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1  INTRODUCTION 

1.1 Background and Problem Review 

It has been observed in empirical data that large changes in prices of risky assets 

tend to come in clusters, and so do small changes. We call this phenomenon volatility 

clustering. This phenomenon is observed when there are extended periods of high 

market volatility, or the relative rate at which the price of financial asset changes, 

followed by a period of low volatility. Investment during high volatility clustering is 

riskier and risky assets can be susceptible to large price movement.  Volatility clustering 

of risky assets, therefore, is an important factor to consider in long-term investment. 

Volatility clustering also plays a crucial role in choosing investment strategies 

for a pension scheme. Pension schemes are also considered a type of long term 

investment and usually have investment time horizon of forty years. There are two 

popular types of pension schemes: defined contribution plan and defined benefit plan. 

In a defined contribution plan, the final fund value depends on the contribution to the 

fund and the fund’s performance. On the other hand, in a defined benefit plan, the final 

fund target is fixed and depends on the proportion of final salaries of plan participants. 

The final salary can generally be predicted. For example, salaries of government 

officials increase in a largely predictable way. The defined benefit plan shares similar 

characteristics with other types of funds where the fund’s managers have a fund target, 

for instance, a fund targeting five percent gain per year. However, the time horizon of 

other types of funds may be for a shorter period of time, such as five years.  The 

frequency of rebalancing the portfolio in other types of funds could be weekly or 

monthly, while the frequency of rebalancing pension fund is usually every one or three 

months.  

Protecting the wealth of the pension funds especially at the near terminal period 

is critical to make sure that it is on track to reach the fund target. In this research, we 

will focus on risk management of pension schemes under volatility clustering in risky 

asset returns and its implication on investment strategy in a defined benefit pension 

fund. Moreover, model extensions that capture specific features of risky asset returns, 

such as asymmetric volatility (a phenomenon that volatility is higher in down markets 

than in up markets), are explored. The results of this paper will provide additional 

insights in investment decision managing a defined benefit pension fund. 

ARCH (Engle, 1982) and GARCH (Bollerslev, 1986) models are among the 

first models that aim to describe the volatility clustering phenomenon. Other models of 

volatility clustering include stochastic volatility models, such as event-risk framework 

(Duffie, Pan, and Singleton, 2000). The main idea behind these models is that the 

amplitude of volatility depends on its past realizations of the risky asset process. The 
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GARCH models are selected to model volatility clustering in this research because of 

its simplicity. Moreover, the autocorrelation term in the GARCH models conveniently 

captures the volatility clustering phenomenon and is easy to understand. Extension 

models of the GARCH model are also examined. The GJR and EGARCH models 

provide the property to capture the asymmetric volatility. 

1.2 Research Questions and Objectives 

1. How does the volatility clustering affect strategies in the pension fund 

management? 

2. How do different volatility clustering models affect the optimal strategies? 

Under a defined benefit pension scheme setting, this research examines the 

behavior of optimal asset allocation given various volatility clustering models 

in the GARCH family models. 

3. Which volatility clustering models give the best outcome, highest returns, and 

low standard deviations, in backtesting? 

1.3 Contributions 

 Vigna and Haberman (2001) have studied the optimal investment strategy of 

risky asset in a pension strategy using simple returns. The optimal investment strategy 

only depends on the fund value. In this research, the volatility clustering is considered. 

In order to capture the volatility clustering of the risky asset, GARCH family models 

(GARCH, GJR and EGARCH models) are examined. We will study how the volatility 

clustering affects a defined benefit pension strategy. 

 The remaining sections are organized as followed. Section 2 explores literature 

review of GARCH family models, Bellman equations, and other relevant concepts. 

Section 3 looks further into the problem formulation and the overview of dynamic asset 

allocations, Monte Carlo simulation and backtesting strategies. Section 4 provides the 

numerical method for solving Bellman equation to find the optimal allocations. In 

Section 5, there are three parts. The first part is to analyze the optimal allocations, to 

investigate and compare the optimal asset allocations across models. Moreover, the 

effects of parameters of volatility clustering on optimal asset allocations are examined. 

The second part is Monte Carlo simulation, to simulate investment returns and variance 

under the decision rules of each model solved in the previous section. We compare the 

distribution of optimal weights and its fund value across GARCH family models. The 

last part is to backtest the strategies, to evaluate the performance of GARCH family 

models. Section 6 provides a summary of the results of this research.    
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2  LITERATURE REVIEW 

2.1 Concept and Theoretical Background 

The dynamic portfolio choice was first introduced by Merton (1969). It has been 

extended to many papers in finding optimal asset allocations. The investment strategies 

of pension schemes have been studied using various models. For instance, Vigna and 

Haberman (2001) have proposed the optimal investment strategy with discrete time 

model. Ngwira and Gerrard (2007) utilized the jump-diffusion process in the 

investment strategy of a pension scheme. In both important works of Vigna and 

Haberman (2001) and Ngwira and Gerrard (2007), volatility is assumed to be constant 

through the time horizon. However, there has been evidence of volatility clustering, 

where periods of high volatilities tend to cluster together and likewise for low 

volatilities periods. The volatility clustering in financial markets has been studied 

extensively. Lux and Marchesi (2000) have explained volatility clustering with a 

statistical analysis of simulated risky assets. Heteroscedasticity and leptokurtosis of 

returns are found within a multi-agent framework. Cont (2007) have studied volatility 

clustering in terms of the behavior of market participants with an agent-based model. 

Volatility clustering in daily returns has long been observed. However, Jacobsen 

and Dannenburg (2003) also found evidence of volatility clustering in long-term stock 

returns in the Eurozone using the GARCH model. In this paper, we search for the 

optimal asset allocation in pension schemes given volatility clustering in 3-month 

returns of the risky asset by using GARCH family models. 

This research focuses on managing a pension fund under volatility clustering. 

Volatility clustering presents a unique situation for the risk management of pension 

scheme. In this paper, we restrict volatility clustering model to the GARCH families. 

There are other researchers who have worked on related problems. Event-risk, for 

example, has impacts on financial markets and make a huge loss on security prices 

which cause individuals and funds to incur a big loss, including Pension fund. Liu, 

Longstaff, and Pan (2003) have studied the effect of jump size in optimal asset 

allocation. 

 

2.2 GARCH Family models 

In discrete time, the GARCH model was first introduced by Bollerslev (1986). 

It was adapted from the ARCH model proposed by Engle (1982). GARCH is often used 

for modeling stochastic volatility and it has been developed into many extensions. 

Later, Ben-Hameur, Breton, and Martinez (2006) provided a dynamic programming 

approach in GARCH model setting. 
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All models considered in this paper are in the GARCH family. Stock return 

dynamic is the same for every model as followed, 

𝑌𝑡 = 𝜇 + 𝜎𝑡𝜀𝑡,      (1) 

𝑋𝑡 = 𝑌𝑡 − 𝜇 = 𝜎𝑡𝜀𝑡,  𝜀𝑡~𝑖. 𝑖. 𝑑. 𝑁(0,1), 

where 𝑌𝑡 is a stock return at time t, 𝜇 is the mean of return, 𝜎𝑡 is the volatility at time t, 

𝜀𝑡 is the white noise process assumed i.i.d. standard normal distribution, and 𝑋𝑡 is a 

normally distributed random variable with volatility 𝜎𝑡. 

GARCH (1,1)  

 

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model 

was proposed by Bollerslev (1986). The GARCH model is used to capture volatility 

clustering by the term 𝛼1𝜎𝑡−1
2 . We will study how this model affects optimal investment 

strategy. The GARCH model can be written as followed, 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝜎𝑡−1

2 + 𝛽1𝑋𝑡−1
2 ,     (2) 

where 𝛼0, 𝛼1, 𝛽1 are coefficients with the constraints of 𝛼0 > 0, 𝛼1 > 0,  𝛽1 > 0,  𝛼1 +

𝛽1 < 1, 𝜎𝑡
2 is the conditional variance,  𝜀𝑡~𝑖. 𝑖. 𝑑. 𝑁(0,1) and 𝑋𝑡−1 = 𝜎𝑡−1𝜀𝑡−1, is 

normally distributed with volatility 𝜎𝑡−1. The long term variance equal to 
𝛼0

1−𝛼1−𝛽1
. 

