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Molecular dynamics simulations of a concentrated lithium-liquid ammonia
solution have been performed at an average temperature of 241 K. The basic cube
contains 50 Li*, 50 delocalized electrons and 205 NHs (19.58 mole percent of lithium
ions). With an experimental density of 0.498 g.cm”, a side-length of a periodic cube of
23.39 A was obtained. Interactions between particles in the simulation cube were
described by the direct and indirect potentials. The first function was developed using
quantum chemical calculations while the second one, which represents the effect of free
electrons dissolved in the solution, was evaluated based on pseudopotential theory. Two
pseudopotential models were employed in this study. The results show that the lithium
ion was solvated by six ammonia molecules. The solvent structure was completely
changed in comparison with that observed for pure liquid ammonia. Big clusters of Lip,
(NHs)," sharing of one ammonia molecule by 2, 3 and 4 lithium ions have been

detected. As a consequence of the cluster formation, big cavities are formed in the

solution.
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INTRODUCTION
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1.1 Computational Science: The Third Method of Science!

Today computer technology has rapidly developed and plays a very important
role in many fields in science, inciuding studies and research. In the past, physical
properties were characterized by experiments and theories. In experiment, a system is
subjected to measurements and results. In theory, a model of the system is developed
in form of a set of mathematical equations. ‘Computational Science’ makes use of
numerical computations and graphic visualization evaluating interested-informations

of new scientific investigations.

As such, computational science must be separated from computer science.
Computer science playing on the computer itself, it is the science and engineering of
computer systems, including hardware and software. On the other hand,
Computational Science is interdisciplinary. It uses the technology of the computer to
study problems in mathematics, physics, chemistry, biology, other applied science and
engineering fields. A computational scientist needs to be conversant in both the
fundamentals of computer science and in the scientific field whose problems he

wishes to solve.

Computational science techniques are used to simulate physical events and to
process large amounts of generated or collected data. The use of simulation in
research and development is now established as a third basic methodology of doing
scientific research, in addition to theory and experiment. The importance of computer
simulation is illustrated by the grand challenge, new drug design and new product
design problems, whose solution is beneficial to society but will require vastly more

powerful computers and more scientists in this.



1.2 Computational Simulations in Chemistry

Models of chemical systems and specialized theoretical chemistry are mainly
constructed in the form of quantum chemical calculations and statistical mechanics
simulations. These tools are widely applicable for many systems, especially for
investigation of microscopic properties and lead directly and perhaps easily to a set of
interesting results or macroscopic properties of the system. The result of computer

simulation can be directly compared with those of real experiment.

Computational simulations can fill the gap between theory and experiment. If
the model is good, it is expected that the simulation results are compatible with
experimental results. On the other hand, the predictions of some complicated
theoretical models can also be tested with simulation results: The connection between

experiment, theory, and computer simulations is shown in Figure 1.1.

Computer simulation methods, such as Monte Carlo (MC) practically
introduced by Metropolis [1953], and Molecular Dynamics (MD), introduced by
Alder [1960], are widely tools for studying statistical and dynamical properties of
liquid and solutions. Both simulation methods can be used to evaluate structural
properties of systems, included some data inaccessible by experimental techniques.
However, Molecular Dynamics methods show not only the structural properties but

can also calculate dynamical properties of the system.

1.3 A Non-Aqueous Solvent System

A non-aqueous solvent of widespread interest is liquid ammonia. Interest is
focussed on its solution of alkali or alkali earth metals because of there remarkable
properties such as high electrical conductivity [Lepoutre and Seinko 1964]. In region
of high metal-concentrations, the solutions behave like liquid metal while their free-
electron densities are much lower compared to pure metal [Thompson 1976]. Metal

solution in liquid ammonia consists of ammonia molecules, metal ions and free



(conduction) electrons. The presence of free electrons is a special feature of metal
ammonia systems. Here electrons must be treated as quantum particles. This gives rise
to considerable difficulties in computer simulations of liquid metal-ammonia

solutions.

