 0 0 | 0 0
- k—1
SS0=0=— Hdi
7]
00 0 0
e
(k—1)!
000 0
000 0
=) where
(
_tp
ng')# if j > and'j =4 +p,
p!
\

[[ d ifj=i+mandj <k,
I=i
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ie.,
L e af et
12 13 2 1k (/{J _ 1)|
1 k) (=)
0 1 —né3)t ...... nék )(k — 91
Nt _
0 0 0 1L —nb) .t
0 0 0 ™ () 1
By (3.6) and (3.7), for ig € {1,2,...,k} we have
fio(t) =€l f(t) where ef =10....,0, 1 .0,...,0]
i
= e%e‘AtAlk
T
=ele M [,Ul Y Hk} ;  which by (3.11) and (3.12)
o 7
= T Ste [“1 g i /Lk} ; . which by Proposition 2.1.2(3)
T
T p,—St —Nt p—
= e, Pe e NP ! {m TG, Mk]
I k k k T
= ey e 2 e_b’“tviok} [7i5] [; Vi ;Uéi#i ;U;cuu“l:|

where P = [v;;] and P~" = [v].]

ij

[ o 2 9—1 bt @ 7 i k=1 —byt ety B
= |e 0ty l;(—l) e™ Uy, myy =) l;(—l) e vy, —(k‘ — )
k k k 3
{Zl VY i Zl Voibli v 21 U;ﬂ‘/j'i:|
M
S e 019
j=0 i=1
where
(—=1)7 gtk , e
i Tvioi ll:[ dl ;MTU(i+j)T7 if ¢ +.] S k;
C.. = =t r=

ij
0, otherwise,

J
and Hdlzlforj<i.

l=t
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By the fact that

o0 |
n bt o n:
/0 t"e” dt = sy

we see that the average time of AIDS incubation is

Bm) = [ efoa =33 e, UL (3.14)

0 j=0 i=1 i

as the desired result.

3.2 Proof of Model 2.

In this section, we will derive the AIDS incubation function of model 2. The main
idea is the same as that of model 1. From model 2, for every ¢t > 0, we let X; be a
random variable whose value is the state of HIV epidemic at time ¢t. So the state
space of {X; | t > 0} is {S1,59,...,Skr1, Skre} where Sy, is the B-state and
Skyo is the AIDS stage. Hence the state Sp.o is an absorbing state and by the
fact that v, > 0 for i = 1,2,...,k + 1, we see that the states S, 5o, ..., Sk, Ski1
are transition states. Starting at time s = 0, let 7; be the random time that S; is
absorbed into Syio, ¢ =1,2,...,k+ 1. Then 7; is referred to as the first passage
time of S; and g;(t), the probability function, the first passage probability of S;.

In what follows, we put

g(t) = (1), ... 79k+1(t)]T-

In this work, we assume that {X; | ¢ > 0} is a homogeneous continuous Markov

process and let the transition matrix P(t) = [p;;(t)] satisfy (3.15) as follows :

)

pij(t) = vijt +o(t), where t — 0 and i # j

pii(t) =1 —v;t +o(t), wheret — 0 (3.15)

Vij > 0, Uii:E Vij,

J#i )
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when v;; is the transition rate at which X; jumps from 7 to j.

By using the same argument of Proposition 3.1, if we can show that

[ A1 0L —,Ul-
—B2 Ay . —h
A—
0 0 .o X —u
| 0 0 —1 |
is invertible then we have
g(t) = e M Al (3.16)

To show that A is invertible, we can observe that

R —p
s,
Or B
where
)\1 —7 P 0
B A =y O 0
R = ,
N I GR 0 Bre—1 Ak<1 —Vk-a
0 ....c00. .. 0 o Ak |

By Theorem 2.1.3, R has a positive determinant. Since v > 0, we have

det A =~ypdet R > 0, i.e., A is invertible. So (3.16) holds.
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Let
-bl d 0 -+ 0 ]
0 by dy 0
J =
0 -+ 0 by dg
NONRIE S 4 0 iy

where b;,i = 1,2,...,k+ 1, are all eigenvalues of A and d; € {0,1} be the Jordan
canonical form of A and P = [v;;], P~" = [uj;] be (k + 1) x (k + 1) matrices such
that

AT e

By (3.16) we also use the same argument in proving model 1 to find the AIDS

incubation of model 2. The result is as follows for ig € {1,2,...,k + 1},

k k41

Gio () = e%e‘AtAlkH = Z Z dﬁgtje_bit (3.17)

=0 i=1
where

(=1)

io _ 7!
d =

l=t

iri=1
< [1 dl) VigiV(ipg)(kan) /B> iLi+J < k+1,
0, otherwise.