GJR (1,1) 

 

The GJR model was proposed by Glosten, Jagannathan, and Runkle (1993). The 

GJR model is an extension of the GARCH model that can capture the asymmetric 

volatility, also called leverage effect (changes in stock prices tend to be negatively 

correlated with changes in volatility, i.e., volatility is higher after negative returns than 

after positive returns of the same amplitude). The GJR model can be written as 

followed, 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝜎𝑡−1

2 + 𝛽1𝑋𝑡−1
2 + 𝜔1𝐼𝑡−1𝑋𝑡−1

2 ,    (3) 

𝐼𝑡−1 = 1, 𝑖𝑓 𝑋𝑡−1 < 0, 

𝐼𝑡−1 = 0, 𝑖𝑓 𝑋𝑡−1 ≥ 0, 

 

where 𝛼0, 𝛼1, 𝛽1 and 𝜔1 are coefficients with the constraints of 𝛼0 > 0 , 𝛼1 > 0,  𝛽1 >

0,  𝛼1 + 𝛽1 + 0.5ω1 < 1, 𝜎𝑡
2 is the conditional variance,  𝜀𝑡~𝑖. 𝑖. 𝑑. 𝑁(0,1), and 𝑋𝑡−1 =

𝜎𝑡−1𝜀𝑡−1 is normally distributed with volatility 𝜎𝑡−1. The asymmetric volatility, 

captured by the dummy variable 𝐼𝑡, will also have an effect on the investment decision 
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because the volatility depends on whether previous asset return is positive or negative. 

The long-term variance is equal to 
𝛼0

1−𝛼1−𝛽1−0.5𝜔1
. 

EGARCH (1,1)  

 

The exponential GARCH model, proposed by Nelson (1991), is a logarithm 

function that is extended from the GARCH model by adding another feature to capture 

the leverage effect by the term 𝜔1𝜀𝑡−1. The EGARCH model can be written as 

followed, 

   log 𝜎𝑡
2 = 𝛼0 + 𝛼1 log 𝜎𝑡−1

2 + 𝛽1[|𝜀𝑡−1| − 𝐸[|𝜀𝑡−1|]] + 𝜔1𝜀𝑡−1,   (4) 

where 𝛼0, 𝛼1, 𝛽1 and 𝜔1 are coefficients, 𝜎𝑡
2 is conditional variance, 𝜀𝑡~𝑖. 𝑖. 𝑑. 𝑁(0,1), 

and 𝐸[|𝜀𝑡−1|] = √
2

𝜋
. Even though the constraint of 𝛼1, 𝛽1, 𝑎𝑛𝑑 𝜔1 are relaxed because 

of its property of the logarithm function, the parameter 𝛼1 and 𝛽1 are expected to be 

positive and 𝜔1 to be negative. The long-term variance is equal to 𝑒
𝛼0

1−𝛼1. 

2.3 Bellman Equation 

 The dynamic programming is used to solve a dynamic optimization problem 

with stochastic processes. In the dynamic programming, there are decisions to make in 

every period as the information changes over time. Let 𝑉(𝑇, 𝑊𝑇 , 𝑦1, … , 𝑦𝑇−1) be a 

utility function or pay-off function that we try to maximize, which depends on the 

information at time 𝑇. In this context, 𝑉 is a decreasing function of the difference 

between the final target fund and the terminal fund value. Here, 𝑊𝑡 is wealth at time 𝑡, 

and 𝑦𝑡 is weight invested in the risky asset at time 𝑡. Given 𝑟 is the discount rate,  ∆𝑡 is 

the interval time invested and 𝛾 = 𝑒−𝑟∆𝑡 is the discount factor, the dynamic decision 

problem can be written as the following equation, 

𝐽(0, 𝑊0, 𝜎0
2) = max

𝑦𝑖,𝑖=0,..,𝑇−1
𝛾

𝑇

∆𝑡𝑉(𝑇, 𝑊𝑇 , 𝑦1, … , 𝑦𝑇−1), 

where 𝐽(0, 𝑊0, 𝜎0
2) is called the value function at time 0 and depends on initial wealth 

𝑊0 and initial variance 𝜎0
2 because these two values influence the decision making of 

choosing weight in the risky asset. In order to solve this problem, Bellman equation is 

a necessary condition to solve a dynamic programming problem. Bellman’s optimality 

principle (Bellman, 1956): “An optimal policy has the property that whatever the initial 

state and initial decision are, the remaining decisions must constitute an optimal policy 

with regard to the state resulting from the first decision.” In this research, the GARCH 

(1,1) model is used, so at time 𝑇 the information that needs to use is up to time 𝑇 − 1. 

Given 𝜎𝑡
2 is variance of the risky asset at time 𝑡 ,solving the Bellman equation, we get 
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𝐽(𝑇 − 1, 𝑊𝑇−1, 𝜎𝑇−1
2 ) = max

𝑦𝑇−1

[𝛾𝐸[𝑉(𝑇, 𝑊𝑇)|𝑊𝑇−1, 𝜎𝑇−1
2 ]], 

From the equation above, we get the backward recursive equation that needs to be 

solved in optimal asset allocation, 

𝐽(𝑡 − 1, 𝑊𝑡−1, 𝜎𝑡−1
2 ) = max

𝑦𝑡−1

[𝛾𝐸[𝐽(𝑡, 𝑊𝑡, 𝜎𝑡
2)|𝑊𝑡−1, 𝜎𝑡−1

2 ]]. 

The problem is then solved for the optimal allocation 𝑦𝑡, 𝑡 = 0, … , 𝑇 − 1 from time 𝑇 −

1 to time 0 recursively. 
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3  PROBLEM FORMULATION AND OVERVIEW OF 

METHODOLOGY 

In order to solve the optimal allocation of the risky asset, the dynamic 

programming problem is then set up. Firstly, we construct the wealth dynamic that 

consists of one risky asset and one risk-free asset, 

         𝑊𝑡 = 𝑊𝑡−1(1 + 𝑦𝑡−1𝑌𝑡 + (1 − 𝑦𝑡−1)𝑟𝑓∆𝑡) + 𝑐  (5), 

where   𝑊𝑡     is fund value at time t, 

𝑦𝑡      is the weight on the risky asset, 

𝑌𝑡       is the risky asset return following GARCH family models, 

𝑐        is the dollar contribution per period, 

𝑟𝑓       is the risk-free rate per year assumed constant, 

∆𝑡      is the interval of investment between periods.  

Let the retirement date 𝑇 be the time horizon. In a defined benefit pension 

scheme, we care about the wealth at the terminal period. Therefore, we use the 

following quadratic objective function setup from Vigna and Haberman (2001), 

𝐻(𝑇, 𝑊𝑇) = (𝑊𝑇 − 𝐹𝑇)2, 

where 𝐹𝑇 is the fixed fund target at time 𝑇. By minimizing this objective function, we 

make the terminal fund value as close to the fund target as possible. From the objective 

function above, the Bellman equation is used to calculate the value function at time 𝑇 −

1, 

𝐽(𝑇 − 1, 𝑊𝑇−1, 𝜎𝑇−1
2 ) = min

𝑦𝑇−1

[𝛾𝐸[𝐻(𝑇, 𝑊𝑇)|𝑊𝑇−1, 𝜎𝑇−1
2 ]]. 

Note that the value function depends on the state variables 𝑊𝑇−1 and 𝜎𝑇−1
2  because 𝑊𝑇 

depends on 𝑊𝑇−1 and 𝜎𝑇−1
2 . 

 The Bellman equation is then applied recursively to compute 𝐽(𝑡, 𝑊𝑡, 𝜎𝑡
2) for all 

𝑡 < 𝑇, 

 

𝐽(𝑡, 𝑊𝑡, 𝜎𝑡
2) = {

min
0≤𝑦𝑡≤1

𝐸[𝛾(𝑊𝑡+1 − 𝑓)2|𝑊𝑡, 𝜎𝑡
2]              , for 𝑡 =  𝑇 − 1

min
0≤𝑦𝑡≤1

𝐸[𝛾𝐽(𝑡 + 1, 𝑊𝑡+1, 𝜎𝑡+1
2 )|𝑊𝑡, 𝜎𝑡

2] , for 𝑡 =  0, … , 𝑇 − 2
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Parameters (𝛼1, 𝛽1, 𝜔1) of the GARCH, GJR, and EGARCH models are 

estimated from the time series of S&P500 returns. The same time series is used across 

three models, so the results can be compared to each other. We set up the dynamic 

programming and solve it at period 𝑇 − 1, where 𝑇 is the time horizon. Subsequently, 

solve the optimization problem from period 𝑇 − 2 to period 0 by optimizing the 

expectation of the value function 𝐽(𝑡, 𝑊𝑡, 𝜎𝑡
2) of the next period. This numerical method 

will be explained in Section 4 thoroughly. 

There are three parts of result in this paper: 1) analyzing the effects of volatility 

clustering (𝛼1, 𝛽1, 𝜔1) on the optimal allocations 𝑦𝑡, 2) simulation to compare the 

distribution of optimal allocations 𝑦𝑡 and fund values 𝑊𝑡 across the models and 3) 

backtesting the time series S&P500 to evaluate the performance of each model. 

3.1 Analyzing the Effects of Volatility Clustering on the Optimal Allocation 

 In this part, the objective is to characterize the optimal allocation 𝑦𝑡 surface of 

each model and compare it across GARCH models and its benchmark: constant 

volatility model. Moreover, the effects of volatility clustering parameters (𝛼1, 𝛽1, 𝜔1) 

on optimal allocations are examined by varying the parameters of GARCH family 

models. 

