CHAPTER II

EQUIVALENCE RELATIONS ON WORDS OVER FINITE FIELDS

This chapter consists of two sections. The first section presents the preliminary properties of words in \mathcal{A}_r and results on the cardinalities of \mathcal{A}_r and \mathcal{C}_r . In the last section, we study the equivalence relations $\sim_r, r \in k$, induced from the partition \mathcal{A}_r and \mathcal{C}_r of F_k and we give numerical examples to demonstrate our theorem.

2.1 Cardinalities of A_r and C_r

For
$$w \in F_k$$
 with $\pi(w) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{SL}_2(k)$, we note that
$$w \in \mathcal{A}_r \Leftrightarrow \begin{bmatrix} 1 \\ r \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} b \\ d \end{bmatrix} \Leftrightarrow d = br$$

$$\Leftrightarrow \pi(w) = \begin{bmatrix} a & b \\ ar - b^{-1} & br \end{bmatrix} \text{ with } a \in k, b \in k^{\times}.$$

Therefore we have shown

Theorem 2.1.1. For $r \in k$,

$$\mathcal{A}_r = \left\{ w \in F_k : \pi(w) = \begin{bmatrix} a & b \\ ar - b^{-1} & br \end{bmatrix} \text{ for some } a \in k, b \in k^{\times} \right\}.$$

The set \mathcal{A}_0 has been studied by Bacher in [2]. Our results are for the case $r \neq 0$. For $l \geq 0$, we write F_k^l for the set of words over k of length l, $\mathcal{A}_r^l = F_k^l \cap \mathcal{A}_r$ and $\mathcal{C}_r^l = F_k^l \cap \mathcal{C}_r$. Unless specified, we assume $r \in k^{\times}$ throughout this section. We begin with the right insertion.

Theorem 2.1.2. Let $w \in F_k$. Then $w \in \mathcal{A}_r^l$ if and only if $w\alpha \in \mathcal{C}_r^{l+1}$ for all $\alpha \in k$. Moreover, if $w \in \mathcal{C}_r^l$, then there exists a unique $\alpha \in k$ such that $w\alpha \in \mathcal{A}_r^{l+1}$.

Proof. Assume that $w \in \mathcal{A}_r^l$ and let $\alpha \in k$. Then $\pi(w) = \begin{bmatrix} a & b \\ ar - b^{-1} & br \end{bmatrix}$ for some $a \in k$ and $b \in k^{\times}$. Thus

$$\pi(w\alpha) = \pi(w)\pi(\alpha) = \begin{bmatrix} a & b \\ ar - b^{-1} & br \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & \alpha \end{bmatrix} = \begin{bmatrix} -b & a + \alpha b \\ -br & ar - b^{-1} + \alpha br \end{bmatrix}.$$

If $ar - b^{-1} + \alpha br = (a + \alpha b)r$, then $-b^{-1} = 0$, a contradiction. Thus $w\alpha \in \mathcal{C}_r^{l+1}$. Conversely, suppose that $w \in \mathcal{C}_r^l$. Then $\pi(w) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{SL}_2(k)$ and $d \neq br$. Note that for $\alpha \in k$, we have

$$\pi(w\alpha) = \pi(w)\pi(\alpha) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & \alpha \end{bmatrix} = \begin{bmatrix} -b & a + \alpha b \\ -d & c + \alpha d \end{bmatrix}.$$

Since $d \neq br$, we can choose a unique α , namely $\alpha = (ar - c)(d - br)^{-1} \in k$ such that $\pi(w\alpha) = \begin{bmatrix} -b & (d - br)^{-1} \\ -d & r(d - br)^{-1} \end{bmatrix}$ and hence $w\alpha \in \mathcal{A}_r^{l+1}$.

For the left insertion, we obtain a slightly different property.

Theorem 2.1.3. Let $w \in F_k$ with $\pi(w) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{SL}_2(k)$.

- (i) If $w \in \mathcal{C}_r^l$, then d = 0 if and only if $\alpha w \in \mathcal{C}_r^{l+1}$ for all $\alpha \in k$.
- (ii) If $w \in \mathcal{A}_r^l$, then there exists a unique $\alpha \in k$ such that $\alpha w \in \mathcal{A}_r^{l+1}$.

