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กึ่งริง  คือระบบ (A, +, •)  ซึ่ง (A, +) และ (A, •) เปนกึ่งกรุป  และการดําเนินการ • กระจายบนการ
ดําเนินการ  +   เรากลาววากึ่งริง (A, +, •) สลับที่ภายใตการบวก (AC)   ถา  x + y = y + x  สําหรับทุก x, y 
∈ A   ศูนยของกึ่งริง (A, +, •)  คือสมาชิก  0 ∈ A  ซึ่ง  x + 0 = 0 + x = x  และ x • 0 = 0 • x = 0  
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ดําเนินการ  +  บน S0 ที่ทําให  (S0, +, •)  เปนกึ่งริง [AC] ที่มีศูนย  โดยที่ •  เปนการดําเนินการบน S0  

 การดําเนินการไฮเพอรบนเซตไมวาง  H   คือฟงกชัน  o  : H × H → P*(H)  โดย  P(H)  แทน
เซตกําลังของ H   และ  P*(H) = P(H)\{∅}  ในกรณีนี้ เราเรียก (H, o ) วาไฮเพอรกรุปพอยด  สําหรับไฮ
เพอรกรุปพอยด  (H, o )  และเซตยอยไมวาง  X  และ Y  ของ H  เราให  XoY  แทนสวนรวมของเซต   x o y  
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กัน  
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 A semiring is a symtem (A, +, •) such that (A, +) and (A, •) are semigroups and 
the operation • distributes over the operation  +. A semiring (A, +, •) is additively 
commutative (AC)  if  x + y = y + x  for all x, y ∈ Α. The zero of a semiring  (A, +, •)  
is an element 0 ∈ Α  such that  x + 0 = 0 + x  = x  and  x • 0 = 0 • x = 0   for all x ∈ 
Α.  For a semigroup S, let S0 be S  if  S has a zero and S contains more than one 
element, otherwise, let S0 be the semigroup S with a zero 0 adjoined. We say that a 
semigroup S admits the structure of a [AC]  semiring with zero if there exists an 
operation  + on S0  such  that  (S0, +, •)  is a [AC] semiring with zero  where  •  is the 
operation on  S0. 

 A hyperoperation  on a nonempty set H is a function  o  : H × H → P*(H)  
where P(H) is the power set of H and P*(H) = P(H)\{∅}. For this case, (H, o ) is 
called a hypergroupoid.  For a hypergroupoid (H, o ) and nonempty subsets  X and  Y 
of H, we let XoY denote the union of all sets x o y where x and y run over X and Y, 
respectively. A semihypergroup is a hypergroupoid (H, o ) with (x o y) o z = x o (y o z) 
for all x, y, z ∈ H. A semihyperring is a system (A, +, •) satisfying the following 
properties: (A ,+)  is a semihypergroup, (A, •) is a semigroup and the operation • is 
distributive over the hyperoperation +. The zero of a semihyperring (A, +, •) is an 
element 0 ∈ Α such that  x + 0 = 0 + x = {x} and  x • 0 = 0 • x = 0  for all x ∈ Α.  
Also, a semihyperring  (A, +, •) is  additively commutative (AC)  if  x + y  = y + x for 
all x, y ∈ Α. Semigroups admitting the structure of a semihyperring with zero are 
defined analogously. 

 Let V be a vector space over a division ring R and LR(V) the semigroup under 
composition of all linear transformations α : V → V. By a linear transformation 
semigroup on V we mean a subsemigroup of LR(V).  A  partial linear transformation  
of V  is a linear transformation  from a subspace of  V  into V.  Various types of linear 
transformation semigroups are studied. We determine when they admit the structure  
of a semihyperring with zero. It is shown that semigroups without zero always admit 
the structure of an AC semihyperring with zero and the structure of a semiring with 
zero. However, we characterize when our target linear transformation semigroups 
without zero admit the structure of an AC semiring with zero. Moreover, the partial 
linear transformation semigroup on V is studied. Necessary conditions for this 
semigroup to admit the structure of  an AC semiring with zero are given. 
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CHAPTER I

INTRODUCTION AND PRELIMINARIES

The multiplicative structure of a ring is by definition a semigroup with zero.

However, ring theory is a classical subject in mathematics and had been widely

studied before semigroup theory was considered important and of interest by its

own. Because the multiplicative structure of a ring is a semigroup with zero, it

is valid to ask which semigroups joining with zero if necessary are isomorphic to

the multiplicative structure of some ring. Such semigroups are usually called R-

semigroups or semigroups admitting ring structure. Equivalently, an R-semigroup

or a semigroup admitting ring structure is a semigroup S having the property

that there is an operation + on S0 such that (S0, +, ·) is a ring where · is the

operation on S0. Many well-known theorems in ring theory are useful to study

whether a semigroup is an R-semigroup. For examples, Wedderburn’s theorem

tells us any finite nonabelian group is not an R-semigroup. Because every Boolean

ring is a commutative ring, we conclude that any left [right] zero semigroup,

that is, a semigroup S in which xy = x [xy = y] for all x, y ∈ S, containing

more than one element is not an R-semigroup. It is interesting to know that

S. R. Kogalovski [6] announced in 1961 that an axiomatic characterization of

R-semigroups is impossible.

In fact, R-semigroups or semigroups admitting ring structure have long been

studied. In 1970, R. E. Peinado [8] gave a brief survey of semigroups admit-

ting ring structure. D. D. Chu and H. I. Shyr [1] proved a nice result that the

multiplicative semigroup N of natural numbers is an R-semigroup by showing
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that (N0, ·) ∼= (Z2[X], ·). M. Satyanarayana has paid much attention to study

R-semigroups. See [11], [12] and [13] for examples. Semigroups of our interest

are linear transformation semigroups. There was some study of linear transfor-

mation semigroups admitting ring structure provided by M. Siripitukdet and Y.

Kemprasit [14].

Krasner hyperrings are a nice generalization of rings. This is the first notion

of hyperrings introduced by M. Krasner [7] himself in 1944. By the definition of

Krasner hyperrings, their multiplicative structures are also semigroups with zero.

Y. Kemprasit and Y. Punkla [5] have defined semigroups admitting (Krasner)

hyperring structure in the same way. As mentioned above, every finite nonabelian

group does not admit a ring structure. A nice result of hyperring structures is that

every group admits a hyperring structure. This can be seen in an example of [2],

page 170. In fact, this hyperoperation was given for any abelian group to obtain

what is called a hyperfield. The same hyperoperation could be given for any group

in order to obtain what may be called a hyperdivision ring. The detail of the proof

for the later result can be seen in [9]. Besides [5], Y. Kemprasit has continued

studying semigroups admitting hyperring structure. It has been characterized in

[3] when both multiplicative interval semigroups and additive interval semigroups

of real numbers admit a hyperring structure. Also, in [4], hyperring structures of

some linear transformation semigroups have been investigated and a result in [4]

will be referred in this research. Many results of generalized semigroups of linear

transformation semigroups which admit a hyperring structure, in particular, linear

transformation semigroups admitting hyperring structure, have been provided in

[10].

As mentioned above, various types of linear transformation semigroups have

been studied in the matters of both admitting ring structure and admitting hy-
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perring structure. This motivates our interest to study whether or when linear

transformation semigroups of various types admit the structure of a semihyper-

ring with zero. Hyperrings generalize rings while semihyperrings with zero are a

generalization of hyperrings. Semigroups admitting the structure a semihyperring

[semiring] with zero are defined analogously. The first main purpose is to study

many types of linear transformation semigroups with zero. We investigate whether

or when they admit the structure of a semihypering with zero. We find out that

every semigroup without zero always admits both the structure of an additively

commutative (AC) semihypering with zero and the structure of a semiring with

zero. However, they need not admit the structure of an additively commutative

(AC) semiring with zero. For our second main purpose, we characterize when var-

ious kinds of linear transformation semigroups without zero admit the structure

of an AC semiring with zero.

In the remainder of this chapter, we shall give precise definitions, notations,

and basic results which will be used in Chapter II and Chapter III. Moreover,

some examples are provided for better understanding.

For any set X, the cardinality of X will be denoted by |X|. For a semigroup

S, the semigroup S0 is defined to be S if S has a zero and S contains more than

one element, otherwise, let S0 be the semigroup S with a zero 0 adjoined, that is,

S0 = (S ∪ {0}, ◦) where 0 /∈ S, 0 ◦ x = x ◦ 0 = 0 for all x ∈ S ∪ {0} and x ◦ y = xy

for all x, y ∈ S. Note that if |S| = 1, then S0 is a semigroup of two elements and

S0 ∼= (Z2, ·). Also, if G is a group, then G0 = (G ∪ {0}, ◦) defined as above.

For a set X, let P (X) denote the power set of X and let P ∗(X) = P (X)r{∅}.

A hyperoperation on a nonempty set H is a mapping of H ×H into P ∗(H). A

hypergroupoid is a system (H, ◦) consisting of a nonempty set H and a hyperop-

eration ◦ on H.
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Let (H, ◦) be a hypergroupoid. For nonempty subsets A and B of H, let

A ◦B =
⋃

a ∈ A
b ∈ B

(a ◦ b),

A ◦ x = A ◦ {x} and x ◦A = {x} ◦A for all x ∈ H. We call (H, ◦) a commutative

hypergroupoid if and only if x ◦ y = y ◦ x for all x, y ∈ H. An element e of H is

called an identity of (H, ◦) if x ∈ (x ◦ e) ∩ (e ◦ x) for all x ∈ H. An element e of

H is called a scalar identity of (H, ◦) if (x ◦ e)∩ (e ◦ x) = {x} for all x ∈ H. Then

H has at most one scalar identity.

A semihypergroup is a hypergroupoid (H, ◦) such that (x ◦ y) ◦ z = x ◦ (y ◦ z)

for all x, y, z ∈ H, that is,⋃
t ∈x ◦ y

t ◦ z =
⋃

t ∈y ◦ z

x ◦ t for all x, y, z ∈ H.

A hypergroup is a semihypergroup (H, ◦) such that H ◦ x = x ◦ H = H for all

x ∈ H. For x, y in a hypergroup (H, ◦), x is called an inverse of y if there exists

an identity e of (H, ◦) such that e ∈ (x ◦ y) ∩ (y ◦ x). A hypergroup H is called

regular if every element of H has an inverse in H. A regular hypergroup (H, ◦) is

said to be reversible if for x, y, z ∈ H, x ∈ y ◦ z implies z ∈ u ◦ x and y ∈ x ◦ v for

some inverse u of y and some inverse v of z.

A canonical hypergroup is a hypergroup (H, ◦) such that

(i) (H, ◦) is commutative,

(ii) (H, ◦) has a scalar identity,

(iii) every element of H has a unique inverse in H and

(iv) (H, ◦) is reversible.

A triple (A, +, ·) is called a semiring [semihyperring ] if

(i) (A, +) is a semigroup [semihypergroup],

(ii) (A, ·) is a semigroup and

(iii) the operation · is distributive over the operation [hyperoperation] +.
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A semiring [semihyperring] (A, +, ·) is said to be additively commutative if

x + y = y + x for all x, y ∈ A. For this case, we call (A, +, ·) an AC semiring [AC

semihyperring ]. An element 0 of a semiring [semihyperring] (A, +, ·) is called a

zero of (A, +, ·) if x + 0 = 0 + x = x [x + 0 = 0 + x = {x}] and x · 0 = 0 · x = 0

for all x ∈ A. By the definitions, every semiring with zero is a semihyperring with

zero.

A Krasner hyperring is a system (A, +, ·) where

(i) (A, +) is a canonical hypergroup,

(ii) (A, ·) is a semigroup with zero 0 where 0 is the scalar identity of (A, +) and

(iii) the operation · is distributive over the hyperoperation +.

In this research, by a hyperring we mean a Krasner hyperring.

Example 1.1. ([2], page 170 and [9]) Let G be a group. Define a hyperoperation

+ on G0 by

x + 0 = 0 + x = {x} for all x ∈ G0,

x + x = G0 r {x} for all x ∈ G,

x + y = {x, y} for all distinct x, y ∈ G.

Then (G0, +, ·) is a hyperring where · is the operation on G0. Note that the zero

of the hyperring (G0, +, ·) is 0 and the inverse of x ∈ G in (G0, +) is x itself. Also,

(G0, +, ·) is not a ring if |G| > 1.

Example 1.2. ([3]) Let I be a multiplicative interval semigroup on R, the set of

real numbers, such that for every x ∈ I,−x ∈ I. Define a hyperoperation ⊕ on I

by

for x, y ∈ I, x⊕ 0 = 0⊕ x = {x},

x⊕ x = {x},

x⊕ (−x) = [−|x|, |x| ],
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x⊕ y = y ⊕ x = {y} if |x| < |y|.

If · is the multiplication on I, then (I,⊕, ·) is a hyperring. Observe that 0 is the

zero of (I,⊕, ·) and for x ∈ I,−x is the inverse of x in the canonical hypergroup

(I,⊕). If |I| > 1, then (I,⊕, ·) is not a ring.