3.2 Monte Carlo Simulation 

 The objective of Monte Carlo simulation is to study the probabilistic behavior 

of optimal allocations 𝑦𝑡 and its fund value 𝑊𝑡 under each model. Return 𝑌𝑡 and 

variance 𝜎𝑡
2 of the risky asset are simultaneously simulated under the GARCH, GJR 

and EGARCH models for 100,000 possible paths. The simulated allocations follow the 

optimal allocation 𝑦𝑡 from the solution of the dynamic programming. So, the optimal 

weight 𝑦𝑡 varies with the state variables: variance 𝜎𝑡
2 and fund value 𝑊𝑡. 

3.3 Backtesting the Strategy 

 Backtesting the strategy evaluates the performance of GARCH family models. 

The optimal investment strategy for each GARCH-type model is characterized, the 

performance of each strategy under the realized historical data is compared to each 

other. The historical returns of S&P500 from the year 1961 to 2015 are used. The first 

35 years of time series is used to estimate the parameters, while the latest 20 years of 

the time series is used for backtesting. We re-estimating parameters and solve the 

dynamic programming problem for the optimal allocation every 5 years. 
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4  NUMERICAL METHOD FOR SOLVING BELLMAN 

EQUATION 

 This section provides the numerical method for solving the dynamic 

programming problem as mentioned in Section 3 Analyzing the effects of volatility 

clustering on the optimal allocations to find the optimal allocations of the GARCH, 

GJR, and EGARCH models. 

 We numerically solve the dynamic programming problem. Grid points of the 

state variables are set up in order to solve the optimal allocation. There are two state 

variables in this research: variance 𝜎𝑡
2 and fund value 𝑊𝑡. 

 The first state variable is the variance. Grid points of the variance are the same 

for all time 𝑡. The boundaries of the grid point are set to 𝜎𝑚𝑖𝑛,𝑡
2 = 0.001, and 𝜎𝑚𝑎𝑥,𝑡

2 =

0.03 because the simulated variance are mostly in this range. We use 𝑛 equally-spaced 

grid points for the variance. Given 𝑛 = 20, we get, 

(𝜎1,𝑡
2 , 𝜎2,𝑡

2 , . . , 𝜎19,𝑡
2 𝜎20,𝑡

2 ) = (0.001, 0.0025 … 0.0285,0.03) , 𝑡 = 0, … , 𝑇 − 1. 

 The second state variable is fund value. The grid points of fund value are 

changed from period to period. At time 𝑡, the boundaries of the fund value (𝑊𝑚𝑖𝑛,𝑡 and 

𝑊𝑚𝑎𝑥,𝑡) depend on the fund target at that time. The equation of the fund target 𝐹𝑡, 𝑡 =

0, … , 𝑇 and the boundary of fund value are shown as followed. 

 

 For 𝑡 = 0, … , 𝑇 − 1,   𝐹𝑡 = (1 + 𝑟𝑟𝑒𝑞)
1

𝑛𝐹𝑡−1 + 𝑐, 

where 𝐹0 = 𝑐, 𝑐 is the dollar contribution per period, 𝑟𝑟𝑒𝑞 is the required return of 

reaching fund target per year, 𝑛 = 12∆𝑡, 𝑛 is the amount of period invested in one year. 

At each time 𝑡, the boundaries of fund value are set to 0.3𝐹𝑡  and 1.5𝐹𝑡 because the 

simulated fund values are mostly in this range, regardless of the proportion of the risky 

asset. We also use 𝑛 equally-spaced grid points for the fund value. 

The grid points of state variables, (𝑊𝑖,𝑡, 𝜎𝑗,𝑡
2 ), 𝑖, 𝑗 = 1. . . 𝑛, 𝑡 = 0, … , 𝑇 − 1, are 

then found. For each period, the optimization problem that needs to be solved is equal 

to the total pairs of the state variables (𝑛2). From the Bellman equation, we solve the 

equation,  𝐽(𝑡, 𝑊𝑡, 𝜎𝑡
2), at time T-1, 

min
𝑦𝑇−1

𝐸[𝛾𝐽(𝑇, 𝑊𝑖,𝑇 , 𝜎𝑗,𝑇
2 )|𝑊𝑇−1, 𝜎𝑇−1

2 ]  = min
𝑦𝑇−1

𝐸[𝛾(𝑊𝑖,𝑇 − 𝑓)
2

|𝑊𝑇−1, 𝜎𝑇−1
2 ]. 
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Substituting equation 5 in 𝑊𝑖,𝑇 will yield 

 

 min
𝑦𝑇−1

𝐸[𝛾(𝑊𝑖,𝑇−1(1 + 𝑦𝑇−1𝑌𝑇 + (1 − 𝑦𝑇−1)𝑟𝑓∆𝑡) + 𝑐 − 𝑓)
2

|𝑊𝑇−1, 𝜎𝑇−1
2 ]. 

 

Substituting equation 1 in 𝑌𝑇 will yield 

 

    min
𝑦𝑇−1

𝐸[𝛾(𝑊𝑖,𝑇−1(1 + 𝑦𝑇−1(𝜇 + 𝜎𝑇𝜀1,𝑇) + (1 − 𝑦𝑇−1)𝑟𝑓∆𝑡) + 𝑐 − 𝑓)
2

|𝑊𝑇−1, 𝜎𝑇−1
2 ]  (6) 

 

The term 𝜎𝑇 is substituted by GARCH family models. We start at GARCH (1,1) model 

by substitute equation 2 in 𝜎𝑇, 

 

min
𝑦𝑇−1

𝐸[𝛾 (𝑊𝑖,𝑇−1 (1 + 𝑦𝑇−1(𝜇 + (𝛼0 + 𝛼1𝜎𝑗,𝑇−1
2 𝜀2,𝑇−1

2 + 𝛽1𝜎𝑗,𝑇−1
2 )

1

2𝜀1,𝑇) +

(1 − 𝑦𝑇−1)𝑟𝑓∆𝑡) + 𝑐 − 𝑓)
2

|𝑊𝑇−1, 𝜎𝑇−1
2 ]. 

 

We use the numerical method to find the expectation. The variable 

𝜀𝑖,𝑡
′ ~𝑖. 𝑖. 𝑑. 𝑁(0,1), i = 1,2, are estimated numerically by varying it from −3 to 3 with 

the increment of 0.05. Let the probability 𝑃(𝜀𝑡
′) = 𝑐𝑑𝑓(𝜀𝑡

′ + 0.025) − 𝑐𝑑𝑓(𝜀𝑡
′ −

0.025), where 𝑐𝑑𝑓(∙) is the cumulative distribution function of the standard normal 

distribution. The sum of the probability,  ∑ 𝑃(𝜀𝑡
′)

𝜀𝑡
′=3

𝜀𝑡
′=−3

= 0.9975, is adjusted to 1 by 

the normalization, 𝑃(𝜀𝑡) = 𝑃(𝜀𝑡
′)/ ∑ 𝑃(𝜀𝑡

′)
𝜀𝑡

′=3

𝜀𝑡
′=−3

= 𝑃(𝜀𝑡
′)/0.9975. We can compute 

the expectation, 

min
𝑦𝑇−1

∑ ∑ 𝑃(𝜀1,𝑇)𝑃(𝜀2,𝑇−1)(𝛾 (𝑊𝑖,𝑇−1 (1 +

3

𝜀1,𝑇=−3

3

𝜀2,𝑇−1=−3

𝑦𝑇−1(𝜇 + (𝛼0 + 𝛼1𝜎𝑗,𝑇−1
2 𝜀2,𝑇−1

2 + 𝛽1𝜎𝑗,𝑇−1
2 )

1
2𝜀1,𝑇) +

(1 − 𝑦𝑇−1)𝑟𝑓∆𝑡) + 𝑐 − 𝑓)

2

) 

 

For the GJR (1,1) model setting, we substitute equation 3 in equation 6 and 

follow the same procedure as GARCH model. We get 
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min
𝑦𝑇−1

∑ ∑ 𝑃(𝜀1,𝑇)𝑃(𝜀2,𝑇−1)(𝛾 (𝑊𝑖,𝑇−1 (1 +

3

𝜀1,𝑇=−3

3

𝜀2,𝑇−1=−3

𝑦𝑇−1(𝜇 + (𝛼0 + 𝛼1𝜎𝑗,𝑇−1
2 𝜀2,𝑇−1

2 + 𝛽1𝜎𝑗,𝑇−1
2 + 𝜔1𝐼𝑇−1𝜎𝑗,𝑇−1

2 𝜀2,𝑇−1
2 )

1
2𝜀1,𝑇) +

(1 − 𝑦𝑇−1)𝑟𝑓∆𝑡) + 𝑐 − 𝑓)

2

) 

 

In EGARCH (1,1) model setting, from equation 4, we get 

 

log 𝜎𝑡
2 = 𝛼0 + 𝛼1 log 𝜎𝑡−1

2 + 𝛽1[|𝜀𝑡−1| − 𝐸[|𝜀𝑡−1|]] + 𝜔1𝜀𝑡−1, 

 

𝜎𝑡 = (𝑒𝛼0+𝛼1 log 𝜎𝑡−1
2 +𝛽1[|𝜀𝑡−1|−𝐸[|𝜀𝑡−1|]]+𝜔1𝜀𝑡−1)

1

2. 

