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CHAPTER I  

INTRODUCTION 

In the past few decades, an evolution of financial markets, both in developed 
countries and in emerging countries, played a significant role in a rapid growth of global 
economy. Basically, the main responsibility of the market is to regulate and to facilitate 
the trade occurred in it. However, there are many types of financial market locates 
nearly every country in the world, for example, the most well-known stock exchange 
in United states-the New York Stock Exchange (NYSE). Within a financial sector, there 
exists another important market that provides an effective and efficient mechanism 
for a management of price risks-the derivatives market. Derivative instruments allow 
investors a great deal of flexibility and choice to determine their investment policies 
such as speculating and hedging. Nowadays, we can see the derivatives exchanges all 
around the world. For instance, the world largest exchanges, according to the number 
of contracts traded, are the Chicago Mercantile Exchange (CME) and Chicago Board of 
Trade (CBOT) [7].  

In this research, we are mainly focusing on futures contracts, which are ones of 
the most popular financial instruments, traded actively in the derivatives markets. 
Futures contract is a standardized forward contract that is regulated according to the 
quality, quantity, delivery location, and when delivery will be made. These regulations 
are made under the exchange market to advance the customer reliance. Similar to 
forward contacts, futures contracts are all viewed as derivative contracts because their 
values are derived from value of another asset. The assets under the negotiation are 
known as underlying variable. In general, futures contracts are simply an agreement 
between two parties to buy or sell the underlying asset at a certain time in a future 
date for a certain price. One of the parties to a futures contracts that agreed to sell or 
deliver the underlying asset at the specific time in the future is assumed to hold a 
“ short position” , on the other hand, the party on the opposite side of the futures 
contracts assumes a “long position ”to buy the assets at the same time with the same 
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price. In contrast to forward contracts, the parties engaging the futures contracts do 
not need to deliver a physical asset but the futures contracts are marked to market 
every period. Marking to market is the feature that tracks and updates the balance of 
the investor’s account depending on the change in futures contracts prices. The gains 
or losses are applied to it daily. This type of account is so called the margin account 
which normally provides investors the interest. However, in this thesis, we are 
considering the margin accounts that only marked to market without subjecting to 
other margin constraints. 

1.1 Commodity Product and Convenience yield 

When considering forward or futures contract, it is important to give a discussion 
on its underlying asset because the behavior of their prices is practically subjected to 
their underlying variable. Along with stock, bond, and other assets, commodity forms 
one of the major asset class and favorably taken to be the underlying variable of 
derivatives products such as option, forward, as well as futures contracts. By definition, 
commodities are physical goods used in commerce to satisfy basic wants or needs. 
Regardless of the producers, commodities are uniformly marketable items which have 
no differentiation across the market. Moreover, commodities are usually used as a 
primary resources in production process of other goods and services. The exchange of 
commodities represents one of the earliest forms of trading; begin with the direct 
trading of physical good in the past till the trade of future delivery today.  

Commodity assets are fundamentally differed from equity assets and fixed 
income securities. First of all, the distinction of investment assets to consumption 
assets is interpreted by it possessing purposes. An investment asset is an asset that is 
held for investment purposes but consumption asset is an asset that is held primarily 
for consumption. Commodities, such as energy and agricultural product, are realized 
as consumption assets rather than investment assets. In fact, commodities are physical 
goods that take cost to store and maintenance, thereby, the disruption in prices and 
benefits when agents are hoarding or dis- hoarding the commodities becomes more 
significant. Although the commodities usually provide no incomes but can generate 
some advantageous factor to the holder of the physical commodity. This leads us to 
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an essential concept of convenience yield. The term convenience yield, which was 
proposed by [16] is very abstract concept.  In particular, the convenience yield is 
referred as a measure of the opportunity cost of holding inventory, on the other hand, 
sometimes convenience yield is considered as a benefit paying to the owner of 
physical assets.  Furthermore, net convenience yield on a commodity can be thought 
of in the same way as dividend yield on a common stock and is normally quoted as a 
continuously compounded yield. Thus, for commodities-related problems, it is 
necessary to extend the simple model to include the impact of convenience yield to 
reflect benefit unique of physical commodity holders.  

1.2 Hedged portfolio of commodity  

In a recent year, the increasingly importance of commodity-related exchange 
and other commodity-based derivatives have had a tremendous economic impact on 
the nations and people. Many parts of economics use or consume commodity on a 
daily basis, for example, the soft commodities like grain, wheat, soy and corn are 
served as raw ingredients for a food production. In transportation sector, hard 
commodities, especially for crude oil and natural gas, are vital elements in a survival 
of the business. There are also commodities that are used for industrial and 
manufacturing purposes such as copper and other metals. Typically, the commodity 
markets have been suffered severely by many arguments such as climate changes, 
natural disaster, mismatch between demand and supply, financial crisis, new discovery 
of resource and etc. Weather condition and natural disaster might cause agricultural 
price increase dramatically due to the scarcity. The oversupply will lead to the lower 
price because of an excessive number of products in the market. More precisely, the 
commodity prices are subjected to the level of future supply and demand. According 
to unpredictable prices of commodity products, the market participants want to 
remove the risk associated with their investments or business. This because people 
are naturally risk-averse, so they manipulate their portfolio by applying a common risk 
management policy called a hedge. Hedging strategy is an investment position using 
to mitigate the exposure of changes in asset price. A hedge can be constructed by 
many types of financial instruments including forward contracts and futures contracts. 
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In the past, the first public futures market was established in order to archive an 
efficient hedging strategy for agricultural commodity products.  By the time, farmers 
decided to insure the value of their crops which were fluctuated depending on the 
weather conditions in the harvest season. Therefore, futures contracts enter to this 
subject to fulfill the farmer requirement. On the other hand, the suppliers who hold 
the opposite position to the farmer also want to fix manufacturing costs. By locking in 
the price of which particular item investors intended to buy or sell, forward contracts 
could also help investors to eliminate the ambiguity when they are dealing with an 
unexpected expense in the future. Then hedging itself has expanded to others financial 
products and developed through the time. 

1.3 Problem of Interests 

In this study, we consider an agent who invests in physical commodities as a 
major product of his portfolio policy. The problem is that, at any time in an investment 
period [ , ]t T  where 0    t T , investors attend to invest a portion [0,1]  of their 
portfolio value in the physical commodity assets and the rest 1   in commodity 
futures which mature at time T  to do a long hedge1 for the portfolio. The profitability 
of investors evolves stochastically over time depending on the changes in price of all 
assets and securities in portfolio.  In order to maximize portfolio wealth at the final 
time T  the investors are allowed to dynamically rebalance their assets holding in 
commodity spots and the futures contracts when they first enter to any adjustment 
period of length h , where h  is a fixed small positive value, i.e. at the beginning of 
period [ , ]t t h . This kind of a specific portfolio model is directly motivated by the way 
that [10] had examined his dynamical portfolio processes in 1970. Following his 
assumption, we consider in a situation of which the investors participate in the perfect 
market that is basically no investor taxes and transaction costs, and we assume further 
that any trading orders take place in the market are continuous and all securities are 
perfectly divisible. However, the borrowing capacity is restricted, and the short sells of 
all assets are not allowed in this study. This means that the proportion   is a real 

                                           
1 A long hedge is a situation where an investor takes a long position in futures contracts to hedge against price risks. 
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value belongs to the set of [0,1] . In case of describing an agent’s preference, we 
suppose that the investors are risk-averse which means that investors naturally avoid 
from all kind of risks. The expected utility theory is taken into an account to exhibit 
investor satisfaction. 