Proof. We first observe that for $\alpha \in k$,

$$\pi(\alpha w) = \pi(\alpha)\pi(w) = \begin{bmatrix} 0 & 1 \\ -1 & \alpha \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} c & d \\ -a + \alpha c & -b + \alpha d \end{bmatrix}.$$

- (i) Assume that $w \in \mathcal{C}_r^l$. If d=0, then $b\neq 0$, so $\pi(\alpha w)=\begin{bmatrix}c&0\\-a+\alpha c&-b\end{bmatrix}$ and thus $\alpha w\in \mathcal{C}_r^{l+1}$. If $d\neq 0$, then there exists $\alpha=(b+dr)d^{-1}$ such that $\pi(\alpha w)=\begin{bmatrix}c&d\\-d^{-1}+cr&dr\end{bmatrix}$ which implies $\alpha w\in \mathcal{A}_r^{l+1}$.

 (ii) Assume that $w\in \mathcal{A}_r^l$. Then d=br. A simple calculation yields a unique $\alpha=0$
- (ii) Assume that $w \in \mathcal{A}_r^l$. Then d = br. A simple calculation yields a unique $\alpha = r + r^{-1}$ such that $\pi(\alpha w) = \begin{bmatrix} c & br \\ -a + c(r + r^{-1}) & br^2 \end{bmatrix}$ which means $\alpha w \in \mathcal{A}_r^{l+1}$. \square

Next we present results on left and right deletions of a word $w \in \mathcal{A}_r$.

Theorem 2.1.4. Let $\alpha_1 \ldots \alpha_l \in \mathcal{A}_r^l$. Then $\alpha_1 \ldots \alpha_{l-1} \in \mathcal{C}_r^{l-1}$, and $\alpha_2 \ldots \alpha_l \in \mathcal{A}_r^{l-1}$ if and only if $\alpha_1 = r + r^{-1}$.

Proof. Assume that $\alpha_1 \dots \alpha_l \in \mathcal{A}_r^l$. Then $\pi(\alpha_1 \dots \alpha_l) = \begin{bmatrix} a & b \\ ar - b^{-1} & br \end{bmatrix}$ for some $a \in k$ and $b \in k^{\times}$. Thus

$$\pi(\alpha_1 \dots \alpha_{l-1}) = \pi(\alpha_1 \dots \alpha_l)\pi(\alpha_l)^{-1} = \begin{bmatrix} a & b \\ ar - b^{-1} & br \end{bmatrix} \begin{bmatrix} \alpha_l & -1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} \alpha_l a + b & -a \\ \alpha_l (ar - b^{-1}) + br & b^{-1} - ar \end{bmatrix}.$$

Since $b^{-1} \neq 0$, $b^{-1} - ar \neq -ar$ and so $\alpha_1 \dots \alpha_{l-1} \in \mathcal{C}_r^{l-1}$. Hence

$$\pi(\alpha_2 \dots \alpha_l) = \pi(\alpha_1)^{-1} \pi(\alpha_1 \dots \alpha_l) = \begin{bmatrix} \alpha_1 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ ar - b^{-1} & br \end{bmatrix}$$
$$= \begin{bmatrix} \alpha_1 a - ar + b^{-1} & \alpha_1 b - br \\ a & b \end{bmatrix}.$$

Therefore $\alpha_2 \dots \alpha_l \in \mathcal{A}_r^{l-1} \Leftrightarrow b = (\alpha_1 b - br)r \Leftrightarrow \alpha_1 = r + r^{-1}$.

Theorem 2.1.2 results in $|\mathcal{A}_r^{l+1}| \geq |\mathcal{C}_r^l|$ and Theorem 2.1.4 (i) gives rise to $|\mathcal{A}_r^{l+1}| \leq |\mathcal{C}_r^l|$. Thus $|\mathcal{A}_r^{l+1}| = |\mathcal{C}_r^l|$. Since $|\mathcal{A}_r^l| + |\mathcal{C}_r^l| = q^l$, we get the recurrence relation

$$|\mathcal{A}_r^{l+1}| + |\mathcal{A}_r^l| = q^l \text{ for } l \ge 0 \text{ and } |\mathcal{A}_r^0| = 0.$$

Solving this relation, we obtain the cardinalities of \mathcal{A}_r^l and \mathcal{C}_r^l for all $l \geq 0$. It should be pointing out that Bacher had the same numbers for r = 0 in [2] Corollary 2.3. We record this result in

Corollary 2.1.5. For a finite field k with q elements, $l \geq 0$ and $r \in k$, we have

$$|\mathcal{A}_r^l| = rac{q^l - (-1)^l}{q+1} \quad and \quad |\mathcal{C}_r^l| = rac{q^{l+1} + (-1)^l}{q+1}.$$

Other miscellaneous properties of words in A_r are given in the following theorem.