We also know that the mean-time of model 2-is

k k+1

D D) P2 (319

j=0 i=1



CHAPTER IV

Some Models on AIDS Incubation

In this chapter, we give a procedure to find AIDS incubation functions and the
AIDS Incubation of some special cases. The results follows from the procedure

given in 4.1.

4.1 Procedure to find an AIDS incubation distribution

function.

From the proof of model 1, we can conclude the procedure to find AIDS incubation

function as follows :

1.) Find all eigenvalues by, bs, . . ., by, of the matrix
B 0 0
—f2 A2 7 0
A=
0 0 Ae-1 —Vk-1
|0 0 —Or - A
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2.) Find an invertible matrix P and the Jordan canonical form

by d¢ O ... 0

0 by do O 0
S 0 0 b3 ds 0 |

W\ / 0 bp—1 di

) @ === 0 by,

where d; € {0, 1} (see Appendix), which satisfy the condition A = PJP~! .

3.) By substitution all of the constants from step 1 and step 2 in the formula

(3.13), we can solve the AIDS incubation distribution function.

In model 2, we also have the same procedure of model 1.

4.2 Examples for some models

Example 4.1. (Model 1 of Tan and Byers 1993) Assume that y; = 0fori =1,2,... k-1

and B; =0, v =~ fori=1,2,...,k, then \; = ~.

2 U

S, s | A q | - Sy ——~ AIDS

Model 1 of Tan and Byers 1993

Step 1 We have

_7 — 0 ... 0 ]

0O ~ — 0 0
A=

0 ........ 0 v —v

[0 .. 0 7|




and -y is the only eigenvalue of matrix A.
Step 2

From Appendix, we can find an invertible matrix P,

(—y)kt 0o ... 0
0 (=720 - 0
P= ,
0 0 —v O
s | N 0 1
7/ -
U N T 0
7 G
0 . 0 0
(AR
oF £
1
0 0 — 0
-
PN . .. . 0 1
and ) )
Sy e 0
0 10 0
J =
0 0 v 1
_() ....... 0 7]

such that A = PJP~!.

We observe that d; =1 fori=1,2,....k — 1.

Step 3

,.>/]€—i0+1

(k — io)!"

0, otherwise.

le:ZO andj:k:—io,
Cij:

32
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,.yk—io—l-l )
' tF=e=7 which is Gamma density. #

Example 4.2. (Model 1 of Longini et al. (1989a, 1989b, 1991) and Anderson et
al. (1989)) Assume that y; = 0fori=1,2,....k—1, 5; =0fori =1,2,...,k
and ;’s are all distinct.

7 1

S, - Sy — 2+ AIDS

‘SQ ‘Sg

Model 1 of Longini et al. (1989a, 1989b, 1991) and Anderson et al. (1989)

Step 1
- -
Y Y b R B Y 0
0 7% - O 0
A= ,
O1slacts o2z, 0 Ye—1 —Vk—1
LO ............ 0 Yk i

which all eigenvalues are all entries in the main diagonal.

Step 2
We have
-71 0 ....... 0 |
0 v 0 0
J= )
0 0 %1 O
i 0 ...... 0 Vi |

P = [v] and P~' = [v},] where v;; and vj; are defined by :

, it <y,

0, if i > 7,



and

Hence d; =0 for: =1,2,.

Step 3

AOUUINBUINT )
ANRINITNINENAY
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Appendix

Procedure to find an invertible matrix P which can trans-
form a square matrix A into its Jordan canonical Form J

In what follows, the argument is considered in the field of complex numbers.
Our details are referred from “Matrix Methods, an Introduction” by Richard
Bronson in Chapter 8 Jordan Canonical Forms, page 176-207.

Let I be the identity matrix. To obtain an invertible matrix which can trans-
form a square matrix into its Jordan canonical form, we need the following defi-
nitions and theorems.

Definition 1 Given a positive integer m and a square matrix A, a vector x,, is
a generalized eigenvector of rank m corresponding to the matrix A and the

eigenvalue \ if
(A= A", =0 but (4 —\)""'x,, #0.

We note that a generalized eigenvector of rank 1 is, in fact, an eigenvector
corresponding to A but a generalized eigenvector of rank £ # 1 is not necessarily

an eigenvector corresponding to A.