In order to explain random behavior of asset prices, we assume that the 
stochastic process of commodity prices, commodity futures and portfolio process are 
evolving in an uncertainty environment described by a complete probability space
( , , ) . The stochastic process is an important idea that was increasingly used to 
describe financial uncertainties. In general, a stochastic differential equation is used for 
the modeling of price fluctuation and another factor in financial problems. In this study, 
we employ the two-factor stochastic model first presented by [1] to determine the 
joint stochastic process of commodity spot price and instantaneous convenience yield. 
In addition, we can directly calculate the prices of futures (or forward) contracts, by 
supposing there is no-arbitrage opportunity in the market, through a closed-form 
formula of the price of contingent claims which was proposed in the work of [5, 15]. 

The objective of this thesis is to find an optimal fixed ratio investment, denoted 
by  , of the portfolio model such that maximizes an agent’s preference by using an 
approximation method. First, we are in position to determine the continuous-time 
portfolio wealth process which is governed by the process of commodity price and 
the process of spot futures price based on the Schwartz’s two-factor model. Then we 
are going to construct our interested problems in the form of stochastic control model 
where our attentive state variable, tX , is described by a control diffusion process of 
portfolio value. Basically, it is often useful and reasonable to assume that the time 
horizon is finite. There are many ways to fix this class of control problem.  The main 
method we use in this study is by considering a specific case of reduced control 
problem and approximating the problem numerically through the Monte Carlo 
method. We are applying Euler- Maruyama method to approximate the result of 
stochastic differential equation and then use this result to generate portfolio 
trajectories. We also illustrate path trajectories of spot commodity price, convenience 
yield and futures price. Moreover, by simulation of futures price, the results have 
shown that the price calculated by close-form formula of Schwartz and by 
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approximation method are perfectly matched. In an experiment, all the parameters 
are specified according to the estimated parameters of Schwartz.  Monte Carlo 
procedure is again employed to solve for an optimal fixed ratio of an investment. 
Another possible approach for finding optimal control is a PDE method which also 
known as Hamilton-Jacobi-Bellman equation. There are two excellent literature that 
we used as a central principle which are [12, 13]. We demonstrate the fundamental 
set up of the corresponding partial differential equation that will pave the way of 
solving the problem analytically in the future. 

The aims of this thesis are three-fold 

(I) The first contribution of this thesis is to construct the portfolio model of 

commodity asset and commodity futures.  

(II) The second is to illustrate the firm objectives of maximizing its preference 

through the utility function of its final wealth. 

(III) The third is to approximate the optimal fixed ration of this type of portfolio 

by Monte Carlo method. 

The rest of this thesis is organized as follow. In the second chapter, we will give a 
discussion on some financial- related terms and productive theorems in stochastic 
process which we will be applying them to construct portfolio model. In addition, we 
also provide a commodity model describing the behavior of commodity price. Next, 
we devote the third chapter to clarify the structure of portfolio model and present 
the evolution of portfolio value. At the end of this chapter, we propose our interested 
portfolio into the form of stochastic control model and its corresponding partial 
differential equation.  In the fourth chapter, we perform the simulations of portfolio 
value and the method solving for numerical solution are illustrated step by step. 
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For the rest of this study, we let [0, ] T ,  T  be a time space. Then we fix a 
filtered probability 0( , , ( ) , )  t t  satisfying the usual conditions and a n

dimensional Brownian motion, tW , with respects to . We define an Ito process as a 
process 1( , , ) n

t t tX X X  value in n  and satisfies 

 ( , ) ( , )  t t t tdX t X dt t X dW  (1.1) 

where 1( , , ) ( ( , , ))      i i nt x t x , 
1 ,1( , , ) ( ( , , ))        ij i n j mt x t x  defined on 

n  , and have valued in n  and n m , respectively.
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Chapter II  

Preliminary 

In this chapter, first of all, we will restate meaningful definitions of a perfectly 
competitive market which was assumed to be a grounded notion in many financial-
related problems. Then we give an economics description of no-arbitrage assumption 
which was held in the derivative pricing context. The measurement of investors 
preferences are described in the form of utility functions. For the financial-related 
terms, see [3, 8]. Next, the commodity spot price and convenience yield are assumed 
to follow the Schwartz two-factor model. Then we introduce useful stochastic-related 
theorems which were applied to develop our portfolio model. The method for 
approximating numerical results of stochastic differential equation is also provided. 
Finally, we include background knowledge of stochastic control model such as 
Feynman-kac formula and Hamilton-Jacobi Bellman equation.  

2.1 Perfectly competitive market 

There are some properties of hypothetical market usually required for the 
study of financial model shown as follows: 
2.1.1 The market participants are rational, and try to maximize their financial      
objectives. 
2.1.2 There are no transaction costs incurred to market participants. 
2.1.3 There are no taxes rates incurred to market participants. 
2.1.4 There are no restrictions on lending, borrowing and short selling. 

2.2 The absence of arbitrage opportunity 

The abilities to make profits under a zero-cost portfolio without taking any risks and 
without initial costs are not allowed.  
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2.3 Investor’s preferences and Utility function 

According to a description in [3, 11], the rational investors are typically being 
able to compare between different situations and to decide which one is better. This 
kind of preferences of investors is the basic idea for a measurement tool called utility 
function. It represents a satisfaction experienced by the consumer of a good. A utility 
function, ( )U  , is a mapping from an uncertain choice of consumption into the real 
number. Due to an uncertainty of choices, it is normal to consider an average of utility, 

( ( ))E U  , instead. In this study, we consider a basic utility in the class of the constant 

relative risk aversion (CRRA) denoted by the function ( )





X
U X , 0 1   and 

0X  . A larger   indicates the investors who are risk-loving, on the other hand a 
smaller   indicates the investors who are more risk-averse. 

2.4 Schwartz Two-Factor Commodity Model 

A general hypothesis of asset prices in perfect markets is described by the 
Geometric Brownian motion (GBM) . This widely used hypothesis indicates that the 
asset prices are log- normally distributed random variable and only assume positive 
values to its variable. Geometric Brownian motion process serves as a basic concept 
for modelling of financial asset prices including commodity. Furthermore, the 
development of commodity pricing model takes into an account of the second factor, 
convenience yield, to model a more realistic behavior of commodity. 

This class of convenience yield models is the most popular choice for modeling 
the behavior of spot price of energy products such as crude oil and natural gas. In a 
recent year, there are many literatures focusing on the stochastic behavior of spot 
commodity price. Early models, proposed by Brennan and [1] in 1985, assumed a 
constant convenience yield with one-factor Brownian motion. The convenience yield 
was first considered as a dividend yield paid to holder. Subsequently, a commodity 
spot price and convenience yield are assumed to follow a joint stochastic process with 
a constant correlation. Gibson and Schwartz presented a benchmark model for 
commodity price which included a stochastic convenience yield, [15]. The 
instantaneous convenience yield is taken as a second factor following a mean reverting 
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stochastic process of the Ornstein- Uhlenbeck process . The more general model was 
introduced by Schwartz again. Moreover, Schwartz referred to the work of [15] in order 
to evaluate closed-form solution of futures price. 