 

Substituting the equation above 𝜎𝑡 in equation 6 using the same technique as the 

GARCH model will yield 

min
𝑦𝑇−1

∑ ∑ 𝑃(𝜀1,𝑇)𝑃(𝜀2,𝑇−1) (𝛾 (𝑊𝑖,𝑇−1 (1 +

3

𝜀1,𝑇=−3

3

𝜀2,𝑇−1=−3

𝑦𝑇−1 (𝜇 + (𝑒𝛼0+𝛼1 𝑙𝑜𝑔 𝜎𝑡−1
2 +𝛽1[|𝜀𝑡−1|−𝐸[|𝜀𝑡−1|]]+𝜔1𝜀𝑡−1)

1
2𝜀1,𝑇) +

(1 − 𝑦𝑇−1)𝑟𝑓∆𝑡) + 𝑐 − 𝑓)

2

) 

For all GARCH models, at time 𝑇 − 1, the optimization problem is solved for 

the optimal strategy (𝑦𝑇−1) and the value function ( 𝐽(𝑇 − 1, 𝑊𝑖,𝑇−1, 𝜎𝑗,𝑇−1
2 )) for every 

pair of state variables. The optimal strategy is then solved by backward recursion 

method from 𝑡 = 𝑇 − 2 to 𝑡 = 0. Given a pair of state variables,(𝑊𝑖,𝑡, 𝜎𝑗,𝑡
2 ), 𝑖, 𝑗 =

1. . . 𝑛, 

 

𝐽𝑡(𝑡, 𝑊𝑖,𝑡, 𝜎𝑖,𝑡
2 ) = min

𝑦𝑡

𝐸[𝛾𝐽𝑡+1(𝑡, 𝑊𝑖,𝑡+1, 𝜎𝑗,𝑡+1
2 )|𝑊𝑡, 𝜎𝑡

2]. 

 

Substituting equation 2 in 𝑊𝑖,𝑡+1 yield 

min
𝑦𝑡

𝐸[𝛾𝐽𝑡+1(𝑡, 𝑊𝑖,𝑡(1 + 𝑦𝑡(𝜇 + 𝜎𝑡𝜀1,𝑡) + (1 − 𝑦𝑡)𝑟𝑓∆𝑡) + 𝑐, 𝜎𝑗,𝑡+1
2 )]. 

Taking the expectation, where 𝜀2,𝑡 is the term 𝜀𝑡 in 𝜎𝑗,𝑡+1
2 ’s equation, yield 
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min
𝑦𝑡

∑ ∑ 𝑃(𝜀1,𝑡)𝑃(𝜀2,𝑡−1)(𝛾𝐽𝑡+1(𝑡, 𝑊𝑖,𝑡(1 + 𝑦𝑡(𝜇 + 𝜎𝑡𝜀1,𝑡) +

3

𝜀1,𝑡=−3

3

𝜀2,𝑡−1=−3

(1 − 𝑦𝑡)𝑟𝑓∆𝑡) + 𝑐, 𝜎𝑗,𝑡+1
2 )) 

 

We substitute equation 2, 3 and 4 in 𝜎𝑗,𝑡+1
2  for the GARCH, GJR and EGARCH models, 

respectively. The updated state variables are then interpolated to the grid of state 

variables at the next period to obtain the value function (𝐽𝑡+1(𝑡, 𝑊𝑖,𝑡+1, 𝜎𝑗,𝑡+1
2 )). We 

compute it for all scenarios of (𝜀1,𝑡, 𝜀2,𝑡−1). For 𝑡 = 0, … , 𝑇 − 2, the optimization 

problem is solved recursively to get the solution of optimal weight 𝑦𝑡, and value 

function 𝐽𝑡(𝑡, 𝑊𝑖,𝑡, 𝜎𝑗,𝑡
2 ). 
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5  RESULTS 

The results are presented in three sections. The first section characterizes 

optimal allocations that are solved by the dynamic programming approach. The effects 

of volatility clustering on optimal allocations are also investigated. The second section 

provides the result of Monte Carlo simulation, studying the distribution of optimal 

weight and its fund value across GARCH family models. The last section, backtesting 

the strategies, evaluates the performance of GARCH family models in comparison to 

benchmark strategies: the constant volatility model and the buy-and-hold strategy. 

The model parameters of the GARCH, GJR, and EGARCH models are 

estimated using the same time series data of S&P500 3-month returns from the year 

1961 to 1995, a total of 35 years or 140 data points. Estimated parameters of the 

GARCH, GJR, and EGARCH models are shown in Table 4.1 in Appendix. Model 

parameters that are necessary to solve the dynamic programming, are set to be 

compatible with the pension scheme setting as followed. The interval between the 

portfolio adjustment is set to 3 months because the portfolio adjustment in the long term 

investment is not as frequent as in the short term investment. From equation 5,  ∆𝑡 is 

equal to 0.25. The investment window is 20 years, making the total investment of 80 

periods. For simplicity, no short selling and leverage are allowed (0 ≤ 𝑦𝑡 ≤ 1, 𝑡 =

0, … , 𝑇 − 1). The risk-free rate 𝑟𝑓 and discount rate 𝑟 are assumed to be constant at 1 

percent per annum, contribution 𝑐 in each period (3 months) is set to $300, the required 

return of fund target 𝑟𝑟𝑒𝑞 is set to 5%, fund target 𝐹𝑇 is $41,212. 

5.1 Analyzing Effects of Volatility Clustering on Optimal Allocations 

In this section, we have split the results into two sub-sections. The first sub-

section is to characterize the optimal allocation surface of each model and compare the 

optimal allocation across models. The second sub-section is to investigate the effect of 

volatility clustering by varying the parameters of GARCH family models. 

Comparing optimal allocations across volatility clustering models 

The optimal strategies of the GARCH, GJR, and EGARCH models are solved 

using Bellman equation. The numerical method for solving the Bellman equation is 

provided in Section 4. After the optimal strategy is solved for each model, the optimal 

strategy and the value function will be plotted at 2 times: at year 5 (representing early 

periods) and at year 15 (representing later periods). 
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GARCH model 

 
GJR model 

 
EGRACH model 

 

Figure 1. The surface of optimal allocation and value function of GARCH, GJR and 

EGARCH models at years 5 and 15. 
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The value function has the lowest value equal to 0 when the fund value equal to 

the fund target. The value function is always positive whether the fund value goes above 

or below the fund target. From Figure 1, if fund the value exceeds a threshold, the 

optimal allocation will put zero weight on the risky asset, which means that from that 

time on risk-free investment is enough to reach the target. This is because when the 

fund value is equal to the fund target, investment in the risky asset makes the expected 

fund value diverge more from the fund target. This threshold can be characterized by 

the final fund target, risk-free rate, and contribution rate as follows, 

𝐹𝑑𝑐,𝑡−1 =
𝐹𝑑𝑐,𝑡−𝑐

(1+𝑟𝑓)
1
𝑛

,    (7) 

where 𝐹𝑑𝑐,𝑡 is the fund value threshold at time t, and 𝐹𝑑𝑐,𝑇 = 𝐹𝑇 (fund target of 𝑇 years). 

For example, the fund value threshold at year 15, calculated from equation 7, is 

$33,365. If the fund value goes beyond this threshold, the optimal strategy is to invest 

all weight in the risk-free asset for the remaining periods. While the fund value 

threshold at year 5 is $18,797, the sum of the contribution invested at that time is just 

$6,000. The threshold is very high compared to the contribution so the optimal strategy 

is to invest high weight in the risky asset because it yields higher expected return than 

the risk-free asset. 

 The plots of the optimal allocation surface do not facilitate comparison among 

models. To aid comparison, we cross-section the surfaces, varying fund value and 

fixing the time and variance. The cross-section of optimal allocation weight of the 

GARCH, GJR, and EGARCH models are provided in Figure 2 below. 

 
Figure 2. The cross-section of optimal allocation weight of the GARCH, GJR, 

EGARCH and constant volatility models at years 5 and 15, the variance of the constant 

volatility model = 0.063. In GARCH family models, low variance = 0.0057 and high 

variance = 0.0093. The parameters are estimated from the same time series, S&P500, 

for all models. 
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From Figure 2, Findings of the optimal allocations in GARCH family models 

are as followed, while the constant volatility model will be mentioned later. 

 In all three models, the optimal weight to put in the risky asset is higher when 

the variance of risky asset and/or fund value is low. In the early period, low 

variance and low fund value result in the optimal weight closer to one. 