Definition 2 Let x,, be a generalized eigenvector of rank m corresponding to a

matrix A and an eigenvalue . The chain generated by x,, is a set of vectors
{Zms T2y, 7521} given by

Tm1 = (A= ANz,

Teg = (A= X )2, = (A — X2y

Tz = (A= M)z, = (A — X)Zp_s

1= (A= A)"""2, = (A= \)s.
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Thus, in general
;= (A=A)"z, = (A=Xzj1 (j=1,2,...,m—1). (1)

Theorem 3 The vector z;(given in (1)) is a generalized eigenvector of rank j

corresponding to the eigenvalue .

Theorem 4 The chain generated by w,, in Definition 2 is a linearly independent

set, of vectors.

Theorem 5 Every n x n matrix A possesses n linearly independent generalized
eigenvectors. Generalized eigenvectors corresponding to distinct eigenvalues are
linearly independent. If A is an eigenvalue of A of multiplicity (the number of
the repeated value of \) v, then A will have v linearly independent generalized

eigenvectors corresponding to .

Definition 6 A set of n linearly independent generalized eigenvectors is a canon-

ical basis if it is composed entirely of chains.

Definition 7 Let A be an n X n matrix. A generalized modal matrix M for A
is an n X n matrix whose columns, considered as vectors, form a canonical basis

for A and appear in M according to the following rules:

M1 All chains consisting of one vector (that is, one vector indength) appear in

the first columns of M.
M2 All vectors of one chain appear together in adjacent columns of M.

M3 Each chain appears in M in order of increasing rank (that is, the generalized
eigenvectors of rank 1 appear before the generalized eigenvectors of rank 2
of the same chain, which appear before the generalized eigenvector of rank

3 of the same chain, etc.).
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The important fact, however, is that for any arbitrary n x n matrix A, there
exists at least one generalized modal matrix M corresponding to it. Furthermore,
since the columns of M considered as vectors form a linearly independent set, it
follows that the column rank of M is n, i.e., the rank of M is n. As a result the

determinant of M is nonzero, i.e., M~! exists.

Construction of an invertible matrix P

Let A be any square n x n matrix.
Step 1 From the characteristic matrix
Clx) = A —zl,
obtain the characteristic polynomial
f(@) = (z=X) (@ — X)?...(x—\,)™,

where A1, Ag, ..., A\, are all distinct eigenvalues of A.

Fix 1 € {1,2...,p}.

Step 2 Find the ranks of the matrices (A — \1), (A — NI)% (A= NI)?, ...,
(A — NI)™ where the integer m is determined to be the first integer for

which (A — A\;I)™ has rank n — v;.
Step 3 Now define
pr = rank(A — N\ 1)t —rank(A — MDY (k=1,2,...,m).

Then, p; designates the number of linearly independent generalized eigen-
vectors of rank k corresponding to the eigenvalue \; that will appear in a

canonical basis for A. Note that rank(A — \;1)° = rank(I) = n.
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Step 4 Find the vectors defined in Definition 1 and Definition 2 explicitly to obtain

a canonical basis for A.
Step 5 Find a generalized modal matrix M by applying Definition 7 and let P = M1

Step 6 We can transform A to its Jordan canonical form .J by setting J = PAP™!.

Example 1. Let

1 1 -0—%
D IR0
A~
00 1 1
E R\ O\ R

We will find a generalized modal matrix M by the above procedure.

Step 1 Obtain the characteristic matrix

Then f(x) = (x — 1)* is its characteristic function. Thus A\; = 1 is the unique
eigenvalue of A of multiplicity 4; hence, n =4,» =4 and n — v = 0.

Step 2 We can see that

01 0--—1

000 0
(A—1I) =

0 00 1
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has rank 2 and

(A—11)? =

has rank 0 = n — v. Thus, m = 2.

Step 3 Then we know that ps = rank(A — 1/) —rank(A — 17)2 =2 — 0 = 2 and
p1 = rank(A —17)° —rank(A=17) = 4 —2 = 2; hence, a canonical basis for A will
have two linearly independent generalized eigenvectors of rank 2 and two linearly
independent generalized eigenvectors of rank 1.

Step 4 In order for a vector

Y

z

to be a generalized eigenvector of rank 2, we will solve the equation
(A-1Dwzyz"#0 and (A— 11w zy 2" =0.