Now we will introduce the Schwartz two-factor model which we use as a basic 
assumption in this study. The first factor is spot commodity price tS  and the second 

factor accounts for the convenience yield t  of the commodity . These factors are 
assumed to satisfy the joint stochastic process shown as follow: 

 
(1)

1

(2)

2

( )

[ ( ) ]

dS r Sdt SdW

d a dt dW

 

    

  

   

  (2.4.1) 

where the increments to standard Brownian motion, ( )idW , are correlated with 

 (1) (2) dW dW dt  (2.4.2) 

together with further assumptions which we maintain throughout this study that the 
long- term mean of instantaneous convenience yield a , speed of mean reversion of 
instantaneous convenience yield  , market price of convenience yield  , interest rate
r ,   is a correlation coefficient between spot price and convenience yield, volatility 
of spot commodity price 1  and volatility of instantaneous convenience yield 2  are 
constant .Then, we denote ( , , ) F S  by the price per unit of futures contract at time 
t   for a unit commodity delivery at time T   where   T t  is referred to time to 
maturity. 

Moreover, by an assumption of no-arbitrage arguments, [15] suggested that the 
close-form formula of futures price is obtained in the form of 

 
1

( )

( , , )



 


 

 
   
   

e
A

F S S e  (2.4.3) 

where 

 

2 2
22 1 2
22 3

2

2
1 2 2

1 (1 )
( )

2 4

1
( ) .





   
  

   


   

  





  
       
 

  
     
 

e
A r a

e
a

  (2.4.4) 
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2.5 Multi-dimensional Ito Formula 

The fundamental and useful tool for evaluating Ito integral is the Ito’ s lemma 
stated as follows 
Lemma 2.5.1. [12] We recall ( )X t  an n- dimensional Ito process satisfying equation 
(1.1) which can be written in a metric form as 

 
11 11 1 1

1

( , ) ( , )

( , ) ( , )

   

    

      
      

        
            

m

n n n nm m

X t dW t

d dt

X t dW t

 

Let (1) ( )( , ) ( ( , ), , ( , )) pg t x g t x g t x  be a 2C  function from [0, ]  n  into p  . So, 
the process 

 ( , ) ( , ( , )) Y t g t X t   

is again an Ito process, then the stochastic differential for thk  the component is given 
by 

( ) ( ) 2 ( )
( )

,

1
( , ) ( , ) ( , )

2

  
  

   
 

k k k
k

i i j

i i ji i j

g g g
dY t X dt t X dX t X dX dX

t x x x
 (2.5.1) 

and 

 0, ,  i i i j ijdtdW dW dt dW dW dt  (2.5.2) 

where 
,

1,
{






ij

i j

i j
.   

2.6 Euler-Maruyama Method 

The Euler-Maruyama scheme is the simplest time discrete approximation of 
the Ito process since it is a simple generalization of Euler method for ordinary 
differential equations. We employ this method to approximate numerical solution of 
the stochastic differential equation and to simulate time discrete trajectories. 
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Lemma 2.6.1. [9] Euler-Maruyama method 

Let tX  be an Ito process satisfying the stochastic differential equation (1.1), i.e. 

( , ) ( , )  t t t tdX t X dt t X dW  

on the time interval 0[ , ]t T  with an initial value 
0 0tX x . For a given time discretization 

0 1     n Nt t t t T . 

Euler Maruyama scheme takes the form 

1 ,     n n n nX X u t v W  

where 

1  n n nt t t  

is the length of the time discretization of subinterval 1[ , ]n nt t , and 

1
  

n nn t tW W W  

is the increment of Brownian motion which is normally distributed with mean zero and 

variance 1n nt t  ; equivalently
1 1 (0,1)
   

n nt t n nW W t t N , where (0,1)N  is a 
normal distributed random variable with mean zero and unit variance. 

2.7 Feyman-kac formula 

The Feynman-Kac formula establishes a link between parabolic partial 
differential equations and stochastic processes. The main theoretical result of the 
Feynman-Kac formula suggests that the expectations of random processes can be 
computed by solving the corresponding parabolic partial differential equations with a 
given boundary condition. 
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Theorem 2.7.1 [6] Generalized Feynman-Kac formula. 
Let [0, ]T  where T    be a fixed time interval denote by and D  a domain in n  
i.e., an open connented subset of n . We recall the stochastic differential equation 
(1.1) which is rewritten componentwise 

, , , ( )

1

( , ) ( , ) 


 
m

t x t x t x j

s s j s s

j

dX s X ds s X dW ,     ,t x

tX x D   

where : nD    and : n

j D    are continuous for 1, ,j m . For a 

given measurable function : [0, )g D  , : ( ,0]h D    and :c D  . 

Then we define a function : [0, ]u D    by 

, ,( , ) ( , )
, ,( , ) : ( ) ( , )

T s

t x t x
s u

t t

Tc s X ds c u X du
t x t x

T s

t

u t x g X e h s X e ds

 
 

   
 
  

 . 

and we also denote the operator L  for a sufficiently smooth function :f D   
by 

 
2

1 , 1

1
( )( , ) ( , ) ( , ) ( , ) ( , )

2
 

 

 
 

  
 

n n

i ij

i i ji i j

f f
f t x t x t x t x t x

x x x
L  (2.7.1) 

where 

 ( , ) ( ( , ) ( , ))T

ij ijt x t x t x     (2.7.2) 

Then u  satisfies the partial differential equation (PDE) 

( , )
( , ) ( , ) ( , ) ( , )

u t x
c t x u t x u t x h t x

t


  


L    on ,D  

with terminal boundary condition  

( , ) ( )u T x g x    for .x D    

2.8 Derivations of Stochastic Control 

In this section, we discuss derivations of stochastic control model by following 
materials presented in the book of [13]. First, we consider a dynamical system where 
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the state of the system at time t  is denoted by stochastic process ( )tX . This 
state of the system is governed by a stochastic differential equation (SDE) valued in 

n  as equation (1.1), 

( , ) ( , )  t t t tdX t X dt t X dW  

The dynamic of the system can be influenced by control processes ( )  t t , whose 
value is decided at any time t , which is a progressively measurable process with 
respect to and valued in A , a subset of m . In general, the controls that satisfy 
some constraints are called admissible controls which belong to the set of all 
admissible controls denoted by ( , )t x  for ( , )  nt x . After the perturbation of 
external factor, the evolution of our state of the system will be governed by a control 
diffusion process, which is a stochastic differential equation of the form 

 ( , ) ( , ) .    t t t t t tdX X dt X dW  (2.8.1) 

In this study, we are interested in a finite horizon problem whose objective is to 
maximize some performance criteria, described by a functional ( , , )J t X , over all 
admissible control processes. For a finite horizontal problem, the gain function 

( , , )J t X  is defined by  

, ,( , , ) ( , , ) ( )
T

t x t x

s s T
t

J t x E f s X ds g X   
    

for all ( , )  nt x  where the function f  is a running profit function and g  is a 
terminal reward function. The objective is to maximize the gain function over all 
admissible control processes, this will result in a function so called the value function 
defined by ( , ) sup ( , , )






v t x J t x . 

