CHAPTER 3

METHODOLOGY

3.1 Characteristic of Study Site

The study roads are chosen based on high density of daily traffic passing the road at during 12 hours of day time (7.00 am -7.00 pm), including that having permanent roadside PCD monitoring station located not over 5 meters away from curbside. Furthermore, the history record of daily traffic counting should be in place and must be operated by Traffic and Transport Department of Bangkok Metropolitan Authority (BMA), all these have taken in account for selection criteria.

According to the criteria has been described; Ladphrao and Dindaeng road were qualified; because there are PCD roadside air monitoring to obtain hourly concentration and the daily traffic data are annually monitored by BMA to ensure quality of data using in this research.

3.1.1 Ladphrao Road

Located in Wangtonglank district, this 6 lanes road and 10.5 km in length has connected inner district and eastern district of Bangkok together, at which the record of densely traffic volume have been recorded for many years. The recent record of daily traffic counted by traffic and transport department (TTD, 2005) indicated that more than 50,000 vehicles per day were detected through all road links. There is PCD's air monitoring station placed near Chok-chai police station at approximately 4 meters away from curbside of the road. From annual monitoring report in 2006 revealed that daily PM10 level in Ladphrao was in the range of 27.2-96.7 μ g/m³ and monthly average concentration was measured between 40.2-66.3 μ g/m³ (PCD, 2006). The location and photograph of station illustrated on figure 3.1 and 3.2.

3.1.2 Dindaeng road

Locating in Dindaeng district, this road is 7 lanes and approximately 4 km in length, at which the victory monument and Rama IX conjunction has connected together by this road. The PCD monitoring station placed on 4 meters away from curbside behind the bus stops and the Prachanukul School is located on the opposite side of the road to this station. The daily traffic of Dindaeng road was found about 86,508 vehicles per day in year 2005 (TTD, 2005) and causing high PM_{10} concentration. From annual monitoring report in 2006 revealed that daily PM10 level in Dindaeng was in the range of 29.9-206.2 $\mu g/m^3$ and monthly average concentration was measured between 51.0-120.6 $\mu g/m^3$ (PCD, 2006). The photographs of the station are shown in figure 3.3 and 3.4.

3.2 On-site Traffic Count

The volume of daily traffic has been recorded continuously during 7.00 am to 19.00 pm in Ladphrao and Dindaeng road by Video Camera (Sony Handycam) which placed at position approximately 2.5 meters high for ensuring all lanes have been properly recorded. The period of traffic recording was operated in January 2006, when as daytime traffic movement was determined. To identify and number particular vehicle types, all video tapes of study road traffic have been re-viewed and counted through video player. The illustrations of Video Camera Setup have been shown in figure 3.5 and 3.6. The considered vehicle types, which must be identify and number by manual counters, were categorized into 8 groups as follow;

 Sedan, described as light-duty gasoline vehicles weighted less than 6,000 lbs (or 2,718 kg.)

(2) Pick-up and Van, described as light-duty diesel vehicles weighted less than 6,000 lbs (or 2,718 kg.)

(3) Tuk-tuk and small 4-wheel taxi, described as light-duty diesel vehicle registered as one type of non-fixed route taxi particularly in Bangkok.

(4) Motorcycle, described as 2-wheel vehicles powered by gasoline.

(5) Minibus, described as light heavy-duty diesel bus registered as one types of fixed route bus cooperated with Bangkok Mass Transit Authority (BMTA).

(6) Medium-truck, described as medium heavy-duty diesel truck weighted at 19,500-33,000 lbs (or 8,833-14,949 kg.)