We can see that either x or z must be non-zero and w and y are arbitrary. If we
first choose x = 1,w = y = z = 0 and then choose z = 1, w =2 =y = 0, we

obtain that two linearly independent generalized eigenvectors of rank 2 are

0 0

1 0
To = and y, =

0 0
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Note that we could have chosen w, z, y, z in such a manner as to generate 4 linearly

independent generalized eigenvectors of rank 2. The vectors

1 0
1 1
and
0 1
0 0
L e - _|

together with x5 and ys form such a set. Thus we immediately have found a set
of 4 linearly independent generalized eigenvectors corresponding to A;. This set,
however, is not a canonical basis for A since it is not composed entirely of chains.
In order to obtain a eanonical basis for A, we use only two of these vectors (we
will, in particular, use x5 and ys) and form chains from them.

By Definition 2, we obtain the two linearly independent generalized eigenvec-

tors of rank 1 to be

1 -1

0 0
1y = (A=Tzz= and  yi =(A—- Dy =

0 1

0 0

Thus, a canonical basis for A is {xo; z1, Y2, y1 }; which consists of the two chains
each containing two vectors {x, 21} and {ya, y1 }.

Step ' 5 Since this canonical basis has no chain consisting of one vector, (M1)
is not applied. From (M2), we assign either z5 and x; to the first two columns
of M and y, and y; to the last two columns of M or, alternatively, i, and y; to
the first two columns of M and x» and z; to the last two columns of M. We
can not, however, define M = [z1 y; ya 23] since this alignment would split the

{3, 1} chain and violate (M2). Due to (M3), x; must precede x5 and y; must
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precede yo; hence

M = [$1 T2 U1 Z/2] =

or

M= [yl Y2 T 962] .

0O 100

Example 2. Find a Jordan canonical form of

4 010

2—29 0
A=

—1 =0

40 1 2

Step 1 The characteristic equation for A is (A — 3)%(\ — 2)? = 0; hence, \; = 3
and Ay = 2 are both eigenvalues of multiplicity 2.
Step 2 For A\; = 3, we find that n — v, = 2,m; = 2. For Ay = 2, we find that
n — vy = 2,me =1.
Step 3 For A\ = 3, we find that po = 1, and p; = 1, so that a canonical basis
for A has one generalized eigenvector of rank 2 and one generalized eigenvector of
rank 1.

For Ay = 2, we find that p; = 2; hence, there are two generalized eigenvectors

of rank 1.
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Step 4 For \; = 3, by Definition 1, we find that a generalized eigenvector of

rank 2 is

To =

By Definition 2, we have that

' = (A—?)I)IL’Q:

is a generalized eigenvector of rank 1.

For Ay = 2, by Definition 1 and Definition 2, we obtain

0 0

1 0
Yy = and 2z =

0 0

0 1

as the required vectors.—Thus a canonical basis for A is {xs, 21,91, 21} which
consists of one chain containing two vectors {xs; 2} and two chains containing
one vector apiece {y;} and {z;}. Note that once again, due to Theorem 5, we are
guaranteed that {xo, 21} are linearly independent of {yy, 21} since they correspond
to different eigenvalues.

Step 5 By Definition 7, the first two columns of M must be y; and z; (however,

any order) due to (M1) while the third and fourth columns must be z; and o,



respectively, due to M(3). Hence,

M= [yl Z1 1 552] =

or

V= [Zl Y1 Tq .172] 5=

For M = [y, z1 o1 x5}, we compute

-3
=71
P
0
it
Step 6 Thus
—31 =40 4
—1.0-02C 1 2
PAP™! =

is the Jordan canonical form of A.

43
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Example 3. Find a matrix in Jordan canonical form that is similar to

DRSO 1 0 O

Tt 0 0 =rretiay 1 0

AL L ORI T4 ]

Step 1 The characteristic equation of A is (A — 1)" = 0, hence, A = 1 is an
eigenvalue of multiplicity 7.

Step 2 We find that rank(A —17) = 3,rank(A—17)*> =1 and rank(A—17)3 =0
=n—v . Then m = 3.

Step 3 Thus we can find p3 = 1, po = 2 and p; = 4 which implies that a canon-
ical basis for A will consist of one linearly independent generalized eigenvector
of rank 3, two linearly independent generalized eigenvectors of rank 2 and four
linearly independent generalized eigenvectors of rank 1.

Step 4 and Step 5 From Step 3 we know that a canonical basis for A consists
of one chain of three vectors {3, zs, z1}, one'chain of two vectors {ys, 4}, and
two chains of one vector {z; },{w;} (we ean find a canonical basis for A from the

Definition 1 and Definition 2). Designating

M = [z1 wy 21 T2 T3 Y1 Yo,



we find that

Thus,

Let P:= M~!.

Step 6 Thus,

J=PAPTi=
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