2.9 Hamilton-Jacobi-Bellman equation 

We consider a diffusion 

( , ) ( , )    t t t t t tdX X dt X dW , 
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and the associated operator   with the constant control  , defined similar to 
(2.7.1) and (2.7.2) by 

2

1 , 1

1
( )( , ) ( , ) ( , ) ( , ) ( , ).

2

  
 

 
 

  
 

n n

i ij

i i ji i j

f f
f t x t x t x t x t x

x x x
L  

From [13], let ( , )v t x  be a solution of the partial differential equation 

( , )
sup ( , ) ( , , ) 0,

v t x
v t x f t x

t









     

   ( , ) [0, ] ,   nt x T  

with terminal condition 

( , ) ( ),v T x g x    nx  . 

Suppose that there exists a measurable function *( , ) t x  is an optimal control such 
that 

* ( , ) *sup ( , ) ( , , ) ( , ) ( , , ( , )), 



 


    
t xv t x f t x v t x f t x t x  

i.e.,  

 *
( , ) arg max ( , ) ( , , )





 


   
A

t x v t x f t x  . 

Then we get  

* ( , ) *( , )
( , ) ( , , ( , )), 


  



t xv t x
v t x f t x t x

t
   ( , ) [0, ] ,   nt x T  

 ( , ) ( ),v T x g x    nx  , 

and by Feynman-Kac formula  
* * * *( , ) ( , ( , )) ( )

T

s s s T
t

v t x E f X s X ds g X  
   , 

where *

sX  is the solution to the stochastic differential equation 

* * * * * * *( , ( , )) ( , ( , )) ,    s s s s s s s sdX X s X dt X s X dW  
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t s T  ,   * .sX x  

Lemma 2.9.1. [13] Consider a singleton set, 0{ } , of control space in a finite time. 

Let w  be a function in 1,2 0( ) ( )n nC C    satisfying a quadratic growth 
condition, which is stated as follow  

 2| ( , ) | (1 | |)w t x K x  ,  ( , ) nt x   . 

Suppose that the control space A  is reduced to a singleton set  0  and w  satisfies 

the reduced Hamilton-Jacobi-Bellman equation-the Linear-Cauchy problem: 

0

0

( , )
( , ) ( , , ),

 


  


w t x
t x f t x

t
w    ( , ) ,nt x    

 ( , ) ( ),w T x g x    nx  ,  

Tthen w  admits the representation 

 , ,
00

( , ) [ ( , ) ( )]. 
T

t x t x
s Tw t x E f X ds g X   
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Chapter III  

MODEL PROBLEM 

In this chapter, we explain in more details about the dynamic of our portfolio 
equation by using the notion provided in the second chapter. We begin with the 
calculation of generating of cash flows in a discrete formulation. Then we derive for a 
continuous-time portfolio wealth process. Equipped with Schwartz’s commodity 
pricing model, we can setup our control model. Secondly, we will provide the PDEs 
related to our problem. 
3.1 Portfolio Equation 

Before constructing a portfolio process in a differential form, we investigate 
how the cash flows are generated in our portfolio model. First of all, we have to 
examine a discrete- time formulation of the model. In case of the infinitesimally short 
time interval ( , )t t h , where [0, ]t T  and h  is a small positive real value that is 
fixed throughout the study, we can derive the continuous-time formula. In order to 
explain the model, we first start by introduce some notations used in this study 

( )N t  be a number of commodities holding at the beginning of period 
t , i.e., between t  and t h , 

( )t  be a proportion of portfolio wealth invested in physical 
commodities at the beginning of period t , i.e., between t  and 
t h , 

1 ( )t  be a proportion of portfolio wealth invested in commodity 
futures at the beginning of period t , i.e., between t  and t h , 

( )X t  be a portfolio value at the beginning of period t , 

( )S t  be a spot price per unit of physical commodity at time t , 

( )F t  be a spot price per unit of commodity futures at time t  which 
matures at time T  
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Note that ( )F t  is an abbreviation of ( , , ) F S , where  T t  is time to maturity of 
the contract. We continue our analysis by considering a period portfolio model with 
period of length 0h  . All investor’s incomes are generated by the price changes of 
any assets in their portfolio. We assume that portfolio value ( )X t , spot commodity 
price ( )S t , instantaneous convenience yield ( )t , and futures price ( )F t  are treated 
as the information receives at the beginning of each period .t  

Then we consider two consecutive points in time, i.e., t  and t h . For the first 
time of the investment, the investors split their budgets into two part. They contribute 
the first amount of their budgets to buy physical commodities of quantity ( )N t  with 
price per unit ( )S t , so the value of this investment is ( ) ( ) ( )S t N t X t . Then they 
deposit the remainder amount ( ) ( ) ( )X t S t N t  into their margin account in order to 
go “ long” for futures contracts whose spot futures price is ( )F t . Thus, a number of 
futures contracts that can be bought at the same time is represented by 

 ( ) ( ) ( )
( ) .

( )


F

X t N t S t
N t

F t
  

Hence, the budget equation at this state of time is 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ).

( )

FX t N t S t N t F t

X t N t S t
N t S t F t

F t

 

 
    

 

  (3.1.1) 

Then an investor comes into the next period t h  with the number of each asset 
invested in previous stage. According to our assumption, an investor receives new 
information about commodity price ( )S t h  and futures contract price ( )F t h  
while they are reaching to the new stage t h . So, the portfolio wealth at the beginning 
of time period t h  is easily obtained as 

 ( ) ( ) ( )
( ) ( ) ( ) ( ).

( )

X t N t S t
X t h N t S t h F t h

F t

 
      

 
  (3.1.2) 

To derive changes of portfolio value in the interval ( , )t t h , take (3.1.2) - (3.1.1), we 
have  
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( ) ( ) ( )
( ) ( ) ( )[ ( ) ( )] [ ( ) ( )]

( )

( ) ( ) [ ( ) ( )]
( )

( ) ( )

( ) ( ) [ ( ) ( )]
( ) 1 .

( ) ( )


        

 
 

 
   

 
 
 

 
 
 

 
 
 

X t N t S t
X t h X t N t S t h S t F t h F t

F t

N t S t S t h S t
X t

X t S t

N t S t F t h F t
X t

X t F t
 (3.1.3) 

Let ( ) ( )
( )

( )
 

N t S t
t

X t  
be a feedback control variable described by a proportion of 

portfolio invested in physical commodity at time t , then (3.1.3) becomes, 

  
[ ( ) ( )] [ ( ) ( )]

( ) ( ) ( ) ( ) ( ) 1 ( )
( ) ( )

 
   

      
S t h S t F t h F t

X t h X t X t t X t t
S t F t

 

or equivalent to  

  
( ) ( )

( ) ( ) ( ) ( ) 1 ( ) .
( ) ( )

 
 

      
S t F t

X t X t t X t t
S t F t

  

In the case of limitation when h  approaches to zero, we obtain the continuous- time 

portfolio process of the form 

  1 ( )( )
.

tt
t t t

t t

t Xt X
dX dS dF

S F

 
    (3.1.4) 

Next, we will simplify the equation above to the desired form of controlled diffusion 

process (2.8.1). First of all, we assume that a function of futures prices of commodity 

contingent claim (2.4.3) is a twice continuously differentiable function in ,S   . Then, 

we can derive the instantaneous rate of changes of futures price, dF , by applying the 

Ito's lemma (2.5.1) which was mentioned in the previous chapter.  Note that for the 

following calculation, only in this section, subscripts are referred to partial derivatives. 