Figure 3.1: Ladphrao monitoring station (aerial photograph)

Figure 3.2: Ladphrao monitoring station

Figure 3.3: Dindaeng monitoring station (aerial photograph)

Figure 3.4: Dindaeng monitoring station

Figure 3.5: Video Camera Setup

Figure 3.6: Traffic Recording

💭 TAPM Graph	nical User Inte	rface (F1:Help)	- OX
Eile Optional Inpu DataBase Direc f:\TAPM Cd\GIS f:\ TAPM Cd GIS	Lange I		New Name:
			Get Surface Information from DataBase
Grid Centre Coo Latitude and longil clat=13deg43min		Run File Name Prefix [t300a <u>Grid Parameters</u> Number of grid points (nx,ny) :	Get Surface Information from Previously Saved Files (*.top)
clon=100deg31min <u>4</u> Local values (m) (o		nx=25	View/Edit Surface Information
cx=498 m cy=594 m Date Parameter	498 594	Outer grid spacing (m) (dx1,dy1) : dx1=30000 m dy1=30000 m Number of vertical grid levels :	Save Run Files (*.bat, *.inp) and Surface Files (*.top)
Start Date=19990323 End Date=19990325 Local Solar Time =	Select Start and End Dates GMT+6.7	Number of vertical grid levels : nz=20 4 • Levels (m): 10, 50, 100, 150, 200, 300, 400, 500, 750, 1000, 1250, 1500, 2000, 2500, 3000, 4000, 5000, 6000, 7000, 8000	Get Synoptic Analyses from DataBase and Save to Files (*.syn,*.syg)
Extra Surface F Set SST and De Soil Parameter	eep		0 7 100 1000 0 0 1 2000 1 2 1 2 1 2 1

Figure 3.7: Main window of TAPM version 3.0

b) Grid Centre Coordinates

This section requires selection of latitude and longitude coordinate corresponding to the centre of the grids that are set up in the Grid Parameters section. This position is used in the database retrieval process to locate the correct position for extraction of input information. A local coordinate system can also be set up; the default system has the origin at the centre latitude and longitude. The local system uses units of meter in the usual (x, y) Cartesian system where the x is positive from west to east and y is positive from south to north, and specifies the centre of the local system with respect to the latitude/longitude grid centre.

c) Date Parameters

This section sets the start and end dates for the simulation in the form yearmonth-day (yyyymmdd) for example, 19970608 corresponds to the 8 June 1997. The value of the Local Solar Time (LST) relative to Greenwich Mean Time (GMT) is also displayed for information (calculated from the selected grid centre longitude). For example, Thailand Standard Time is EST = GMT + 7 and Australia Standard Time in Western Australia is WST = GMT + 8.

d) Grid Parameters

The section specifies the number of west-east (x) and south-north (y) grid points, the outer grid spacing (m) in these directions, and the number of pre-set staggered vertical grid points. The same number of grid points and the same vertical model levels are used for each grid nest. Generally, any outer grid spacing or number of points can be chosen, as long as the outer grid domain is typically somewhere between 400 km by 400 km and 1000 km by 1000 km, in order to remove the boundary regions as far away as possible from the central region of interest. It is also recommended that a minimum number of grid points for a realistic simulation should be $20 \times 20 \times 20$ points in the x, y, z directions respectively. The a grid of $25 \times 25 \times$ 25 points or more is taken in this study.

e) Get Surface Information from Database

This button extracts terrain height, vegetation type and soil type from files contained in the currently selected database directory. Alternatively, this information may be recalled using the next following button.

f) Get Surface Information from Previously Saved Files (*.top)

This button if files (*.top and *.inp) exist in the current Run Directory with the Run File Name Prefix that matches the current GUI selections. Once this information has been obtained, it can be viewed and edited in the Surface Window by pressing the View/Edit Surface Information button.

g) Save Run Files (*.bat, *.inp) and Surface Files (*.top)

This button saves these files in the Run File Directory using the Run File Name Prefixes for each grid. For example, if there are three grids selected (see Section 3.1.1) with file name prefixes for the outer to inner grids of t300a, t100a and t30a respectively, then the files t300a.bat, t300a.inp, t300a.top, t100a.top and t30a.top will be saved.

h) Get Synoptic Analyses from Database and Save to Files (*.syn, *.syg)

