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A semiring is a symtem (A, +, «) such that (A, +) and (A, .) are semigroups and
the operation . distributes over the operation +. A semiring (A, +, ») is additively
commutative (AC) if x+y =y +x forall x,y € A. The zero of a semiring (A, +, «)
isanelement0 € A suchthat x+0=0+Xx =x and x«.0=0.x=0 forallx e
A. For a semigroup S, let S°be S if S hasa zero and S contains more than one
element, otherwise, let S° be the semigroup S with a zero 0 adjoined. We say that a
semigroup S admits the structure of a [AC] semiring with zero if there exists an
operation +on S° such that (S°, +, «) is a [AC] semiring with zero where « is the
operation on S°.

A hyperoperation on a nonempty set H is a function o : H x H — P*(H)
where P(H) is the power set of H and P*(H) = P(H)\{@}. For this case, (H, o) is
called a hypergroupoid. For a hypergroupoid (H, <) and nonempty subsets X and Y
of H, we let XoY denote the union of all sets xoy where x and y run over X and Y,
respectively. A semihypergroup is a hypergroupoid (H, o) with (Xey)ez = Xo(yo2)
for all x, y, z € H. A semihyperring is a system (A, +, ») satisfying the following
properties: (A ,+) is a semihypergroup, (A, .) is a semigroup and the operation « is
distributive over the hyperoperation +. The zero of a semihyperring (A, +, «) IS an
element 0 € Asuchthat x +0=0+x={x}and x.0=0.x=0 forall x € A.
Also, a semihyperring (A, +, «) is additively commutative (AC) if x+y =y + x for
all x, y € A. Semigroups admitting the structure of a semihyperring with zero are
defined analogously.

Let V be a vector space over a division ring R and Lg(V) the semigroup under
composition of all linear transformations « : V — V. By a linear transformation
semigroup on V we mean a subsemigroup of Lg(V). A partial linear transformation
of V is a linear transformation from a subspace of V into V. Various types of linear
transformation semigroups are studied. We determine when they admit the structure
of a semihyperring with zero. It is shown that semigroups without zero always admit
the structure of an AC semihyperring with zero and the structure of a semiring with
zero. However, we characterize when our target linear transformation semigroups
without zero admit the structure of an AC semiring with zero. Moreover, the partial
linear transformation semigroup on V is studied. Necessary conditions for this
semigroup to admit the structure of an AC semiring with zero are given.

Department Mathematics Student’s SigNatUre.........ccceveeeevverecieseeeen,
Field of study Mathematics AdVISOr’s SIgNature.........cccoeevveveerieeieesieenenn,
Academic year 2003 C0-adVvisor’s SIgNAtUre ...........cceveeveeneeneeienenees



vi

ACKNOWLEDGEMENTS

I am very grateful to my supervisor, Professor Dr. Yupaporn Kemprasit,
for her consistent encouragement, helpfulness and valuable suggestions throughout
the preparation and completion of this dissertation. This is my sincere apprecia-
tion. Also, I wish to express my appreciation to the chairman and members of my
committee, Assistant Professor Dr. Patanee Udomkavanich, Assistant Professor
Dr. Ajchara Harnchoowong, Assistant Professor Dr. Amorn Wasanawichit and
Associate Professor Dr. Chawewan Ratanaprasert. Besides, I feel very thankful
to all of my teachers who have taught me for my knowledge and skills.

In particular, I would like express my sincere gratitude to my beloved parents

and my older brother for their kind encouragement throughout my study.



CONTENTS

page

ABSTRACT IN THATL ..o e v

ABSTRACT IN ENGLISH ... v

ACKNOWLEDGEMENTS .. i e vi

CONTENTS ... . .o . S .. ... ooeeieeienanennes vil
CHAPTER

I INTRODUCTION AND PRELIMINARIES ..................c....o... 1

II SEMIGROUPS ADMITTING THE STRUCTURE OF A SEMIHYPER-

RING WITH ZERO ... e 20
2.1 Elementary Results ......... . .. 21
2.2 The Semigroups OMpr(V) and OERr(V) ..o, 25

2.3 Semigroups Containing OMpg(V') and Semigroups Containing

OB 27
2.4 The Semigroups Kg(V. k) and K5(V. k) .................. .. .. 31
2.5  The Semigroups CIg(V,k) and CIx(V k) ...t 35
2.6 “The Semigroups Ir(Vy k) and Tp(Vok) c i oo 38

IIT SEMIGROUPS ADMITTING THE STRUCTURE OF AN ADDITIVELY

COMMUTATIVE SEMIRING WITH ZERO ... .. 42
3.1 The Semigroups Gr(V), Mgr(V) and Er(V) ..., 43
3.2 The Semigroups AMp(V) and AER(V) ..., 46
3.3 The Semigroup AIg(V) ..o 49
3.4 Partial Linear Transformation Semigroups ...................... 53
REFERENCES .. 60



CHAPTER 1

INTRODUCTION AND PRELIMINARIES

The multiplicative structure of a ring is by definition a semigroup with zero.
However, ring theory is a classical subject in mathematics and had been widely
studied before semigroup theory was considered important and of interest by its
own. Because the multiplicative structure of a ring is a semigroup with zero, it
is valid to ask which semigroups joining with zero if necessary are isomorphic to
the multiplicative structure of some ring. Such semigroups are usually called R-
semigroups or semigroups admitting ring structure. Equivalently, an R-semigroup
or a semigroup admitting ring structure is a semigroup S having the property
that there is an operation 4 on S° such that (S° +,-) is a ring where - is the
operation on SY. Many well-known theorems in ring theory are useful to study
whether a semigroup is an R-semigroup. For examples, Wedderburn’s theorem
tells us any finite nonabelian group is not an R-semigroup. Because every Boolean
ring is a commutative ring, we-conclude -that-any. left [right] zero semigroup,
that is, a semigroup S in which zy = z [ry = y| for all z,y € S, containing
more than one element is not an R-semigroup. It is interesting to know that
S. R. Kogalovski [6] announced in 1961 that an axiomatic characterization of
R-semigroups is impossible.

In fact, R-semigroups or semigroups admitting ring structure have long been
studied. In 1970, R. E. Peinado [8] gave a brief survey of semigroups admit-
ting ring structure. D. D. Chu and H. I. Shyr [1] proved a nice result that the

multiplicative semigroup N of natural numbers is an R-semigroup by showing



that (N°,.) & (Zy[X],-). M. Satyanarayana has paid much attention to study
R-semigroups. See [11], [12] and [13] for examples. Semigroups of our interest
are linear transformation semigroups. There was some study of linear transfor-
mation semigroups admitting ring structure provided by M. Siripitukdet and Y.
Kemprasit [14].

Krasner hyperrings are a nice generalization of rings. This is the first notion
of hyperrings introduced by M. Krasner [7] himself in 1944. By the definition of
Krasner hyperrings, their multiplicative structures are also semigroups with zero.
Y. Kemprasit and Y. Punkla [5] have defined semigroups admitting (Krasner)
hyperring structure in the same way. As mentioned above, every finite nonabelian
group does not admit a ring structure. A nice result of hyperring structures is that
every group admits a hyperring structure. This can be seen in an example of [2],
page 170. In fact, this hyperoperation was given for any abelian group to obtain
what is called a hyperfield. The same hyperoperation could be given for any group
in order to obtain what may be called a hyperdivision ring. The detail of the proof
for the later result can be seen in [9]. Besides [5], Y. Kemprasit has continued
studying semigroups admitting hyperring structure. It has been characterized in
[3] when both multiplicative interval semigroups and additive interval semigroups
of real numbers admit a hyperring structure. Also, in [4], hyperring structures of
some linear transformation semigroups have been investigated and a result in [4]
will be referred in this research. Many results of generalized semigroups of linear
transformation semigroups which admit a hyperring structure, in particular, linear
transformation semigroups admitting hyperring structure, have been provided in
[10].

As mentioned above, various types of linear transformation semigroups have

been studied in the matters of both admitting ring structure and admitting hy-



perring structure. This motivates our interest to study whether or when linear
transformation semigroups of various types admit the structure of a semihyper-
ring with zero. Hyperrings generalize rings while semihyperrings with zero are a
generalization of hyperrings. Semigroups admitting the structure a semihyperring
[semiring] with zero are defined analogously. The first main purpose is to study
many types of linear transformation semigroups with zero. We investigate whether
or when they admit the structure of a semihypering with zero. We find out that
every semigroup without zero always admits both the structure of an additively
commutative (AC) semihypering with zero and the structure of a semiring with
zero. However, they need not admit the structure of an additively commutative
(AC) semiring with zero. For our second main purpose, we characterize when var-
ious kinds of linear transformation semigroups without zero admit the structure
of an AC semiring with zero.

In the remainder of this chapter, we shall give precise definitions, notations,
and basic results which will be used in Chapter II and Chapter III. Moreover,
some examples are provided for better understanding.

For any set X, the cardinality of X will be denoted by |X|. For a semigroup
S, the semigroup S is defined to be S if S has-a zero and S contains more than
one element, otherwise, let S° be the semigroup .S with a zero 0 adjoined, that is,
SY = (SU{0},0) where 0 ¢ S,00zx =200 =0for allz € SU{0} and zoy = zy
for all =,y € S. Note that if |S| =1, then S° is a semigroup of two-elements and
SO (Zy, ). Also, if G is a group, then G° = (G U {0}, 0) defined as above.

For a set X, let P(X) denote the power set of X and let P*(X) = P(X)~{2}.

A hyperoperation on a nonempty set H is a mapping of H x H into P*(H). A
hypergroupoid is a system (H, o) consisting of a nonempty set H and a hyperop-

eration o on H.



Let (H, o) be a hypergroupoid. For nonempty subsets A and B of H, let

AoB= U (aob),

acA
beB
Aoz =Ao{z}andzro A= {z}oAforall x € H We call (H,0) a commutative
hypergroupoid if and only if x oy = y o x for all x,y € H. An element e of H is
called an identity of (H,o) if x € (xoe)N(eox) for all z € H. An element e of
H is called a scalar identity of (H, o) if (xoe)N(eox) = {z} for all z € H. Then
H has at most one scalar identity.
A semihypergroup is a hypergroupoid (H, o) such that (roy)oz=zo0(yo 2)

for all z,y, z € H, that is,

U 1y ¥ = U xzot forall z,y 2€ H.

teroy (A /o

A hypergroup is a semihypergroup (H,o) such that H ox = x o H = H for all
x € H. For x,y in a hypergroup (H, o), a is called an inverse of y if there exists
an identity e of (H,o) such that e € (zoy) N (yoz). A hypergroup H is called
reqular if every element of H has an inverse in H. A regular hypergroup (H, o) is
said to be reversible if for x,y, 2 € H,x € yo z implies z € uox and y € x ow for
some inverse u of y and some inverse v of z.

A canonical hypergroup'is a hypergroup (H,o) such that
(i) (H,o) is commutative,
(ii) (H, o) has a scalar identity,
(iii) every element of H has a unique inverse in H and
(iv) (H,o) is reversible.

A triple (A, +,) is called a semiring [semihyperring] if
(i) (A, +) is a semigroup [semihypergroup],
(ii) (A,-) is a semigroup and

(iii) the operation - is distributive over the operation [hyperoperation| +.



A semiring [semihyperring] (A, +,) is said to be additively commutative if
rx+y=y+ux forall z,y € A. For this case, we call (4, +,-) an AC semiring [AC
semihyperring]. An element 0 of a semiring [semihyperring] (A, +,-) is called a
zero of (A, +,)ifz4+0=0+2=2z+0=0+2={z}jandz-0=0-2=0
for all x € A. By the definitions, every semiring with zero is a semihyperring with
Z€ero.