In passing, we give a remark here that the following fact was proved in [3].

For a multiplicative interval semigroup I on R containing some positive numbers

and some negative numbers, there is a hyperoperation ⊕ on I such that (I,⊕, ·)

is a hyperring if and only if I has the property that x ∈ I implies −x ∈ I.

Example 1.3. If (S, ·) is a zero semigroup with zero 0 (that is, x · y = 0 for all

x, y ∈ S) containing more than two elements and define a hyperoperation + on S

by

x + 0 = 0 + x = {x} for all x ∈ S,

x + y = S for all x, y ∈ S r {0},

then (S, +, ·) is clearly an AC semihyperring with zero which is neither a semiring

with zero nor a hyperring.

Example 1.4. Let ⊕ be a hyperoperation defined on [0,∞) by

x⊕ 0 = 0⊕ x = {x} for all x ∈ [0,∞),

x⊕ y = [max{x, y},∞) for all x, y ∈ (0,∞).

Then ([0,∞),⊕, ·) is clearly an AC semihyperring with zero which is neither a

semiring with zero nor a hyperring.

By the definitions, every ring is a hyperring and every hyperring and every

AC semiring with zero is an AC semihyperring with zero, but the converse is not
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true. These can be seen from the above examples. Therefore hyperrings are a

generalization of rings. Similarly, AC semihyperrings with zero generalize both

AC semirings with zero and hyperrings.

A semigroup S is said to admit a ring [hyperring ] structure if (S0, +, ·) is a ring

[hyperring] for some operation [hyperoperation] + on S0 where · is the operation on

S0. Semigroups admitting the structure of a (AC) semihyperring [semiring ] with

zero are defined analogously. As mentioned previously, every finite nonabelian

group does not admit a ring structure. However, Example 1.1 shows that every

group admits a hyperring structure. Then every group admits the structure of a

semihyperring with zero. Observe that if S is a trivial semigroup, then S0 ∼= (Z2, ·)

where · is the multiplication on Z2, so S admits a ring structure.

The following example shows that every semigroup without zero admits the

structure of an AC semihyperring with zero.

Example 1.5. Let S be a semigroup without zero. Define a hyperoperation +

on S0 by

x + 0 = 0 + x = {x} if x ∈ S0,

x + y = {x, y} if x, y ∈ S.

Then (S0, +) is clearly a commutative semihypergroup with a scalar identity 0.

Since 0 is not an element of S, xy 6= 0 for all x, y ∈ S, it follows that the mul-

tiplication · of S0 distributes over the hyperoperation + defined above, and thus

(S0, +, ·) is an AC semihyperring with zero. But every x ∈ S has no inverse in

the semihypergroup (S0, +), so (S0, +, ·) is not a hyperring.

Also, every semigroup without zero admits the structure of a semiring with zero

as shown by the next example.
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Example 1.6. Let S be a semigroup without zero. Define an operation + on S0

by

x + 0 = 0 + x = x if x ∈ S0,

x + y = x if x, y ∈ S.

Then (S0, +) is obviously a semigroup having 0 as its identity, Since xy 6= 0 for all

x, y ∈ S, we deduce that the multiplication · of S0 distributes over the operation

+. Hence (S0, +, ·) is a semiring with zero, but it is not additively commutative

if |S| > 1.

Next, let V be a vector space over a division ring R and LR(V ) the semigroup

under composition of all linear transformations α : V → V. Then LR(V ) admits a

ring structure under the usual addition of transformations. The image of v under

α ∈ LR(V ) is written by vα. For α ∈ LR(V ), let Kerα and Imα denote the kernel

and the image of α, respectively. For A ⊆ V , let 〈A〉 stand for the subspace

of V spanned by A. The following three propositions are simple facts of vector

spaces and linear transformations which will be used. The proofs are routine and

elementary and they will be omitted.

Proposition 1.7. Let B be a basis of V . If u and w are distinct elements of B,

then {u, u + w} ∪ (B r {u, w}) is also a basis of V .

Proposition 1.8. Let B be a basis of V, A ⊆ B and ϕ : B rA → V a one-to-one

map such that (B r A)ϕ is a linearly independent subset of V . If α ∈ LR(V ) is

defined by

vα =


0 if v ∈ A,

vϕ if v ∈ B r A,

then Ker α = 〈A〉 and Im α = 〈B r A〉ϕ.
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Proposition 1.9. Let B be a basis of V and A ⊆ B. Then

(i) {v + 〈A〉 | v ∈ B r A} is a basis of the quotient space V/〈A〉 and

(ii) dimR (V/〈A〉) = |B r A|.

Let

GR(V ) = {α ∈ LR(V ) | α is an isomorphism}.

Then GR(V ) is the unit group of the semigroup LR(V ) or the group of all units

of LR(V ). The following known result will be referred.

Proposition 1.10.([4]) If α ∈ LR(V ) is such that αβ = βα for all β ∈ GR(V ),

then α = a1V for some a ∈ C(R) where C(R) is the center of R and 1V is the

identity map on V .

Example 1.1 shows that GR(V ) admits a hyperring structure. We know from

the next proposition that GR(V ) does not admit a ring structure if dimR V > 1.

Proposition 1.11.([14]) GR(V ) admits a ring structure if and only if dimR V ≤ 1.

Next, let MR(V ) and ER(V ) be the set of all one-to-one linear transformations

(monomorphisms) of V and the set of all onto linear transformations (epimor-

phisms) of V , respectively. Then

MR(V ) = {α ∈ LR(V ) | Kerα = {0}},

ER(V ) = {α ∈ LR(V ) | Imα = V }

which are subsemigroups of LR(V ) containing GR(V ). Moreover, it is well-known

that if dimR V < ∞, then MR(V ) = ER(V ) = GR(V ). In fact, if MR(V ) [ER(V )]

= GR(V ), then dimR V < ∞. To see this, let dimR V be infinite, B a basis of
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V and u ∈ B. Since B is infinite, |B r {u}| = |B|. Let ϕ : B → B r {u} be a

bijection. Define α ∈ LR(V ) by

vα = vϕ for every v ∈ B.

By Proposition 1.8, Kerα = {0} and Imα = 〈B r {u}〉 ( V. Hence α ∈ MR(V ) r

GR(V ). Also, if β ∈ LR(V ) is defined by

vβ =


vϕ−1 if v ∈ B r {u},

0 if v = u,

then Kerβ = 〈u〉 and Imβ = 〈B〉 = V by Proposition 1.8, so β ∈ ER(V )rGR(V ).

Consequently, MR(V ) [ER(V )] = GR(V ) if and only if dimR V < ∞. Observe that

if dimR V ≥ 1, then none of GR(V ), MR(V ) and ER(V ) contains 0, the zero

mapping on V . Proposition 1.11 shows that MR(V ) and ER(V ) admits a ring

structure if dimR V ≤ 1. In fact, it was shown in [14] that if dimR V ≤ 1 is also

necessary for each of MR(V ) and ER(V ) to admit a ring structure. Next, let

OMR(V ) = {α ∈ LR(V ) | dimR Kerα is infinite },

OER(V ) = {α ∈ LR(V ) | dimR (V/Imα) is infinite }.

If dimRV is infinite, then 0 belongs to both OMR(V ) and OER(V ). Since Kerαβ ⊇

Ker α and Im αβ ⊆ Im β, for all α, β ∈ LR(V ), it follows that OMR(V ) and

OER(V ) are both subsemigroups of LR(V ) containing 0 if dimR V is infinite. For

this case, the semigroups OMR(V ) and OER(V ) may referred to respectively as

the opposite semigroup of MR(V ) and the opposite semigroup of ER(V ).

For α ∈ LR(V ), α is said to be almost one-to-one if dimR Kerα < ∞, and α is

said to be almost onto if dimR (V/Imα) < ∞. Let

AMR(V ) = {α ∈ LR(V ) | α is almost one-to-one },

AER(V ) = {α ∈ LR(V ) | α is almost onto }.
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Then MR(V ) ⊆ AMR(V ) and ER(V ) ⊆ AER(V ). It was proved in [14] that for

all α, β ∈ LR(V ),

dimR Kerαβ ≤ dimR Kerα + dimR Kerβ,

dimR (V/Imαβ) ≤ dimR (V/Imα) + dimR (V/Imβ).

Therefore both AMR(V ) and AER(V ) are subsemigroups of the semigroup LR(V ),

and they do not contain 0 if dimR V is infinite. Clearly, AMR(V ) = AER(V ) =

LR(V ) if dimR V < ∞. Hence if dimR V < ∞, then both AMR(V ) and AER(V )

admit a ring structure. Let dimR V be infinite and B a basis of V . Since B

is infinite, there are B1, B2 ⊆ B such that B = B1 ∪ B2, B1 ∩ B2 = ∅ and

|B1| = |B2| = |B|. Let ϕ : B1 → B2 be a bijection and define α ∈ LR(V ) by

vα =


vϕ if v ∈ B1,

0 if v ∈ B2.

By Proposition 1.8, Ker α = 〈B2〉 and Im α = 〈B2〉, so by Proposition 1.9 (ii),

dimR (V/Imα) = |B r B2| = |B1|. Therefore both dimR Kerα and dimR (V/Imα)

are |B|. Thus α /∈ AMR(V ) and α /∈ AER(V ). Therefore we conclude that

AMR(V ) [AER(V )] = LR(V ) if and only if dimR V < ∞.

For any cardinal number k with k ≤ dimR V, let

KR(V, k) = {α ∈ LR(V ) | dimR Kerα ≥ k },

IR(V, k) = {α ∈ LR(V ) | dimR Imα ≤ k },

CIR(V, k) = {α ∈ LR(V ) | dimR (V/Imα) ≥ k }.

Then the zero map 0 on V belongs to all of the above three subsets of LR(V ).

Since for α, β ∈ LR(V ), Ker αβ ⊇ Ker α and Im αβ ⊆ Im β, we conclude that all

of KR(V, k), IR(V, k) and CIR(V, k) are subsemigroups of LR(V ). Observe that if

dimR V is infinite, the notations OMR(V ) and OER(V ) defined previously denote
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KR(V,ℵ0) and CIR(V,ℵ0), respectively, that is,

OMR(V ) = {α ∈ LR(V ) | dimR Kerα ≥ ℵ0 },

OER(V ) = {α ∈ LR(V ) | dimR (V/Imα) ≥ ℵ0 }.

We know that if dimRV is finite, then for α ∈ LR(V ), dimRKerα = dimR(V/Imα) =

dimR V − dimR Im α since dimR V = dimR Ker α + dimR Im α and dimR V =

dimR (V/Imα) + dimR Imα. Hence we have

Proposition 1.12. If dimR V < ∞, then KR(V, k) = CIR(V, k) = IR(dimR V −k)

for every a cardinal number k ≤ dimR V.

However, these are not generally true if dimR V is infinite. This is shown

by the following proposition. This proposition also shows that the semigroups

KR(V, k), CIR(V, k) and IR(V, k) should be considered independently if dimR V is

infinite.

Proposition 1.13. Let V be an infinite dimensional vector space and a nonzero

cardinal number k ≤ dimR V. Then the following statements hold.

(i) CIR(V, k) 6= KR(V, l) for every cardinal number l ≤ dimR V.

(ii) If k < dimR V, then IR(V, k) 6= KR(V, l) and IR(V, k) 6= CIR(V, l) for every

cardinal number l ≤ dimR V.

Proof. Let B be a basis of V . Since B is infinite, there are subsets B1 and B2 of

B such that B = B1 ∪ B2, B1 ∩ B2 = ∅ and |B1| = |B2| = |B|. Let ϕ : B1 → B

be a bijection. Define α, β ∈ LR(V ) by

vα =


vϕ if v ∈ B1,

0 if v ∈ B2,

vβ = vϕ−1 for all v ∈ B.
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Then by Proposition 1.8, Ker α = 〈B2〉, Im α = 〈B〉 = V, Ker β = {0} and

Im β = 〈B1〉, so dimR Ker α = |B2| = |B| = dimR V, dimR Im α = |B| =

dimR V, dimR (V/Im α) = 0, dimR Ker β = 0 and dimR Im β = |B1| = dimR V .

We have from Proposition 1.9 (ii) that dimR (V/Im β) = |B2| = dimR V . Hence

α ∈ KR(V, l) r CIR(V, k) for every cardinal number l ≤ dimR V , so (i) is proved.

Moreover, if k < dimR V, then α ∈ KR(V, l) r IR(V, k) and β ∈ CIR(V, l) r

IR(V, k) for every cardinal number l ≤ dimR V. Hence (ii) is proved.

Next, we define K ′
R(V, k), CI ′R(V, k) and I ′R(V, k) which are subsets of KR(V, k),

CIR(V, k) and IR(V, k) respectively as follows :

K ′
R(V, k) = {α ∈ LR(V ) | dimR Kerα > k } where k < dimR V,

CI ′R(V, k) = {α ∈ LR(V ) | dimR (V/Imα) > k } where k < dimR V,

I ′R(V, k) = {α ∈ LR(V ) | dimR Imα < k } where 0 < k ≤ dimR V.