 If the fund value already reaches the target, the optimal strategy is to put all the 

weight in the risk-free asset. 

 In early periods, the optimal strategy will be likely to put more weight in the 

risky asset than in later periods. For example, at year 5, the optimal strategy will 

put more weight in the risky asset than at year 15. 

However, as seen from Figure 2, optimal allocations differ among models. To 

better understand what make the characteristic of the optimal allocations difference, we 

look at the variance of the risky asset return of GARCH family models (equation 2,3 

and 4 for the GARCH, GJR and EGARCH models, respectively). Then we examine 

how the variance influences the optimal allocation in each model. The variance 

distributions of GARCH family models are then investigated by varying 𝜀𝑡−1 on the 

normal distribution in the range from −3 to 3. 

 
Figure 3. The distribution of the variance of the GARCH, GJR and EGARCH models 

with varying 𝜀𝑡−1 from −3 to 3, given 𝜎𝑡−1
2 = 0.005. 

Consider equation 6, the optimization problem at one period before the terminal 

period, the only difference between the three models is the variance distribution that 

will lead to different optimal allocations. From Figure 3, the variance of the GARCH 

model has the symmetric volatility. Meanwhile, the variance of the GJR and EGARCH 

models represent the asymmetry volatility: the effect of the term 𝜔1 causes the different 

variance in the next period, the positive 𝜀𝑡−1 yield the lower variance than the negative 
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𝜀𝑡−1 of the same size. The different variance distribution provides the different optimal 

allocation. However, the variance of the GARCH and GJR models are very similar with 

the highest density of 𝜀𝑡−1 around 0. So, at one period before the terminal period, the 

differences of optimal investment strategies are as followed. 

 The GARCH and GJR models yield very similar optimal strategies. 

 The EGARCH model results in a more aggressive strategy in the later periods 

since the variance for all possible −3 < 𝜀𝑡−1 < 3 in the EGARCH model is 

lower than in the GARCH and GJR models.  

 Next, volatility clustering models are compared to the non-volatility clustering 

model. The constant volatility model is used as a benchmark. It has only one state 

variable, the fund value. The optimal allocation of this model is calculated similarly to 

GARCH family models. 

 The optimal allocation of the constant volatility model is also shown in Figure 

3. The optimal allocation of the constant volatility only depends on the fund value, 

while volatility clustering models depend on both the fund value and the variance. At 

both low and high variances, in earlier periods, the result shows that the optimal 

strategies in GARCH family models are more conservative than in the constant 

volatility model. While in later periods, GARCH family models result in lower optimal 

weights than the constant volatility model when the fund value is low, but result in 

higher optimal weights when the fund value is high. As discussed, this can imply that 

the volatility clustering influences optimal strategies. The volatility clustering model 

results in more conservative investment strategy than the non-volatility clustering 

model in early periods. 

Effect of volatility clustering on optimal strategy 

This section examines the effect of volatility clustering in GARCH family 

models on the optimal strategy. Two important parameters of GARCH family models 

that can represent the volatility clustering effect are 𝛼1 and 𝛽1. The first parameter, 𝛼1, 

represents how much volatility in the past affects present volatility. The second 

parameter, 𝛽1, represents the amplitude of uncertainty in the past period. Moreover, the 

extension models, the GJR and EGARCH models, have the additional parameter: 𝜔1, 

allows for the asymmetric volatility that can capture both the sign and amplitude of the 

uncertainty. 

To compare the effect of each parameter (𝛼1, 𝛽1, and 𝜔1) on the optimal 

strategy, the benchmark parameters of the GARCH family models are also estimated 

from the S&P500 returns as same as the previous section. Each parameter is varied 

separately while holding the rest of parameters constant. The same dynamic 

programming method as in Section 4 is applied to obtain the optimal strategy. By fixing 

the time and the state variable: fund value, the optimal strategies result with varying 
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variance are presented. The figures below will show the relationship between the 

variance and the optimal weight compared along the varying parameters in the 

GARCH, GJR, and EGARCH models. The parameters of the volatility clustering effect 

are investigated separately in each model. 

 

Effect of volatility clustering on optimal strategy in the GARCH model 

 Starting from the GARCH model, we consider its constraint, 𝛼1 + 𝛽1 < 1. The 

higher the value of 𝛼1 + 𝛽1, the higher the effect of volatility clustering is. To study the 

effect of volatility clustering on the optimal allocation, the values of 𝛼1 and 𝛽1 are 

varied and categorized into 4 groups, given benchmark values of the GARCH model 

are 𝛼0 = 0.002208 𝛼1 = 0.5248, 𝛽1 = 0.1272, and 𝜇 = 0.01461. 

Group 1: varying 𝛼1, fixed 𝛽1 

 𝛼1 = 0.3, 𝛽1 = 0.1, 𝛼1 + 𝛽1 = 0.4 

 𝛼1 = 0.7, 𝛽1 = 0.1, 𝛼1 + 𝛽1 = 0.8 

Group 2: varying 𝛽1, fixed 𝛼1 

 𝛼1 = 0.1, 𝛽1 = 0.3, 𝛼1 + 𝛽1 = 0.4 

 𝛼1 = 0.1, 𝛽1 = 0.7, 𝛼1 + 𝛽1 = 0.8 

Group 3: varying 𝛼1 + 𝛽1, equally weight of 𝛼1 and 𝛽1 

 𝛼1 = 0.2, 𝛽1 = 0.2, 𝛼1 + 𝛽1 = 0.4 

 𝛼1 = 0.4, 𝛽1 = 0.4, 𝛼1 + 𝛽1 = 0.8 

Group 4: fixed 𝛼1 + 𝛽1, varying 𝛼1 and 𝛽1 

𝛼1 = 0.1, 𝛽1 = 0.7, 𝛼1 + 𝛽1 = 0.8 

𝛼1 = 0.4, 𝛽1 = 0.4, 𝛼1 + 𝛽1 = 0.8 

𝛼1 = 0.7, 𝛽1 = 0.1, 𝛼1 + 𝛽1 = 0.8 

 
Figure 4. The cross-section of optimal allocation weights of the GARCH model with 

varying 𝛼1 and 𝛽1 by fixing fund value at year 15. 
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Comparing models in group 1, varying 𝛼1 and fixed 𝛽1, the larger the 𝛼1, the 

higher the volatility clustering. In the presence of higher 𝛼1, the optimal strategy puts 

less weight on the risky asset. The level of volatility clustering, 𝛼1, has a significant 

impact on the optimal weight. 

Comparing models in group 2, varying 𝛽1 and fixed 𝛼1, lower 𝛽1 results in 

higher optimal weight on the risky asset than higher 𝛽1 one. This is because higher 𝛽1 

gives more uncertainty to the model, assets become riskier, so the optimal allocation 

puts less weight in the risky asset. As a result, the higher 𝛽1 leads to more conservative 

investment strategy with less weight in the risky asset. 

Comparing models in group 3 with varying 𝛼1 + 𝛽1 and equally weight of 𝛼1 

and 𝛽1, at higher sum value, the optimal allocation will put less weight in the risky asset 

than at lower sum value. So the optimal strategy is more conservative at lower 𝛼1 + 𝛽1. 

Lastly, comparing models in group 4, given 𝛼1 + 𝛽1 = 0.8 and varying 𝛼1 and 

𝛽1 values, at higher 𝛽1 model, the optimal allocation puts less weight in the risky asset 

than at higher 𝛼1 model. The result implies that 𝛽1, compared at the same level of 𝛼1, 

makes the asset become riskier causing the optimal strategy to put less weight in the 

risky asset. Meanwhile, at 𝛼1 + 𝛽1 = 0.4, 𝛽1 still has a larger impact on the risky asset 

than 𝛼1 although the difference is small as 𝛼1 + 𝛽1 is small. 

 To verify the result, the long-run variance of the GARCH model is 
𝛼0

1−𝛼1−𝛽1
. 

Similar to the results above, the higher the 𝛼1, 𝛽1 𝑜𝑟 𝛼1 + 𝛽1, the higher the long run 

variance. Moreover, from Equation 2, we get 𝜎𝑡
2 = 𝛼0 + 𝜎𝑡−1

2 (𝛼1 + 𝛽1𝜀𝑡−1
2 ). The fact 

that higher 𝛼1 𝑜𝑟 𝛽1 yield higher variance also verifies the results. The term 𝛼1 +

𝛽1𝜀𝑡−1
2  is the decay factor of volatility. 𝛼1 is a fixed component while 𝛽1 is a random 

component with the variation of 𝜀𝑡−1
2 . Consider variance of the GARCH model with 

varying 𝜀𝑡−1 in Figure 1, at 𝜀𝑡−1 = 0, there is no random component, causing variance 

to go lower than the previous period. Adding the random component, |𝜀𝑡−1| > 0 gives 

higher variance than at 𝜀𝑡−1. So 𝛼1 and 𝛽1 are both important factors on the decision 

rule in choosing optimal weight. 