This button accesses synoptic meteorological and sea-surface temperature analyses from the currently selected Database Directory and outputs this information to files using the Run File Name Prefix (e.g. t300a.syn and t300a.syg).

i) Save Run Files (*.bat, *.inp) and Surface Files (*.top) and Get Synoptic Analyses from Database and Save to Files (*.syn, *.syg)

This two buttons have to be pressed, and then the model can be run using the saved files.

j) Run TAPM from Information in Saved Files

Once this button is pressed, the model would start to run. However, the user is also prompted to save the GUI Default File (*.def) before model initially start to calculate.

3.3.2 Basic Model Configuration

As described above, before performing model running the fundamental parameter need to be selected properly while any other necessary input files have to be prepared for model. Table 3.1 below showing fundamental parameters configured for TAPM in order to forecast meteorological variables and air pollution level matched with Bangkok's conditions.

Model Controls	Parameter required
1) Grid Center Coordinate	
Latitude and longitude	
 Latitude (clat) 	13 deg 43 min
 Longitude (clon) 	100 deg 31 min
Local values(m) (Cx, Cy)	
• Cx	498
• Cy	594
2) Date parameters	Varied upon simulation date
3) Grid parameters	
Number of grid points (nx,ny)	
• nx	25
• ny	25
Outer grid spacing (dx1,dy1)	
• dx1	30,000
• dyl	30,000
Number of vertical grid levels	
■ nz	25

Table 3.1: Fundamental parameter required for TAPM simulation

3.3.3 Input Files

Since TAPM has been configured appropriately before undergo calculation, there are two important parts of input files that need to be created. The meteorological data assimilation file (*obs) and emission file (*pse, *lse or *ase) are importantly created which is needed to be properly saved and placed into corrected folder under Run Directory as referred in section 3.3.1.

a) The meteorological data assimilation file

Assimilation of winds can optionally be included in a model simulation. The existence of an extra file with name: Run File Name Prefix plus a *.obs extension (e.g. if the outer grid Run File Name Prefix is t300a, then the wind observations need to be in a file called t300a.obs) turns on the assimilation option. The wind speed and direction observations are used to nudge the predicted solution towards the observations. The file format for the wind data assimilation *.obs files is as follows (free format)

READ: nsite READ: sdate, shour, (x_site(i),y_site(i),i=1,nsite) READ: sdate, shour, (z_site(i),r_site(i),i=1,nsite) READ: sdate, shour, (k_site(i),q_site(i),i=1,nsite) Repeated for each simulation hour

READ: idate, ihour, (ws site(i), wd site(i), i=1, nsite)

Where;

nsite	is number of observation sites.
sdate	is start date of simulation (yyyymmdd).
shour	is start hour of simulation (1-24).
x_site	is west-east (x) site location in local coordinates (m).
y_site	is south-north (y) site location in local coordinates (m).
z_site	is vertical (z) site location above the ground (m).
r_site	is radius of influence (m) for each site.
k_site	is number of vertical model levels to assimilate each side of the nearest model level to the observation.
q_site	is data quality indicator $(0.0-1.0)$ $(0.0 = ignore, 1.0 = reliable)$.
idate	is date of observations (yyyymmdd).
ihour	is hour of observations (1-24).
ws_site	is site wind speed (m s^{-1}).
wd site	is site wind direction (°).