Theorem 2.1.6. Let $\alpha_1 \alpha_2 \dots \alpha_l \in \mathcal{A}_r^l$ so that $\pi(\alpha_1 \alpha_2 \dots \alpha_l) = \begin{bmatrix} a & b \\ ar - b^{-1} & br \end{bmatrix}$ for some $a \in k, b \in k^{\times}$. Then

- (i) $\alpha_l \alpha_{l-1} \dots \alpha_1 \in \mathcal{A}_r^l$ if and only if $a = (b^{-1} b)r^{-1}$.
- (ii) $(-\alpha_1) \dots (-\alpha_l) \in \mathcal{A}_r^l$ if and only if k is of characteristic two.

Proof. Assume that
$$\alpha_1 \alpha_2 \dots \alpha_l \in \mathcal{A}_r^l$$
 with $\pi(\alpha_1 \alpha_2 \dots \alpha_l) = \begin{bmatrix} a & b \\ ar - b^{-1} & br \end{bmatrix}$ for

some $a \in k, b \in k^{\times}$.

(i) Let
$$\sigma = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
. Since $\sigma \begin{bmatrix} w & x \\ y & z \end{bmatrix} \sigma = \begin{bmatrix} z & y \\ x & w \end{bmatrix}$ for all $w, x, y, z \in k$ and $\sigma = \sigma^{-1}$,

$$\begin{bmatrix} br & ar - b^{-1} \\ b & a \end{bmatrix} = \sigma \pi(\alpha_1 \alpha_2 \dots \alpha_l) \sigma = (\sigma \pi(\alpha_1) \sigma)(\sigma \pi(\alpha_2) \sigma) \dots (\sigma \pi(\alpha_l) \sigma)$$

$$= \begin{bmatrix} \alpha_1 & -1 \\ 1 & 0 \end{bmatrix} \dots \begin{bmatrix} \alpha_l & -1 \\ 1 & 0 \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 0 & 1 \\ -1 & \alpha_l \end{bmatrix} \dots \begin{bmatrix} 0 & 1 \\ -1 & \alpha_1 \end{bmatrix} \end{pmatrix}^{-1} = \pi(\alpha_l \dots \alpha_1)^{-1},$$

so
$$\pi(\alpha_l \dots \alpha_1) = \begin{bmatrix} a & -ar + b^{-1} \\ -b & br \end{bmatrix}$$
. Thus $\alpha_l \alpha_{l-1} \dots \alpha_1 \in \mathcal{A}_r^l \Leftrightarrow (b^{-1} - ar)r = br$
 $\Leftrightarrow a = (b^{-1} - b)r^{-1}$.

(ii) Since

$$\pi((-\alpha_l)\dots(-\alpha_1)) = \begin{bmatrix} 0 & -1 \\ 1 & -\alpha_l \end{bmatrix} \dots \begin{bmatrix} 0 & -1 \\ 1 & -\alpha_1 \end{bmatrix} = (-1)^l \begin{bmatrix} 0 & 1 \\ -1 & \alpha_l \end{bmatrix} \dots \begin{bmatrix} 0 & 1 \\ -1 & \alpha_1 \end{bmatrix}$$
$$= (-1)^l \begin{pmatrix} \begin{bmatrix} 0 & -1 \\ 1 & \alpha_1 \end{bmatrix} \dots \begin{bmatrix} 0 & -1 \\ 1 & \alpha_l \end{bmatrix} \end{pmatrix}^T = (-1)^l \pi(\alpha_1 \dots \alpha_l)^T$$
$$= (-1)^l \begin{bmatrix} a & ar - b^{-1} \\ b & br \end{bmatrix},$$

 $\pi((-\alpha_1)\dots(-\alpha_l)) = (-1)^l \begin{vmatrix} a & -b \\ b^{-1} - ar & br \end{vmatrix}$ as we have shown in the proof of (i).

Thus $(-\alpha_1) \dots (-\alpha_l) \in \mathcal{A}_r^l \Leftrightarrow 2br = 0 \Leftrightarrow k$ is of characteristic two as $b, r \in k^{\times}$. \square

2.2 Induced Equivalence Relations

The partition A_r and C_r of F_k induces the equivalence relation \sim_r on F_k . Its properties are studied in our next theorem.