 

Effect of volatility clustering on optimal strategy in the GJR model 

 In the GJR model, there are three volatility clustering parameters: 𝛼1, 𝛽1, and 

𝜔1. Each volatility clustering parameter is varied with different values to not violate 

the constraint 𝛼1 + 𝛽1 + 0.5𝜔1 < 1, given the benchmark values, 𝛼0 =

0.002987, 𝛼1 = 0.3367, 𝛽1 = 0.01317, 𝜔1 = 0.4024, and 𝜇 = 0.01385. 
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Figure 5.1. The cross-section of optimal allocation weights of GJR model varying 𝛼1, 

𝛽1, and 𝜔1 by fixing fund value at year 15. 

 

The GJR model is an extension of the GARCH model with the addition of  𝜔1 

parameter while the rest of the model is the same as the GARCH model. Thus the effects 

of 𝛼1 and 𝛽1 are the same as in the GARCH model, as seen in Figure 5.1. 

The term 𝜔1𝐼𝑡−1𝜀𝑡−1
2  is an additional term that extends from the GARCH model 

characterizing asymmetric volatility. When 𝜀𝑡−1, is more than 0, 𝜔1𝐼𝑡−1𝜀𝑡−1
2  is equal to 

0, and otherwise, positive. Thus negative 𝜀𝑡−1, compared to positive 𝜀𝑡−1 at the same 

level, yields higher variance. The higher the 𝜔1, the lower the optimal allocation on the 

risky asset. 

 To study the relative importance of volatility clustering parameters (𝛼1, 𝛽1, 𝜔1), 

we compare the effect of volatility clustering between parameters. The constraint is set 

to 𝛼1 + 𝛽1 + 0.5𝜔1 = 0.8 and the benchmark values, 𝛼0 = 0.002987, 𝛼1 =

0.3367, 𝛽1 = 0.01317, 𝜔1 = 0.4024, and 𝜇 = 0.01385. 

Benchmark model 

  𝛼1 = 0.3,  𝛽1 = 0.3, 𝜔1 = 0.4 

Comparing 𝛼1, 𝛽1 : lower 𝛼1 and higher 𝛽1 

  𝜶𝟏 = 𝟎. 𝟏, 𝜷𝟏 = 𝟎. 𝟓, 𝜔1 = 0.4 

Comparing 𝛼1, 𝜔1 : lower 𝛼1 and higher 𝜔1 

  𝜶𝟏 = 𝟎. 𝟏, 𝛽1 = 0.3, 𝝎𝟏 = 𝟎. 𝟖 

Comparing 𝛽1, 𝜔1 : lower 𝛽1 and higher 𝜔1 

  𝛼1 = 0.3, 𝜷𝟏 = 𝟎. 𝟏, 𝝎𝟏 = 𝟎. 𝟖 
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Figure 5.2. The cross-section of optimal allocation weights of GJR model for 

comparing pairs of two parameters ((𝛼1, 𝛽1), (𝛼1, 𝜔1), (𝛽1, 𝜔1)) by fixing fund value at 

year 15. 

From Figure 5.2, the benchmark model (𝛼1 = 0.3, 𝛽1 = 0.3, 𝜔1 = 0.4) is used 

to compare with other models. To compare relative importance between parameters, 

first, we start with a pair of (𝛼1, 𝛽1). The benchmark model is compared by adjusting 

lower 𝛼1 and higher 𝛽1 (𝛼1 = 0.1, 𝛽1 = 0.5, 𝜔1 = 0.4). The result is the higher 𝛽1 has 

more sensitivity than the benchmark model just as in GARCH model. Next, we compare 

the benchmark model with pairs of (𝛼1, 𝜔1) and (𝛽1, 𝜔1) by lower 𝛼1 and higher 𝜔1 

(𝛼1 = 0.1, 𝛽1 = 0.3, 𝜔1 = 0.8) and lower 𝛽1 and higher 𝜔1 (𝛼1 = 0.3, 𝛽1 = 0.1, 𝜔1 =

0.8), respectively. The result is higher 𝜔1 has more sensitivity than the benchmark 

model in both scenarios. As a summary, the term 𝜔1 has the most sensitivity on the 

optimal allocation followed by 𝛽1 and 𝛼1, respectively. This implies that the strategy is 

more concern about the leverage effect 𝜔1 than the amplitude of the uncertainty 𝛽1 and 

the autocorrelation of volatility 𝛼1. The uncertainty terms (𝛽1, 𝜔1) that depend on the 

return of risky asset 𝜀𝑡−1, then, have more impact on optimal allocation than the 

predictable term (𝛼1) that depends on the variance of risky asset 𝜎𝑡
2. 

The long-run variance of the GJR model is 
𝛼0

1−𝛼1−𝛽1−0.5𝜔1
. It is similar to the 

GARCH model with an addition of the term 𝜔1. Similar to the result in the GARCH 

model, the higher the 𝛼1, 𝛽1, 𝜔1 or 𝛼1 + 𝛽1 + 0.5𝜔1, the higher the long run variance. 

Moreover, according to equation 3,  𝜎𝑡
2 = 𝛼0 + 𝜎𝑡−1

2 (𝛼1 + (𝛽1 + 𝜔1𝐼𝑡−1)𝜀𝑡−1
2 ),  higher 

𝛼1, 𝛽1 or 𝜔1 yields higher variance. 𝛼1 + (𝛽1 + 𝜔1𝐼𝑡−1)𝜀𝑡−1
2  is the decay factor of 

volatility, 𝛼1 is a fixed component while 𝛽1 + 𝜔1𝐼𝑡−1 is a random component with the 

variation of 𝜀𝑡−1
2 . 𝛼1 and 𝛽1 have the same effects as in the GARCH model. While the 

extension term, 𝜔1, can also capture the sign of 𝜀𝑡−1 by the indicator 𝐼𝑡 , 𝐼𝑡 =

0 when 𝜀𝑡−1 > 0 and  𝐼𝑡 = 1 when 𝜀𝑡−1. The term 𝜔1 should give us the more realistic 
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distribution of volatility, asymmetric volatility, and provide the better strategy than in 

the GARCH model. 

Effect of volatility clustering on optimal strategy in the EGARCH model 

 There are also three volatility clustering parameters (𝛼1, 𝛽1, and 𝜔1) in the 

EGARCH model. As there is no constraint in the EGARCH model, each volatility 

clustering parameter is varied with higher different values than the GARCH and GJR 

models, given benchmark values of  𝛼0 = −1.4468, 𝛼1 = 0.7163, 𝛽1 = 0.3104, 𝜔1 =

−0.1293, and 𝜇 = 0.01291. 

Figure 6. The cross-section of optimal allocation weights of the EGARCH model 

varying 𝛼1, 𝛽1, and 𝜔1 by fixing fund value at year 15. 

The effect of 𝛼1 in the EGARCH model is reverse from the GARCH model.  

Due to the characteristic of log function, 𝑙𝑜𝑔(𝑛) is less than 0 when 𝑛 < 1, and the fact 

that 0 < 𝜎 < 1, the term 𝛼1 log 𝜎𝑡−1
2  is more negative when 𝛼1 is higher, resulting in 

overall lower variance in the current period (𝜎𝑡
2). Given low 𝛼1 resulting in high 

variance, the optimal strategy will put a lower weight on the risky asset than high 𝛼1. 

The effect of 𝛽1 in the EGARCH model is the same as in the GARCH and GJR 

models. The higher the 𝛽1 is, the higher the weight of optimal allocation is. 

The term 𝜔1 is a direct variation of 𝜀𝑡−1. 𝜔1 is used to capture the asymmetric 

effect, i.e. high negative returns causing high volatility and lower volatility for positive 

returns. So high 𝜔1 results in the model highlighting the volatility of the risky asset, 

resulting in lower optimal weight in the risky asset. 

In the EGARCH model, there is no constraint between parameters (𝛼1, 𝛽1, and 

𝜔1) so the parameters cannot be compared in the same way as the GARCH and GJR 

models (0 < 𝛼1 + 𝛽1 + 𝜔1 < 1). From Figure 6, consider when 0.15 < 𝛼1 <

0.75, 0.3 < 𝛽1 < 0.9, and  −0.75 < 𝜔1 < −0.15, the range of each parameter are 

fixed to 0.6. The sensitivity of parameter that has the most impact is the autocorrelation 
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of volatility 𝛼1 followed by the amplitude of the uncertainty 𝛽1 and the leverage effect 

𝜔1, respectively. The 𝛼1 is the power of the variance 𝜎𝑡−1
2 . Even though the EGARCH 

model has no constraint, a very low value on 𝛼1 could results in a lot higher variance 

than it should be. This is why the optimal strategy when 𝛼1 = 0.15 rarely put weight in 

the risky asset. This also applies to the higher 𝛽1 and |𝜔1| resulting in extremely high 

variance. 