To create *.obs file, EXCEL program is easy-to-use program to preliminarily develop the meteorological data assimilation file at first place and then the preliminary file must be saved as type 'text (tab delimited)' with extension *.obs following the file name. (e.g.t300a.obs, t100a.obs or t030a.obs) It's should be note that the *.obs file must be placed at corrected folder where model propose to run. The example of *.obs file initially developed in EXCEL is shown in figure 3.8.

	acal flores महित्र धनि	United	000	-	_	for		incure.	1.42		0	100		-	-	0.1		-				-	1	-	P	(147)	1.00	1.11	- 1	1.0
-	314 1	-			11			-	27		-	E 8				(i).	Ucje •				- 201	2	10	10	14	44	2.6	1.4	LOV-	A .
	115	-	6		24	-		-	B)-		-	-	-	-	-	10.00	14	-	4.44		100				-	-	-	-		
-		-					-		-		-		-	-	-	-	K T	1		м			0	-					1 4	
+	·		-	5	P	5				20	-				. N.	-				-										
	10000101			and	1:06																									
	101000101				201000																									
	100005101		÷	25																										
	19990101																													
11	10000101			1.0																										
	16660101		1																											
2	10060101		×	1.5																										
	19990101		5	1.5																										
	100000101		2	12	10																									
8	10000101			.0	10																									
	16660101		į.,		10																									
	10000101			ing.	30																									
£.,	16660101			164	360							1.1																		
	10000101			1006	.90						_	_																		
	19990101		1.1	1000	10																									
	10000101			0	. D -																									
	HONGOLDT	1		0-	10																									
	10000101			- Q.	(D)																									
	19960101	1		2	0																									
	10000-101			. 9	D																									
	10000101			0	D.																									
	10060101	12		0	D.																									
	10000101			6	0																									
	19660101	- 2		÷.																										
٩.	10000-101	- 5		10	D																									
	19990100			D.																										
۴.	10000100			.0.	. 70 -																									
	10060120		2	- 30																										
	1000010C		a	-10-	σ																									
	166661166		¢	- 10	1.19																									
ł	10060102		5	- P-	17																									
4	10060110			-10	-10																									
	10060105		£	10																										
ł.	10000100			10-2	10																									
	10000102			250	160																									
	HODGID10C	i		152	-																									
ł	10000110			ice	100																									
۴.	10060100	. *		0																										
1	10000100			1000	50																									
	10000100			1206	Æ																									
	100001100			4																										
2.5	#\Sheet	+ / 200	int's	150	an 1													14												
7.1	- Comments		-	V - 2 m																										

Figure 3.8: The preparation of meteorological data assimilation file (*.obs) by EXCEL program.

		1 13004	10000			-				and the owner of the					-	-					
-	alla a		ation Tryin	in stock	a deux	glus 3															
14	199	2.0		Lorris -	- 44	10 1	医菌道	L.C.	TUCA	1.2	TUNK	Gertraite	1. 2	1.1	30	0.14	6.0	41	18	2-4	2.1
	d 🛛		62				_								-						_
100	A	B	0	D	E	F	G	H	10		4	1.1	<. [L		M	1	N	1	0	1.7
1 2 3 4 5 6 7 B	62	1	1000																		
2	0	7826	5575	3	0.5		11	0													
3	0	-7.873	-5368	.20	0.05	3	10														
4	D	7330	5407	20	0.02		0.	10													
2	10	7316	-5364	20	0.02	1	0	0													
5	0	7313	4361	-70	0.00			0													
1	D	7.276	-5023	20	0.034	1	0	2													
9	0	7361	5007 4854	20	0.05	1.1	0	0													
10	10	7238	4825	-10	0.00	1	0														
1	D D	68%	3764	15	05	1.1.1	D.	6													
2	0	3098	THE	20	0.00	1.1	0	÷													
3	0	-3375	175	30	0.00		0														
4	0	2900	250	20	0.03	1.11	D														
15	.0	3500	350	20	0.06	1.1	.0														
16	n	2307	960	20	05	1	0	0													
7	0	2277	21	23	0.5		Ū.	0													
8	Ū.	2111	1128	-20	0.04		0	T.													
19		1506	(9.74	.tR	0.5	10	0	1													
20	.0	2550	34.5	17.	10.00	1	D	11													
21	0	26.17	26.1	0.	0.04	1.	.0	10													
12	11	3650	3025	30	0.02		30	11													
13	0	3670	-3053	30	0.02	13	.0	-10													
24	0	2700	3381	- 22	2.0	1	0	U.													
15	0	2723	3050	05	0.00		0	10													
5	10	2727	3501	70	0.05	1	0	11													
7	.0	2732	-2721	30	0.62	1	11	1													
38	D	2745	3272	20	0.12	1	.0	1)-													
29	0	2747	2945	.20	0.05		11	- TI													
10	п	2750	12.5	20	0 ()E	1	11	D.													
11	D	2752	2944		0.11	1	.0	- 00													
12	B	2757	3079	20	II CB	1	0	1													
13	0	2800	54.6	_0_	0.05	1	- 0														
14 17	0	2950	31,5	20	0.01	1 ×	0	D.													
	H \ 1300						0			16											21