A Krasner hyperring is a system (A, +,+) where
(i) (A, +) is a canonical hypergroup,

(ii) (A,-) is a semigroup with zero 0 where 0 is the scalar identity of (A, +) and
(iii) the operation - is distributive over the hyperoperation +.

In this research, by a hyperring we mean a Krasner hyperring.

Example 1.1.([2], page 170 and [9]) Let G be a group. Define a hyperoperation
+ on G° by

r+0=0+z={r} forallzeG"

Gt =G0~ {1} for all z € G,

z+y={xy} for all distinct z,y € G.
Then (G, +,-) is a hyperring where - is the operation on G°. Note that the zero
of the hyperring (G°; +:+) is 0'and the inverse of 7 € G'in (G°, +) is x itself. Also,

(G° +, ) is not a ring if |G| > 1.

Example 1.2. ([3]) Let I be a multiplicative interval semigroup on R, the set of
real numbers, such that for every x € I, —x € I. Define a hyperoperation @ on [

by
for z,yel, 200 = 0®x = {z},

rdr = {z},

@ (—x) = [=|«l =[],



rdy = ydr ={y} if [z] <[yl

If - is the multiplication on I, then (I,@,-) is a hyperring. Observe that 0 is the
zero of (I,®,-) and for x € I, —x is the inverse of = in the canonical hypergroup

(I,®). If |[I] > 1, then (I,,-) is not a ring.

In passing, we give a remark here that the following fact was proved in [3].
For a multiplicative interval semigroup / on R containing some positive numbers
and some negative numbers, there is a hyperoperation @ on I such that (I,®, )

is a hyperring if and only if I has the property that x € [ implies —x € I.

Example 1.3. If (S, ) is a zero semigroup with zero 0 (that is, x -y = 0 for all
x,y € S) containing more than two elements and define a hyperoperation + on S

by
r+0=042={z} foralzels,

z+y=S for all z,y € .S \ {0},
then (S, +, ) is clearly an AC semihyperring with zero which is neither a semiring

with zero nor a hyperring.

Example 1.4. Let © be a hyperoperation defined on [0, c0) by
td0=0dz = {x} for all € [0, 00),
r @y = [max{x,y},00) forall z,y € (0,00).

Then ([0,00),®,-) is clearly an AC semihyperring with zero which is neither a

semiring with zero nor a hyperring.

By the definitions, every ring is a hyperring and every hyperring and every

AC semiring with zero is an AC semihyperring with zero, but the converse is not



true. These can be seen from the above examples. Therefore hyperrings are a
generalization of rings. Similarly, AC semihyperrings with zero generalize both

AC semirings with zero and hyperrings.

A semigroup S is said to admit a ring [hyperring] structure if (S°,+,-) is a ring
[hyperring] for some operation [hyperoperation| + on S° where - is the operation on
SY. Semigroups admitting the structure of a (AC) semihyperring [semiring] with
zero are defined analogously. As mentioned previously, every finite nonabelian
group does not admit a ring structure. However, Example 1.1 shows that every
group admits a hyperring structure. Then every group admits the structure of a
semihyperring with zero. Observe that if S is a trivial semigroup, then S° & (Z,, -)
where - is the multiplication on Zs, so S admits a ring structure.

The following example shows that every semigroup without zero admits the

structure of an AC semihyperring with zero.

Example 1.5. Let S be a semigroup without zero. Define a hyperoperation +
on S° by

r+0=0+z={z} ifzres’

r+y=">_xy} if v,y € 9.
Then (S°, +)is clearly a commutative semihypergroup with a scalar identity 0.
Since0 is not-an-element of S;xzy # 0 for all x;y €5, it follows that the mul-
tiplication - of SY distributes over the hyperoperation + defined above, and thus
(8% +,+) is an AC semihyperring with zero. But every x € S has no inverse in

the semihypergroup (S, +), so (5%, +,-) is not a hyperring.

Also, every semigroup without zero admits the structure of a semiring with zero

as shown by the next example.



Example 1.6. Let S be a semigroup without zero. Define an operation + on S°
by

r+0=0+x=2x if x € S°,

r+y=u=x ifx,yesS.
Then (S°, +) is obviously a semigroup having 0 as its identity, Since zy # 0 for all
x,y € S, we deduce that the multiplication - of S° distributes over the operation

+. Hence (S°, +,) is a semiring with zero, but it is not additively commutative

if |S] > 1.

Next, let V' be a vector space over a division ring R and Lz (V') the semigroup
under composition of all linear transformations v : V. — V. Then Lg(V) admits a
ring structure under the usual addition of transformations. The image of v under
a € Lr(V) is written by var. For @ € Lg(V), let Ker o and Im « denote the kernel
and the image of «, respectively. For A C V' let (A) stand for the subspace
of V spanned by A. The following three propositions are simple facts of vector
spaces and linear transformations which will be used. The proofs are routine and

elementary and they will be omitted.

Proposition 1.7. Let B be a basis of V : If u-and w are distinct elements of B,

then {u,u+w} U (B~ {u,w}) is also a basis of V.

Proposition 1.8. Let B be a basis of VA C B and ¢ : BN A — V a one-to-one
map such that (B~ A)y is a linearly independent subset of V. If « € Lg(V) is

defined by
0 ifveA,

va =
ve ifve BN A,

then Kera = (A) and Ima = (B \ A)e.



Proposition 1.9. Let B be a basis of V and A C B. Then
(1) {v+ (A) | v e B~ A} is a basis of the quotient space V/{A) and

(id) dimg (V/(A)) = | B~ Al.

Let

Gr(V)={a € Lr(V) | aris an isomorphism}.

Then Gr(V) is the unit group of the semigroup Lg(V') or the group of all units

of Lr(V'). The following known result will be referred.

Proposition 1.10.([4]) If o € Lg(V') is such that af = Ba for all € Gr(V),
then a = aly for some a € C(R) where C(R) is the center of R and 1y is the

identity map on V.

Example 1.1 shows that Gg(V) admits a hyperring structure. We know from

the next proposition that Gx(V') does not admit a ring structure if dimg V' > 1.

Proposition 1.11.([14]) Gr(V) admaits a ring structure if and only if dimgV < 1.

Next, let Mp(V')and Eg(V) bethe set of all one-to-one linear transformations
(monomorphisms) of V' and the set of all onto linear transformations (epimor-

phisms) of V', respectively. Then
Mp(V) ={a € Lr(V) | Kera = {0}},
Ep(V) ={a € Lr(V) | Ima =V}
which are subsemigroups of Lz(V') containing Gr(V'). Moreover, it is well-known

that if dimgr V' < oo, then Mp(V) = Er(V) = Ggr(V). In fact, if Mr(V) [Er(V)]

= Gg(V), then dimr V' < oo. To see this, let dimg V' be infinite, B a basis of
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V and u € B. Since B is infinite, |B \ {u}| = |B|. Let ¢ : B — B~ {u} be a

bijection. Define o € Lr(V') by

va =vp for every v € B.

By Proposition 1.8, Kera = {0} and Ima = (B~ {u}) C V. Hence a € Mg(V') ~

Ggr(V). Also, if g € Lg(V) is defined by

vt ifve B~ {ul,

o=

0 L
then Ker 8 = (u) and Im @ = (B) = V by Proposition 1.8, so € Er(V)~\Ggr(V).
Consequently, Mr(V) [Er(V)] = Gg(V) if and only if dimg V' < co. Observe that
if dimg V' > 1, then none of Gx(V'), Mg(V) and Er(V) contains 0, the zero
mapping on V. Proposition 1.11 shows that Mz(V) and Ex(V) admits a ring
structure if dimg V' < 1. In fact, it was shown in [14] that if dimg V' < 1 is also

necessary for each of Mg(V) and Ex(V) to admit a ring structure. Next, let

OMgr(V)y={a € Lg(V) | dimg Ker« is infinite },

OFRr(V)={a € Lg(V) | dimg (V/Ima) is infinite }.
If dimgV is infinite, then 0'belongs to both OMg(V') and OEg(V'). Since Keraf 2
Ker @ and Im a8 C Im G, for all a,3 € Lr(V), it follows that OMg(V) and
OFER(V) are both subsemigroups of Lz (V') containing 0.if dimgV is infinite. For
this case, the semigroups OMg(V) and OFEg(V) may referred to respectively as
the opposite semigroup of Mr(V') and the opposite semigroup of Er(V).

For v € Lr(V), v is said to be almost one-to-one if dimg Ker v < 0o, and « is

said to be almost onto if dimg (V/Im«a) < co. Let

AMg(V) ={a € Lr(V) | a is almost one-to-one },

AER(V)={a € Lg(V) | a is almost onto }.
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Then Mr(V) C AMg(V) and Er(V) C AEg(V). It was proved in [14] that for

all o, 8 € Lg(V),

dimp Ker aff < dimg Ker a + dimg Ker 3,
dimg (V/Imaf) < dimg (V/Ima) + dimg (V/Im 3).

Therefore both AMg(V') and AER(V') are subsemigroups of the semigroup Lg(V),
and they do not contain 0 if dimpg V' is infinite. Clearly, AMr(V) = AER(V) =
Lr(V) if dimg V' < oo. Hence if dimg V' < oo, then both AMg(V) and AER(V)
admit a ring structure. Let dimp V' be infinite and B a basis of V. Since B
is infinite, there are By, By € B such that B = B; U By, By N By = & and

|B1| = |Bs| = |B|. Let @ : By — By be a bijection and define o € Lg(V') by

vp ifv € By,
va =

0 if v e B,.
By Proposition 1.8, Ker a = (Bs) and Im « = (By), so by Proposition 1.9 (ii),
dimg (V/Ima) = |B \ By| = |By|. Therefore both dimp Ker o and dimpg (V/Im «)
are |B|. Thus av¢ AMg(V) and a ¢ AEgR(V). Therefore we conclude that
AMp(V) [AER(V)] = Lg(V) if and only if dimp V' < oc.
For any cardinal number £k with k£ < dimpg V, let
Kr(V,k) ={a € Lr(V) | dimgpKera > k },
Ir(Vik) ={a € Lg(V) | dimpIma <k },
CIg(V,k) ={a € Lr(V) | dimg (V/Ima) = k }.
Then the zero map 0 on V belongs to all of the above three subsets of Lg(V).
Since for a, f € Lr(V),Keraf D Ker @ and Im a3 C Im 3, we conclude that all

of Kr(V, k), Ir(V, k) and CIr(V, k) are subsemigroups of Lg(V'). Observe that if

dimp V' is infinite, the notations OMg(V') and OFEg(V') defined previously denote



12

Kgr(V,Xg) and CIg(V,Rg), respectively, that is,

OMgr(V)={a e Lr(V) | dimg Kera > R },
OEgr(V)={a € Lg(V) | dimg (V/Ima) > Ny }.

We know that if dimz V is finite, then for & € Lg(V'), dimgKera = dimg(V/Ima) =
dimg V — dimpg Im « since dimg V' = dimpz Ker o + dimg Im a and dimgp V =

dimp (V/Ima) + dimp Im av. Hence we have

Proposition 1.12. If dimgV < oo, then Kp(V, k) = CIgr(V, k) = Ig(dimgV —k)

for every a cardinal number k < dimg V.

However, these are not generally true if dimg V' is infinite. This is shown
by the following proposition. This proposition also shows that the semigroups
Kgr(V,k),CIg(V, k) and Ig(V, k) should be considered independently if dimg V' is

infinite.

Proposition 1.13. Let V' be an infinite dimensional vector space and a nonzero
cardinal number k < dimgp V. Then the following statements hold.

(i) CIr(V, k) # Kg(V,l) for every cardinal nuwmber I < dimg V.

(i) If k < dimg V, then Ig(V k) # Kr(V,1) and Ig(V, k) # CIr(V,1) for every

cardinal number [ <-dimg V.