The long-run variance of the EGARCH model is 𝑒
𝛼0

1−𝛼1   when 𝛼0 < 0 and 0 <

𝛼1 < 1. The higher the 𝛼1, the lower the long-run variance, while 𝛽1 and 𝜔1 have no 

effect on long-run variance. Moreover, according to equation 4, we get 𝜎𝑡
2 =

𝑒𝑐0(𝜎𝑡−1
2 )𝛼1𝑒𝛽1|𝜀𝑡−1|+𝜔1(𝜀𝑡−1), where 𝑐0 = 𝛼0 − 𝛽1E[|𝜀t−1|] and 0 < 𝜎𝑡−1

2 < 1. The 

higher 𝛽1, higher 𝜔1 or lower 𝛼1 yields higher variance. 𝑒𝑐0 is the constant multiplier 

to 𝜎𝑡−1
2 . 𝛼1 is the constant power of 𝜎𝑡−1

2 . 𝑒𝛽1|𝜀𝑡−1|+𝜔1(𝜀𝑡−1) is the random component, 

bases on 𝜀𝑡−1. 𝛽1 captures the amplitude of 𝜀𝑡−1, while 𝜔1 captures the sign and also 

amplitude of 𝜀𝑡−1. The effect of 𝜔1, like in GJR model, allows the model capture more 

property of 𝜀𝑡−1 and provide the better strategy than in the GARCH model. 

The EGARCH and GJR models have an additional feature from the GARCH 

model, 𝜔 term, that can capture the sign effects of return: negative residuals induce 

larger increases in the variance than positive residuals, asymmetric volatility. Consider 

when a market crashes, stock prices drop dramatically, causing a significant increase in 

market volatility. This phenomenon will make investment strategies of asymmetric 

GARCH models be more cautious about the market crash’s situation than the GARCH 

model. By intuition, due to higher volatility in asymmetric volatility models, it will 

lower the weight in the risky asset compare to GARCH model in order to reduce the 

risk. As discussed, we think that the EGARCH and GJR models will have better 

investment decisions than GARCH model in the backtest period. 

Table 1. Summary of the effect of 𝛼1, 𝛽1 and 𝜔1 on optimal allocation in the GARCH, 

GJR, and EGARCH models. 

Parameter(s) 
Conservative strategy 

/ riskier model 

Aggressive strategy 

/less risky model 

𝛼1 (GARCH, GJR) Higher 𝛼1 Lower 𝛼1 

𝛼1 (EGARCH) Lower 𝛼1 Higher 𝛼1 

𝛽1  Higher 𝛽1 Lower 𝛽1 

𝜔1 (GJR, EGARCH) Higher 𝜔1 Lower 𝜔1 

𝛼1 + 𝛽1 (GARCH, GJR) Higher 𝛼1 + 𝛽1 Lower 𝛼1 + 𝛽1 

Fix 𝛼1 + 𝛽1 (GARCH)  Higher 𝛽1/ Lower 𝛼1 Higher 𝛼1/ Lower 𝛽1 

Fix 𝛼1 + 𝛽1 + 0.5𝜔1 

(GJR) 

1) Higher 𝛽1/ Lower 𝛼1 

2) Higher 𝜔1/ Lower 𝛼1, 𝛽1 

1) Higher 𝛽1/ Lower 𝛼1 

2) Higher 𝛼1, 𝛽1/ Lower 𝜔1 

 



 31 

5.2 Monte Carlo Simulation 

In this section, we will examine how the different volatility clustering models 

affect the optimal strategy. Monte Carlo simulation is used to investigate the 

distribution of the optimal weight and the fund value in each model. In particular, the 

average of the simulated allocation and the simulated fund value are compared in each 

model. 

First, return and variance of the GARCH, GJR, and EGARCH models are 

simulated using the estimated parameters provided in Table 4.1 of Appendix. In the 

simulation, the simulated weight follows the optimal allocation in the previous section. 

The simulated weight invested in each period depends on the state variables: fund value 

and variance. Henceforth, the distribution of simulated weight and simulated fund value 

are found from 100,000 paths of each model. The average weight and the average fund 

value are calculated from the simulated weight and the simulated fund value. The 

distribution of simulated weight and the average weight of the GARCH, GJR, 

EGARCH models are shown in Figure 7.1 and Figure 7.2 respectively. 

 
Figure 7.1. The distribution of simulated weight of the GARCH, GJR and EGARCH 

models at several periods. 
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Figure 7.2. The average simulated weight in the risky asset of the GARCH, GJR, and 

EGARCH models. 

We start simulating from year 0 to year 20 so the last period invested is one 

period before the time horizon, year 19.75. From Figure 7.1, the weight in risky asset 

is concentrated at near 0 and 1. When the weight is close to 1 for the risky asset, the 

fund value is lower than fund target. For example, at year 5 and 10, most of the 

simulated weights are invested closer to 1. Conversely, when the weight is close to 0, 

the fund value is close to the fund target. The closer the weight is to 0, the smaller the 

gap between the fund value and the fund target. This means that if the probability is 

high at a weight close to 0 at the terminal period, the model likely will perform well.  

At early periods, every model puts all weight in the risky asset. After that, the 

optimal weight is decreasing to 0.8-1.0 in the risky asset at approximately year 3 for 

the EGARCH model, and year 4 for the GARCH and GJR models. The average of 

simulated weight continues to lower as time passes by. At year 5, simulated weight 

invests all weight in the risky asset with probabilities of 0.9, 0.85 and 0.65 for the 

GARCH, GJR and EGARCH models, respectively. This implies that the EGARCH 

model implies more conservative investment strategy at earlier periods than other 

models. As seen in Figure 7.2, the average weight of the EGARCH model decays 

slower than other models, causing the EGARCH model to put more aggressive strategy 

than the GARCH and GJR models in later periods. Moreover, the GARCH and GJR 

models have very similar optimal allocation weight, on average. 
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Figure 8.1. The distribution of simulated fund value of the GARCH, GJR and EGARCH 

models at several periods. 

 
Figure 8.2. The average fund value in the risky asset of the GARCH, GJR, and 

EGARCH models. Target terminal wealth, discounted with risk-free and contribution 

rate, is calculated from equation 7. 

 The distribution of simulated fund value and the average fund value of the 

GARCH, GJR, EGARCH models are shown in Figure 8.1 and Figure 8.2 respectively. 

In Figure 8.2, the GARCH model resulted in the highest mean of simulated fund value, 

followed by the GJR and EGARCH models. Because the expected return of the risky 

asset is positive, on average, investing with more weight on risky asset leads to higher 

average return and consequently higher average fund value. 

Fund target 
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Finally, we look at the average return of simulated terminal fund value. The 

average return (𝑟𝑎𝑣𝑔) is solved from the equation, 𝑐 ∑ (1 + 𝑟𝑎𝑣𝑔)
𝑡𝑇

𝑡=0 = 𝐹𝑇, where 𝑐 is 

the contribution, and 𝐹𝑇 is terminal fund value. Thus the fund value will reach the target 

if the average return is more than the fund target (4%). 

Table 2. Probabilistic distribution of average return per year of simulated terminal fund 

value, a total of 100,000 paths from each model, given fund target equal to 4% per year. 

The number in each cell shows the probability that the average return of simulated 

terminal fund value falls within a given range. 

Model <2.5% 2.5-3% 3-3.5% 3.5-4% >4% 

GARCH 0.1494 0.0633 0.1192 0.6620 0.0061 

GJR 0.1987 0.0858 0.1598 0.5556 0.0001 

EGARCH 0.2505 0.0859 0.1407 0.4861 0.0368 

From Table 2, the highest density of average return of simulated fund value is 

at range 3.5%-4%. The EGARCH model has the highest probability of reaching the 

target (when average return >4%). Most of the simulated fund values do not reach the 

fund target because the optimal strategy tries to protect wealth at the later periods. For 

example, at year 15, some paths of fund value nearly reach the target and hence lower 

weight in the risky asset, as seen in the distribution of simulated weight. 

5.3 Backtesting the Strategy 

In this section, the optimal strategies are compared to each other under the 

realized historical data. Time series of 55 years of historical return is used. The 

historical return of S&P500 from the year 1961 to 2015 is collected as a sample. The 

first 35 years of time series is used to estimate the parameters of GARCH family 

models. The optimal strategy is then calculated. Afterward, the latest 20 years of time 

series is used for backtesting. Fund portfolios are constructed assuming the GARCH, 

GJR, and EGARCH models. Subsequently, the portfolios are adjusted in each period 

using the calculated optimal strategies. The parameters of GARCH family models are 

re-estimated every 5 years by using a rolling window of historical returns of 35 years 

and the optimal allocation is also re-calculated. The estimated parameters are provided 

in Table 4.1 - Table 4.4 in Appendix, each table for every 5-year re-estimation in the 

given backtesting period. Then, the performance of funds assuming different models 

are compared. 