Figure 3.9: The preparation of point source emission file (*.pse) by EXCEL program.

b) The emission file

Hourly varying emission information can optionally be read by the model for files with point source emissions (*.pse), line source emissions (*.lse), area source emissions (*.ase). The model assumes that the file names of these files for a particular run use the Run File Name Prefix of the outer grid with the corresponding extension (e.g. t300a.pse, t300a.lse, t300a.ase, t300a.gse, t300a.bse, t300a.whe, t300a.vpx, t300a.vdx, t300a.vlx, and t300a.vpv). The model can be run with any combination of these files, or no emission files at all, but care should be taken when changing pollutant mode (tracer or chemistry). The listing file (*.lis) will indicate what types of emission information is being used by the model. If generated by the user, these files should be in ASCII, free format, and should be placed in the Run Directory. If the end of file is reached before the end of the TAPM run, the file is rewound and read again (i.e. the emissions cycle over time). The required format for the *.pse file can be seen from the following explanation.

READ: nsource, nhour do i = 1, nsource READ: mode, x_pse, y_pse, h_pse, r_pse, e_pse, f_no_pse, f_fpm_pse enddo do Until End of File do i = 1, nsource IF TRACER MODE, READ: w_pse, t_pse, tr1_pse, tr2_pse, tr3_pse, tr4_pse IF CHEMISTRY MODE, READ: w_pse, t_pse, apm_pse, nox_pse, so2_pse, rs_pse enddo enddo

where;

13

nsource	is number of point sources.
nhour	is number of hours over which the time-varying emissions cycle (1=constant).
mode	is control the source mode (-1=OFF, 0=EGM, 1=EGM+LPM).
x_pse	is west-east (x) local coordinate of the stack (m).
y_pse	is south-north (y) local coordinate of the stack (m).
h_pse	is stack height above the ground (m).

- *r_pse* is internal stack radius (m).
- e pse is buoyancy enhancement factor (1=no enhancement due to near-by stacks).
- f no pse is fraction of the NO_X emission that is NO (0 = no NO, 1 = all NO).

 f_{fpm_pse} is fraction of the APM emission that is FPM (0 = no FPM, 1 = all FPM).

- w_pse is stack exit velocity (m s⁻¹).
- *t_pse* is stack exit temperature (K).
- *tr1_pse* is emission rate of TR1 ($g s^{-1}$).
- $tr2_pse$ is emission rate of TR2 (g s⁻¹).
- $tr3_pse$ is emission rate of TR3 (g s⁻¹).
- $tr4_pse$ is emission rate of TR4 (g s⁻¹).
- *apm_pse* is emission rate of APM ($g s^{-1}$).
- *nox_pse* is emission rate of NO_X (g s⁻¹) (expressed as NO_2).
- $so2_pse$ is emission rate of SO₂ (g s⁻¹).
- rs_pse is emission rate of Rsmog (g s⁻¹).