Then 0 belongs to all K ′
R(V, k), CI ′R(V, k) and I ′R(V, k), so they are respectively

subsemigroups of KR(V, k), CIR(V, k) and IR(V, k). Observe that if k < dimR V ,

then K ′
R(V, k) = KR(V, k′) and CI ′R(V, k) = CIR(V, k′) where k′ is the successor

of k. Also, if 0 < k ≤ dimRV, k is a finite cardinal number and k̃ is the predecessor

of k, then I ′R(V, k) = IR(V, k̃).

For α ∈ LR(V ), let

F (α) = { v ∈ V | vα = v }.

Then for α ∈ LR(V ), F (α) is a subspace of V and α is called an almost identi-

cal linear transformation of V if dimR (V/F (α)) is finite. The set of all almost

identical linear transformations of V will be denoted by AIR(V ), that is,

AIR(V ) = { α ∈ LR(V ) | dimR (V/F (α)) < ∞ }.
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Observe that 1V , the identity map on V , belongs to AIR(V ). We show in the next

proposition that AIR(V ) is a subsemigroup of LR(V ).

Proposition 1.14. AIR(V ) is a subsemigroup of LR(V ).

Proof. Let α, β ∈ AIR(V ). Then dimR (V/F (α)) and dimR (V/F (β)) are finite.

We claim that dimR (V/F (αβ)) is finite. Since F (α) ∩ F (β) ⊆ F (αβ), it suffices

to show that dimR (V/(F (α) ∩ F (β))) is finite. Let B1 be a basis of F (α) ∩ F (β)

and let B2 ⊆ F (α) r B1 and B3 ⊆ F (β) r B1 be such that B1 ∪ B2 and B1 ∪ B3

are bases of F (α) and F (β), respectively. We shall show that (B1 ∪ B2) ∪ B3 is

linearly independent over R. Let u1, u2, . . . , uk ∈ B1 ∪ B2, v1, v2, . . . , vl ∈ B3 be

distinct such that
k∑

i=1

aiui +
l∑

i=1

bivi = 0

for some a1, a2, . . . , ak, b1, b2, . . . , bl ∈ R. Then
k∑

i=1

aiui = −
l∑

i=1

bivi ∈ F (α) ∩

F (β) = 〈B1〉. Since B1∪B3 is linearly independent, bi = 0 for all i = 1, 2, . . . , l, so
k∑

i=1

aiui = 0. This implies that ai = 0 for all i = 1, 2, . . . , k. Hence B1∪B2∪B3 is

linearly independent over R. Let B4 ⊆ V r (B1∪B2∪B3) be such that B1∪B2∪

B3 ∪ B4 is a basis of V . It follows from Proposition 1.9(i) that { v + F (α) | v ∈

B3∪B4 } is a basis of V/F (α) and { v+F (β) | v∈B2∪B4 } is a basis of V/F (β).

But dimR (V/F (α)) and dimR (V/F (β)) are finite, so B3 ∪ B4 and B2 ∪ B4 are

finite. Therefore B2 ∪ B3 ∪ B4 is finite. Also, we have from Proposition 1.9 (i)

that { v +(F (α)∩F (β)) | v ∈ B2∪B3∪B4 } is a basis of V/(F (α)∩F (β)) which

implies that dimR (V/(F (α) ∩ F (β))) is finite.

Therefore the proposition is proved, as desired.

Notice that if dimR V < ∞, then AIR(V ) = LR(V ) which admits a ring

structure. Moreover, the semigroup AIR(V ) does not contain 0, the zero map on
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V if dimR V is infinite.

By a partial linear transformation of V , we mean a linear transformation from

a subspace of V into V . Let PLR(V ) be the set of all partial transformations of

V . For α ∈ PLR(V ), let Dom α and Im α denote the domain and the image of

α, respectively and the image of v ∈ Dom α under α is also written by vα. Then

PLR(V ) is a semigroup under the composition of maps, that is, for α, β ∈ PLR(V ),

Domαβ = {v ∈ Domα | vα ∈ Domβ},

v(αβ) = (vα)β for all v ∈ Domαβ.

This implies that for α, β ∈ PLR(V ), Domαβ ⊆ Domα and Imαβ ⊆ Imβ. For a

subspace W of V , let 1W and W0 denote respectively the identity map on W and

the zero map whose domain is W . Observe that

{0}0α = {0}0 and V0α = V0 for all α ∈ PLR(V ),

αV0 = V0 for all α ∈ LR(V ),

α{0}0 = {0}0 for every 1-1 map α in PLR(V ).

It then follows that if dimR V > 0, then PLR(V ) is a semigroup without zero. The

semigroup PLR(V ) is called the partial transformation semigroup on V. Notice

that

LR(V ) = {α ∈ PLR(V ) | Domα = V }

which is a subsemigroup of PLR(V ) having V0 as its zero. Hence if dimR > 0,

then LR(V ) is a proper subsemigroup of PLR(V ).

Since every linear transformation from a subspace of V into V can be defined

on a basis of its domain, for convenience, we may write α ∈ PLR(V ) by using a

bracket notation. For examples,

α =

B1 v

0 v


v ∈ BrB1
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means that B is a basis of Domα, B1 ⊆ B and

α =


0 if v ∈ B1,

v if v ∈ B r B1

and

β =

u w v

w 0 v


v ∈ Br{u,w}

means that B is a basis of Domα, u, w ∈ B, u 6= w and

vβ =


w if v = u,

0 if v = w,

v if v ∈ B r {u, w}.

Then the linear transformations α, β : V → V in the proof of Proposition 1.13

can be written as

α =

 v B2

vϕ 0


v ∈ B1

and β =

 v

vϕ−1


v ∈ B

.

As was mentioned previously, the semigroup PLR(V ) has no zero if dimR V >

0. We know that 0, the zero map on V , does not belong to GR(V ), MR(V ) and

ER(V ) if dimR V > 0 and 0 belongs to none of AMR(V ), AER(V ) and AIR(V ) if

dimR V is infinite. However, this may not be true that these semigroups have no

zero for such given dimR V . The following facts should be shown.

Proposition 1.15. The following statements hold.

(i) Let SR(V ) be GR(V ), MR(V ) or ER(V ). Then SR(V ) has no zero if and only

if either dimR V > 1 or dimR V = 1 and |R| > 2.

(ii) Let S(V ) be AMR(V ), AER(V ) or AIR(V ). Then S(V ) has no zero if and
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only if dimR V is infinite.

(iii) PLR(V ) has no zero if and only if dimR V > 0.

Proof. (i) Let B be a basis of V .

Case 1 : dimR V > 1. Let u, w ∈ B be distinct and define α ∈ LR(V ) by

α =

u w v

w u v


v ∈ Br{u,w}

.

Then by Proposition 1.8, α ∈ GR(V ) ⊆ SR(V ). Suppose θ ∈ SR(V ) is the zero

of SR(V ). Then αθ = θα = θ, so uθ = uαθ = wθ. Thus 0 6= u − w ∈ Ker θ. It

is a contradiction if SR(V ) is GR(V ) or MR(V ). Next let SR(V ) = ER(V ). Then

zθ = u for some z ∈ V r {0}, and so

u = zθ = zθα = uα = w,

a contradiction.

Case 2 : dimR V = 1 and |R| > 2. Since dimR V = 1, SR(V ) does not contain 0,

the zero map on V . Let u ∈ V r {0} and let a, b ∈ R r {0} be distinct. Then {u}

is a basis of V and

 u

au

 and

 u

bu

 are distinct elements of SR(V ). Assume

that θ is the zero of SR(V ). Then u

au

 θ = θ =

 u

bu

 θ,

so

a(uθ) = u

 u

au

 θ = uθ = u

 u

bu

 θ = b(uθ).

Thus either uθ = 0 or a = b, hence either θ = 0 or a = b. This is a contradiction.
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Conversely, assume that dimR V ≤ 1 and (dimR V 6= 1 or |R| = 2). Then

dimR V = 0 or dimR V = 1 and |R| = 2. Consequently, |V | ≤ 2 and hence

SR(V ) = GR(V ) =


{0} if |V | = 1,

{1V } if |V | = 2.

Therefore SR(V ) has a zero.

(ii) If dimR V < ∞, then AMR(V ) = AER(V ) = AIR(V ) = LR(V ) which has

0 as its zero.

Conversely, assume that dimR V is infinite. Then S(V ) does not contain 0,

the zero map on V . Suppose that S(V ) has a zero θ. Let B be a basis of V and

for each u ∈ B, let αu ∈ LR(V ) be defined by

αu =

u v

0 v


v ∈ Br{u}

.

Then for every u ∈ B, Kerαu = 〈u〉 and Imαu = 〈B r {u}〉 by Proposition 1.8, so

dimR (V/Im αu) = 1 by Proposition 1.9 (ii). Also, F (αu) = 〈B r {u}〉 for every

u ∈ B. Consequently, αu ∈ S(V ) for every u ∈ B. Thus

αuθ = θαu = θ for every u ∈ B.

This implies that

for every u ∈ B, uθ = uαuθ = 0θ = 0

which implies that θ = 0, a contradiction.

(iii) As was shown, dimR V > 0 implies that PLR(V ) has no zero.

If dimR V = 0, then PLR(V ) = {{0}0}, so PLR(V ) has a zero.

Chapter II deals with linear transformation semigroups on V with zero. The

purpose of Chapter II is to show that if dimR V is infinite, the semigroups
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OMR(V ), OER(V ) and some linear transformation semigroups containing OMR(V )

and OER(V ) do not admit the structure of a semihyperring with zero. These

results indicate that if dimR V is infinite, then there are infinitely many sub-

semigroups of LR(V ) which do not admit the structure of a semihyperring with

zero. The semigroups OMR(V ) and OER(V ) are generalized to be the semi-

groups KR(V, k) and CIR(V, k). We also determine in this chapter when the semi-

groups KR(V, k) and CIR(V, k) admit such a structure. Moreover, the semigroups

IR(V, k), K ′
R(V, k), CI ′R(V, k) and I ′R(V, k) are also studied in the same matter.

In Chapter III, we intend to deal with semigroups without zero. The following

semigroups are considered:

GR(V ), MR(V ), ER(V ), AMR(V ), AER(V ), AIR(V ) and PLR(V ).

By Proposition 1.15, the semigroups GR(V ), MR(V ) and ER(V ) have no zero if

either dimRV > 1 or dimRV = 1 and |R| > 2, PLR(V ) have no zero if dimRV > 0,

and if dimRV is infinite, then the semigroups AMR(V ), AER(V ) and AIR(V ) have

no zero. Example 1.5 and Example 1.6 show that every semigroup without zero

admits both the structure of an AC semihyperring with zero and the structure of

a semiring with zero. However, it need not admit the structure of an AC semiring

with zero. The purpose of this chapter is to provide necessary and sufficient

conditions for GR(V ), MR(V ), ER(V ), AMR(V ), AER(V ) and AIR(V ) to admit

the structure of an AC semiring with zero. Necessary conditions for PLR(V ) to

admit the structure of an AC semiring with zero are provided. In addition, a

partial sufficient condition for this property also given.

Throughout, let V be the vector space over a division ring R.



CHAPTER II

SEMIGROUPS ADMITTING THE STRUCTURE OF A

SEMIHYPERRING WITH ZERO

In this chapter, we deal with linear transformation semigroups on V with

zero. The following linear transformation semigroups on V given in Chapter I are

recalled as follows:

LR(V ) = {α : V → V | α is a linear transformation},

GR(V ) = {α ∈ LR(V ) | α is an isomorphism},

OMR(V ) = {α ∈ LR(V ) | dimR Kerα is infinite },

OER(V ) = {α ∈ LR(V ) | dimR (V/Imα) is infinite },

AIR(V ) = {α ∈ LR(V ) | α is almost identical }

= {α ∈ LR(V ) | dimR (V/F (α)) < ∞ }

where F (α) = { v ∈ V | vα = v },

KR(V, k) = {α ∈ LR(V ) | dimR Kerα ≥ k }

where k ≤ dimR V,

K ′
R(V, k) = {α ∈ LR(V ) | dimR Kerα > k }

where k < dimR V,

CIR(V, k) = {α ∈ LR(V ) | dimR (V/Imα) ≥ k }

where k ≤ dimR V,

CI ′R(V, k) = {α ∈ LR(V ) | dimR (V/Imα) > k }

where k < dimR V,
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IR(V, k) = {α ∈ LR(V ) | dimR Imα ≤ k }

where k ≤ dimR V,

I ′R(V, k) = {α ∈ LR(V ) | dimR Imα < k }

where 0 < k ≤ dimR V.

2.1 Elementary Results

We show in this section that if dimR V is infinite, then the following sub-

sets of LR(V ) are also subsemigroups of LR(V ) where H and T are respectively

subsemigroups of GR(V ) and AIR(V ).