Proof. 'Let B be a basis of V. Since B is infinite, there are subsets B; and By of
B such that B = Bl UB27Bl ﬂBQ = & and |Bl‘ = ’B2| = ‘B| Let @ Bl — B
be a bijection. Define «, 5 € Lg(V') by

v if v e By,
va = vB=uvp ! foral veB.

0 if/UEBQ,
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Then by Proposition 1.8, Ker @ = (By),Im o = (B) = V,Ker § = {0} and
Im § = (By), so dimg Ker « = |By| = |B| = dimg V,dimg Im o = |B| =
dimp V,dimg (V/Im ) = 0,dimg Ker § = 0 and dimg Im 8 = |By| = dimg V.
We have from Proposition 1.9 (ii) that dimg (V/Im ) = |By| = dimg V. Hence
a € Kgr(V,l) \ CIr(V, k) for every cardinal number [ < dimg V', so (i) is proved.

Moreover, if k& < dimg V, then o € Kg(V,1) N Ir(V, k) and g € Clg(V,l) ~

Ir(V, k) for every cardinal number [ < dimp V. Hence (ii) is proved. ]

Next, we define K, (Vi k), CI(V, k) and I(V, k) which are subsets of Kz(V, k),
ClIgr(V, k) and Ig(V, k) respectively as follows :
Kp(V,k) ={a e Lp(V) | dimgKera > k} where k < dimgV,
CIh(V k) ={a€ Lg(V) | dimg (V/Im«) > k } where k < dimgV,
In(V,k)={a e Lr(V) | dimgIma < k} where 0 < k < dimg V.
Then 0 belongs to all Ki(V, k), CI,(V,k) and I(V,k), so they are respectively
subsemigroups of Kg(V, k), C1x(V, k) and Iz(V, k). Observe that if £ < dimg V/,
then Ki(V, k) = Kg(V, k') and CIL(V, k) = CIg(V k') where k' is the successor
of k. Also, if 0 < k < dimpgV, k is a finite cardinal number and % is the predecessor
of k, then Iy(V, k) ="1a(V, i)

For a € Lg(V), let
Fla)={veV|va=v}.

Then for o € Lg(V), F(a) is a subspace of V' and « is called an almost identi-
cal linear transformation of V if dimpg (V/F(«)) is finite. The set of all almost

identical linear transformations of V' will be denoted by AIg(V'), that is,

AIR(V)={ a€ Lr(V) | dimg (V/F(a)) < 00 }.
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Observe that 1y, the identity map on V', belongs to AIgx(V'). We show in the next

proposition that AIx(V') is a subsemigroup of Lg(V).

Proposition 1.14. AlIg(V) is a subsemigroup of Lr(V').

Proof. Let a, 8 € AIgr(V). Then dimg (V/F(«)) and dimpg (V/F((3)) are finite.
We claim that dimg (V/F(«f)) is finite. Since F(«) N F(B) C F(af), it suffices
to show that dimpg (V/(F(a) N F(3))) is finite. Let By be a basis of F'(a) N F(5)
and let By C F(a) \ By and By C F(f) \ By be such that B; U By and By U Bj
are bases of F'(«) and F((3), respectively. We shall show that (B; U By) U Bj is
linearly independent over R. Let wy,us,...,uy € By U By, v1,vs,...,0, € B3 be

distinct such that

k !
Zaiui + Zbi% =0
i=1 i=1

for some aq,as,...,ar,b1,b9,....b; € R. Then zk:aiui = — zl:bivi € F(a)N
F(B) = (By). Since By U By is linearly independenitz,lbi =0 for alilzz'l =1,2,...,1,s0
i a;u; = 0. Thismmplies that a; =0 foralli =1,2,..., k. Hence By UBy;U B3 is
liizlearly independent over R. Let By C V'~ (B; U By U B3) be such that By U By U
B3 U By is a basis of V. It follows from Proposition 1.9(i) that { v+ F(«) | v €
B3UB4y }is a basis of V/F(a) and { v+ F(f) | ve ByUBy } is a basis of V/F(f).
But dimg (V/F(«)) and dimpg (V/F(3)) are finite, so B3 U By and By U By are
finite.  Therefore: By U By U By is finite.  Also, we have from Proposition 1.9 (i)
that { v+ (F(a)NF(B)) | v € ByUB3UBy } is a basis of V/(F(«) N F(B)) which
implies that dimpg (V/(F(«) N F(B))) is finite.

Therefore the proposition is proved, as desired. O

Notice that if dimg V' < oo, then Algx(V) = Lg(V) which admits a ring

structure. Moreover, the semigroup Alg(V') does not contain 0, the zero map on
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V if dimg V' is infinite.

By a partial linear transformation of V', we mean a linear transformation from
a subspace of V into V. Let PLr(V') be the set of all partial transformations of
V. For a € PLi(V), let Dom o and Im a denote the domain and the image of
a, respectively and the image of v € Dom v under « is also written by va. Then

PLg(V) is a semigroup under the composition of maps, that is, for o, 5 € PLg(V),
Domaf = {v € Doma | va € Dom 3},

v(af) = (va)p for all v € Dom af.
This implies that for e, 5 € PLz(V'), Dom a3 C Dom a and Im a5 C Im 3. For a
subspace W of V', let 1y, and W, denote respectively the identity map on W and

the zero map whose domain is W. Observe that

{0}oa = {0}y and Vo=V, for all « € PLi(V),
aVy =Vy forall @ € Lr(V),

a{0}o = {0}y for every 1-1 map a in PLg(V).

It then follows that if dimg V' > 0, then PLgz(V') is a semigroup without zero. The
semigroup PLg(V) is called the partial transformation semigroup on V. Notice
that

Lr(V)={a € PLg(V) | Doma =V}

which is a subsemigroup of PLy(V) having V asits zero: Hence if dimgp > 0,
then Lg(V') is a proper subsemigroup of PLg(V).

Since every linear transformation from a subspace of V' into V' can be defined
on a basis of its domain, for convenience, we may write & € PLg(V') by using a

bracket notation. For examples,

v € BNB;
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means that B is a basis of Dom«a, B; C B and

0 ifUEBl,
o =
v if ve B~ B
and
U W v
ﬂ:
w 0 w
v € Bx{u,w}

means that B is a basis of Dom o, u, w € B, u # w and

(
w if v=u,

uB=4 0 if v=uw,

| v if v € B~ {u,w}.

Then the linear transformations a, 5 : V. — V in the proof of Proposition 1.13

can be written as

Q= and (=

- |
vp 0 v
v € By veEB

As was mentioned previously, the semigroup PLg(V') has no zero if dimg V' >
0. We know that 0, the zero map on V, does not belong to Gr(V), Mg(V') and
Er(V) if dimg V' > 0 and 0 belongs to none of AMg(V'), AER(V) and Alg(V) if
dimp V' is infinite. However, this may not be true that these semigroups have no

zero for such given dimg V. The following facts should be shown.

Proposition 1.15. The following statements hold.
(i) Let Sr(V') be Gr(V), Mr(V') or Er(V'). Then Sr(V') has no zero if and only
if either dimgV > 1 or dimgV =1 and |R| > 2.

(i) Let S(V') be AMr(V), AER(V) or AIr(V'). Then S(V') has no zero if and
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only if dimgV is infinite.

(75) PLr(V') has no zero if and only if dimg V' > 0.
Proof. (i) Let B be a basis of V.

Case 1 : dimgpV > 1. Let u,w € B be distinct and define o € Lg(V') by

v € B~{uw}

Then by Proposition 1.8, @ € Gr(V)) € Sgr(V). Suppose 6 € Sg(V) is the zero
of Sg(V). Then a# = Oa = 0, so uf = uad = wh. Thus 0 # v — w € Ker 0. It
is a contradiction if Sp(V') is Gr(V) or Mr(V). Next let Sgr(V) = Er(V). Then

20 = u for some z € V ~. {0}, and so
u-="20"="z0ar= ua. = w,
a contradiction.

Case 2 : dimp V. =1 and |R| > 2. Since dimp V' = 1,5z(V') does not contain 0,

the zero map on V. Let u € V \ {0} and let a,b € R~ {0} be distinct. Then {u}

u u
is a basis of V' and and are distinct-elements of Sg(V). Assume

au bu
that 6 is the zero of Sg(V'). Then

0=0= 0,
au bu
SO
u U
a(uf) =u 0=ub =u 0 = b(ub).
au bu

Thus either uf = 0 or a = b, hence either § = 0 or a = b. This is a contradiction.
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Conversely, assume that dimp V' < 1 and (dimg V' # 1 or |R| = 2). Then

dimgr V' =0 or dimg V =1 and |R| = 2. Consequently, |V'| < 2 and hence

{oy i [V|=1,
Sr(V)=Gr(V) =
() V=2

Therefore Sg(V') has a zero.

(ii) If dimg V' < oo, then AMgp(V) = AER(V) = AIr(V) = Lr(V) which has
0 as its zero.

Conversely, assume that dimp V' is infinite. Then S(V') does not contain 0,

the zero map on V. Suppose that S(1') has a zero 6. Let B be a basis of V' and

for each u € B, let a,, € L(V) be defined by

U v
Oy —

0 v
v € B~{u}
Then for every u € B, Ker o, = (u) and Ima,, = (B~ {u}) by Proposition 1.8, so
dimg (V/Im ) = 1 by Proposition 1.9 (ii). Also, F'(a,) = (B ~ {u}) for every

u € B. Consequently, a,, € S(V) for every u € B. Thus
a0 =0a, =60 for every u € B.
This implies that
for every u € B,uf =ua,0=00 =0

which implies that 6 = 0, a contradiction.
(iii) As was shown, dimg V' > 0 implies that PLg(V") has no zero.

If dimr V' =0, then PLg(V) = {{0}0}, so PLgr(V') has a zero. O

Chapter II deals with linear transformation semigroups on V' with zero. The

purpose of Chapter II is to show that if dimg V' is infinite, the semigroups
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OMg(V),OER(V) and some linear transformation semigroups containing O Mg (V)
and OER(V) do not admit the structure of a semihyperring with zero. These
results indicate that if dimg V' is infinite, then there are infinitely many sub-
semigroups of Lgr(V') which do not admit the structure of a semihyperring with
zero. The semigroups OMg(V) and OEg(V) are generalized to be the semi-
groups Kg(V, k) and C'Ix(V, k). We also determine in this chapter when the semi-
groups Kg(V, k) and CTx(V, k) admit such a structure. Moreover, the semigroups
Ir(V k), KR(V, k), CI,(V,k) and I(V, k) are also studied in the same matter.
In Chapter 111, we intend to deal with semigroups without zero. The following

semigroups are considered:

Gr(V),Mr(V), Er(V), AMr(V), AER(V), AIr(V) and PLg(V).

By Proposition 1.15, the semigroups Gg(V'), Mr(V) and Er(V) have no zero if
either dimgV > 1 or dimgV = L and |R| > 2, PLg(V') have no zero if dimg V" > 0,
and if dimg V' is infinite, then the semigroups AMg(V), AER(V) and AIg(V') have
no zero. Example 1.5 and Example 1.6 show that every semigroup without zero
admits both the structure of an AC semihyperring with zero and the structure of
a semiring with zero. However, it need not admit the structure of an AC semiring
with zero. The purpose of this chapter is to provide necessary and sufficient
conditions for Gr(V'), Mgr(V), Eg(V), AMg(V),AER(V) and AIr(V) to admit
the structure of an AC semiring with zero. Necessary conditions for PLg(V) to
admit the structure of an AC semiring with zero are provided. In addition, a
partial sufficient condition for this property also given.

Throughout, let V' be the vector space over a division ring R.