The required format for the *.lse or *.ase file can be seen from the following

READ: nsource, nhour do i = 1, nsource READ: mode, x0, y0, h0, x1, y1, h1, f_no, f_fpm enddo do Until End of File do i = 1, nsource IF TRACER MODE, READ: tr1, tr2, tr3, tr4 IF CHEMISTRY MODE, READ: apm, nox, so2, rs enddo enddo

where;

1

isource	is number of sources.
nhour	is number of hours over which the time-varying emissions cycle
	(1=constant).
node	is controls the source mode (-1=OFF, 0=EGM).

x0	is west-east (x) local coordinate of the source (m) (start coordinate).
.y0	is south-north (y) local coordinate of the source (m) (start coordinate).
h0	is source height above the ground (m) (start coordinate).
x1	is west-east (x) local coordinate of the source (m) (end coordinate).
yl	is south-north (y) local coordinate of the source (m) (end coordinate).
h1	is source height above the ground (m) (end coordinate).
f_no	is fraction of the NO_X emission that is NO (0 = no NO, 1 = all NO).
f_fpm	is fraction of the APM emission that is FPM ($0 = no$ FPM, $1 = all$ FPM).
tr1	is emission rate of TR1 (g s ⁻¹).
tr2	is emission rate of TR2 (g s^{-1}).
tr3	is emission rate of TR3 (g s ⁻¹).
tr4	is emission rate of TR4 (g s ⁻¹).
apm	is emission rate of APM (g s^{-1}).
nox	is emission rate of NO_X (g s ⁻¹) (expressed as NO_2).
so2	is emission rate of SO_2 (g s ⁻¹).
rs	is emission rate of Rsmog (g s ⁻¹).

Note that although the format is the same for both line and area/volume source files, line sources have emissions uniformly distributed along a straight line using the start and end points specified, whereas area/volume sources have emissions uniformly distributed within a volume (or x-y plane area, if heights are the same) with sides aligned along the Cartesian coordinate axes and side lengths |x1-x0|, |y1-y0| and |h1-h0|, in the x, y, z directions respectively. Same as meteorological data assimilation file (*.obs file), the EXCEL program need to be firstly created *.pse, *.lse and *.ase file and then transform to particular emission file, the example of file developed on EXCEL has been given in figure 3.9 - 3.11 for point source emission file, line source emission file and area source emission file, respectively. The illustration showed 4 domains setting with point source emission file (*.ase) and location of 6 monitoring stations have been shown in figure 3.12 - 3.15, respectively.

1	uğu a	àm.	ganne .	ante nega	a solation	i dege	ydwie F	56									-	1.00		100	1.8	- # 1
1	3 M	Δ	12.00	11.11	107% *	10 B	10 -1	E. M. (8)	Se	plos	1.8	hiĝit	160	8.3	10	0	1.1	ia.	10	11	1.	1.
-	A1	1.	3	98		-												-				
1	A		Ð.	C	D	E	F	G	H	1.	J.		K		L		14		N.			1.3
1E		ਦੇ ਹ	24																			
204000		0	.998	4106	Ω.	3461	427.0	П	0.5	0.5												
3		\overline{M}	2979	\$107	0	3.8.C	4279	0	0.5	0.5												
1		D	3,432	4,269	1	4204	10.4	D	0.5	0.5												
5.		0	43.8	1011	Q.	43/9	39.0	0 -	05	0.51												
6		D.	4490	3668	Ū.	45-4	36/8	л	05	05												
		0	46,38	5457	0	1780	3437	- (j) -	0.9	0.9												
В		0	4909	5437		5329	3417	D	0.5	0.5												
2		0	43(0	38.90	0	4.178	200	.0	05	05												
0		0	4.409	367	0	458.0	16.17	D	0.5	0.6												
1			46.57	34.6	11	4:01	34.36	0	(1.9	0.6												
2		13	4968	34.36	σ	5322	3416	D	35	0.5												
3		0	3481	4068	0	4,308	3895	.0	0.5	0.60												
4		0	6252	3615	Π	4702	9691	10	10,5	17.5												
5		0	6383	0616	0	4703	9692	(R)	0.5	0.5												
6		0	47133	7031	D	20,7	6795	10	05	0.6												
7		0	9977	(6)3	0	(11)8	6127	10	0.5	0,5												
8		D	12161	5649	Π	12256	5468	D	0.5	0.5												
9		0	135/8	4979	- D	13864	4578	.0	05-	0.5												
0		0	141.00	46.6	Ū.	13857	4568	D	105	0.5												
1		0	13100	4979	Ū.	12,0.6	5450	- D	0.5	0.5												
2		0	11120	6127	β.	99.2	6,BICG	Ð	日午	0.5												
3		0	6269	3811	0	6408	7629	-D	05	0.5												
4		0	SACE	76.34	12	6,268	9811	D	Dé	0.6												
5		0	12164	5554	0	12912	.0864	0	0.5	0.5												
Б		0	12137	6954	11	11896	6058	D	9.6	0.6												
7		0	12636	3065	0	12608	8306	10	0.6	0.5												
8		0	13174	8246	0	14170	E542	U	0.5	0.8												
9		0	\$556	199,22	D.	466.1	90B2	0	0.5	.0.5												
0		0	4663	9082	- iii	45EJ	3827	U	(0.6)	12.6												
1		0	8408	76.26	0	9668	7001	0	0.5	0.5												
2		0	9669	6993	0.	84.8	.P*E	υ	0.6	0.5												
3		0	9153	1902	0	9658	2908	10.	0.5	0.5												
4		0	9159	1796	17	9645	2508	21	0.5	GN.												
F.		ine	100	202	.9.	10000	1900	0		216												- 21
	* #/1	3004	(C.							1	-											