OMR(V ) ∪H , OER(V ) ∪H,

OMR(V ) ∪ T , OER(V ) ∪ T.

Lemma 2.1.1. Let dimR V be infinite. The following statements hold.

(i) OMR(V ) is a right ideal of LR(V ).

(ii) OER(V ) is a left ideal of LR(V ).

Proof. (i) and (ii) are obtained respectively from the facts that Ker αβ ⊇ Ker α

and Imαβ ⊆ Imβ for all α, β ∈ LR(V ).

Lemma 2.1.2. If dimR V is infinite, then GR(V )OMR(V ) ⊆ OMR(V ).

Proof. Let α ∈ GR(V ) and β ∈ OMR(V ). If v ∈ Ker αβ, then vαβ = 0, so

vα ∈ Ker β. Thus (Ker αβ)α ⊆ Ker β. If v ∈ Ker β, then (vα−1)αβ = vβ = 0,

and hence v = (vα−1)α ∈ (Ker αβ)α. This proves that (Ker αβ)α = Ker β. Since

α : V → V is an isomorphism, Ker αβ ∼= Ker β. But dimR Ker β is infinite, so

dimR Kerαβ is also infinite. Hence αβ ∈ OMR(V ).
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The following proposition is a direct consequence of Lemma 2.1.1(i) and Lemma

2.1.2.

Proposition 2.1.3. If dimR V is infinite and H is a subsemigroup of GR(V ),

then OMR(V ) ∪H is a subsemigroup of LR(V ).

Lemma 2.1.4. If dimR V is infinite, then OER(V )GR(V ) ⊆ OER(V ).

Proof. Let α ∈ OER(V ) and β ∈ GR(V ). Define ϕ : V/Imα → V/Imαβ by

(v + Imα)ϕ = vβ + Imαβ for every v ∈ V.

Since β : V → V is an isomorphism, we have that ϕ is an isomorphism, and

hence V/Im α ∼= V/Im αβ. But dimR (V/Im α) is infinite, so dimR (V/Im αβ) is

infinite. Therefore αβ ∈ OER(V ). This proves that OER(V )GR(V ) ⊆ OER(V ),

as required.

The following proposition is directly obtained from Lemma 2.1.1(ii) and Lemma

2.1.4.

Proposition 2.1.5. If dimR V is infinite and H is a subsemigroup of GR(V ),

then OER(V ) ∪H is a subsemigroup of LR(V ).

Lemma 2.1.6. If dimR V is infinite, then AIR(V )OMR(V ) ⊆ OMR(V ).

Proof. Let α ∈ AIR(V ) and β ∈ OMR(V ) and let B1 be a basis of F (α)∩Kerβ and

B2 ⊆ KerβrB1 such that B1∪B2 a basis of Kerβ. Since β ∈ OMR(V ), B1∪B2 is

infinite. Let v1, v2, . . . , vn be distinct elements of B2 and let a1, a2, . . . , an ∈ R be

such that
n∑

i=1

ai(vi + F (α)) = F (α). Then
n∑

i=1

aivi ∈ F (α). Since B2 ⊆ Kerβ, we
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have that
n∑

i=1

aivi ∈ F (α)∩Kerβ. But B1 is a basis of F (α)∩Kerβ and B1 ∪B2

is linearly independent over R, so we have that ai = 0 for all i ∈ {1, 2, . . . , n}.

This shows that {v + F (α) | v ∈ B2} is a linearly independent subset of the

quotient space V/F (α) and u + F (α) 6= w + F (α) for all distinct u, w ∈ B2.

Since dimR (V/F (α)) < ∞, we deduce that {v + F (α) | v ∈ B2} is finite. But

{v+F (α) | v ∈ B2} = |B2|, thus B2 is finite. This implies that B1 is infinite. Since

B1 ⊆ F (α) ∩Ker β, we have B1αβ = B1β = {0}, so B1 ⊆ Ker αβ. Consequently,

dimR Kerαβ is infinite. Hence αβ ∈ OMR(V ). Therefore the lemma is proved.

The next proposition follows directly from Lemma 2.1.1(i) and Lemma 2.1.6.

Proposition 2.1.7. If dimR V is infinite and T is a subsemigroup of AIR(V ),

then OMR(V ) ∪ T is a subsemigroup of LR(V ).

Lemma 2.1.8. For every α ∈ AIR(V ), dimR Ker α < ∞.

Proof. Let α ∈ AIR(V ) and B a basis of Ker α. Let v1, v2, . . . , vn ∈ B be dis-

tinct and let a1, a2, . . . , an ∈ R be such that
n∑

i=1

ai(vi + F (α)) = F (α). Then

n∑
i=1

aivi ∈ F (α) which implies that (
n∑

i=1

aivi)α =
n∑

i=1

aivi. But v1, v2, ..., vn ∈

Ker α, so (
n∑

i=1

aivi)α = 0. Thus
n∑

i=1

aivi = 0. Since v1, v2, . . . , vn are linearly

independent over R, it follows that ai = 0 for every i ∈ {1, 2, . . . , n}. This

proves that {v + F (α) | v ∈ B} is a linearly independent subset of V/F (α)

and v + F (α) 6= w + F (α) for all distinct v, w ∈ B. Since dimR (V/F (α)) is

finite, {v + F (α) | v ∈ B} is finite. But |{v + F (α) | v ∈ B}| = |B|, so

dimR Kerα < ∞.
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Lemma 2.1.9. If dimR V is infinite, then OER(V )AIR(V ) ⊆ OER(V ).

Proof. Let α ∈ OER(V ) and β ∈ AIR(V ). Define ϕ : V/Imα → Imβ/Imαβ by

(v + Imα)ϕ = vβ + Imαβ for all v ∈ V. (1)

Then ϕ is an epimorphism from V/Imα onto Imβ/Imαβ. Hence

(V/Imα)/Kerϕ ∼= Imβ/Imαβ. (2)

To show that dimR Kerϕ < ∞, let B ⊆ V be such that

{v + Imα | v ∈ B} is a basis of Kerϕ and

v + Imα 6= w + Imα for all distinct v, w ∈ B.

(3)

Then from (1) and (3), we have that for every v ∈ B, vβ +Imαβ = (v +Imα)ϕ =

Imαβ. Thus vβ ∈ Imαβ = (Imα)β for all v ∈ B, so for each v ∈ B, there exists

an element wv ∈ Imα such that vβ = wvβ. Consequently,

{v − wv | v ∈ B} ⊆ Kerβ. (4)

If v1, v2, . . . , vn ∈ B are distinct and
n∑

i=1

ai(vi − wvi
) = 0 where a1, a2, . . . , an ∈ R,

then
n∑

i=1

aivi =
n∑

i=1

aiwvi
∈ Im α, and hence

n∑
i=1

ai(vi + Imα) = Im α in V/Im α.

By (3), ai = 0 for every i ∈ {1, 2, . . . , n}. This shows that

{v − wv | v ∈ B} is linearly independent over R

and u− wu 6= v − wv for all distinct u, v ∈ B.

(5)

We therefore deduce from (4) and (5) that |B| ≤ dimRKerβ. Since dimRKerβ < ∞

by Lemma 2.1.8, we have that B is finite, and hence dimR Kerϕ < ∞ by (3). But

dimR (V/Imα) is infinite and

dimR (V/Imα) = dimR ((V/Imα)/Kerϕ) + dimR Kerϕ,
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so we have that dimR((V/Imα)/Kerϕ) is infinite. Then from (2), dimR(Imβ/Imαβ)

is infinite. Consequently, dimR (V/Imαβ) is infinite, so αβ ∈ OER(V ).

Therefore the proof is complete.

The last result of this section is obtained directly from Lemma 2.1.1(ii) and

Lemma 2.1.9.

Proposition 2.1.10. If dimR V is infinite and T is a subsemigroup of AIR(V ),

then OER(V ) ∪ T is a subsemigroup of LR(V ).

2.2 The Semigroups OMR(V ) and OER(V )

Throughout this section, dimR V is assumed to be infinite. Recall that 0,

the zero map on V belongs to both OMR(V ) and OER(V ) and note that 1V /∈

OMR(V ) and 1V /∈ OER(V ). In this section, we aim to prove the following

theorem.

Theorem 2.2.1. If S(V ) is OMR(V ) or OER(V ), then S(V ) does not admit the

structure of a semihyperring with zero.

Proof. We prove the theorem by contradiction. Suppose that there is a hyperop-

eration ⊕ on S(V ) such that (S(V ),⊕, ·) is a semihyperring with zero 0 where ·

is the operation on S(V ). Let B be a basis of V . Then B is infinite, so there are

subsets B1, B2 of B such that B = B1 ∪ B2, B1 ∩ B2 = ∅ and |B1| = |B2| = |B|.

Define α, β ∈ LR(V ) by

α =

v B2

v 0


v ∈ B1

and β =

B1 v

0 v


v ∈ B2

. (1)
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By Proposition 1.8 and Proposition 1.9 (ii), Ker α = 〈B2〉, dimR (V/Im α) =

dimR (V/〈B1〉) = |B2|, Kerβ = 〈B1〉 and dimR (V/Imβ) = dimR (V/〈B2〉) = |B1|.

Then α and β are elements of OMR(V ) and OER(V ). Hence α ⊕ β ⊆ S(V ).

Obviously,

α2 = α, β2 = β, αβ = βα = 0. (2)

We have from (2) that

α(α⊕ β) = α⊕ 0 = {α},

β(α⊕ β) = 0⊕ β = {β}.
(3)

Let λ ∈ α ⊕ β. By (3), αλ = α and βλ = β. We therefore deduce from these

equalities and (1) that

for every v ∈ B1, vλ = vαλ = vα = v,

for every v ∈ B2, vλ = vβλ = vβ = v.

(4)

Consequently, vλ = v for every v ∈ B. Since B is a basis of V , λ = 1V . This is a

contradiction because 1V /∈ OMR(V ) and 1V /∈ OER(V ).

Therefore the theorem is proved.

Since every hyperring [ring] is an AC semihyperring with zero, we have

Corollary 2.2.2. The following statements hold.

(i) The semigroup OMR(V ) does not admit a hyperring [ring] structure.

(ii) The semigroup OER(V ) does not admit a hyperring [ring] structure.
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2.3 Semigroups Containing OMR(V ) and Semigroups Con-

taining OER(V )

Also, dimR V is assumed to be infinite in this section. From Proposition 2.1.3,

Proposition 2.1.5, Proposition 2.1.7 and Proposition 2.1.10, we know respectively

that

(1) OMR(V ) ∪H where H is a subsemigroup of GR(V ),

(2) OER(V ) ∪H where H is a subsemigroup of GR(V ),

(3) OMR(V ) ∪ T where T is a subsemigroup of AIR(V ),

(4) OER(V ) ∪ T where T is a subsemigroup of AIR(V )

are also subsemigroups of LR(V ). It is shown in this section that any linear

transformation semigroup on V of type (1) – (4) does not admit the structure of

a semihyperring with zero.

Theorem 2.3.1. If H is a subsemigroup of GR(V ) and S(V ) is the semigroup

OMR(V ) ∪ H or the semigroup OER(V ) ∪ H, then S(V ) does not admit the

structure of a semihyperring with zero.

Proof. Suppose that there exists a hyperoperation⊕ on S(V ) such that (S(V ),⊕, ·)

is a semihyperring with zero 0 where · is the operation on S(V ). Let B be a basis

of V and u ∈ B a fixed element. Since B is infinite, B r {u} has subsets B1, B2

such that B r {u} = B1 ∪ B2, B1 ∩ B2 = ∅ and |B1| = |B2| = |B r {u}|(= |B|).

Then B = B1 ∪ B2 ∪ {u} and these three sets are pairwise disjoint. Define

α, β, γ ∈ LR(V ) by

α =

v B2 ∪ {u}

v 0


v ∈ B1

, β =

B1 ∪ {u} v

0 v


v ∈ B2

, γ =

u B1 ∪B2

u 0

 . (1)
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By Proposition 1.8 and Proposition 1.9 (ii), Kerα = 〈B2∪{u}〉, dimR (V/Imα) =

dimR(V/〈B1〉) = |B2∪{u}|, Kerβ = 〈B1∪{u}〉, dimR(V/Imβ) = dimR(V/〈B2〉) =

|B1 ∪ {u}|, Ker γ = 〈B1 ∪ B2〉, and dimR (V/Im γ) = dimR (V/〈u〉) = |B1 ∪ B2|.

Then α, β, γ ∈ S(V ). Thus α⊕ β ⊆ S(V ). Obviously,

α2 = α, β2 = β, αβ = βα = 0, γα = γβ = 0. (2)

From (2), we have

α(α⊕ β) = α⊕ 0 = {α},

β(α⊕ β) = 0⊕ β = {β},

γ(α⊕ β) = 0⊕ 0 = {0}.

(3)

Let λ ∈ α ⊕ β. We therefore have from (3) that αλ = α, βλ = β and γλ = 0.