CHAPTER II
SEMIGROUPS ADMITTING THE STRUCTURE OF A

SEMIHYPERRING WITH ZERO

In this chapter, we deal with linear transformation semigroups on V with
zero. The following linear transformation semigroups on V' given in Chapter I are
recalled as follows:

Lp(V)={a:V — V | ais a linear transformation},
Gr(V) ={a € Lg(V) | a is an isomorphism},
OMg(V) ={a € Lr(V) | dimg Ker « is infinite },
OFRr(V) ={a € Li(V) | dimg (V/Im«) is infinite },
Alp(V) ={a € Lr(V) | ais almost identical }
— {a € La(V) | dimg (V/F() < 00 }
where F(a) ={veV |va=v},
Kr(Vk)={a e Lg(V) | dimgKera >k}
where k< dimpgV,
KoV, k) ={ae Lg(V) | dimg Keraw > k'}
where k < dimpg V,
CIr(V.k) ={a € Lr(V) | dimg (V/Ima) > k}
where k < dimpgV,
CIW(V,k) = {a € La(V) | dimpg (V/Tma) > k}

where k < dimpg V,
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Ir(Vik)={a € Lg(V) | dimglma <k}
where k£ < dimg V,
In(Vik) ={a e Lg(V) | dimgIma < k }

where 0 < k < dimp V.

2.1 Elementary Results

We show in this section that if dimg V' is infinite, then the following sub-
sets of Lr(V') are also subsemigroups of Lg(V) where H and T are respectively

subsemigroups of Gg(V') and AlR(V).

OMr(VYUH , OERr(V)UH,

OMr(V)UT , OER(V)UT.

Lemma 2.1.1. Let dimg V be infinite. The following statements hold.
(1) OMRg(V') is a right ideal of Lr(V').

(i) OER(V) is a left ideal of Lr(V).

Proof. (i) and (ii) are obtained respectively from the facts that Ker af O Ker a

and Im a8 CIm S for all. o, '€ Lg(V). ]

Lemma 2.1.2. If dimgV is infinite, then Gr(V)OMg(V) C OMg(V).

Proof. Let a« € Gr(V) and g € OMg(V). If v € Ker a3, then vaf = 0, so
va € Ker 8. Thus (Ker af)a C Ker 3. If v € Ker 3, then (va™)af = v8 = 0,
and hence v = (va™)a € (Ker aB)a. This proves that (Ker af)a = Ker 3. Since
a V. — V is an isomorphism, Ker aff = Ker #. But dimg Ker § is infinite, so

dimp Ker a3 is also infinite. Hence af € OMg(V). O
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The following proposition is a direct consequence of Lemma 2.1.1(i) and Lemma,

2.1.2.

Proposition 2.1.3. If dimg V is infinite and H is a subsemigroup of Gr(V),

then OMg(V)U H is a subsemigroup of Lr(V).

Lemma 2.1.4. If dimp V' is infinite, then OEr(V)Gr(V) C OER(V).
Proof. Let o € OEg(V) and 5 € Gr(V). Define ¢ : V/Ima — V/Imaf by
(v+Ima)p =vf+Imaf for every v € V.

Since # : V. — V is an isomorphism, we have that ¢ is an isomorphism, and
hence V/Ima = V/Im af. But dimg (V/Im @) is infinite, so dimg (V/Im af) is
infinite. Therefore a5 € OER(V). This proves that OFEg(V)Gr(V) C OER(V),

as required. O

The following proposition is directly obtained from Lemma 2.1.1(ii) and Lemma

2.14.

Proposition 2.1.5. If dimg V is infinite and H s a subsemigroup of Gr(V),

then OEr(V)U H is a subsemigroup of Lr(V).

Lemma 2.1.6. If dimgV is infinite, then AIr(V)OMg(V) C OMg(V).

Proof. Let o € AIg(V) and 8 € OMg(V) and let By be a basis of F/(av)NKer 5 and
B, C Ker S~ By such that By U By a basis of Ker 3. Since f € OMg(V), BiUBs is
infinite. Let v1,vo, ..., v, be distinct elements of By and let aq,as,...,a, € R be

such that Zai(vi + F(a)) = F(«). Then Zaivi € F(a). Since By C Ker 3, we

i=1 i=1
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have that i a;v; € F(a)NKer 8. But By is a basis of F(a) NKer 8 and By U By
is linearly Z'ijlldependent over R, so we have that a; = 0 for all i € {1,2,...,n}.
This shows that {v + F(a) | v € By} is a linearly independent subset of the
quotient space V/F(«) and u + F(a) # w + F(«a) for all distinct u,w € Bs.
Since dimp (V/F(«)) < oo, we deduce that {v + F(a) | v € By} is finite. But
{v+F(a) | v € By} = | By|, thus By is finite. This implies that B is infinite. Since
B, C F(a) NnKer 3, we have Biaff = B3 = {0}, so B; C Ker af. Consequently,

dimpg Kera/ is infinite. Hence aff € OMp(V). Therefore the lemma is proved. [
The next proposition follows directly from Lemma 2.1.1(i) and Lemma 2.1.6.

Proposition 2.1.7. If dimg V s infinite and T is a subsemigroup of AIr(V),

then OMgr(V)UT is a subsemigroup of Lr(V').

Lemma 2.1.8. For every a € Alg(V), dimg Kera < co.

Proof. Let o € AIr(V') and B a basis of Ker a. Let vy,vs,...,v, € B be dis-

tinct and let ay,a9,...,a, € R be such that Z%’(Uz‘ + F(a)) = F(a). Then

=1
n

m
Zaivi € F(a) which implies, that (Z a;v;) o = Zaivi. But vy, v9,...,v, €
i=1

i=1 =1

T

Ker a, so (zn: a;v;)ae = 0. Thus Zn:aivi = 0. Since vy, V9, ..., v, are linearly
independenti:éver R, it follows th;?ai = 0 for every ¢« € {1,2,...,n}. This
proves that {v + F(a) | v € B} is a linearly independent subset of V/F(«)
and v + F(«a) # w + F(«a) for all distinct v,w € B. Since dimg (V/F(«)) is
finite, {v + F(a) | v € B} is finite. But [{v + F(a) | v € B}| = |B|, so

dimp Ker a < o0. ]
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Lemma 2.1.9. If dimg V' is infinite, then OER(V)AIr(V) C OER(V).
Proof. Let o« € OER(V) and 8 € AIg(V). Define ¢ : V/Ima — Im 3/Im a8 by
(v+Ima)p =vG+Imaf forallveV. (1)
Then ¢ is an epimorphism from V/Im«a onto Im 3/Im /5. Hence
(V/Ima)/Ker ¢ = Im f/Im of. (2)
To show that dimp Ker¢ < oo, let B C V' be such that

{v+ Ima | ve B} is a basis of Kerp and
(3)
v+ Imea # w+ Ima for all distinet v, w € B.
Then from (1) and (3), we have that for every v € B, vf+Imaf = (v+Ima)p =

Imaf. Thus vf € Imaf = (Ima)f for all v € B, so for each v € B, there exists

an element w, € Im « such that vg = w, . Consequently,
{v—w, |ve B} CKerp. (4)

n
If v1,v9,...,v, € B are distinct and Zai(vi — w,,) = 0 where a1, as,...,a, € R,
i=1

then Z a;v; = Zaiwvi € Im @, and hence Zai(vi +Ima) =Ima in V/Im a.
i=1 =1 =1
By (3), a; = 0 for every i € {1,;2;...,n}. This shows that
{v = w, | v € B} is linearly independent over R
(5)
and v — w, # v — w, for all distinct u,v € B.
We therefore deduce from (4) and (5) that |B| < dimgKerg. Since dimgKers < oo
by Lemma 2.1.8, we have that B is finite, and hence dimg Ker ¢ < oo by (3). But

dimp (V/Im ) is infinite and

dimpg (V/Ima) = dimg ((V/Im a) /Ker ¢) 4+ dimg Ker ¢,
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so we have that dimg ((V/Ima)/Kery) is infinite. Then from (2), dimg (Im5/Ima/3)
is infinite. Consequently, dimg (V/Im «3) is infinite, so af € OEg(V).

Therefore the proof is complete. ]

The last result of this section is obtained directly from Lemma 2.1.1(ii) and

Lemma 2.1.9.

Proposition 2.1.10. If dimg V is infinite and T is a subsemigroup of AIr(V),

then OER(V)UT is a subsemigroup of Lr(V).

2.2 The Semigroups OMp(V) and OER(V)

Throughout this section, dimpg V' is assumed to be infinite. Recall that 0,
the zero map on V' belongs to both OMg(V') and OFEg(V) and note that 1y ¢
OMg(V) and 1y ¢ OER(V). In this section, we aim to prove the following

theorem.

Theorem 2.2.1. If S(V) is OMgr(V) or OEg(V), then S(V') does not admit the

structure of a semihyperring with zero.

Proof- We prove-the theorem by contradiction. Suppose that there is a hyperop-
eration @ on S(V') such that (S(V),®, ) is a semihyperring with zero 0 where -
is the operation on S(V'). Let B be a basis of V. Then B is infinite, so there are
subsets By, By of B such that B = By U By, B N By = @ and |By| = | Bs| = | B|.

Define o, B € Lg(V') by

v By By v
v 0 0 w

v € By v € Ba
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By Proposition 1.8 and Proposition 1.9 (ii), Ker a = (By), dimg (V/Im o) =
dimp (V/(B1)) = |Bal, Ker § = (B1) and dimp (V/Im ) = dimpg (V/(Bz)) = [Bi].
Then o and § are elements of OMg(V) and OFEg(V). Hence a & f C S(V).
Obviously,

o =a, =B aff = fa = 0. (2)

We have from (2) that

ala® f) =ad 0 ={a}, .
Blad p)=0& B ={p}.
Let A € a® B. By (3), a\ = a and S\ = . We therefore deduce from these

equalities and (1) that

for every v € By, v\ = va\ = va = v,
(4)

for every v € By, VA =v0\ =v0 =v.

Consequently, v\ = v for every v € B. Since B is a basis of V, A = 1y,. This is a
contradiction because 1y & OMg(V) and 1y ¢ OER(V).

Therefore the theorem is proved. O

Since every hyperring [ring] is an AC semihyperring with zero, we have

Corollary 2.2.2. The following statements hold.
(i) The semigroup OMpr(V') does not admit a hyperring [ring| structure.

(i9) The semigroup OER(V') does not admit a hyperring [ring] structure.
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2.3 Semigroups Containing OMpz (V) and Semigroups Con-

taining OFr(V)

Also, dimpz V is assumed to be infinite in this section. From Proposition 2.1.3,
Proposition 2.1.5, Proposition 2.1.7 and Proposition 2.1.10, we know respectively

that

(1) OMg(V) U H where H is a subsemigroup of Gr(V),
(2) OER(V) U H where H is a subsemigroup of Gg(V),
(3) OMg(V)UT where T is a subsemigroup of Alg(V),
(4)

4) OER(V)UT where T' is a subsemigroup of Alx(V)

are also subsemigroups of Lz(V)). It is shown in this section that any linear
transformation semigroup on V' of type (1) — (4) does not admit the structure of

a semihyperring with zero.

Theorem 2.3.1. If H is a subsemigroup of Gr(V') and S(V') is the semigroup
OMgr(V) U H or the semigroup OEr(V) U H, then S(V) does not admit the

structure of a semihyperring with zero.