Using a simple application of generalized Ito's lemma (2.5.1) implies that the 
instantaneous rate of changes of futures price ( , , )F S  , where   T t , is given by 
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2 21 1
( , , ) ( ) ( ) ( )

2 2
t S SS SdF S F dt F dS F d F dS F d F dS d              

then substitute the joint stochastic processes (2.4.1) into the above equation, we get 

 

    

    

(1) (2)

1 2

22 2 (1) (1)

1 1 1

22 (2) (2)

2 2 2

2

1

( , , ) (( ) ) [ ( ) ]

1
( ) 2 ( )

2

1
[ ( ) ] 2[ ( ) ]

2

( )[ ( ) ] ( ) [ ( ) ]







       

   

       

       

         

     

       

      


t S

SS

S

dF S F dt F r Sdt SdW F a dt dW

F r Sdt r S dtdW SdW

F a dt a dtdW dW

S r a dt a Sdtd
F

(1)

(2) (1) (2)

2 1 2( )   

 
     

W

S r dtdW SdW dW

 

where 2 2( ) , ( )     dS dS dS d d d  and dS d d dS     are computed according 

to the rule (2.5.2). Then, we have 

 
    

2

(1) (2)

1 2

2 2 2

1 1 2

( , , ) ( ) ( )

1 1
.

2 2



 

       

    

          

     

t S

SS S

dF S Fdt F r S dt SdW F a dt dW

F S dt F dt F Sdt

  

By regrouping our result, the instantaneous rate of changes of futures price is 

 

2

(1) (2)

1 22 2 2

1 1 2

( ) ( )

( , , ) .1 1

2 2





 

   

   
    

       
     
      
  

t t S

S

SS S

F r S F a F

dF S dt S F dW F dW
S F F S F

 

   (3.1.5) 

Subsequently, we invoke a close-form formula of futures prices (2.4.3) together with 
(2.4.4). We denote 

( , )( , , ) ,     CF S S e  

where  
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1

( , ) ( ),



   





   
e

C A  (3.1.6) 

and note that   T t . Then we compute for partial derivatives of ( , )C    in variables 
t  and  , respectively, we get 

   ( , ) ( )
,  

 
  



C dA
e

t dt
   (3.1.7)  

where 

2 22
22 1 2 2
2 1 22 2

( ) 1
ˆ ˆ ,

2 2

dA e e
r

dt

     
     

    

     
              

    
 

and 

   ( , ) 1
.

C e  

 

  
  

  
     (3.1.8) 

For abbreviation, we denote ( , )C

t

 


 and ( , )C  






 by ( , ) 

t
C  and ( )


C , 

respectively.  Now, we continue to derive partial derivatives and second order partial 
derivatives in each component of ( , , ) F S , we get 

( , )

( , )

( , )

2 ( , )

( , )

( , )

( )

0

( )

( ) .

 

 

 

 

 

 

 

  

 







 



 



 

 

C

t t

C

S

C

SS

C

C

S S

F S C e

F e

F S C e

F

F S C e

F F C e

     (3.1.9) 

Then substitute (3.1.6), (3.1.7), (3.1.8) and (3.1.9) into (3.1.5) the instantaneous rate of 
changes in futures price becomes 
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 

2

2 2 (1) (2)

1 2 1 2

( , , ) [ ( ) ( )

1
( ) ] .

2



  

     

     

      

    

C C C

t t

C C C C

dF S S C e r Se a C Se

C Se C Se dt S e dW C Se dW

 

Furthermore, we divide both sides of the equation above by ( )  CF Se , we then get 
a percentage rate of changes in futures price relative to itself as 

 
2

2 2 (1) (2)

1 2 1 2

1
( ) ( ) .

2
           

 
          
 

t t

dF
C r a C C C dt dW C dW

F

 

We substitute both instantaneous rate of change of commodity spot price and the 
result we obtained above into (3.1.4) to finally obtain a stochastic process of Ito type, 
called a controlled diffusion process 

 
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1

2 2

1 2
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 

     

  
             

   

t t

t

t

dX t X r dt dW

C r a C C C dt
t X

dW C dW

 

Hence, 

 
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1 2

(1) (2)

1 2

1
( ) (1 ( )) ( )

2

(1 ( ))

  



        

  

  
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  

    

t t t

t t

dX X r t C a C C C dt

X dW t X C dW

 

(3.1.10) 
with initial condition 0 X x .  

3.2 Maximization of Portfolio Model  

The investor whose portfolio wealth evolves according to the stochastic differential 
equation (3.10) is assumed to have a power utility function defined on a portfolio value 
at the final date T . The firm has a utility function that exhibits constant relative risk 
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aversion equal to 1  . We denote the portfolio wealth process with an initial capital 
at time 0t  equal to 0 X x  together with a starting convenience yield   by ,xX .  
Recall that the dynamic of the controlled system is governed by (2.4.1) and (3.1.10), 
the two dependent Brownian motions (1)W  and (2)W  can be constructed in terms of 
two independent Brownian motions (1)Z  and (2)Z  by defining (1) (1)dW Z  and 

(2) (1) 2 (2)1   dW dZ dZ . Then, the system can be written in form of two 
independent Brownian motions (1)Z  and (2)Z  as 

  (1)

1 1 2

2 (2)

2

(1) 2 (2)

2 2

ˆ( ) (1 ) ( ) ( (1 ) )

(1 ) 1

[ ( ) ] 1
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  

       

            
 

   

     

t t t t t t t

t t

t t

dX X r e A dt X C dZ

X C dZ

d a dt dZ dZ  

(3.1.11) 

We can write (3.1.11) in the matrix from as

 (1)
1 11 12

(2)
2 21 22

t

t

X dZ
d dt

dZ

  

   

      
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    (3.1.12) 

Where 
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Note that ( )
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     t t t
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( ) ,


 


 
  
 

e
C



 

 

27 

2 22
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Define 11 12

21 22

 

 

 
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 
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Here the operator   associated with (3.1.11) is 
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.
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(3.1.13) 

The investors’ objective is to maximize their expected utility of the final period of 
portfolio wealth, TX . Hence the gain function is defined by  

, ,( ; ) [ ( )], , t x
TJ E U Xt x 

   , 

From dynamic programming principle, the investor solves the value function denoted 
by 

 , ,

[0,1]
( , , ) max [ ( )]

t

t x

Tv t x E U X 





 ,  (3.1.14) 

 [0, ]t T , 0   T   

where ( ) : [0, )  U D  is a convex measurable function and E  is a conditional 
expectation with respect to information at time t .  
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Remark 3.2.1 [13] Then we consider a specific case when the control space is reduced 
to a singleton set 0{ } , i.e. there is no control on the state space. 

Suppose that the control space A  is reduced to a singleton set- 0{ } , then the value 

function in (3.1.14) is a solution to the reduced Hamilton-Jacobi-Bellman equation 

associated with the stochastic control problem (3.11), shown as follow; 

 

 

 

0 1

2 2 2 2 2 2

1 0 1 2 0 2 2

2

1 0 2

ˆ( ) (1 ) ( ) ( ( ) )

1 1
2(1 ) (1 )

2 2

(1 ) 0

t x

t xx

t x

v x r e A v a v

x C C v v

x C v





  

 

      

       

  

           
 

     

   

 

( , )t x     and ( , ) ,
x

v T x



  x   , 0 1.   