Hence from these equalities and (1), we get

for every v ∈ B1, vλ = vαλ = vα = v,

for every v ∈ B2, vλ = vβλ = vβ = v,

uλ = uγλ = 0,

(4)

that is,

λ =

u v

0 v


v ∈ B1∪B2

.

Hence Ker λ = {u} and dimR (V/Im λ) = dimR (V/〈B r {u}〉) = |{u}| = 1.

Therefore λ /∈ S(V ) which is contrary to that λ ∈ α⊕ β ⊆ S(V ).

Hence the theorem is completely proved.

The following corollary is a direct consequence of the above theorem.

Corollary 2.3.2. If H is a subsemigroup of GR(V ), then the semigroups OMR(V )∪

H and OER(V ) ∪H do not admit a hyperring [ring] structure.
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Remark 2.3.3. Let B be a basis of V and for distinct u, w ∈ B, let αu,w ∈ GR(V )

be defined by

αu,w =

u w v

w u v


v ∈ Br{u,w}

.

Then Hu,w = {1V , αu,w} is a subgroup of GR(V ) for all distinct u, w ∈ B, and

Hu,w 6= Hu′,w′ if u, w, u′, w′ are elements of B such that (u, w) 6= (u′, w′). This

fact and Theorem 2.3.1 show that if dimR V is infinite, there are infinitely many

subsemigroups of LR(V ) containing OMR(V ) and infinitely many subsemigroups

of LR(V ) containing OER(V ) which do not admit the structure of a semihyperring

with zero.

Theorem 2.3.4. If T is a subsemigroup of AIR(V ) and S(V ) is the semigroup

OMR(V )∪T or the semigroup OER(V )∪T , then S(V ) does not admit the structure

of a semihyperring with zero.

Proof. Suppose that (S(V ),⊕, ·) is a semihyperring with zero for some hyperop-

eration ⊕ on S(V ) where · is the operation on S(V ). Let B be a basis of V and

let B1, B2 ⊆ B be such that B = B1 ∪ B2, B1 ∩ B2 = ∅ and |B1| = |B2| = |B|.

Then there is a bijection ϕ : B1 → B2. Define α, β ∈ LR(V ) by

α =

 v B2

vϕ 0


v ∈ B1

and β =

B1 v

0 vϕ−1


v ∈ B2

. (1)

Then from Propositon 1.8 and Propositon 1.9 (ii), Kerα = 〈B2〉, dimR (V/Imα) =

dimR (V/〈B2〉) = |B1|, Kerβ = 〈B1〉 and dimR (V/Imβ) = dimR (V/〈B1〉) = |B2|.

Thus α, β ∈ OMR(V ) ∩OER(V ), and so α, β ∈ S(V ). It is clear from (1) that
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α2 = β2 = 0,

for every v ∈ B1, vαβ = v,

for every v ∈ B2, vβα = v.

(2)

It follows from (2) that

α(α⊕ β) = 0⊕ αβ = {αβ}, β(α⊕ β) = βα⊕ 0 = {βα}. (3)

Let λ ∈ α ⊕ β. We therefore have from (3) that αλ = αβ and βλ = βα. Hence

from these facts, (1) and (2), we have

for every v ∈ B1, (vϕ)λ = vαλ = vαβ = v = (vϕ)ϕ−1,

for every v ∈ B2, (vϕ−1)λ = vβλ = vβα = v = (vϕ−1)ϕ.

(4)

We can see from (4) that

λ|B2
= ϕ−1 : B2 → B1 is a bijection,

λ|B1
= ϕ : B1 → B2 is a bijection,.

(5)

Since B = B1 ∪ B2 and B1 ∩ B2 = ∅, it follows from (5) that λ|B : B → B

is a bijection, so λ ∈ GR(V ). Hence λ /∈ OMR(V ) and λ /∈ OER(V ). Claim

that λ /∈ AIR(V ), let v1, v2, ..., vn ∈ B1 be distinct and let a1, a2, ..., an ∈ R

be such that
n∑

i=1

ai(vi + F (λ)) = F (λ). Then
n∑

i=1

aivi ∈ F (λ), so (
n∑

i=1

aivi)λ =

n∑
i=1

aivi. But (
n∑

i=1

aivi)λ =
n∑

i=1

ai(viλ) ∈ 〈B2〉 by (5), so we have,
n∑

i=1

aivi ∈

〈B1〉 ∩ 〈B2〉 = {0}, which implies that ai = 0 for all i ∈ {1, 2, . . . , n} since B1 is

linearly independent over R. This shows that {v + F (λ) | v ∈ B1} is a linearly

independent subset of V/F (λ) and v +F (λ) 6= w+F (λ) for all distinct v, w ∈ B1.

Hence dimR (V/F (λ)) ≥ |B1|. But B1 is infinite, so λ /∈ AIR(V ). Therefore we

have λ /∈ OMR(V ) ∪ OER(V ) ∪ AIR(V ). Thus λ /∈ S(V ). This is a contradiction

since λ ∈ α⊕ β ⊆ S(V ).
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This proves that there is no hyperoperation ⊕ on S(V ) such that (S(V ),⊕, ·)

is a semihyperring with zero. Hence the theorem is proved.

Also, we have a corollary of Theorem 2.3.4 as follows:

Corollary 2.3.5. If T is a subsemigroup of AIR(V ), then the semigroups OMR(V )∪

T and OER(V ) ∪ T do not admit a hyperring [ring] structure.

Remark 2.3.6. Let B be a basis of V and for each u ∈ B, define αu ∈ LR(V ) by

αu =

u v

0 v


v ∈ Br{u}

.

Then F (αu) = 〈B r {u}〉, and hence by Proposition 1.9 (ii), dimR (V/F (αu)) =

|{u}| for every u ∈ B. Clearly, αu 6= αw if u and w are distinct elements of B

and for each u ∈ B, {αu} is a subsemigroup of AIR(V ) since α2
u = αu. This fact

and Theorem 2.3.4 show that there are infinitely many subsemigroups of LR(V )

containing OER(V ) which do not admit the structure of a semihyperring with

zero.

2.4 The Semigroups KR(V, k) and K ′
R(V, k)

We shall characterize when KR(V, k) admits the structure of a semihyperring

with zero. The characterization will generalize Theorem 2.2.1 for the case of

OMR(V ) since OMR(V ) = KR(V,ℵ0) if dimR V is infinite. Since K ′
R(V, k) =

KR(V, k′) if k′ is the successor of k, by the characterization of KR(V, k) admitting

this structure, necessary and sufficient conditions for K ′
R(V, k) to admit such a

structure are also obtained.
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Theorem 2.4.1. Let k be a cardinal number with k ≤ dimR V. Then KR(V, k)

admits the structure of a semihyperring with zero if and only if one of the following

statements holds.

(i) k = 0.

(ii) dimR V < ∞ and k = dimR V.

Proof. To prove sufficiency, assume that (i) or (ii) holds. If k = 0, Then KR(V, k) =

KR(V, 0) = LR(V ) which admits a ring structure. Assume that dimR V < ∞ and

k = dimR V. If α ∈ KR(V, k) = KR(V, dimR V ), then dimR Ker α = dimR V < ∞

which implies that Ker α = V , so α = 0. Hence KR(V, k) = {0} which admits a

ring structure.

To prove necessity, assume that there is a hyperoperation ⊕ on KR(V, k) such

that (KR(V, k),⊕, ·) is a semihyperring with zero where · is the operation on

KR(V, k). To prove that (i) or (ii) must hold, suppose on the contrary that (i)

and (ii) are false. Then either (1) 0 < k < dimR V < ∞ or (2) k > 0 and dimR V

is infinite.

Case 1 : 0 < k < dimR V < ∞. Let B be a basis of V and B1 ⊆ B such that

|B1| = k. Since |B1| = k > 0, there exists an element u ∈ B1. Define α, β ∈ LR(V )

by

α =

B1 v

0 v


v ∈ BrB1

, β =

u B r {u}

u 0

 . (1)

Then Kerα = 〈B1〉 and Kerβ = 〈B r {u }〉, so dimR Kerα = k and dimR Kerβ =

dimR V − 1 ≥ k. Consequently, α, β ∈ KR(V, k). By (1), we clearly have

α2 = α, β2 = β and αβ = βα = 0,

and thus,

α(α⊕ β) = {α } and β(α⊕ β) = { β }. (2)
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Let γ ∈ α⊕ β. It then follows from (2) that αγ = α and βγ = β, and hence

Imα = Imαγ ⊆ Im γ and Imβ = Imβγ ⊆ Im γ. (3)

Thus we deduce from (1) and (3) that

B r (B1 r {u}) = (B r B1) ∪ {u} ⊆ Imα ∪ Imβ ⊆ Im γ.

This implies that

dimR Im γ ≥ |B r (B1 r {u})| = dimR V − (k − 1). (4)

Since ∞ > dimR V = dimR Ker γ + dimR Im γ, we have that

dimR Ker γ = dimR V − dimR Im γ

≤ dimR V − (dimR V − (k − 1)) from (4)

= k − 1 < k

which implies that γ /∈ KR(V, k). This yields a contradiction since γ ∈ α ⊕ β ⊆

KR(V, k).

Case 2 : k > 0 and dimR V is infinite. Let B be a basis of V . Then B is infinite,

so there exist subsets B1 and B2 of B such that B = B1 ∪ B2, B1 ∩ B2 = ∅

and |B1| = |B2| = |B|. Let α, β ∈ LR(V ) be defined by

α =

B1 v

0 v


v ∈ B2

, β =

v B2

v 0


v ∈ B1

. (5)

Then Ker α = 〈B1〉 and Ker β = 〈B2〉, so dimR Ker α = |B1| = |B| and

dimR Kerβ = |B2| = |B|. Since k ≤ dimR V = |B|, we have α, β ∈ KR(V, k). It is

clear from (5) that

α2 = α, β2 = β and αβ = βα = 0,
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and thus

α(α⊕ β) = {α } and β(α⊕ β) = { β }. (6)

Let γ ∈ α⊕ β. Then from (6), αγ = α and βγ = β. Consequently,

for every v ∈ B2, vγ = vαγ = vα = v,

for every v ∈ B1, vγ = vβγ = vβ = v

which implies that γ = 1V , the identity map on V . It then follows that dimRKerγ =

0 < k since k > 0. Hence γ /∈ KR(V, k), a contradiction.

Therefore the proof is complete.

We give a remark here that from Theorem 2.4.1, we conclude that Theorem

2.2.1 for that case of OMR(V ) is a consequence of Theorem 2.4.1.

Corollary 2.4.2. Assume that k < dimR V. Then K ′
R(V, k) admits the structure

of a semihyperring with zero if and only if dimR V < ∞ and k = dimR V − 1.

Proof. Let k′ be the successor of k. Then k′ > 0 and K ′
R(V, k) = KR(V, k′). If

K ′
R(V, k) admits the structure of a semihyperring with zero, then by Theorem

2.4.1, dimR V < ∞ and k′ = dimR V, so k = dimR V − 1.

If dimR V < ∞ and k = dimR V − 1, then k′ = dimR V, thus by Theorem

2.4.1, KR(V, k′) admits the structure of a semihyperring with zero, and so does

K ′
R(V, k) since K ′

R(V, k) = KR(V, k′).

We can see from the proofs of Theorem 2.4.1 and Corollary 2.4.2 that KR(V, k) =

LR(V ) or {0} and K ′
R(V, k) = {0} are necessary conditions of Theorem 2.4.1 and

Corollary 2.4.2, respectively. Hence we have
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Corollary 2.4.3. For a cardinal number k with k ≤ dimR V, KR(V, k) admits a

hyperring [ring] structure if and only if one of the following statements holds.

(i) k = 0.

(ii) dimR V < ∞ and k = dimR V.

Corollary 2.4.4. For a cardinal number k with k < dimR V, K ′
R(V, k) admits a

hyperring [ring] structure if and only if dimR V < ∞ and k = dimR V − 1.

Remark 2.4.5. If k1 and k2 are cardinal numbers such that k1 < k2 ≤ dimR V,

then KR(V, k1) ) KR(V, k2). To see this, let B a basis of V . Then k1 < k2 ≤ |B|,

so there is a subset B1 of B such that |B1| = k1. Define α ∈ LR(V ) by

α =

B1 v

0 v


v ∈ BrB1

.

Then dimR Ker α = |B1| = k1 < k2. Thus α ∈ KR(V, k1) r KR(V, k2). It then

follows that if dimR V is infinite, then

KR(V, 1) = K ′
R(V, 0) ) KR(V, 2) = K ′

R(V, 1) ) KR(V, 3) = K ′
R(V, 2) ) . . .

and by Theorem 2.4.1, none of these subsemigroups of LR(V ) admits the structure

of a semihyperring with zero.