Proof. Suppose that there exists a hyperoperation & on S(V') such that (S(V), ®, -)
is a semihyperring with zero 0 where - is the operation on S(V'). Let B be a basis
of V'and u € B a fixed element. Since B is infinite, B\ {u} has subsets Bj, By
such that B~ {u} = By U By, B N By = @ and |By| = |By| = |B ~ {u}|(=|B|).
Then B = B; U By U {u} and these three sets are pairwise disjoint. Define

047577 € LR(V) by

v By U{u} ByU{u} v u BiUB,
o= 5= = o
v 0 0 v u 0
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By Proposition 1.8 and Proposition 1.9 (ii), Kera = (BoU{u}), dimg (V/Ima) =
dimg (V/(B1)) = |BoU{u}|, Kerg = (BiU{u}), dimg(V/Imp) = dimg (V/(B2)) =
|By U{u}|, Kervy = (B; U By), and dimg (V/Im~) = dimpg (V/(u)) = |B; U By|.

Then o, 3,7 € S(V). Thus a® g C S(V). Obviously,

o=, f2=0, af =Ba=0, ya=~3=0. (2)
From (2), we have
a(a®f) =a®0={a},
Blae p)=0& 8 ={0}, (3)

o ®B) =0 0={0}.
Let A € a @ 3. We therefore have from (3) that a\ = «, 5\ = § and v\ = 0.

Hence from these equalities and (1), we get

for every v € By, vA = va\ = va = v,

for every v € By, vA = vBA =v3 = v, (4)
uA = uyA =0,
that is,
U v
A=
0 w
v € B1UB>y

Hence Ker & = {u} and dimg (V/Im X) = dimg (V/(B < A{u})) = {u}| = 1.
Therefore A\ ¢ S(V') which is contrary to that A € a @ 5 C S(V).

Hence the theorem is completely proved. O

The following corollary is a direct consequence of the above theorem.

Corollary 2.3.2. If H is a subsemigroup of Gr(V'), then the semigroups OMg(V )U

H and OER(V)U H do not admit a hyperring [ring] structure.
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Remark 2.3.3. Let B be a basis of V and for distinct u, w € B, let ay,, € Ggr(V)

be defined by

v € B~{u,w}

Then H,., = {1v,uw} is a subgroup of Gr(V) for all distinct u,w € B, and
Hyw # Hyw if u,w, v’ w" are elements of B such that (u,w) # (v/,w). This
fact and Theorem 2.3.1 show that if dimg V' is infinite, there are infinitely many
subsemigroups of Lz (V) containing OMp(V') and infinitely many subsemigroups
of Lr(V') containing OEr(V') which do not admit the structure of a semihyperring

with zero.

Theorem 2.3.4. If T' is a subsemigroup of AIgr(V) and S(V') is the semigroup
OMg(V)UT or the semigroup OEr(V)UT, then S(V') does not admit the structure

of a semihyperring with zero.

Proof. Suppose that (S(V),®, -) is a semihyperring with zero for some hyperop-
eration @ on S(V') where - is the operation on S(V'). Let B be a basis of V' and
let Bl7BQ Q B be such that B-= Bl U Bg,Bl ﬂBg = @ and |B1| = |Bg| = |B|

Then there is a bijection ¢ : By — Bs. Define ;3 € Lg(V/) by

() BQ Bl v
o= and (= : (1)

vp 0 0 wvet

v € By v € Bg

Then from Propositon 1.8 and Propositon 1.9 (ii), Kera = (By), dimg(V/Ima) =
dimR (V/<B2>) = |B1‘, Kerﬁ = <Bl> and dlmR (V/Imﬂ) = dlmR (V/<B1>) = |BQ|

Thus «, 5 € OMg(V)NOER(V), and so a, B € S(V). It is clear from (1) that
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for every v € By, vaf = v, (2)

for every v € By, vfa =v.

It follows from (2) that

ala® B) =0@af = {af}, Blad®B) = Ba® 0 = {Ba}. (3)

Let A € a & (. We therefore have from (3) that e\ = af and S\ = [a. Hence

from these facts, (1) and (2), we have

for every v € By, (vp)A = val = vaf = v = (vp)p

for every v € By, (v YA =08\ = vfa =v = (vp )p.

We can see from (4) that

AN, = »~': By — B is a bijection,
()

Alp, = ¥:B1— B is a bijection,.

Since B = By U By and By N B, = @, it follows from (5) that A\, : B — B
is a bijection, so A € Gr(V). Hence A ¢ OMg(V) and A ¢ OEg(V). Claim
that A & AIr(V), let vyve, .50, € B; be distinct and let ay,as,...,a, € R

n

be such that Zai('z)i + F(X)) = F(A). Then Zaivi € F(\), so (Z v\ =
i=1

i=1 i=1
n n n

Zam. But (Z a; V)N = Zai(vz)\) € (Ba) by (5), so we have, Zam €
Z§1> N (By) = {6:}1, which imI;l:izas that a; =0 for all i € {1,2,...,n} sﬁée B, is
linearly independent over R. This shows that {v + F(\) | v € By} is a linearly
independent subset of V/F () and v+ F(\) # w+ F(X) for all distinct v, w € By.
Hence dimg (V/F (X)) > |By|. But By is infinite, so A ¢ Alg(V). Therefore we
have A ¢ OMg(V) U OEg(V)U AIg(V). Thus A ¢ S(V). This is a contradiction

since A € a @ 3 C S(V).
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This proves that there is no hyperoperation @ on S(V') such that (S(V),®, )

is a semihyperring with zero. Hence the theorem is proved. O]

Also, we have a corollary of Theorem 2.3.4 as follows:

Corollary 2.3.5. If T is a subsemigroup of AIr(V'), then the semigroups O Mp(V )U

T and OEr(V)UT do not admit a hyperring [ring] structure.

Remark 2.3.6. Let B be a basis of IV and for each u € B, define o, € Lg(V') by

U v
Oy, —

¥ v € Bxfu}
Then F(o,) = (B \ {u}), and hence by Proposition 1.9 (ii), dimg (V/F(,)) =
|{u}| for every u € B. Clearly, &, # @y, if u and w are distinct elements of B
and for each u € B, {a,} is a subsemigroup of Alx(V) since a? = . This fact
and Theorem 2.3.4 show that there are infinitely many subsemigroups of Lg(V)

containing OFEx(V) which do not admit the structure of a semihyperring with

Zero.

2.4 The Semigroups Kp(V, k) and K,(V, k)

We shall characterize when Kg(V, k) admits the structure of a semihyperring
with zero. The characterization will generalize Theorem 2.2.1 for the case of
OMg(V) since OMg(V) = Kg(V,¥) if dimg V is infinite. Since K,(V k) =
Kgr(V, k') if k' is the successor of k, by the characterization of Kg(V, k) admitting
this structure, necessary and sufficient conditions for K5(V,k) to admit such a

structure are also obtained.
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Theorem 2.4.1. Let k be a cardinal number with k < dimg V. Then Kgr(V, k)
admits the structure of a semihyperring with zero if and only if one of the following
statements holds.

(i) k = 0.

(i) dimgpV < oo and k = dimg V.

Proof. To prove sufficiency, assume that (i) or (ii) holds. If £ = 0, Then Kg(V, k) =
Kg(V,0) = Lg(V) which admits a ring structure. Assume that dimg V' < oo and
k=dimgp V. If « € Kg(V k) = Kg(V,dimg V), then dimg Kera = dimg V' < 00
which implies that Kera = V, so @ = 0. Hence Ky(V, k) = {0} which admits a
ring structure.

To prove necessity, assume that there is a hyperoperation @ on Kg(V, k) such
that (Kg(V,k),®,-) is a semihyperring with zero where - is the operation on
Kr(V,k). To prove that (i) or (ii) must hold, suppose on the contrary that (i)
and (ii) are false. Then either (1) 0 <k < dimrpV < oo or (2) k> 0 and dimp V

is infinite.

Case1l: 0 < k <dimpV < 0. Let B be a basis of V and B; C B such that
|B1| = k. Since |B;| = k > 0, there exists an element u € By. Define a, 3 € Lg(V)
by

By v u B~ A{u}

a= , B= : (1)

0 v U 0
v € BNB;

Then Kera = (B;) and Ker§ = (B~ {u}), so dimg Kera = k and dimg Ker 5 =

dimp V' — 1 > k. Consequently, a, 3 € Kr(V, k). By (1), we clearly have
=a, =0 and af=pfa=0,

and thus,

ala®f)={a} and fla®f)={F}. (2)
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Let v € a @ (. It then follows from (2) that ay = o and vy = 3, and hence
Ima=Imay CImy and ImfB=ImpBy CIm~. (3)
Thus we deduce from (1) and (3) that
BN (Bi~{u})=(B\B;)U{u} CImaUIm S C Im~.
This implies that
dimgImy > |B\ (By N {u})| =dimg V — (k — 1). (4)

Since co > dimg V' = dimpg Ker v + dimg Im v, we have that

dimg Kery = dimg V' — dimp Im 5
<dimpV — (dimg V' — (K — 1)) from (4)
= b—=F<*k
which implies that v ¢ Kg(V, k). This yields a contradiction since v € a @ § C

Kr(V k).

Case 2 : k> 0 and dimp V is infinite. Let B be a basis of V. Then B is infinite,
so there exist subsets By and By of B such that B = By U By, By N By = @

and |B| = |Bs| = |B|. Let a,8 € Lr(V') be defined by

AU 1/ . 5
v € Ba v € B

Then Ker o = (B;) and Ker § = (Bs), so dimgr Ker « = |B;| = |B]| and

dimgr Ker 8 = |By| = |B|. Since k < dimg V' = |B|, we have o, § € Kr(V, k). It is

clear from (5) that

a?=a, =0 and af = PBa =0,
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and thus
ala®f)={a} and Bla®d)={B}. (6)

Let v € a @ (. Then from (6), ay = a and vy = 3. Consequently,

for every v € By, vy = vay = va = v,
for every v € By, vy =vfBy=vB=v
which implies that v = 1y, the identity map on V. It then follows that dimgz Kervy =

0 < k since k£ > 0. Hence v & Kr(V, k), a contradiction.

Therefore the proof is complete. O

We give a remark here that from Theorem 2.4.1, we conclude that Theorem

2.2.1 for that case of OMg(V) is a consequence of Theorem 2.4.1.

Corollary 2.4.2. Assume that k < dimg V. Then K,(V,k) admits the structure

of a semihyperring with zero if and only if dimgV < oo and k = dimg V' — 1.

Proof. Let k" be the successor of k. Then &' > 0 and K5 (V,k) = Kgr(V, k). If
K7(V, k) admits the structure of a semihyperring with zero, then by Theorem
2.4.1, dimp V. < o0 and k' = dimgp V, so k = dimp V — 1.

If dimgp V' < o0 and k = dimg V' — 1, then k' = dimpg V, thus by Theorem
2.4.1, Kg(V k") admits the structure of a semihyperring with zero, and so does

Kp(Vik) since Kp(V, k) = Kr(V, k). O

We can see from the proofs of Theorem 2.4.1 and Corollary 2.4.2 that Kr(V, k) =
Lr(V) or {0} and K7,(V, k) = {0} are necessary conditions of Theorem 2.4.1 and

Corollary 2.4.2; respectively. Hence we have
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Corollary 2.4.3. For a cardinal number k with k < dimg V, Kr(V, k) admits a
hyperring [ring] structure if and only if one of the following statements holds.
(i) k = 0.

(77) dimpV < oo and k = dimg V.

Corollary 2.4.4. For a cardinal number k with k < dimg V, K7,(V, k) admits a

hyperring [ring] structure if and only if dimr V"< 0o and k = dimg V' — 1.

Remark 2.4.5. If k; and ks are cardinal numbers such that k1 < ks < dimg V,
then Kr(V, k1) 2 Kg(V, k). To see this, let B a basis of V. Then k; < ko < |B|,

so there is a subset By of B such that |B;| = k;. Define o € Lr(V') by

v € BNB1

Then dimg Ker v = |By| = ky < ky. Thus a € Kg(V. k1) ~ Kr(V, k). It then

follows that if dimpg V' is infinite, then
Kr(V.1) = KR(V,0).2 Kr(V,2) = KR(V,1) 2 Kr(V,3) = KR(V,2) 2 ...

and by Theorem 2.4.1, none of these subsemigroups of Lz(V') admits the structure

of a‘'semihyperring with zero.