Figure 3.10: The preparation of line source emission file (*.lse) by EXCEL program.

61.4	artha afr	-	agent pilosi	wheels	- Secur	nimu 34	56	1.00		-	0.7		200	-	4	de a com	ton - A	1.116	
-	SH A	10.00			17 B	10 -11			plot -	- mil		4.1		пè	1.1.1	10	41.4	1.04.	A .
	A1 #	-	54	10111 3	······································	11 E.L.		- 8	This is	103	- En		-	-12	1.00	# 150	100.000		-
- 10	A	B	6 1	D	E	F	G	н	1 5	-1	T	K	1		7.4	1	N	1 0	0.175
ŧΓ	34	1	-																
	0	8000	7000	0	0300	2500	0	05	06										
34557	.0	8600	7000	UT.	9000	7500	0	0.5	0.5										
4	T	9000	7000	10	9900	7900	Ú.	116	0.5										
5	0	6000	7900	11	00365	6000	0	0.5	0.5										
5	12	0500	7500	0	9000	EDCIC	D	0.5	0.5										
7	0	9000	7900	0	9600	8000	0	05	0.5										
3	0	80.0	80.00	10	0.035	0500	0.	0.5	0.9										
9	0	8600	6000		9000	6600	0	0.5	0.5										
0	0	9000	8000	0	9900	8500	0	0.5	0.5										
1	0	3000	3600	0	3600	4000	0	05	0.5										
2	D	3500	3500	D	4000	4000	0	0.5	05										
3	0	4000	3900	Ű.	4500	4000	0	0.5	0.5										
4	0	3000	4000	0	3600	4500	0	05	05										
5	0	3500	4000	0	4000	4500	0	0.5	0.5										
6	D	4000	4000	0	4900	4900	0.	0.5	05										
7	0	3000	4500	0.	3600	5000	0.	0.5	0.5										
8	10	3500	4900	10	4000	5000	0	0.5	0.5										
9	0	4000	4500	0	4500	. 5000	0	0.5	0.5										
0	17	10500	3000	D	11000	1500	0	0.5	0.5										
1	0	11000	3000	0	11500	3900	0	0.5	0.5										
2	.0	1 (900)	3000	0	12000	2500	0	0.5	0.5										
3	0	10500	3600	0	11000	4000		0.5	0.5										
4	0	11000	3900	0	11900	4000	0	0.5	0.5										
5	0	11500	3500	0	1,2000	4000	0	0.5	0.5										
Б	0	10900	4000	0	11000	4900	0	0.5	0.5										
7	0	11000	4000	0	11500	4500	0	05	0.5										
9	0	11900	4000	.D	12000	4500	0	0.5	0.5										
9	0	3600	0	0	3000	500	0	0.5	0.5										
0	0	3000	Ω.	0	2900	500	0	0.5	0.5										
1	0	-2500	0	0	2000	500	6	0.5	0.5										
12	D	3500	500	U	3000	1000	-0	0.5	05										
13	D	3000	500	0	2900	1000	0	0.5	0.5										
4	ii.	2900	500	12	.000	1000	11	0.5	0.5										
Ξ.	н\тапол	, work	1000		inci-	200		2.5	10										- 11