2.5 The Semigroups CIR(V, k) and CI ′R(V, k)

From Proposition 1.12, if dimR V < ∞, then KR(V, k) = CIR(V, k) for every

cardinal number k with k ≤ dimR V . However, it is also shown in Proposition

1.13 (i) that if dimR V is infinite, CIR(V, k) 6= KR(V, l) for all cardinal numbers
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k, l with 0 < k ≤ dimR V and l ≤ dimR V . Then characterizing when CIR(V, k)

admits the structure of a semihyperring with zero should be also considered.

Theorem 2.5.1. Let k be a cardinal number with k ≤ dimR V. Then CIR(V, k)

admits the structure of a semihyperring with zero if and only if one of the following

statements holds.

(i) k = 0.

(ii) dimR V < ∞ and k = dimR V

Proof. By Proposition 1.12, CIR(V, k) = KR(V, k) if dimR V < ∞. Hence by

Theorem 2.4.1, CIR(V, k) admits a ring structure if (i) or (ii) holds.

Conversely, assume that there is a hyperoperation ⊕ on CIR(V, k) such that

(CIR(V, k),⊕, ·) is a semihyperring with zero where · is the operation on CIR(V, k).

To prove that (i) or (ii) holds, suppose instead that they both are false. Then

either (1) 0 < k < dimR V < ∞ or (2) k > 0 and dimR V is infinite.

Case 1 : 0 < k < dimR V < ∞. Since dimR V < ∞, KR(V, k) = CIR(V, k). By

Theorem 2.4.1, CIR(V, k) does not admit the structure of a semihyperring with

zero. This is a contradiction.

Case 2 : k > 0 and dimR V is infinite. Let B be a basis of V and let B1, B2 ⊆ B

such that B = B1 ∪ B2, B1 ∩ B2 = ∅ and |B1| = |B2| = |B|. Let α, β ∈ LR(V )

be defined by

α =

B1 v

0 v


v ∈ B2

, β =

v B2

v 0


v ∈ B1

.

Then dimR(V/Imα) = dimR(V/〈B2〉) = |B1| = |B| = dimRV and dimR(V/Imβ) =

dimR (V/〈B1〉) = |B2| = |B| = dimR V. Consequently, α, β ∈ CIR(V, k). Hence

α ⊕ β ⊆ CIR(V, k). As shown in the proof of Case 2 of Theorem 2.4.1 that if
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γ ∈ α⊕ β, then γ = 1V . But dimR (V/Im1V ) = 0 < k, so this is contrary to that

α⊕ β ⊆ CIR(V, k).

Therefore the proof is complete.

Corollary 2.5.2. Assume that k is a cardinal number such that k < dimR V.

Then CI ′R(V, k) admits the structure of a semihyperring with zero if and only if

dimR V < ∞ and k = dimR V − 1.

Proof. Let k′ be the successor of k. Then k′ > 0 and CI ′R(V, k) = CIR(V, k′).

It therefore follows from Theorem 2.5.1 that CI ′R(V, k) admits the structure of

a semihyperring with zero if dimR V < ∞ and k′ = dimR V, or equivalently,

dimR V < ∞ and k = dimR V − 1.

Conversely, assume that dimR V < ∞ and k = dimR V − 1. Then k′ = dimR V,

and thus by Theorem 2.5.1, CIR(V, k′) admits the structure of a semihyperring

with zero. But CIR(V, k′) = CI ′R(V, k), so CI ′R(V, k) admits the structure of a

semihyperring with zero.

Notice from the proofs of Theorem 2.4.1, Theorem 2.5.1, Corollary 2.4.2 and

Corollary 2.5.2 that necessary conditions of Theorem 2.5.1 and Corollary 2.5.2 are

CIR(V, k) = LR(V ) or {0} and CI ′R(V, k) = {0}, respectively. Hence the following

corollaries are obtained directly.

Corollary 2.5.3. For a cardinal number k with k ≤ dimR V, CIR(V, k) admits a

hyperring [ring] structure if and only if one of the following statements holds.

(i) k = 0.

(ii) dimR V < ∞ and k = dimR V.
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Corollary 2.5.4. For a cardinal number k with k ≤ dimR V, CI ′R(V, k) admits a

hyperring [ring] structure if and only if dimR V < ∞ and k = dimR V − 1.

Remark 2.5.5. Let dimR V be infinite and B a basis of V . If k1 < k2 ≤ dimR V,

let B1 of B such that |B1| = k1. Define α ∈ LR(V ) by

α =

B1 v

0 v


v ∈ BrB1

.

Then dimR (V/Imα) = dimR (V/〈B rB1〉) = |B1| = k1 < k2, so α ∈ CIR(V, k1)r

CIR(V, k2). It then follows that if dimR V is infinite, then

CIR(V, 1) = CI ′R(V, 0) ) CIR(V, 2) = CI ′R(V, 1) ) CIR(V, 3) = CI ′R(V, 2) ) . . .

and by Theorem 2.5.1, none of them admits the structure of a semihyperring with

zero.

2.6 The Semigroups IR(V, k) and I ′R(V, k)

We have shown in Proposition 1.13 (ii) if dimR V is infinite, then for a nonzero

cardinal number k with k < dimRV, IR(V, k) is not equal to KR(V, l) and CIR(V, l)

for any cardinal number l ≤ dimR V. This is also true for I ′R(V, k), K ′
R(V, l) and

CI ′R(V, l) where 0 < k ≤ dimR V and 0 ≤ l < dimR V. The next theorem and

corollary, Theorem 2.4.1, Corollary 2.4.2, Theorem 2.5.1 and Corollary 2.5.2 also

show that what we have mentioned is true.

Theorem 2.6.1. Let k be a cardinal number such that k ≤ dimR V. Then IR(V, k)

admits the structure of a semihyperring with zero if and only if one of the following

statements holds.
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(i) k = 0.

(ii) k = dimR V.

(iii) k is an infinite cardinal number.

Proof. To prove sufficiency, assume (i), (ii) or (iii) holds. Since IR(V, 0) = {α ∈

LR(V ) | dimR Imα ≤ 0 } = { 0 } and IR(V, dimR V ) = {α ∈ LR(V ) | dimR Imα ≤

dimR V } = LR(V ). Therefore if (i) or (ii) holds, then IR(V, k) admits a ring

structure.

Next, assume that (iii) holds. Then k + k = k. We know that for α, β ∈

LR(V ), Im (α + β) ⊆ Im α + Im β and Im (−α) = Im α where + is the usual

addition on LR(V ). Thus for α, β ∈ IR(V, k),

dimR Im (α− β) ≤ dimR Imα + dimR Imβ

≤ k + k = k.

It therefore follows that IR(V, k) is a subring of (LR(V ), +, ·), so IR(V, k) admits

a ring structure.

Conversely, assume that (IR(V, k),⊕, ·) is a semihyperring with zero for some

hyperoperation ⊕ on IR(V, k) where · is the operation on IR(V, k). To show that

one of (i), (ii) and (iii) must hold, suppose on the contrary that (i), (ii) and (iii)

are all false. Then 0 < k < dimR V and k is finite. Let B be a basis of V and

B1 ⊆ B such that |B1| = k. Since k < dimR V, there exists an element u ∈ BrB1.

Define α, β ∈ LR(V ) by

α =

v B r B1

v 0


v ∈ B1

and β =

u B r {u}

u 0

 . (1)

Then Im α = 〈B1〉 and Im β = 〈u〉, so dimR Im α = k and dimR Im β = 1 ≤ k.

This implies that α, β ∈ IR(V, k) and so α⊕ β ⊆ IR(V, k). Clearly,

α2 = α, β2 = β and αβ = βα = 0. (2)
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Therefore (2) yields

α(α⊕ β) = {α } and β(α⊕ β) = { β }. (3)

Let γ ∈ α ⊕ β. It thus follows from (3) that αγ = α and βγ = β. We have from

these equalities and (1) that

vγ = vαγ = vα = v for every v ∈ B1 and

uγ = uβγ = uβ = u,

so Im γ ⊇ 〈B1 ∪ {u }〉 which implies that dimR Im γ ≥ |B1 ∪ {u }| = k + 1 > k.

This contradicts the fact that γ ∈ α⊕ β ⊆ IR(V, k).

Hence the theorem is proved.

Corollary 2.6.2. For a cardinal number k with 0 < k ≤ dimR V, the semigroup

I ′R(V, k) admits the structure of a semihyperring with zero if and only if either

k = 1 or k is an infinite cardinal number.

Proof. If I ′R(V, 1) = IR(V, 0) = {0}, then I ′R(V, 1) admits a ring structure. Next,

assume that k is an infinite cardinal number. Then k + k = k. If α, β ∈ I ′R(V, k),

then dimR Imα < k and dimR Imβ < k, and hence

dimR Im (α− β) ≤ dimR Imα + dimR Imβ

< k + k = k.

It follows that (I ′R(V, k), +, ·) is a ring where + is the usual addition of linear

transformations. Therefore the sufficiency is proved.

To prove necessity, suppose that 1 < k and k is finite. Then I ′R(V, k) =

IR(V, k − 1), 0 < k − 1 < dimR V and k − 1 is finite. It therefore follows from

Theorem 2.6.1 that I ′R(V, k) does not admits the structure of a semihyperring with

zero.
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Theorem 2.6.1 and Corollary 2.6.2 and their proofs yield the following results.

Corollary 2.6.3. For a cardinal number k with k ≤ dimR V, the semigroup

IR(V, k) admits a hyperring [ring] structure if and only if one of the following

statements holds.

(i) k = 0.

(ii) k = dimR V.

(iii) k is an infinite cardinal number.

Corollary 2.6.4. For a cardinal number k with 0 < k ≤ dimR V, the semigroup

I ′R(V, k) admits a hyperring [ring] structure if and only if either k = 1 or k is an

infinite cardinal number.

Remark 2.6.5. Assume that dimR V is infinite and let B a basis of V . Then B

contains a subset {un | n ∈ N} where un 6= um if n 6= m. For each positive integer

n, let αn ∈ LR(V ) be define by

αn =

u1 u2 . . . un B r {u1, u2, . . . , un}

u1 u2 . . . un 0

 .

Then dimR Im αn = dimR 〈u1, . . . , un〉 = n for every n ∈ N, so αn ∈ IR(V, n) r

IR(V, n− 1) for every n ≥ 1. Consequently,

IR(V, 1) = I ′R(V, 2) ) IR(V, 2) = I ′R(V, 3) ) IR(V, 3) = I ′R(V, 4) ) . . .

and Theorem 2.6.1 shows that none of these semigroups admits the structure of

a semihyperring with zero.



CHAPTER III

SEMIGROUPS ADMITTING THE STRUCTURE

OF AN ADDITIVELY COMMUTATIVE

SEMIRING WITH ZERO

Example 1.5 and Example 1.6 show that every semigroup without zero always

admits both the structure of an AC semihyperring with zero and the structure of

a semiring with zero. As can be seen in this chapter that a semigroup without

zero need not admit the structure of an AC semiring with zero. In this chapter,we

aim to study various kinds of linear transformation semigroups which need not

have a zero. We shall determine when they admit the structure of an AC semiring

with zero.

First, let us recall the following linear transformation semigroups on V .

GR(V ) = {α ∈ LR(V ) | α is an isomorphism},

MR(V ) = {α ∈ LR(V ) | Kerα = {0}},

ER(V ) = {α ∈ LR(V ) | Imα = V },

AMR(V ) = {α ∈ LR(V ) | dimR Kerα < ∞},

AER(V ) = {α ∈ LR(V ) | dimR (V/Imα) < ∞},

AIR(V ) = {α ∈ LR(V ) | dimR (V/F (α)) < ∞ }

where F (α) = { v ∈ V | vα = v },

PLR(V ) = {α : W → V | W is a subspace of V

and α is a linear transformation}.
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For convenience in writing, the following notations will be used in this chapter.

If B is a basis of V and u, w ∈ B are distinct, let (u, w)B and (u → w)B be the

elements of LR(V ) defined respectively by

(u, w)B =

u w v

w u v


v ∈ Br{u,w}

and (u → w)B =

u v

w v


v ∈ Br{u}

.

Then for all distinct u, w ∈ B, (u, w)B ∈ GR(V ) and also (u, w)2
B = 1V .

3.1 The Semigroups GR(V ), MR(V ) and ER(V )

Note that from Proposition 1.15(i), each of GR(V ), MR(V ), and ER(V ) has

a zero if and only if either dimR V = 0 or dimR V = 1 and |R| = 2. The purpose

is to show that dimR V = 0 or dimR V = 1 is necessary and sufficient for each of

GR(V ), MR(V ), and ER(V ) to admit the structure of an AC semiring with zero.

Lemma 3.1.1. If dimR V = 1, then GR(V ) ∼= (R r {0}, ·), the multiplicative

group of nonzero elements of the division ring R.

Proof. Let u ∈ V r {0}. Since dimR V = 1, {u} is a basis of V , so V = Ru =

{au | a ∈ R} and it is clear that

for every α ∈ GR(V ), there is a unique aα ∈ R r {0}

such that uα = aαu.