2.5 The Semigroups CIz(V, k) and CI,L(V, k)

From Proposition 1.12, if dimg V' < oo, then Kg(V, k) = CIr(V, k) for every
cardinal number k with £ < dimg V. However, it is also shown in Proposition

1.13 (i) that if dimg V is infinite, CIg(V, k) # Kg(V,1) for all cardinal numbers
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k,l with 0 < k < dimgV and | < dimg V. Then characterizing when CIg(V, k)

admits the structure of a semihyperring with zero should be also considered.

Theorem 2.5.1. Let k be a cardinal number with k < dimg V. Then CIr(V, k)
admits the structure of a semihyperring with zero if and only if one of the following
statements holds.

(i) k = 0.

(i) dimgpV < oo and k= dimg V'

Proof. By Proposition 1.12, Clg(V.k) = Kg(V, k) if dimg V < oo. Hence by
Theorem 2.4.1, CIg(V, k) admits a ring structure if (i) or (ii) holds.

Conversely, assume that there is a hyperoperation & on CIg(V,k) such that
(CIr(V, k), ®,-)is a semihyperring with zero where - is the operation on CIgr(V, k).
To prove that (i) or (ii) holds, suppose instead that they both are false. Then

either (1) 0 < k <dimpV <ooor (2) k> 0 and dimg V is infinite.

Case 1 : 0 < k < dimp V' < oo. Since dimp V< o0, Kg(V, k) = CIg(V, k). By
Theorem 2.4.1, CIg(V, k) does not admit the structure of a semihyperring with

zero. This is a contradiction.

Case 2 : k£ >0 and dimg V' is infinite. Let B be a basis of V and let By, By C B
such-that B = B1 U BQ,Bl M BQ =& and |B1| ~ |BQ| = |B| Let Oé,ﬁ S LR(V)

be defined by

v € Ba v € B
Then dimpg (V/Ima) = dimg(V/(By)) = |B;| = |B| = dimgV and dimg (V/Imf3) =
dimg (V/(B1)) = |B2| = |B| = dimg V. Consequently, a, 8 € CIg(V,k). Hence

a® f C CIg(V,k). As shown in the proof of Case 2 of Theorem 2.4.1 that if
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v € a® [, then v = 1. But dimg (V/Im1y) = 0 < k, so this is contrary to that

a@ﬁ Q C[R(V,k)

Therefore the proof is complete. O

Corollary 2.5.2. Assume that k is a cardinal number such that k < dimg V.
Then CIL(V, k) admits the structure of a semihyperring with zero if and only if

dimgV < 00 and k = dimp V" — 1.

Proof. Let k' be the successor of k. Then &' > 0 and CIL(V, k) = Clg(V, k).
It therefore follows from Theorem 2.5.1 that C'IL(V, k) admits the structure of
a semihyperring with zero if dimzp V' < oo and k' = dimpg V, or equivalently,
dimgpV < oo and k = dimg V — 1.

Conversely, assume that dimgV < oo and k = dimgp V' — 1. Then k' = dimpV,
and thus by Theorem 2.5.1, C'Ix(V, k") admits the structure of a semihyperring
with zero. But CIr(V k") = CIL(V, k), so CIL(V, k) admits the structure of a

semihyperring with zero. O

Notice from the proofs of Theorem 2.4.1, Theorem 2.5.1, Corollary 2.4.2 and
Corollary 2.5.2 that necessary conditions of Theorem 2.5.1 and Corollary 2.5.2 are
CIg(V,k) = Lr(V) or {0} and CIj(V, k) = {0}, respectively. Hence the following

corollaries are obtained directly.

Corollary 2.5.3. For a cardinal number k with k < dimg V,CIr(V, k) admits a
hyperring [ring] structure if and only if one of the following statements holds.
(i) k = 0.

(7) dimpV < oo and k = dimg V.
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Corollary 2.5.4. For a cardinal number k with k < dimg V,CI,(V, k) admits a

hyperring [ring] structure if and only if dimgV < oo and k = dimg V' — 1.

Remark 2.5.5. Let dimg V' be infinite and B a basis of V. If k1 < ky < dimpV,

let By of B such that |B;| = k;. Define a € Lg(V') by

v € BNB1
Then dimpg (V/Ima) = dimg (V/(B\ By)) = |B1| = k1 < ko, so o € CIg(V, k1)~

CIgr(V,ky). Tt then follows that if dimg V' is infinite, then
CI(V.1) = CL,(V,0) 2 CLnlV, 2) = CLa(V.1) 2 CI(V.3) = CI4(V,2) 2 ...

and by Theorem 2.5.1, none of them admits the structure of a semihyperring with

Zero.

2.6 The Semigroups [z(V,k) and IL(V, k)

We have shown in Proposition 1.13 (ii) if dimg V' is infinite, then for a nonzero
cardinal number £ with & < dimgV, Ir(V, k) is not equal to Kg(V, 1) and C1x(V,1)
for any cardinal number [ < dimpg V. This is also true for I(V;k), K(V,[) and
CIL(Vil) where 0 < k < dimp V and 0 < [ < dimpg V. The next theorem and
corollary, Theorem 2.4.1, Corollary 2.4.2, Theorem 2.5.1 and Corollary 2.5.2 also

show that what we have mentioned is true.

Theorem 2.6.1. Let k be a cardinal number such that k < dimgV. Then Ir(V, k)
admits the structure of a semihyperring with zero if and only if one of the following

statements holds.
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(i) k=0
(i) k = dimg V.

(#ii) k 1s an infinite cardinal number.

Proof. To prove sufficiency, assume (i), (ii) or (iii) holds. Since Ix(V,0) = {«a €
Lr(V) | dimpIma <0} ={0} and [(V,dimp V) = {a € Lr(V) | dimpIma <
dimgp V' } = Lg(V). Therefore if (i) or (ii) holds, then Ig(V, k) admits a ring
structure.

Next, assume that (iii) holds. Then k& + k = k. We know that for o, €
Lr(V),Im (o + ) € Ima + Im # and Im (—a) = Im o where + is the usual

addition on Lr(V'). Thus for «, 8 € Ig(V, k),

dimgIm (a— ) < dimgIma+ dimgIm 3

< k+tk=k

It therefore follows that Ir(V, k) is a subring of (Lr(V),+,-), so Ig(V, k) admits
a ring structure.

Conversely, assume that (Iz(V, k), @, -) is a semihyperring with zero for some
hyperoperation @ on Ig(V, k) where - is the operation on Ix(V, k). To show that
one of (i), (ii) and (iii) must hold, suppose on the contrary that (i), (ii) and (iii)
are all false. Then 0 < k < dimg V' and k is finite. Let B be a basis of V' and
By C B such that |By| = k. Since k< dimy V, there exists an element u € B\ Bj.

Define a, B € Lg(V) by

v BB u B~ {u
' and (0= tu} . (1)
v 0 U 0

v € By

S
Il

Then Ima = (B;) and Im 8 = (u), so dimgIma = k and dimgIm g =1 < k.

This implies that «, 5 € Ir(V, k) and so a @ 3 C Ix(V, k). Clearly,

d=a, =0 and af = pa=0. (2)
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Therefore (2) yields

ala®f)={a} and fla®p)={F}. (3)

Let v € a @ S. It thus follows from (3) that oy = a and By = 5. We have from

these equalities and (1) that
vy = vay =va = v for every v € B; and
wy=ufy=uf = u,

so Im~ D (B; U{u}) which implies that dimpIm~ > |ByU{u} =k+1> k.

This contradicts the fact that y € a @ [ C [x(V, k).

Hence the theorem is proved. O

Corollary 2.6.2. For a cardinal number k with 0 < k < dimg V, the semigroup
IL(V k) admits the structure of a semihyperring with zero if and only if either

k=1 or k is an infinite cardinal number.

Proof. If I,(V, 1) = Ip(V;0) = {0}, then I5(V;1) admits a ring structure. Next,
assume that k is an infinite cardinal number. Then k + k = k. If a, 8 € I5(V, k),

then dimg Im a < k and dimg Im 8 < k, and hence

dimgIm (a— 3) < dimgIma + dimgIm g

< k+k=k

It follows that (I;(V,k),+,-) is a ring where + is the usual addition of linear
transformations. Therefore the sufficiency is proved.

To prove necessity, suppose that 1 < k and k is finite. Then I,(V k) =
IR(Vik—1),0 <k—1<dimgV and k — 1 is finite. It therefore follows from
Theorem 2.6.1 that I (V, k) does not admits the structure of a semihyperring with

Zero. O
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Theorem 2.6.1 and Corollary 2.6.2 and their proofs yield the following results.

Corollary 2.6.3. For a cardinal number k with k < dimgr V, the semigroup
Ir(V k) admits a hyperring [ring] structure if and only if one of the following
statements holds.

(i) k=0.

(i) k = dimg V.

(ii) k is an infinite cardinal number.

Corollary 2.6.4. For a cardinal number k with 0 < k < dimg V, the semigroup
IL(V. k) admits a hyperring [ring] structure if and only if either k =1 or k is an

infinite cardinal number.

Remark 2.6.5. Assume that dimpz V is infinite and let B a basis of V. Then B
contains a subset { u,, | n € N} where w,, # u,, if n # m. For each positive integer

n, let a,, € Lr(V') be define by

wp uy ... u, B~ Aup,ug, ... un}
ay, =
Uy U .. Uy 0
Then dimg Im o, = dimpg (uq, ..., u,) =n forevery n € N, so-a, € Ir(V,n) \

Ir(V,n — 1) for every n > 1. Consequently,
In(V,1) = T5(V,2) 2 In(V,2) = Tp(V.3) 2 In(Vi3) = Ix(V.4) 2 ...

and Theorem 2.6.1 shows that none of these semigroups admits the structure of

a semihyperring with zero.



CHAPTER III
SEMIGROUPS ADMITTING THE STRUCTURE
OF AN ADDITIVELY COMMUTATIVE

SEMIRING WITH ZERO

Example 1.5 and Example 1.6 show that every semigroup without zero always
admits both the structure of an AC semihyperring with zero and the structure of
a semiring with zero. As can be seen in this chapter that a semigroup without
zero need not admit the structure of an AC semiring with zero. In this chapter,we
aim to study various kinds of linear transformation semigroups which need not
have a zero. We shall determine when they admit the structure of an AC semiring
with zero.

First, let us recall the following linear transformation semigroups on V.

Gr(V) ={a € Lg(V) | «is an isomorphism},
Mr(V) =da eLp(V) | Kera=+{0}},
E(V) = {a € Lp(V) | Tma =V},

AMp(V) = {a € Lp(V) | dimg Kera < oo},
AER(V) = {a € La(V) | dimg (V/Ima) < oo},
AIg(V) ={a € Lg(V) | dimg (V/F(a)) < oo }

where F(a) ={veV |va=uv},

PLR(V)={a: W =V | W is a subspace of V'

and « is a linear transformation}.
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For convenience in writing, the following notations will be used in this chapter.
If B is a basis of V and u,w € B are distinct, let (u,w)p and (u — w)p be the

elements of Lz(V') defined respectively by

u ow v u
(u,w)p = and (u — w)p =

w u v w v
v € Bx{u,w} v € B~{u}

Then for all distinct u,w € B, (u,w)s € Gr(V) and also (u,w)% = 1y,

3.1 The Semigroups G(V), Mr(V) and Er(V)

Note that from Proposition 1.15(i), each of Gg(V), Mr(V), and Er(V) has
a zero if and only if either dimg V' = 0 or dimz V' = 1 and |R| = 2. The purpose
is to show that dimgz V' = 0 or dimpz V' = 1 is necessary and sufficient for each of

Gr(V), Mr(V), and Ex(V) to admit the structure of an AC semiring with zero.