However, the method to solve for a solution of this PDEs is sometimes too much 
complicated. Therefore, we will introduce a basic idea of numerical simulation for 
solving this kind of maximization problem in the next chapter. 
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CHAPTER IV  

NUMERICAL SIMULATION 

In this section, we give a discussion on Monte Carlo method which we use to 
simulate the stochastic process obtained from the previous chapter. Monte Carlo 
method is a broad class of computational algorithms used to solve various problems, 
especially in physics and mathematics. The concepts rely on generating suitable 
random numbers and observing that fraction of the numbers that obeys some 
properties. This method is useful for obtaining numerical solutions to problems that 
are difficult to solve analytically. In this study, we employ the Euler-Maruyama scheme 
for pathwises simulation. 
4.1 The Euler-Maruyama Scheme 

In part of a computational method, we first discretize time interval [0, ]T  into 

N  subintervals with an equivalent step size defined by 
T

t
N

, for some positive 

integer N . Hence, a time discretization is 

 0 1 n Nt t t t t T         

then, we denote , , ,
n n n nt t t tX S F  and 

nt
  by , , ,n n n nX S F  and n , respectively. 

The recursive formula for spot commodity price process, convenience yield, and spot 
futures price process can be derived by using Euler- Maruyama scheme shown as 
follows: 

 
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( ) ( ) ( ) ( )

1
2 2

1 2

1

( )

[ ( ) ]

( , ) ( ) ( ) ( )

1
( ) ( ) ( )

2



 

 

     

    

   








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i i i i
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a t W

C t r a C t

F F F t
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S
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 
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i i

n n n nC t C ti i i i
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          (4.1.1) 

where  1,...,i M  for a large integer M .        
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Note that ( )
( , ) , 
     t t t

dA
C e

dt
 1

( ) ,
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e
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dA e e
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    

     
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    
 

Note that, the increments of Brownian motion are correlated with correlation 
coefficient  . 
To calculate the approximate result of each process, there are 3 steps summarized as 
follows: 

(M1) Simulate a sample path of spot commodity by using recursive formula 

(4.1) to obtain the first sample path 1,i   (1) ( )S T . 

 (M2) Repeat the procedure (M1) to obtain ( ) ( )iS T , 2,...,i M . 

 (M3) Let ( )MS T  be the estimator of 0

0 0[ | , ]
   TE S S s . Defined by 

 ( )

1

1
( ) ( ).



 
M

i

M

i

S T S T
M

  

Note that the approximate value of convenience yield and futures price can be 

calculated in the same way. 

In case of experimentation, we first discretized time space into 1,000 equivalent 

subintervals, and simulated numerical results over 2,000 sample paths. The value of 

the closest futures contract to maturity is chosen to be an initial price of spot 

commodity. An initial of convenience yield is chosen to represent the situation of high 

and low cost of carrying as 0.1 and 0.4 respectively. We use the value of fair price at 

time 0t   obtained from the close-form formulation of Schwartz model as a starting 

point for futures prices approximation. For the unknown parameters, we used the 

estimated parameters approximated by [15]. The necessary parameters of our model 

are represented in the table below:   
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Parameter Copper  Oil Gold 

0S  110.04 19.99 379.27 

r  0.06 0.06 0.06 

  0.326 0.315 0.039 

  1.156 1.876 0.011 

a  0.248 0.106 -0.002 

  0.256 0.198 0.0067 

1  0.274 0.393 0.135 

2  0.280 0.527 0.016 

  0.818 0.766 0.056 

Table 4.1 The model parameters for three different commodities, 
 copper, oil and gold. 

Next, we will show results of a numerical simulation of three different types of 

commodity which are copper, oil, and precious metal-gold in order to show the 

tendency of spot commodity price, convenience yield and futures price. The path 

simulation of price, convenience yield and futures price of copper, with 0.1  , are 

shown in figures 4.1 , 4.2, and 4.3 respectively. Figures 4.4 and 4.5 compare the 

behavior of exact futures price and approximate futures price obtain from Euler-

Maruyama method in the cases of gold and oil. Then in figures 4.6 and 4.7 show a 

convergence of futures price to spot commodity at maturity.  
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Figure 4.1 Graph of copper price sample paths with  (left). 
Graph of copper price individual paths and the averages  

with  (right). 
 
 

 
 

Figure 4.2 Graph of convenience yield sample paths with  (left). 
Graph of convenience yield individual paths and the averages  

with  (right). 
  

0.1 

0.1 

0 0.1 

0 0.1 
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Figure 4.3 Graph of sample paths of copper futures price  

and its average with . 
Graph of individual paths of copper futures price 

and its average with . 
  

0 0.1 

0 0.1 
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Figure 4.4 Graph of the approximate futures price and fair price 

of oil with  (left) and  (right). 

 

 

 

 
Figure 4.5 Graph of the approximate futures price and fair price 

of gold with  (left) and  (right). 
  

0 0.1  0 0.4 

0 0.1  0 0.4 
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Figure 4.6 Graph of gold spot price and gold futures price 

with  (left) and  (right). 
 

 
 
 

 
Figure 4.7 Graph of gold spot price and oil futures price 

with  (left) and  (right). 
 

  

0 0.1  0 0.4 

0 0.1  0 0.4 
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In general, commodity prices usually greater than commodity futures prices because 
the holder of physical assets want to earn more from the assets they kept in order to 
offset their cost of storage. This situation was shown in figures 4.6 and 4.7 above. 
4.2 Portfolio Simulation 

In this section, we first illustrate the behavior of our portfolio wealth when the 
proportion of an investment in physical commodity asset,  , is varying equal to 0.25, 
0.5, and 0.75. The recursive formula for portfolio wealth process that we use to 
approximate numerical results is 

(1)

1 1

(2)

2

( , , , ) ( , , , )

( , , , ) ,

n n n n n n n n n n n n n n

n n n n n n
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The starting value, 0x , for the portfolio of copper, gold and oil are chosen to be 100, 
380 and 20, respectively. Figure 4.8 shows the result of portfolio of copper at time t  
when   is equal to 0.25, 0.5 and 0.75 under high convenience yield market. In Figure 
4.9, we show the result of portfolio of gold at time t  when   is equal to 0.25, 0.5 and 
0.75 under high convenience yield market. Also, in figure 4.10, the result of portfolio 
of oil at time t  when   is equal to 0.25, 0.5 and 0.75 under low convenience yield 
market is depicted. 
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(a) 

 
(b) 

 

(c) 
Figure 4.8 Graph of spot copper price, futures price and portfolio value  
when the convenience is high. (a) . (b) . (c) . 

  
0.25  0.5  0.75 
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(d) 

 
(e) 

 
(f) 

Figure 4.9 Graph of spot gold price, futures price and portfolio value 
when the convenience is high. 

(d) . (e) . (f) . 
  

0.25  0.5  0.75 
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(g) 

 
(h) 

 
(i) 

Figure 4.10 Graph of spot oil price, futures price and portfolio value  
when the convenience is low. 

(g) . (h) . (i) . 
  