Theorem 2.2.1. Let $x \in F_k$ and $\beta \in k$. We have

(i) If
$$\alpha \in k$$
 and $\alpha \neq r$, then $\alpha \beta x \sim_r \gamma x$ where $\gamma = \frac{r^2 - (\alpha - \beta)r + 1 - \alpha \beta}{r - \alpha}$.

(ii) $r\beta x \in A_r$ if and only if $x \in A_0$.

Proof. Let
$$\pi(x) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{SL}_2(k)$$
 and $\beta \in k$.

(i) Assume that $\alpha \in k$ and $\alpha \neq r$. Then

$$\pi(\alpha\beta x) = \begin{bmatrix} 0 & 1 \\ -1 & \alpha \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & \beta \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} -a + \beta c & -b + \beta d \\ -\alpha a - c + \alpha\beta c & -\alpha b - d + \alpha\beta d \end{bmatrix}$$

and

$$\pi(\gamma x) = \begin{bmatrix} 0 & 1 \\ -1 & \gamma \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} c & d \\ -a + \gamma c & -b + \gamma d \end{bmatrix}.$$

Thus

$$\alpha \beta x \in \mathcal{A}_r \Leftrightarrow (-b + \beta d)r = -\alpha b - d + \alpha \beta d$$

$$\Leftrightarrow -br + \beta dr = -\alpha b - d + \alpha \beta d$$

$$\Leftrightarrow dr^2 - \alpha dr = -br + \alpha b + dr^2 - (\alpha - \beta)dr + (1 - \alpha \beta)d$$

$$\Leftrightarrow dr = -b + \frac{(r^2 - (\alpha - \beta)r + 1 - \alpha \beta)}{r - \alpha}d,$$

so $\alpha \beta x \sim_r \gamma x$ where $\gamma = \frac{(r^2 - (\alpha - \beta)r + 1 - \alpha \beta)}{r - \alpha}$.

(ii) Since
$$\pi(r\beta x) = \begin{bmatrix} 0 & 1 \\ -1 & r \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & \beta \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} -a + \beta c & -b + \beta d \\ -c - ar + \beta rc & -d - br + \beta rd \end{bmatrix},$$

 $r\beta x \in \mathcal{A}_r \Leftrightarrow (-b + \beta d)r = -d - br + \beta rd \Leftrightarrow d = 0 \Leftrightarrow x \in \mathcal{A}_0.$

Remark. This result leads to an algorithm to distinguish words in F_k . It extends Bacher's work on \sim_0 in [2] Proposition 2.4 (ii) to $\sim_r, r \in k$. Note that $\alpha \sim_r \varepsilon \Leftrightarrow \alpha \neq r$. Combined with Theorem 2.2.1, we completely classify all words into the partition \mathcal{A}_r and \mathcal{C}_r of F_k .

We illustrate Theorem 2.2.1 and the above remark by the following numerical examples.

Example 2.2.2. Let $k = \mathbb{F}_3$. Consider $22102 \in F_k$.

- r=0. By Theorem 2.2.1 (i), $22102 \sim_0 (2-2^{-1})102=0102$. By Theorem 2.2.1 (ii), $0102 \sim_0 02 \sim_0 \varepsilon$. Then we have $22102 \in \mathcal{C}_0$.
- r = 1. By Theorem 2.2.1 (i),

$$22102 \sim_1 \left[\frac{1^2 - (2-2)1 + 1 - 2 \cdot 2}{1 - 2} \right] 102 = 2102$$
$$\sim_1 \left[\frac{1^2 - (2-1)1 + 1 - 2 \cdot 1}{1 - 2} \right] 02 = 102.$$

Since $2 \in \mathcal{C}_0$, $102 \in \mathcal{C}_1$ by Theorem 2.2.1 (ii). Then we have $22102 \in \mathcal{C}_1$.

r=2. By Theorem 2.2.1 (ii), we first consider

$$102 \sim_0 (0 - 1^{-1})2 = 22 \sim_0 (2 - 2^{-1})\varepsilon = 0.$$

Then $102 \in \mathcal{A}_0$, so we have $22102 \in \mathcal{A}_2$.

Example 2.2.3. Let $k = \mathbb{F}_3$. The following tables display the sets \mathcal{A}_r^l and \mathcal{C}_r^l for $l \leq 3$ and r = 0, 1, 2, respectively.