 There are two benchmarks to compare with volatility clustering models. The 

first one is constant volatility model. The optimal allocation of this model is calculated 

similarly to volatility clustering models with only one state variable, the fund value. 

The re-estimation of constant volatility is also done at every 5 years. The second 



 35 

benchmark model is the buy-and-hold strategy, which represents the market index. This 

strategy will put all the weight in the risky asset in the first period and keep all weight 

on the risky asset when the contribution is added in each period until reaching the 

terminal period. In the backtesting period, fund target is set to 4% and the risk-free rate 

is set to 1%.  

 

Figure 9.1. 3-month return of S&P500 between years 1996-2015. 

 
Figure 9.2. The variance of the GARCH, GJR, EGARCH and constant volatility models 

of S&P500 between years 1996-2015. 
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Figure 9.3. Backtesting weight invested in S&P500 of the GARCH, GJR, EGARCH 

and benchmark models between years 1996-2015. 

 
Figure 9.4. Backtesting fund value of the GARCH, GJR, EGARCH, benchmark models 

and fund target between years 1996-2015. 

Note. *Target fund value threshold 𝐹𝑑𝑐,𝑡, discounted with the risk-free and contribution rates, is 

calculated from equation 7. 

The backtest result is shown in Figure 9.1-9.4. In the first 5 years of backtesting, 

1996-2000, strategies of the GARCH, GJR, and EGARCH models put the optimal 

weight in the risky asset close to 1, very much like the constant volatility model. This 

shows that all the volatility clustering models invest by ignoring what the level of 

variance is in the first 5 years. In the next 5 years, 2001-2005, the optimal strategy of 

the GARCH and GJR models still put weight close to 1 in the risky asset, while the 

EGARCH model uses a more conservative strategy than other models on the risky asset. 

In years 2006-2010, when financial crisis occurred in 2008, all volatility clustering 

models reduce the weight on the risky asset dramatically. The EGARCH model is the 

model with the least weight on the risky asset, followed by the GJR and GARCH 

models. Meanwhile, the constant volatility model still puts weight close to 1 during the 

financial crisis. In years 2011-2015, the optimal strategies for all models including 



 37 

constant volatility model reduce weights on risky asset dramatically to protect the 

wealth in the later periods. However, the return of S&P500 became more positive 

causing the buy-and-hold strategy to outperform all the optimal strategies in other 

models. 

Table 3. Average return per year of backtest fund. 

Value 
Model Benchmark 

GARCH GJR EGARCH Constant S&P500 

Return 3.31% 3.26% 3.27% 3.14% 3.86% 

SD 12.83% 12.36% 11.88% 13.03% 13.13% 

Sharpe ratio 0.1800 0.1828 0.1911 0.1642 0.2178 

 

The average returns of backtested funds are shown in Table 3. The strategy with 

the highest average return is the buy-and-hold strategy. The average returns from 

strategies implied by volatility clustering models are lower than the buy-and-hold 

strategy, but still outperform the strategy from the constant volatility model. Overall, 

all the strategies of GARCH family models result in similar returns with each other. 

However, the EGARCH model yields returns with the lowest standard deviation. This 

will be beneficial in the presence of financial crises since the optimal strategy implied 

by the EGARCH model is more conservative. The standard deviation implied by the 

EGARCH model is the lowest, followed by the GJR, GARCH, constant volatility 

models and the buy-and-hold strategy. The buy-and-hold strategy also gives the best 

Sharpe ratio, the return to risk ratio. However, all strategies in volatility clustering 

models still yield better Sharpe ratios than the constant volatility model. Comparing 

volatility clustering models with the constant volatility model, the optimal strategies 

implied by volatility clustering models yields higher average returns with lower 

standard deviation and higher Sharpe ratio in backtesting. As shown above, volatility 

clustering models outperform non-volatility clustering models. Hence, for pension fund 

management, this paper highly recommends taking volatility clustering in 

consideration.  
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6  CONCLUSION 

 This paper asks how the volatility clustering affects strategies in the pension 

fund management. Moreover, how the different volatility clustering models affect the 

optimal strategies. Lastly, we test which volatility clustering model give the best 

outcome in backtesting. 

This research has investigated three different volatility clustering models, the 

GARCH, GJR and EGARCH models, for use in the management of defined benefit 

pensions. First, model parameters are estimated using a time series of S&P500 3-month 

returns. The surface of the optimal allocation and the value function are obtained by 

solving the Bellman equation. The solutions of the optimal allocation depend on the 

variance dynamic of each model. Findings are that at lower fund value and lower 

variance of returns, optimal allocations have a higher weight in the risky asset. 

Moreover, in comparison to a model with no volatility clustering effect, GARCH family 

models have more conservative strategies. In volatility clustering models, volatility-

clustering parameters,  𝛼1,  adjusting volatility in the past period and 𝛽1 capturing the 

amplitude of uncertainties, have the impact on the decision rule in choosing optimal 

allocations. Meanwhile, the term 𝜔1 in the GJR and EGARCH models allows 

asymmetric volatility and highlights high uncertainties given negative returns, resulting 

in a more conservative strategy.  

After the optimal strategies are found, Monte Carlo simulation is performed to 

find the distribution of optimal weights and simulated fund performance implied by 

optimal strategies from different models. The result shows that the EGARCH model 

yields the most reasonable strategy and, unlike the GARCH and GJR models, rarely 

gives extreme weight on the risky asset. 

Lastly, in backtesting strategy, the strategies implied by three models are tested 

on historical returns data. All the strategies provide similar returns of S&P500 between 

years 1996-2015. However, the EGARCH model yields the most conservative strategy, 

which is beneficial if a financial crisis occurs. In comparison to the constant volatility 

model, the volatility clustering models result in fund management strategies that 

outperform the non-volatility clustering model, with higher fund value and lower 

standard deviation in the terminal period. 

In the financial market, portfolio managers should take into account the effect 

of volatility clustering, using a model that can best capture the clustering effects in the 

actual market. Our research supports that the EGARCH model has the best performance 

as the evident from backtesting.  Even though the strategy of the EGARCH model is 

more conservative than other models, the fund performance implied by the EGARCH 

model is similar to other volatility clustering models and would outperform other 

models during a financial crisis. 
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APPENDIX Estimated Parameters 

Table 4. Estimated parameters of the GARCH, GJR, and EGARCH models at specific 

periods. 

 

Table 4.1. Year 1996-2000 

 

Table 4.2. Year 2001-2005 

Parameters GARCH GJR EGARCH 

𝜶𝟎 
value 0.002208 0.002987 -1.4468 

SE 0.001830 0.001464 1.373 

𝜶𝟏 
value 0.5248 0.3367 0.7163 

SE 0.3442 0.3221 0.2683 

𝜷𝟏 
value 0.1272 0.01317 0.3104 

SE 0.1009 0.1677 0.2335 

𝝎 
value - 0.4024 -0.1293 

SE - 0.1967 0.06781 

𝝁 
value 0.01461 0.01385 0.01291 

SE 0.007917 0.007765 0.007719 

Parameters GARCH GJR EGARCH 

𝜶𝟎 
value 0.002042 0.002918 -1.603 

SE 0.001843 0.001646 1.4800 

𝜶𝟏 
value 0.5613 0.3755 0.6829 

SE 0.3332 0.3366 0.2910 

𝜷𝟏 
value 0.1275 - 0.2463 

SE 0.0987 - 0.2129 

𝝎 
value - 0.3843 -0.1389 

SE - 0.2039 0.07679 

𝝁 
value 0.01852 0.01619 0.01527 

SE 0.007482 0.007320 0.007456 
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Table 4.3. Year 2006-2010 

 

Table 4.4. Year 2011-2015 

 

 

 

 

Parameters GARCH GJR EGARCH 

𝜶𝟎 
value 0.001040 0.002319 -1.098 

SE 0.0007265 0.001232 0.8376 

𝜶𝟏 
value 0.5947 0.4550 0.7811 

SE 0.1675 0.2502 0.1653 

𝜷𝟏 
value 0.2930 - 0.3813 

SE 0.1243 - 0.2247 

𝝎 
value - 0.4220 -0.1061 

SE - 0.2066 0.07322 

𝝁 
value 0.01893 0.01658 0.01381 

SE 0.006937 0.007197 0.007375 

Parameters GARCH GJR EGARCH 

𝜶𝟎 
value 0.0008618 0.002699 -1.033 

SE 0.0006043 0.001351 0.7636 

𝜶𝟏 
value 0.6430 0.3904 0.7951 

SE 0.1530 0.2542 0.1483 

𝜷𝟏 
value 0.2576 - 0.3662 

SE 0.1128 - 0.2121 

𝝎 
value - 0.3881 -0.09203 

SE - 0.2261 0.07556 

𝝁 
value 0.01892 0.01743 0.01442 

SE 0.006997 0.007121 0.007210 
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