0.25  0.5  0.75 
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We see from figures 4.8 to 4.10 that when the proportion of an investment in physical 
commodity,  , approaches to one, the portfolio price behaves more like a price of 
commodity. On the other hand, the behavior of portfolio price becomes more similar 
to the futures price as the proportion   decreases. 
4.3 Monte Carlo method solving for an optimal fixed ratio  

In case of applying the Monte Carlo approach to solve for an optimal fixed 

ratio  . For a fixed positive integer ,J  let (1) (2) ( )
{ , , , }  

J  be a randomly selected 
number in [0,1] . For a natural number M , let ( , ) ( )j i TX  be an approximate portfolio 
wealth at the final time T , associated with the ratio ( ) j  for the thi  experimentation, 
where 1,2,..., ,i M  and satisfies SDEs (4.1) 

The algorithm solving for a constant ratio is summarized as follows 

(M1) For 1j  , picking ( , ) j i  in the set (1) (2) ( )
{ , , , }  

J  

(M2) Simulate a sample path of spot commodity by using recursive formula 
(4.1) to obtain the first sample path 1,i   (1,1)( )X T   

(M3) Repeat the procedure (M2) to obtain (1, )( )iX T  for 2,...,i M , and    
suppose that (1, )( )iX T  are independent and identically distributed 

random sample with mean 1

0 0
[ | , ]


  

T
E X X x . 

 (M4) Let (1)
( )

M
X T  be the estimator of 1

0 0
[ | , ]


  

T
E X X x . Defined by 

 (1) (1, )

1

1
( ) ( ).



 
M

i

M

i

X T X T
M

  

(M5) Repeat the procedures (M1)-(M4) to obtain ( )
( )

j

M
X T , 2,...,j J . 

(M6) Then we solve for the maximum ( )

[1,... ]

ˆ max ( )



j

M
j J

MX X T  and the fixed ratio, 

named ̂ opt  which depends only on ,J  and ̂ opt  corresponds to ˆ
MX  

Finally, we can find an approximate fixed ratio ̂ opt  that depends on an initial set up 
of our experiment.  
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Example copper gold oil 

̂ opt  ˆ
MX  ̂ opt  ˆ

MX  ̂ opt  ˆ
MX  

0 0.01   0.8600 104.0218 0.9970 403.3404 0.5760 20.9316 

0 0.05   0.8200 102.0466 0.9540 387.6894 0.7890 20.5550 

0 0.1   0.0370 101.0809 0.052 383.1189 0.1980 20.4558 

0 0.2   0.0350 101.0302 0.0130 381.4043 0.0640 20.2435 

0 0.3   0.0210 100.6175 0.0040 380.9637 0.0230 20.2806 

0 0.4   0.0070 100.6643 0.0020 380.5595 0.0070 20.3684 

0 0.5   0.0060 100.6383 0.0070 381.0543 0.0080 20.2314 

Table 4.2 The table shows the value of optimal investment ratio ̂ opt   

and the maximum value portfolio ˆ
MX  when varying . 

 

 

 

Figure 4.11 Graph portfolio value ˆ
MX  against optimal  

investment ratio ̂ opt , when  

0

0 0.01 
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Figure 4.12 Graph portfolio value ˆ

MX  against optimal  

investment ratio ̂ opt , when  
 

 
Figure 4.13 Graph portfolio value ˆ

MX  against optimal  

investment ratio ̂ opt , when  

0 0.05 

0 0.1 
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Figure 4.14 Graph portfolio value ˆ

MX  against optimal  

investment ratio ̂ opt , when  
 

 
Figure 4.15 Graph portfolio value ˆ

MX  against optimal  

investment ratio ̂ opt , when  
  

0 0.2 

0 0.3 
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Figure 4.16 Graph portfolio value ˆ

MX  against optimal 

investment ratio ̂ opt , when  
 

 

Figure 4.17 Graph portfolio value ˆ
MX  against optimal 

investment ratio ̂ opt , when  
  

0 0.4 

0 0.5 
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From figures 4.11 to 4.17, we illustrate the examples of the final wealth of portfolio 
when the proportion of an investment   is a constant belonged to the interval [0,1].

Since the result depicted in the graphs above is irregular, we then represent the trend 
of solution by using the interpolation function of degree two. We observe that the 
investment ratio of commodity tends to decrease when the convenience yield 
increases and tends to increase when the convenience yield decreases. This means 
that the investors avoid to hold the physical assets under a high convenience yield 
market and they are willing to store physical commodities when a convenience yield 

is low. Table 4.2 shows the result of an optimal investment ̂ opt , associated with a 

portfolio final wealth ˆ
MX  when an initial of convenience yield 0  is various. This 

results in the same way as we observed from the graph above. 

In order to maximize an investor utility of portfolio final wealth, we derive 


t tY X  by applying Ito lemma to our process 
tX , then we have 

 

 

2

2 2

1 2

2 2 2 2

1 2 1 2

(1) (2)

1 2

1
( ) (1 ) ( )

2

( 1) (1 ) (1 )

(1 ) .

  

 



        


       

    

  
         

   
      
 

  

t t t

t t

t t

t t t

r C a C C C
dY Y dt

C C

Y dW Y C dW

 

We approximate this process through Euler-Maruyama method by following step  
(M1)-(M6) provided at the beginning of section 4.3 again. 

Next, we illustrate the examples of the utility of final wealth of the investors’ 
portfolio when the proportion of an investment   is a constant belonged to the 
interval [0,1] . First, the solution of an optimal investment  associated with the 
maximum of utility is shown in table 4.3. Also, from figures 4.18 to 4.24, we plot 
portfolio utilities of its wealth at time T  on y-axis and the ratio of an investment   
on x-axis. This results in the same way as the case of the maximization of portfolio 
final wealth shown previously. 
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Example copper gold oil 

̂ opt  ˆ
MU  ̂ opt  ˆ

MU  ̂ opt  ˆ
MU  

0 0.01   0.9600 10.0418 0.9720 19.9956 0.9630 4.4282 

0 0.05   0.9850 9.9342 0.9640 19.5948 0.7500 4.3902 

0 0.1   0.0950 9.9091 0.0260 19.4780 0.3860 4.3750 

0 0.2   0.0650 9.8818 0.0020 19.4804 0.0320 4.3545 

0 0.3   0.0120 9.8695 0.0090 19.4373 0.0010 4.3518 

0 0.4   0.0180 9.8620 0.0080 19.4489 0.0060 4.3528 

0 0.5   0.0190 9.8771 0.0010 19.4399 0.0020 4.3481 

Table 4.3 The table shows the value of optimal investment ratio ̂ opt  and the 

maximum value portfolio ˆ
MU  when varying . 