(1)

Define ϕ : GR(V ) → R r {0} by αϕ = aα for every α ∈ GR(V ). Then ϕ is

well-defined by (1). If α, β ∈ GR(V ), then

uαβ = (aαu)β = aα(uβ) = (aαaβ)u,

so by (1), aαβ = aαaβ. Hence ϕ is a homomorphism from GR(V ) into (Rr{0}, ·).

If α ∈ GR(V ) is such that aα = 1, then uα = u which implies that α = 1V since
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V = Ru. Therefore ϕ is one-to-one. For b ∈ R r {0}, if define α ∈ LR(V ) by

uα = bu, then α ∈ GR(V ) since {u} is a basis of V and hence αϕ = b.

Therefore the lemma is proved, as required.

Theorem 3.1.2. Let S(V ) be GR(V ), MR(V ) or ER(V ). Then S(V ) admits the

structure of an AC semiring with zero if and only if dimR V ≤ 1.

Proof. If dimR V = 0, then GR(V ) = MR(V ) = ER(V ) = {0}, and if dimR V = 1,

then GR(V ) = MR(V ) = ER(V ) ∼= (R r {0}, ·) by Lemma 3.1.1. Thus S(V )

admits a ring structure if dimR V ≤ 1.

Assume that dimR V > 1. To show that S(V ) does not admit the structure

of an AC semiring with zero, suppose on the contrary that there is an operation

⊕ on S0(V ) such that (S0(V ),⊕, ·) is an AC semiring with zero 0 where · is the

operation on S0(V ). Let B be a basis of V . Then |B| > 1. Let u and w be distinct

elements of B and let B′ = {u, u + w} ∪ (B r {u, w}). By Proposition 1.7, B′ is

also a basis of V . Then (u, w)B and (u, u + w)B′ are elements of GR(V ) ⊆ S(V ),

and so 1V ⊕ (u, w)B and 1V ⊕ (u, u + w)B′ are elements of S(V ). Since (u, w)2
B =

1V = (u, u + w)2
B′ , we have the following equalities.

(u, w)B(1V ⊕ (u, w)B) = 1V (1V ⊕ (u, w)B), (1)

(1V ⊕ (u, w)B)(u, w)B = (1V ⊕ (u, w)B)1V , (2)

(u, u + w)B′(1V ⊕ (u, u + w)B′) = 1V (1V ⊕ (u, u + w)B′), (3)

(1V ⊕ (u, u + w)B′)(u, u + w)B′ = (1V ⊕ (u, u + w)B′)1V . (4)

Case 1 : 1V⊕(u, w)B 6= 0. Then 1V⊕(u, w)B ∈ S(V ). If S(V ) is GR(V ) or MR(V ),

then 1V ⊕(u, w)B is a one-to-one map, so from (1), we have (u, w)B = 1V . If S(V )
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is ER(V ), then Im (1V ⊕ (u, w)B) = V which implies by (2) that (u, w)B = 1V .

But u 6= w, so we have a contradiction.

Case 2 : 1V ⊕ (u, u+w)B′ 6= 0. Then 1V ⊕ (u, u+w)B′ ∈ S(V ). If S(V ) is GR(V )

or MR(V ), then 1V ⊕ (u, u+w)B′ is a one-to-one map and hence (u, u+w)B′ = 1V

by (3). If S(R) = ER(V ), then Im (1V ⊕ (u, u + w)B′) = V , so (u, u + w)B′ = 1V

by (4). These yield a contradiction since u 6= u + w.

Case 3 : 1V ⊕ (u, w)B = 0 = 1V ⊕ (u, u + w)B′ . Then (u, w)B = (u, w)B ⊕

0 = (u, w)B ⊕ 1V ⊕ (u, u ⊕ w)B′ = 0 ⊕ (u, u ⊕ w)B′ = (u, u ⊕ w)B′ and hence

w = u(u, w)B = u(u, u + w)B′ = u + w which is a contradiction.

Therefore the proof is complete.

The following fact has been given in [14]. However, it can be considered as a

consequence of Theorem 3.1.2 and its proof for the sufficiency part.

Corollary 3.1.3. Let S(V ) be GR(V ), MR(V ) or ER(V ). Then S(V ) admits a

ring structure if and only if dimR V ≤ 1.

Remark 3.1.4. We know from Example 1.5 and Example 1.6 that every semi-

group without zero always admits both the structure of an AC semihyperring

with zero and the structure of a semiring with zero. Also, if dimR V > 1, then all

the semigroups GR(V ), MR(V ) and ER(V ) have no zero. Hence, from these facts

and Theorem 3.1.2, we have that all the semigroups GR(V ), MR(V ) and ER(V )

always admit the structure of an AC semihyperring with zero and the structure

of a semiring with zero.
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3.2 The Semigroups AMR(V ) and AER(V )

We first recall that GR(V ) ⊆ MR(V ) ⊆ AMR(V ), GR(V ) ⊆ ER(V ) ⊆

AER(V ), AMR(V ) and AER(V ) have no zero if dimR V is infinite by Proposition

1.15(ii), and if dimR V < ∞, then AMR(V ) and AER(V ) admit a ring structure.

The purpose is to show that dimR V < ∞ is also necessary for AMR(V ) and

AER(V ) to admit the structure of an AC semiring with zero.

Theorem 3.2.1. Let S(V ) be AMR(V ) or AER(V ). Then S(V ) admits the struc-

ture of an AC semiring with zero if and only if dimR V < ∞.

Proof. As was mentioned above if dimRV < ∞, then S(V ) admits a ring structure.

Assume that dimR V is infinite. To prove that S(V ) does not admit the

structure of an AC semiring with zero, suppose instead that there is an operation

⊕ on S0(V ) such that (S0(V ),⊕, ·) is an AC semiring with zero 0 where · is the

operation on S0(V ). Note that 0 /∈ S(V ), so for α, β ∈ S0(V ), αβ = 0 implies

α = 0 or β = 0. Let B be a basis of V and let u, w be distinct elements of B.

Define α ∈ LR(V ) by

α =

{u, w} v

0 v


v∈Br{u,w}

. (1)

Then dimR Ker α = dimR 〈u, w〉 = 2 and dimR (V/Im α) = dimR (V/〈B r

{u, w }〉) = |{u, w}| = 2. We deduce that α ∈ S(V ). It is clear that (u, w)Bα =

α = α(u, w)B. Hence

(u, w)B(1V ⊕ (u, w)B) = 1V ⊕ (u, w)B, (2)

α⊕ α = (1V ⊕ (u, w)B)α = α(1V ⊕ (u, w)B). (3)
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Since β(1V ⊕1V ) = β⊕β = (1V ⊕1V )β for every β ∈ S(V ), we have by Proposition

1.10 that, 1V ⊕ 1V = a1V for some a ∈ C(R). Then

α⊕ α = (1V ⊕ 1V )α = (a1V )α = aα. (4)

If a = 0, then 1V ⊕1V = 0 and from (3) and (4), 1V ⊕ (u, w)B = 0 since α ∈ S(V ),

so 1V = (u, w)B, a contradiction. This shows that a 6= 0. From (3) and (4), we

have

(1V ⊕ (u, w)B)α = α(1V ⊕ (u, w)B) = aα 6= 0. (5)

By (1) and (5), we have

v(1V ⊕ (u, w)B)α = vα(1V ⊕ (u, w)B) = v(aα) = av

for every v ∈ B r {u, w },

u(1V ⊕ (u, w)B)α = u(aα) = 0,

w(1V ⊕ (u, w)B)α = w(aα) = 0.

(6)

We deduce from (2) that

u(1V ⊕ (u, w)B) = u(u, w)B(1V ⊕ (u, w)B) = w(1V ⊕ (u, w)B). (7)

Thus (6) and (7) yield the fact that

u(1V ⊕ (u, w)B) = w(1V ⊕ (u, w)B) ∈ Kerα = 〈u, w〉,

so

u(1V ⊕ (u, w)B) = w(1V ⊕ (u, w)B) = bu + cw for some b, c ∈ R. (8)

Define γ ∈ LR(V ) by

γ =

{u, w} v

u + w v


v∈Br{u,w}

. (9)
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Then Kerγ ⊆ 〈u, w〉 = Kerα and Imγ ⊇ 〈B r{u, w}〉 = Imα, so γ ∈ S(V ). Since

uγ(u, w)B = wγ(u, w)B = (u + w)(u, w)B = u + w, it follows that γ(u, w)B = γ,

and hence

γ(1V ⊕ (u, w)B) = γ ⊕ γ = (1V ⊕ 1V )γ = aγ. (10)

Thus

2bu + 2cw = (u + w)(1V ⊕ (u, w)B) from (8)

= uγ(1V ⊕ (u, w)B) from (9)

= u(aγ) from (10)

= a(u + w) from (9)

= au + aw

which implies that 2b = 2c = a 6= 0. This shows that charR 6= 2. Because

−1V ∈ S(V ) and β(1V ⊕ (−1V )) = β ⊕ (−β) = (1V ⊕ (−1V ))β for all β ∈ S(V ),

by Proposition 1.10, 1V ⊕ (−1V ) = a′1V for some a′ ∈ C(R). If a′ = 0, then

1V ⊕ (−1V ) = 0 and so

0 = α⊕ (−α) = α⊕ (−α(u, w)B) = α(1V ⊕ (−(u, w)B))

which implies that 1V ⊕ (−(u, w)B) = 0, and hence −1V = −(u, w)B, a contradic-

tion. Then a′ 6= 0. But

a′1V = 1V ⊕ (−1V ) = −1V (1V ⊕ (−1V )) = −a′1V ,

2a′1V = 0, and thus 2a′ = 0 since V 6= {0}. Due to the facts that a′ 6= 0 and

charR 6= 2, we have a contradiction.

Hence the theorem is completely proved.

The following fact has been given in [14]. It is also considered as a consequence

of Theorem 3.2.1 and the first line of its proof.
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Corollary 3.2.2. Let S(V ) be AMR(V ) or AER(V ). Then S(V ) admits a ring

structure if and only if dimR V < ∞.

Remark 3.2.3. Since AMR(V ) = AER(V ) = LR(V ) if dimRV < ∞ and AMR(V )

and AER(V ) have no zero if dimRV is infinite, we have from Example 1.5, Example

1.6 and Theorem 3.2.1 that AMR(V ) and AER(V ) always admit both the structure

of an AC semihyperring with zero and the structure of a semiring with zero.

3.3 The Semigroup AIR(V )

It has been proved in Section 2.3 that if dimR V is infinite, then for every

subsemigroup T of AIR(V ), OMR(V ) ∪ T and OER(V ) ∪ T do not admit the

structure of a semihyperring with zero. If dimR V < ∞, then AIR(V ) = LR(V ),

so AIR(V ) admits a ring structure. If dimR V is infinite, then AIR(V ) has no zero

by Proposition 1.15(ii). It will be shown that if dimR V is infinite, then AIR(V )

does not admit the structure of an AC semiring with zero, so it does not admit a

ring structure.

The following lemma is required.

Lemma 3.3.1. Assume that dimR V is infinite. If (AI0
R(V ),⊕, ·) is an AC semi-

ring with zero. Then 1V ⊕ 1V = 1V .

Proof. Suppose on the contrary that 1V ⊕ 1V 6= 1V . Then either 1V ⊕ 1V = 0 or

1V ⊕ 1V = β for some β ∈ AIR(V ) r {1V }.

Case 1 : 1V ⊕ 1V = 0. Let B be a basis of V and choose distinct elements u, w

in B. Define α ∈ LR(V ) by
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α =

{u, w} v

0 v


v ∈ Br{u,w}

.

Then F (α) = 〈B r {u, w}〉 and so dimR (V/F (α)) = |{u, w}| = 2. Thus α ∈

AIR(V ). Also, (u, w)Bα = α and α ⊕ α ∈ AI0
R(V ). Since 0 = (1V ⊕ 1V )α =

α⊕ α = (1V ⊕ (u, w)B)α, we have 1V ⊕ 1V = 1V ⊕ (u, w)B = 0. This implies that

1V = (u, w)B, a contradiction.

Case 2 : 1V ⊕ 1V = β for some β ∈ AIR(V ) r {1V }. Then F (β) ( V. Since

dimR (V/F (β)) < ∞ and dimR V is infinite, F (β) 6= {0}. Let u ∈ V r F (β) and

w ∈ F (β) r {0}. Then uβ 6= u and wβ = w. Since 〈w〉 ⊆ F (β) and u /∈ F (β),

we have that u and w are linearly independent. Let B be a basis of V containing

u, w. Then

β = 1V ⊕ 1V = (u, w)B1V (u, w)B ⊕ (u, w)B1V (u, w)B

= (u, w)B(1V ⊕ 1V )(u, w)B

= (u, w)Bβ(u, w)B.

Consequently, u(u, w)B = w = wβ = w(u, w)Bβ(u, w)B = uβ(u, w)B. Since

(u, w)B is one-to-one, u = uβ, a contradiction.

Hence the proof is complete.

Theorem 3.3.2. The semigroup AIR(V ) admits the structure of an AC semiring

with zero if and only if dimR V < ∞.