Figure 3.11: The preparation of area source emission file (*.ase) by EXCEL program.

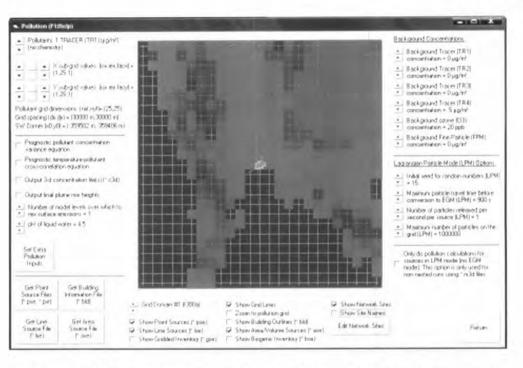


Figure 3.12: The outermost grid domain (30 km) in TAPM configuration

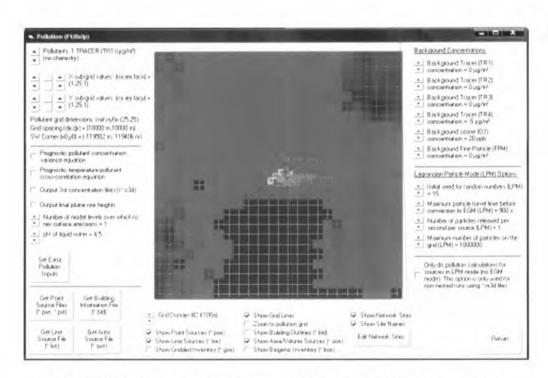


Figure 3.13: The second grid domain (10 km) in TAPM configuration

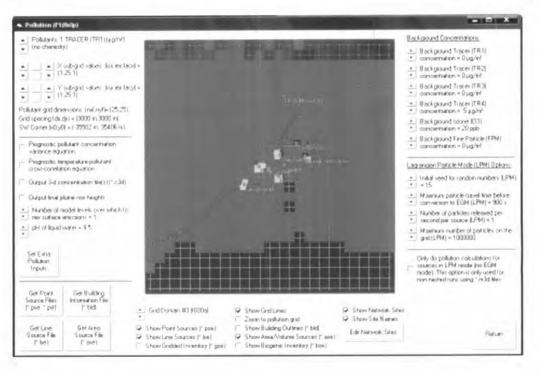


Figure 3.14: The third grid domain (3 km) in TAPM configuration

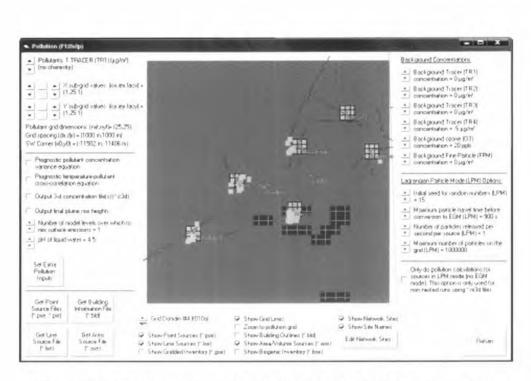


Figure 3.15: The innermost grid domain (1 km) in TAPM configuration