Lemma 3.1.1. If dimgp V = 1, then Gr(V) = (R ~ {0},-), the multiplicative

group of nonzero elements of the division ring R.

Proof. Let w € V . {0}. Since dimp V' = 1, {u} is a basis of V, so V = Ru =

{au | a € R} and it is clear that

for every aw € Gg(V'); there is a unique a, € R~ {0}
(1)
such that uwa = ayu.

Define ¢: Gr(V) — R ~ {0} by ap = a, for every a € Gg(V). Then ¢ is

well-defined by (1). If a, 5 € Gr(V), then

w0 = (aau)B = aa(uf) = (aaas)u,

so by (1), aap = anas. Hence ¢ is a homomorphism from Gg(V') into (R~ {0}, -).

If @ € Gg(V) is such that a, = 1, then ua = u which implies that o = 1y, since
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V' = Ru. Therefore ¢ is one-to-one. For b € R~ {0}, if define o € Lg(V) by
ua = bu, then o € Gr(V') since {u} is a basis of V' and hence ap = b.

Therefore the lemma is proved, as required. O]

Theorem 3.1.2. Let S(V) be Gr(V'), Mgr(V') or Er(V'). Then S(V) admits the

structure of an AC semiring with zero if and only if dimgV < 1.

Proof. If dimp V' = 0, then Gi(V) = Mg(V) = Ex(V) = {0}, and if dimpV =1,
then Gr(V) = Mgz(V) = Exr(V) = (R ~ {0},:) by Lemma 3.1.1. Thus S(V)
admits a ring structure if dimg V' < 1.

Assume that dimg V' > 1. To show that S(V') does not admit the structure
of an AC semiring with zero, suppose on the contrary that there is an operation
@ on S°(V) such that (S%(V), @, ) is an AC semiring with zero 0 where - is the
operation on S°(V'). Let B be a basis of V. Then |B| > 1. Let u and w be distinct
elements of B and let B’ = {u,u + w} U (B ~ {u,w}). By Proposition 1.7, B’ is
also a basis of V. Then (u,w)s and (u,u + w)pg are elements of Gr(V) C S(V),
and so 1y @ (u,w)p and 1y @ (u, u + w)p are elements of S(V). Since (u,w)% =

1y = (u,u + w)%,, we have the following equalities.

(u,w)p(lv @ (u,w) g) = 1y (1y @ (u,w)p), (1)
(Iy @ (u,w)p)(u,w)p = (1y & (uw, w)p)lv, (2)
(u,u+w)p (ly & (u,u+w)p) = 1y (1y & (u,u + w)p), (3)
(1V @ (u, u+ w)B/)(u, u+ w)B/ = (lv EB (u, u+ U))B/)lv. (4)

Casel: 1ly®(u,w)p # 0. Then 1y ®(u,w)p € S(V). It S(V) is Gr(V) or Mg(V),

then 1y @ (u, w) g is a one-to-one map, so from (1), we have (u,w)g = 1y. If S(V)
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is Fr(V), then Im (1y & (u,w)p) = V which implies by (2) that (u,w)p = 1y.

But u # w, so we have a contradiction.

Case 2: 1y @ (u,u+w)p # 0. Then 1y & (u,u+w)p € S(V). If S(V) is Gr(V)
or Mg(V'), then 1y & (u, u+w)p is a one-to-one map and hence (u, u+w)p = 1y
by (3). If S(R) = Er(V), then Im (1y & (u,u+ w)p) =V, so (u,u+w)g = 1y

by (4). These yield a contradiction since u # u + w.

Case 3 : 1y & (w,w)p =0 = 1y & (u,u + w)p. Then (u,w)p = (u,w)p &
0= (u,w)p®1ly & (wudw)pg =0& (v,u®w)p = (u,u® w)p and hence

w = u(u,w)p = u(u, u+ w)p = u+ w which is a contradiction.

Therefore the proof is complete. O]

The following fact has been given in [14]. However, it can be considered as a

consequence of Theorem 3.1.2 and its proof for the sufficiency part.

Corollary 3.1.3. Let S(V) be Ggr(V), Mr(V) or Egr(V). Then S(V) admits a

ring structure if and only if dimg V" <'1.

Remark 3.1.4. We know from Example 1.5 and Example 1.6 that every semi-
group without zero always-admits both the structure of an AC semihyperring
with zero and the structure of a semiring with zero. Also, if dimzV > 1, then all
the semigroups Gr(V'), Mr(V) and Er(V) have no zero. Hence, from these facts
and Theorem 3.1.2, we have that all the semigroups Gr(V'), Mg(V) and Er(V)
always admit the structure of an AC semihyperring with zero and the structure

of a semiring with zero.
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3.2 The Semigroups AMg(V) and AER(V)

We first recall that Gr(V) C Mg(V) C AMg(V), Gr(V) C Egr(V) C
AER(V), AMg(V) and AER(V') have no zero if dimg V' is infinite by Proposition
1.15(ii), and if dimg V' < oo, then AMg(V) and AER(V') admit a ring structure.
The purpose is to show that dimg V' < oo is also necessary for AMg(V) and

AER(V) to admit the structure of an AC semiring with zero.

Theorem 3.2.1. Let S(V') be AMr(V') or AER(V). Then S(V') admits the struc-

ture of an AC semiring with zero if and only if dimpV < oc.

Proof. As was mentioned above if dimg V" < oo, then S(V') admits a ring structure.

Assume that dimpg V' is infinite. To prove that S(V) does not admit the

structure of an AC semiring with zero, suppose instead that there is an operation

@ on S°(V) such that (S°(V), @, ) is an AC semiring with zero 0 where - is the

operation on S°(V). Note that 0 ¢ S(V), so for o, 8 € S°(V),a = 0 implies

a =0 or 3 = 0. Let B be a basis of V' and let u,w be distinct elements of B.
Define o € Lr(V') by

 — {u,w} v | Q)

! i vEB{tt,w}
Then dimpg Ker ¢ = dimg (u,w) = 2 and dimg (V/Im o) = dimg (V/(B ~
{u,w})) = |{u,w}| =2."We deduce that a € S(V'). It"is clear that (u,w)pa =

a = au,w)p. Hence
(ua w)B(lv D (’LL, w)B) =1ly® (ua w)B> (2)

ada= 1y & (u,w)p)a=a(ly & (u,w)p). (3)
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Since B(1y @ 1ly) = S = (1y @ 1y)p for every € S(V'), we have by Proposition

1.10 that, 1y @ 1y = aly for some a € C(R). Then

ada=(ly ®1ly)a = (aly)a = aa.

(4)

If a =0, then 1y & 1y = 0 and from (3) and (4), 1y & (u, w)p = 0 since a € S(V),

so ly = (u,w)p, a contradiction. This shows that a # 0. From (3) and (4), we

have

(Iy @ (u,w)g)a = a(ly & (u, w)p) = aa # 0.

By (1) and (5), we have

v(ly @(u,w)p)a = va(ly @ (u,w)g) = v(aa) = av

for every v € BN\ {u,w },

u(ly @ (u,w)p)a = u(ax) = 0,

w(ly @ (u, w)p)a = w(aa) = 0.

We deduce from (2) that
u(ly & (u,w)p) = ulu, w)p(ly & (v, w)p) = w(ly & (u, w)p).
Thus (6) and (7) yield the fact-that
u(ly @ (u,w)p) = w(ly & (u,w)p) € Kera = (uw),

SO

u(ly @ (u,w)p) = w(ly @ (u,w)p) = bu+ cw for some b, c € R.

Define v € Lr(V') by

{u,w} v
’y =
u+w v
veB~{u,w}

(5)
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Then Kervy C (u,w) = Kera and Im~y D (B~ {u,w}) = Ima, so v € S(V). Since
uy(u, w)p = wy(u,w)p = (u+ w)(u,w)p = u + w, it follows that vy(u,w)p = 7,
and hence

Yy @ (u,w)p) =7&7 = (lv & 1v)y = ay. (10)

Thus

2bu+2cw = (u+w)(ly @ (u,w)p) from (8)

= uy(ly © (u,w)p) from (9)
— ufay) from (10)
= a(u+ w) from (9)
= au + aw

which implies that 20 = 2¢ = a # 0. This shows that charR # 2. Because
—lv € S(V) and 5(ly @ (—1y)) = B & (=0) = (Iv & (=1v))6 for all § € S(V),
by Proposition 1.10, 1y @ (—1y) = a’ly for some ¢’ € C(R). If «’ = 0, then
ly @ (—1y) = 0 and so
0=a®(—a)=a® (—alu,w)p) = a(ly ® (—(u,w)p))
which implies that 1y & (—(u,w)p) = 0, and hence —1y = —(u, w)p, a contradic-
tion. Then a’ # 0. But
a'ly = ly. @(=ly) = =y (lv &(-1v)) = =dlv,

2a’'ly = 0, and thus 2a’ = 0 since V' # {0}. Due to the facts that o’ # 0 and
charR # 2, we have a contradiction.

Hence the theorem is completely proved. O

The following fact has been given in [14]. It is also considered as a consequence

of Theorem 3.2.1 and the first line of its proof.
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Corollary 3.2.2. Let S(V) be AMg(V') or AERr(V). Then S(V') admits a ring

structure if and only if dimgp V' < oo.

Remark 3.2.3. Since AMz(V) = AER(V) = Lg(V) if dimgV < oo and AMg(V)
and AER(V') have no zero if dimz V' is infinite, we have from Example 1.5, Example
1.6 and Theorem 3.2.1 that AMz(V') and AER(V) always admit both the structure

of an AC semihyperring with zero and the structure of a semiring with zero.

3.3 The Semigroup Alp(V)

It has been proved in Section 2.3 that if dimg V' is infinite, then for every
subsemigroup T of Alg(V),OMgz(V) U T and OFER(V) U T do not admit the
structure of a semihyperring with zero. If dimg V' < oo, then AIx(V) = Lg(V),
so AIR(V) admits a ring structure. If dimg V/ is infinite, then AIR(V') has no zero
by Proposition 1.15(ii). It will be shown that if dimg V/ is infinite, then Alg(V)
does not admit the structure of an AC semiring with zero, so it does not admit a
ring structure.

The following lemma is required.

Lemma 3.3.1. Assume that dimg V- is infinite. If (AI%(V), @,:) is an AC semi-

ring with zero. Then 1y ® 1y = 1y.

Proof. Suppose on the contrary that 1y @ 1y # 1y. Then either 1y & 1y = 0 or

ly @1y = g for some 5 € AIR(V) ~ {1y }.

Case 1: 1y @1y = 0. Let B be a basis of V' and choose distinct elements u, w

in B. Define aw € Lg(V') by
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N {u,w} v

0

v € Bfu,w}
Then F(a) = (B ~ {u,w}) and so dimg (V/F(«)) = [{u,w}| = 2. Thus a €
AIr(V). Also, (u,w)pa = a and a ® a € AI%(V). Since 0 = (1y & ly)a =
a®a=(ly ® (u,w)p)a, we have 1y & 1y = 1y @ (u, w)p = 0. This implies that

1y = (u,w)p, a contradiction.