Proof. As mentioned above, if dimRV < ∞, then AIR(V ) admits a ring structure.

Assume that dimR V is infinite and suppose that there is an operation ⊕ on

AI0
R(V ) such that (AI0

R(V ),⊕, ·) is an AC semiring with zero 0 where · is the
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operation on AI0
R(V ). From Lemma 3.3.1, 1V ⊕ 1V = 1V and thus

α⊕ α = α for every α ∈ AIR(V ). (1)

Let B be a basis of V. Then for all distinct u, w ∈ B, F ((u, w)B) = 〈B r {u, w}〉

and F ((u → w)B) = 〈B r {u}〉. Consequently, (u, w)B, (u → w)B ∈ AIR(V ) for

all distinct u, w ∈ B. Next, let u and w be fixed distinct elements of B. We

clearly have

(u → w)2
B = (u → w)B = (w → u)B(u → w)B

= (w → u)B(u, w)B = (u, w)B(u → w)B,

(w → u)2
B = (w → u)B = (u → w)B(w → u)B

= (u → w)B(u, w)B = (u, w)B(w → u)B.

(2)

We therefore have from (2) that (w → u)B[1V ⊕ (u → w)B] = (w → u)B ⊕ (u →

w)B and (u → w)B[1V ⊕ (w → u)B] = (u → w)B ⊕ (w → u)B. Thus

(w → u)B[1V ⊕ (u → w)B] = (u → w)B[1V ⊕ (w → u)B]. (3)

For each v ∈ B r {u},

v[1V ⊕ (u → w)B] = v(u → w)B[1V ⊕ (u → w)B]

= v[(u → w)B ⊕ (u → w)B] from (2)

= v(u → w)B = v from (1).

Let u[1V ⊕ (u → w)B] = au + bw +
n∑

i=1

civi for some a, b, c1, c2, . . . , cn ∈ R and

distinct v1, v2, . . . , vn ∈ B r {u, w}. We therefore have

u = u(w → u)B

= u[(w → u)B ⊕ (w → u)B] from (1)

= u[1V ⊕ (u → w)B](w → u)B from (2)

= (au + bw +
n∑

i=1

civi)(w → u)B
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= au + bu +
n∑

i=1

civi

which implies that a + b = 1 and ci = 0 for all i = 1, 2, . . . , n. Consequently,

v[1V ⊕ (u → w)B] = v if v ∈ B r {u},

u[1V ⊕ (u → w)B] = au + bw where a + b = 1.

(4)

Let v1, v2, . . . , vm ∈ B r {u} be distinct and let d0, d1, . . . , dm ∈ R be such that

(d0u +
m∑

i=1

divi)[1V ⊕ (u → w)B] = 0. Then from (4),

d0au + d0bw +
m∑

i=1

divi = 0

which implies that d0a = d0b = d1 = . . . = dm = 0. But a + b = 1, so d0 = 0. This

shows that

1V ⊕ (u → w)B is a one-to-one map. (5)

Since

[1V ⊕ (u → w)B]2 = 1V ⊕ (u → w)B ⊕ (u → w)B ⊕ (u → w)2
B

= 1V ⊕ (u → w)B from (2) and (1),

it follows from (5) that

1V ⊕ (u → w)B = 1V . (6)

We therefore have

1V = (u, w)2
B

= [1V (u, w)B]2

= [(1V ⊕ (u → w)B)(u, w)B]2 from (6)

= [(u, w)B ⊕ (w → u)B]2 from (2)

= (u, w)2
B ⊕ (u, w)B(w → u)B ⊕ (w → u)B(u, w)B ⊕ (w → u)2

B

= 1V ⊕ (w → u)B ⊕ (u → w)B ⊕ (w → u)B from (2)
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= 1V ⊕ (u → w)B ⊕ (w → u)B from (1)

= 1V ⊕ (w → u)B from (6). (7)

Hence from (3), (6) and (7), we get (w → u)B = (u → w)B. This is a contradiction

since w(w → u)B = u 6= w = w(u → w)B.

This proves that if dimRV is infinite, then AIR(V ) does not admit the structure

of an AC semiring with zero. Therefore the theorem is proved.

From Theorem 3.3.2 and its proof of the sufficiency part, we have

Corollary 3.3.3. The semigroup AIR(V ) admits a ring structure if and only if

dimR V < ∞.

Remark 3.3.4. Since AIR(V ) = LR(V ) if dimR V < ∞ and AIR(V ) has no

zero if dimR V is infinite, it follows from Example 1.5 and Example 1.6 that the

semigroup AIR(V ) always admits both the structure of an AC semihyperring with

zero and the structure of a semiring with zero.

3.4 Partial Linear Transformation Semigroups

Let us recall the following facts of PLR(V ).

{0}0α = {0}0 and V0α = V0 for all α ∈ PLR(V ),

αV0 = V0 for every α ∈ LR(V ),

α{0}0 = {0}0 for every one-to-one map α ∈ PLR(V ).

If dimR V > 0, then PLR(V ) has no zero.
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The purpose is to show that if PLR(V ) admits the structure of an AC semiring

with zero, then either dimR V = 0 or dimR V = 1 and charR = 2. Also PLR(V )

admits a ring structure if and only if dimR V = 0. To obtain the main results, the

following three lemmas are required.

Lemma 3.4.1. If dimR V > 0 and (PL0
R(V ),⊕, ·) is an AC semiring with zero

where · is the operation of the semigroup PL0
R(V ), then the following statements

hold.

(i) 1V ⊕ (−1V ) = a1V for some a ∈ C(R) r {0}.

(ii) W0 ⊕W0 = W0 for every subspace W of V .

Proof. First we note that PLR(V ) is a semigroup without zero, so for α, β ∈

PL0
R(V ), αβ = 0 implies α = 0 or β = 0.

To show that 1V ⊕ (−1V ) 6= 0, suppose on the contrary that 1V ⊕ (−1V ) = 0.

Then α⊕ (−α) = 0 for all α ∈ PL0
R(V ). In particular, V0 ⊕ V0 = V0 ⊕ (−V0) = 0.

But V0 6= 0 and

V0(V0 ⊕ {0}0) = V0 ⊕ V0 = 0,

thus V0⊕{0}0 = 0. Therefore V0⊕V0 = 0 = V0⊕{0}0. This implies that V0 = {0}0

which is contrary to that dimR V > 0. Hence 1V ⊕ (−1V ) ∈ PLR(V ). Since

V0(1V ⊕ (−1V )) = V0 ⊕ V0 = (1V ⊕ (−1V ))V0,

it follows that Dom (1V ⊕ (−1V )) ⊇ Dom ((1V ⊕ (−1V ))V0) = Dom (V0(1V ⊕

(−1V ))) = V. It is clear that α(1V ⊕ (−1V )) = (1V ⊕ (−1V ))α for all α ∈ PLR(V ).

By Proposition 1.10, there is an element a ∈ C(R) such that 1V ⊕ (−1V ) = a1V .

If a = 0, then 1V ⊕ (−1V ) = V0 which implies that

V0 = V0{0}0 = (1V ⊕ (−1V )){0}0

= {0}0(1V ⊕ (−1V ))
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= {0}0V0 = {0}0

which is a contradiction since dimR V > 0. Therefore a 6= 0. If W is a subspace of

V , then

W0 ⊕W0 = (1V ⊕ (−1V ))W0 = (a1V )W0 = W0.

Therefore (i) and (ii) are obtained, as required.

Lemma 3.4.2. If dimR V > 0 and the semigroup PLR(V ) admits the structure

of an AC semiring with zero, then charR = 2.

Proof. Assume that ⊕ is an operation on PL0
R(V ) such that (PL0

R(V ),⊕, ·) is an

AC semiring with zero where · is the operation on PL0
R(V ). By Lemma 3.4.1,

1V ⊕ (−1V ) = a1V for some a ∈ C(R) r {0}. Then

a21V = (a1V )(a1V ) = (1V ⊕ (−1V ))(a1V )

= ((−1V )⊕ 1V )(−a1V )

= (1V ⊕ (−1V ))(−a1V )

= (a1V )(−a1V ) = − a21V ,

so 2a2 = 0. But a2 6= 0, thus charR = 2.

Lemma 3.4.3. If dimR V > 1, then the semigroup PLR(V ) does not admit the

structure of an AC semiring with zero.

Proof. Let dimR V > 1 and suppose that the semigroup PLR(V ) admits the

structure of an AC semiring with zero. Then there is an operation ⊕ on PL0
R(V )

such that (PL0
R(V ),⊕, ·) is an AC semiring with zero where · is the operation on

PL0
R(V ). Since dimR V > 1, there are elements u, w ∈ V such that u and w are

linearly independent over R. Then

u

u

⊕

u

w

 is an element of PL0
R(V ).
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Case 1 :

u

u

 ⊕

u

w

 = 0. Then 0 = V0


u

u

⊕

u

w


 = V0 ⊕ V0. This

contradicts Lemma 3.4.1(ii).

Case 2 :

u

u

 ⊕

u

w

 = {0}0. Then {0}0 = {0}0V0 =


u

u

⊕

u

w


V0 =

u

0

⊕

u

0

 = 〈u〉0 ⊕ 〈u〉0 which is contrary to Lemma 3.4.1(ii).

Case 3 :

u

u

⊕

u

w

 = α for some α ∈ PLR(V ) with Domα 6= { 0 }. Since

u

u




u

u

⊕

u

w


 =

u

u

⊕

u

w

 ,

we have

u

u

α = α. Then Dom α = Dom


u

u

 α

 ⊆ Dom

u

u

 = 〈u〉, and

thus dimR (Dom α) ≤ dimR 〈u〉 = 1. But Dom α 6= {0}, so Dom α = 〈u〉. Also,

since 
u

u

⊕

u

w




u w

w u

 =

u

w

⊕

u

u


=

u

u

⊕

u

w

 ,

it follows that α

u w

w u

 = α. Consequently, Im α = Im

α

u w

w u


 ⊆

Im

u w

w u

 = 〈u, w〉. Now we have

Domα = 〈u〉 and Imα ⊆ 〈u, w〉.
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Then there are a, b ∈ R such that uα = au+bw. This implies that α =

 u

au + bw

 .

But since α

u w

w u

 = α, we have

 u

au + bw

 =

 u

au + bw


u w

w u

 =

 u

aw + bu

 ,

and hence a = b. Thus α =

 u

a(u + w)

 . Now, we have

u

u

⊕

u

w

 =

 u

a(u + w)

 . (1)

Consequently, u

u + w

⊕

 u

u + w

 =


u

u

⊕

u

w




 u w

u + w u + w


=

 u

a(u + w)


 u w

u + w u + w

 from (1)

=

 u

a(u + w + u + w)


=

 u

2a(u + w)


=

u

0

 by Lemma 3.4.2. (2)

Since u and w are linearly independent, u+w 6= 0, and so

 u

u + w

 is a one-to-one
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partial linear transformation of V . Hence

{0}0 ⊕ {0}0 =

 u

u + w

 {0}0 ⊕

 u

u + w

 {0}0

=


 u

u + w

⊕

 u

u + w


{0}0

=

u

0

{0}0 from (2)

=

u

0


which is a contradiction because of Lemma 3.4.1(ii).

Theorem 3.4.4. If the semigroup PLR(V ) admits the structure of an AC semir-

ing with zero, then either dimR V = 0 or dimR V = 1 and charR = 2.

Proof. Assume that PLR(V ) admits the structure of an AC semiring with zero.

We therefore have from Lemma 3.4.3 that dimR V = 0 or dimR V = 1. If dimR V =

1, then by Lemma 3.4.2, charR = 2.

Notice that if dimR V = 0, then PLR(V ) = {{0}0}, so PLR(V ) admits a ring

structure. If dimR V > 0, Lemma 3.4.1(ii) shows that PLR(V ) does not admit a

ring structure. Hence we have

Theorem 3.4.5. The semigroup PLR(V ) admits a ring structure if and only if

dimR V = 0.
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Remark 3.4.6. (1) Since PLR(V ) has no zero if dimR V > 0, by the same

reason as before, we have that PLR(V ) always admits the structure of an AC

semihyperring with zero and the structure of a semiring with zero.

(2) It is natural to ask whether it is possible that dimR V = 1, charR = 2 and

the semigroup PLR(V ) admits the structure of an AC semiring with zero. The

answer is “ yes ”. To see this, assume that dimR V = 1 and |R| = 2. Then |V | = 2

which implies that

PLR(V ) = {{0}0, V0, 1V },

and thus

PL0
R(V ) = {0, {0}0, V0, 1V }.

Define an operation ⊕ on PL0
R(V ) as follows:

⊕ 0 {0}0 V0 1V

0 0 {0}0 V0 1V

{0}0 {0}0 {0}0 V0 1V

V0 V0 V0 V0 V0

1V 1V 1V V0 1V

It is straightforward to verify that (PL0
R(V ),⊕, ·) is an AC semiring with zero 0.
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