 
 
 

 
Figure 4.18 Graph utility ˆ

MU  against optimal 

investment ratio ̂ opt , when  
  

0

0 0.01 
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Figure 4.19 Graph utility ˆ

MU  against optimal 

investment ratio ̂ opt , when  
 

  
Figure 4.20 Graph utility ˆ

MU  against optimal 

investment ratio ̂ opt , when  
  

0 0.05 

0 0.1 
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Figure 4.21 Graph utility ˆ

MU  against optimal 

investment ratio ̂ opt , when  
 

 
 Figure 4.22 Graph utility ˆ

MU  against optimal 

investment ratio ̂ opt , when  
  

0 0.2 

0 0.3 
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Figure 4.23 Graph utility ˆ

MU  against optimal 

investment ratio ̂ opt , when  
 

 
Figure 4.24 Graph utility ˆ

MU  against optimal 

investment ratio ̂ opt , when  
  

0 0.4 

0 0.5 
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Chapter V  

Conclusion 

In this thesis, we constructed a basic portfolio model of commodity asset and 

commodity futures. We have used the stochastic model proposed by Schwartz to 

describe the behavior of commodity products and the second factor convenience 

yield. In addition, we derived the instantaneous of futures price by applying Ito’s 

lemma to the close-form formula of fair price of Schwartz two-factor model. The 

dynamics of our portfolio is a combination of spot commodity price process and 

futures price process. The basic problem is the investors want to maximize their final 

wealth by adjusting the weight of investment between the two assets in their portfolio. 

This problem can be explained in mathematical perspective as a derivation of control 

model. We introduced a straight forward method to approximate numerical results of 

this problem. The Euler-Murayama scheme is a fundamental method used to 

approximate stochastic processes in our study, and by observing patiently for optimal 

investment value finally we obtained the results.  

In the experiment, we analyze three types of market, which are copper, oil, 

and gold, by using parameters estimated by Schwartz in 1997. We first illustrate the 

behavior of spot commodity price and futures price in high convenience yield and low 

convenience yield market. Furthermore, by simulation of futures price, the results have 

shown that the price calculated by close-form formula of Schwartz and by 

approximation method are perfectly matched. Then the convergence between spot 

commodity prices and futures prices are shown. Also, we illustrated the trait of 

portfolio processes when the optimal investment is fixed. The satisfaction of the 

investors is demonstrated in two ways. The first one is directly explained by portfolio 

final wealth and another one is through a utility function. In both case, Monte-Carlo is 
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easy to implement due to it certain algorithm. However, it has reflected a lot of 

controversy on its accuracy. The change in value of the investor satisfaction when the 

amount of investment changed is depicted in figures 4.21-4.27. From the graph, it 

shows an irregularity of our portfolio when a proportion of physical commodity 

investment changed. We use a polynomial curve of degree two as a proxy to represent 

a tendency of a portfolio final wealth when   is varied. The numerical experiment 

resulted in two trivial cases, either commodity or futures contracts was invested. For 

this reason, we then observe for more information by tracking of the behavior of 

commodity spot price and futures spot price in every type of market we had provided. 

From the observation, when the convenience yield is high, the price of physical 

commodity is also higher than the futures price and then dramatically fail to meet the 

futures price at the maturity. This leads to the situation that the investors tend to 

invest almost of their portfolio value to the futures contracts in order to balance 

against the price risks in spot commodity that sharply failed. On the other hand, when 

the convenience yield is low, the price of physical commodity is also lower than the 

futures price and then increase to meet the futures price at the maturity. The rising in 

price of commodity attract the investors to invest more in physical assets rather than 

investing in futures contracts. Nonetheless, the observation only in convenience yield 

parameter is not a strong evidence to prove the sensitivity of portfolio model. 
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Future Work 

For a future work, we want to solve our control problem (3.13) analytically through 
the PDEs, 

 

 

 

0 1
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1 0 1 2 0 2 2
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v T x



  x   , 0 1.   

by using the same method as [14]. Furthermore, we want to improve our portfolio 
model to be a more realistic one by consider an optimal consumption of the investors 
instead. 
\[2, 4]



 

 

REFERENCES 
 

[1] M. J. Brennan and E. S. Schwartz, "Evaluating natural resource investments," 
Journal of business, pp. 135-157, 1985. 

[2] R. Carmona and M. Ludkovski, "Convenience yield model with partial 
observations and exponential utility," Preprint. Department of Operations 
Research and Financial Engineering, Princeton University, Princeton, NJ, 2004. 

[3] J. Cvitanić and F. Zapatero, Introduction to the economics and mathematics 
of financial markets: MIT press, 2004. 

[4] A. Deep, "Optimal dynamic hedging using futures under a borrowing constraint," 
2002. 

[5] R. Gibson and E. S. Schwartz, "Stochastic convenience yield and the pricing of 
oil contingent claims," The Journal of Finance, vol. 45, pp. 959-976, 1990. 

[6] D. Heath and M. Schweizer, "Martingales versus PDEs in finance: an equivalence 
result with examples," Journal of Applied Probability, pp. 947-957, 2000. 

[7] D. J. Higham, "An algorithmic introduction to numerical simulation of stochastic 
differential equations," SIAM review, vol. 43, pp. 525-546, 2001. 

[8] J. C. Hull, Options, futures, and other derivatives: Pearson Education India, 
2006. 

[9] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential 
Equations: Springer Berlin Heidelberg, 2011. 

[10] R. C. Merton, "Optimum consumption and portfolio rules in a continuous-time 
model," Journal of economic theory, vol. 3, pp. 373-413, 1971. 

[11] J. Norstad, "An introduction to utility theory," Unpublished manuscript at 
http://homepage. mac. com/j. norstad, 1999. 

[12] B. Oksendal, Stochastic differential equations: an introduction with 
applications: Springer Science & Business Media, 2013. 

 

http://homepage/


 

 

54 

[13] H. Pham, Continuous-time stochastic control and optimization with financial 
applications vol. 61: Springer Science & Business Media, 2009. 

[14] S. Rujivan and S.-P. Zhu, "A simplified analytical approach for pricing discretely-
sampled variance swaps with stochastic volatility," Applied Mathematics 
Letters, vol. 25, pp. 1644-1650, 2012. 

[15] E. S. Schwartz, "The stochastic behavior of commodity prices: Implications for 
valuation and hedging," The Journal of Finance, vol. 52, pp. 923-973, 1997. 

[16] H. Working, "The theory of price of storage," The American Economic Review, 
pp. 1254-1262, 1949. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 



 

 

56 

 

 

 
VITA 
 

VITA 

 

Mr. Pavith Tangcharoen was born in February 12,1992, in Bangkok, Thailand. 
He received a bachelor degree in Mathematics from Department of Mathematics, 
Faculty of science, Kasetsart University, Thailand 2013. 

 


	THAI ABSTRACT
	ENGLISH ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	List of Figures
	List of Tables
	CHAPTER I  INTRODUCTION
	1.1 Commodity Product and Convenience yield
	1.2 Hedged portfolio of commodity
	1.3 Problem of Interests

	Chapter II  Preliminary
	2.1 Perfectly competitive market
	2.2 The absence of arbitrage opportunity
	2.3 Investor’s preferences and Utility function
	2.4 Schwartz Two-Factor Commodity Model
	2.5 Multi-dimensional Ito Formula
	2.6 Euler-Maruyama Method
	2.7 Feyman-kac formula
	2.8 Derivations of Stochastic Control
	2.9 Hamilton-Jacobi-Bellman equation

	Chapter III  MODEL PROBLEM
	3.1 Portfolio Equation
	3.2 Maximization of Portfolio Model

	CHAPTER IV  NUMERICAL SIMULATION
	4.1 The Euler-Maruyama Scheme
	4.2 Portfolio Simulation
	4.3 Monte Carlo method solving for an optimal fixed ratio

	Chapter V  Conclusion
	Future Work

	REFERENCES
	VITA