Case 2 : 1y @ 1y = 3 for some 3 € Alg(V) ~ {ly}. Then F(3) C V. Since
dimg (V/F(f)) < oo and dimp V' is infinite, F(5) # {0}. Let u € V . F(f3) and
w € F(B) ~{0}. Then uf # u and wf = w. Since (w) C F(B) and u ¢ F(f),

we have that v and w are linearly independent. Let B be a basis of V' containing

u,w. Then
=1y @1y = (u,w)ply(u,w)p ® (u, w)ply(u, w)p
= (U, w)B(lv D 1v)(u, 'LU)B
= (u,w)pf(u,w)p.
Consequently, u(u,w)p = w = wf = w(u,w)pf(u,w)p = uf(u,w)p. Since

(u,w)p is one-to-one, u = uf3, a contradiction.

Hence the proof is complete. O]

Theorem 3.3.2. The semigroup AIr(V') admits the structure of an AC semiring

with zero if and only if dimr V' < oo.

Proof. As mentioned above, if dimz V' < oo, then Alg(V') admits a ring structure.
Assume that dimp V' is infinite and suppose that there is an operation & on

AI% (V) such that (AI%(V),®,-) is an AC semiring with zero 0 where - is the
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operation on AI%(V). From Lemma 3.3.1, 1y © 1y = 1y and thus
a®a=a forevery a € AIg(V). (1)

Let B be a basis of V. Then for all distinct u,w € B, F((u,w)g) = (B \ {u,w})
and F((u — w)p) = (B ~\ {u}). Consequently, (u,w)p, (u — w)p € AIg(V) for
all distinct u,w € B. Next, let u and w be fixed distinct elements of B. We

clearly have
(u— w)p =(u— w)p = (w—=u)plu—wp
= (W — u)p(u, w)p = (v, w)p(u — w)s,
(w= u)g = (w = u)p = (u— w)p(w— u)p
= (u— w)p(u,w)p = (v, w)p(w — u)p.
We therefore have from (2) that (w — u)g[ly @ (v — w)p] = (W — u)p ® (u —
w)p and (v — w)p[ly & (w = u)p] = (4= w)p & (w — u)p. Thus
(w— u)p[ly & (u = w)p] = (4 — w)p[ly & (w — u)p]. (3)
For each v € B ~ {ul,
v[ly @ (u — w)p] = v(u = w)s[ly & (u— w)g]
=v[(u = w)p & (u— w)p] from (2)

=v(u — w)g =0 from (1).

Let u[ly & (v —= w)p] = au+bw + Zcivi for some a, b, ci,¢e,...,¢, € R and
~ 1

distinet vy, ve, ..., v, € B~ {u,w}. We therefore have
u = u(w—u)p
= u[(w — u)p® (w — u)g] from (1)

= ully ® (u— w)p|(w — u)p from (2)

= (au+ bw + Zcivi)(w — u)p

i=1
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= CLU—FZ)U—{-ZCiUi
i=1

which implies that a +b =1 and ¢; = 0 for all « = 1,2, ..., n. Consequently,

v[ly @ (u — w)p] = v if ve B~ {u},
(4)

u[ly & (v — w)p] = au+ bw where a+b=1.

Let vy,vq,...,0, € B~ {u} be distinet and let dy, ds,...,d, € R be such that

(dou + Z dv)[ly ® (u— w)p] = 0. Then from (4),

=1

do(lu r i dobw R Z dﬂ)i =0

=

which implies that dpa =dyb=d, = ... =d,, =0. But a+b =1, so dy = 0. This
shows that

ly @ (u — w)p is a one-to-one map. (5)
Since

[y ® (u— wpl* = ly&(u—wpd(u—wsd[u—wp

= 1y ®(u — w)p from (2) and (1),
it follows from (5) that
1v@<u—>w)lev. (6)
We therefore have

T (ua w)2B

1y
= [lv(u, w)p)?
= [(lv ® (u — w)p)(u,w)p]* from (6)
= [(w,w)p ® (w — u)p|* from (2)

= (u,w)% @ (u,w)p(w — u)p ® (w — u)pu,w)p ® (W — u)%

= 1ly®(w—-up®(u—w)p®(w—u)p from (2)
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= ly®d(u—wpd(w—up from (1)

= 1y @& (w —u)p from (6). (7)
Hence from (3), (6) and (7), we get (w — u)p = (v — w)p. This is a contradiction
since w(w — u)p =u # w = w(u — w)p.

This proves that if dimp V' is infinite, then Alg(V') does not admit the structure

of an AC semiring with zero. Therefore the theorem is proved. m

From Theorem 3.3.2 and its proof of the sufficiency part, we have

Corollary 3.3.3. The semigroup Alg(V') admits a ring structure if and only if

dimg V' < 0.

Remark 3.3.4. Since Alg(V) = Lr(V) if dimg V' < oo and AIg(V) has no
zero if dimg V' is infinite, it follows from Example 1.5 and Example 1.6 that the
semigroup Alr(V) always admits both the structure of an AC semihyperring with

zero and the structure of a semiring with zero.

3.4 Partial Linear Transformation Semigroups
Let us recall the following facts of PLg(V).

{0}pax = {0}p and Voo =V, for all @ € PLi(V),
aVp =V, for every a € Lg(V),

a{0}y = {0}y for every one-to-one map oo € PLg(V).

If dimg V' > 0, then PLg(V) has no zero.
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The purpose is to show that if PLg(V') admits the structure of an AC semiring
with zero, then either dimg V' =0 or dimg V = 1 and charR = 2. Also PLg(V)
admits a ring structure if and only if dimg V' = 0. To obtain the main results, the

following three lemmas are required.

Lemma 3.4.1. If dimgV > 0 and (PL%(V),®,-) is an AC semiring with zero
where - is the operation of the semigroup PL%(V), then the following statements
hold.

(i) 1y & (—1y) =aly for some a € C(R) ~ {0}.

(13) Wo @ Wy = Wy for every subspace W of V.

Proof. First we note that PLg(V)) is a semigroup without zero, so for a,f3 €
PLY%(V),aB =0 implies @ = 0 or 3 = 0.

To show that 1y @ (—1y) # 0, suppose on the contrary that 1y & (—1y) = 0.
Then a @ (—a) = 0 for all @ € PL%(V). In particular, Vo & Vy = Vo & (—Vp) = 0.
But Vj # 0 and

Vo(Vo ®{0}o) =Vo @ Vo =0,
thus V@& {0}o = 0. Therefore Vod Vg = 0 = V@ {0}¢. This implies that V5 = {0}

which is contrary to that-dimzg V"> 0. Hence 1y,® (—1y) € PLr(V). Since
Vollv @ (=1v)) = Vo © Vo = (1y @ (—1v))V%,

it follows that Dom (1y @ (—1y)) 2 Dom ((1y @ (=1y))Vy) = Dom (Vy(1y @
(—1y))) = V. It is clear that a(ly @ (—1y)) = (1y @ (—1y))a for all « € PLr(V).
By Proposition 1.10, there is an element a € C(R) such that 1y & (—1y) = aly.

If a =0, then 1y @ (—1y) = Vy which implies that

Vo = Wo{0}o = (Iv & (—1v)){0}o

= {0}o(ly @ (—1v))
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= {0}oVo = {0}o
which is a contradiction since dimg V' > 0. Therefore a # 0. If W is a subspace of
V', then

W() EB Wo = (1\/ @ (—1v))W0 = (alv)W() = Wo.

Therefore (i) and (ii) are obtained, as required. O

Lemma 3.4.2. If dimg V' > 0 and the semigroup PLr(V') admits the structure

of an AC semiring with zero, then charR = 2.

Proof. Assume that & is an operation on PL%(V') such that (PL%(V), &, ) is an
AC semiring with zero where - is the operation on PL%(V). By Lemma 3.4.1,

1y @ (—1y) = aly for some a € C(R) < {0}. Then
Py = (aly)(aly) = (y & (1v))(aly)
— ((~1y) @ Ly)(~aly)
= Qv @ (1p)f(aly)

= (alv)(—alv) = —a21v,

so 2a% = 0. But a® # 0, thus charR = 2. ]

Lemma 3.4.3. If dimg V' > 1, then the semigroup PLr(V') does not admit the

structure of an AC semaring with zero.

Proof. Let dimg V' > 1 and suppose that the semigroup PLg(V) admits the
structure of an AC semiring with zero. Then there is an operation & on PL% (V)
such that (PL%(V),®,-) is an AC semiring with zero where - is the operation on

PLY%(V). Since dimz V' > 1, there are elements u,w € V such that u and w are

u u
linearly independent over R. Then ® is an element of PL%(V).

u w
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u u u u
Case 1 : @ = 0. Then 0 = V} S5) = Vp & V. This

u w u w

contradicts Lemma 3.4.1(ii).

u u u u
Case 2 : d = {0}g. Then {0}g = {0}y = @ Vo =
u w u w
u u
® = (u)o ® (u)o which is contrary to Lemma 3.4.1(ii).
0 0
u u
Case 3 : ® =« for some o € PLg(V) with Doma # {0 }. Since
u w
u u U u u
S o @ ;
u u w u w
u u u
we have « = a. Then Dom o« = Dom a | € Dom = (u), and
u U u

thus dimg (Dom «) < dimp (u) = 1. But Dom a # {0}, so Dom o = (u). Also,

since
u u U w u u
¥ = ®
u w wou w U
u u
> D ,
u w
' U w U w
it follows that « = «. Consequently, Im a = Im | « C
wou wou
U w
Im = (u,w). Now we have
wou

Doma = (u) and Ima C (u, w).
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u
Then there are a, b € R such that ua = au+bw. This implies that o =
au + bw
U w
But since « = «, we have
wou
u u U w u
au + bw av +bw | \w w aw + bu
u
and hence a = b. Thus . = . Now, we have
a(u +w)
u u u
@ = (1)
0 w a(u + w)
Consequently,
u u u u u w
S = @
U+ w U+ w U w U+w u+w
u u w
= from (1)
alut+w) ] \u+w utw
u
a(u+w+ u+ w)
u
2a(u + w)
u
= by Lemma 3.4.2. (2)
0
u
Since v and w are linearly independent, u+w # 0, and so is a one-to-one

U+ w



o8

partial linear transformation of V. Hence

u u
{0}o® {0} = {0}o® {0}
u+w u+w
u u
U+ w U+ w
u
= {0}o from (2)
0
u
0
which is a contradiction because of Lemma 3.4.1(ii). O

Theorem 3.4.4. If the semigroup PLr(V') admits the structure of an AC semir-

ing with zero, then either dimp V- =0 or dimgV =1 and charR = 2.

Proof. Assume that PLg(V) admits the structure of an AC semiring with zero.
We therefore have from Lemma 3.4.3 that dimg V' = 0 or dimgV = 1. If dimgV =

1, then by Lemma 3.4.2, charR = 2. O

Notice that if dimg V=0, then PLr(V') = {{0}o}, so PLg(V) admits a ring
structure. If dimg V>0, Lemma 3:4.1(ii) shows that PLz (V) does not admit a

ring structure. Hence we have

Theorem 3.4.5. The semigroup PLr(V) admits a ring structure if and only if
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Remark 3.4.6. (1) Since PLg(V) has no zero if dimg V' > 0, by the same
reason as before, we have that PLr(V) always admits the structure of an AC
semihyperring with zero and the structure of a semiring with zero.

(2) It is natural to ask whether it is possible that dimg V' = 1, charR = 2 and
the semigroup PLg(V) admits the structure of an AC semiring with zero. The
answer is “ yes 7. To see this, assume that dimp V' =1 and |R| = 2. Then |V| =2

which implies that

PLg(V) = {{0}o, Vo, 1v},

and thus

PLG(Vy={0,{0}, Vo, 1y }-

Define an operation & on PL% (V) as follows:

o 0 {0}y W 1v

0O+ 0 {0} Vo 1y

{0}o | {0}0 {0}y Vo 1v
Ww il W W W W

Iv | Iv 1y W 1y

It is straightforward to verify that (PL%(V), ®,-) is an AC semiring with zero 0.
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