Real Liquid Make Models Model Liquids |
g
< == re—h, T T L T A N e

A

Perform Construct
Perform .
: Computer Approximate
Experiments ; : . - <
Simulations Theories

T
~ N

Experimental Exact Result

Theoretical
Results | for Model

Predictions }‘

Tests of Models Tests of Theories

T R el e VT T ek T v g T

Figure 1.1 The connection between experiment, theory and computer simulations [Allen and

Tildesleym, 1987].

1.4 Summary of This Work

By the application of pseudopotential theory, new effective interatomic
potentials are derived. Aim of this study is to use classical computer simulation
methods to calculate structural and dynamical properties of concentrated metal-
ammonia solutions where free electron can be excluded from explicit consideration.
The metal ion that used in this study is lithium ion. Simulations have been carried out

at highest concentrations of this solution (19.58 mole percent of lithium ions in liquid

ammonia).



CHAPTER 2

QUANTUM THEORY

Quantum chemistry 1s highly mathematical method and the language used to
describe quantum mechanics more often relates to equations than to chemical
concepts. The system is described by a wavefunction which can be obtained by
solving the Schrodinger equation [Schrédinger, 1926]. This equation relates the
stationary states of the system and their energies to the Hamiltonian operator, which
can be viewed as the recipe for obtaining the energy associated with a wavefunction
describing the positions of the nuclei and electrons in the system. In practice, the
Schrédinger equation cannot be solved exactly and approximations have to be made.
Quantum mechanics are nowadays substantially applied in all branches of chemistry,

both theoretical and experimental investigations.

2.1 Quantum Mechanics Methods

Quantum mechanics methods are based on the following principles;
¢ Nuclei and electrons are distinguished from each other,
¢ Electron-electron and electron-nuclear interactions are explicit,

e Interaction are governed by nuclear and electron charges and

electron motions,

¢ Interaction determines the spatial distribution of nuclei and electrons

and their energy.

To obtain a numerical approximated solution of the Schrddinger equation, all
electrons in the system will be treated using one-electron wavefunctions called spin

orbitals. These spin orbitals will be combined to form the many-electron
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wavefunction. This technique is called molecular orbital (MO) theory. There are two

categories: semiempirical and ab initio methods.
Ab initio

o Use the full Hamiltonian and dose not use experimental data

other than the values of fundamental physical constants,

e Limited to about 100 atoms best performed using a high
performance computer and can be applied to all kind of

molecule, and molecular fragments,
e Vacuum or implicit solvent environment,

e Can be used to study ground, transition, and excited states.
Semiempirical

e Use a simpler Hamiltonian and some of the time consuming
mathematical terms in Schrodinger Equation. The parameters
can be derived from experimental measurements or by

performing ab initio calculations,

e Limited to some hundred atoms,

e Can be applied to mostly only to organic molecules,

including small oligomers,

o Can be used to study ground, transition, and exited states.

un



2.2 hrodinger Xquation

System in quantum mechanics, the energy and many properties of stationary
state of molecule can be obtained by solution of wavefunction, which satisfies the

Schrodinger equation,

'hgw(“ z)—(—ﬁv2 +V(F)J‘P(“ t) 2.1
l or r,t]j= m r,lj. (-)

If the potential V(7) is not explicitly time-dependent, and for appropriate boundary

conditions, we can find a separable solution, so that the wave function can be written

as

W(7, 1) = y(F)e ™", 22)

where E is interpreted as the energy, which leads to the time-independent Schrodinger

equation
Ev) =[2G y) =), 03

where w(7) is the normalized wavefunction of the system and H is called the
Hamiltonian operator, representing the energy. However, in the case of the many
electron problem, the solution of the problem must also include the Pauli’s exclusion

principle, that any pair of electrons with respect to the interchange of the coordinates,

their wavefunction must be antisymmetric.

For some systems which consist of one electron, it is easily to solve in order to
obtain an exact solution of the SchrOdinger equation, but all case of many-electron
systems, only approximate solutions can be achieved, then approximation techniques

and procedures are needed and implemented.



2.3 Born-Oppenheimer Approximation: Separation of Nuclei

Motion

Born-Oppenheimer approximation suppose that electrons mass is very much
smaller than the mass of the nuclei. Therefore, the nuclear motion is much slower than
electrons. That reason why one can separate the nuclear and electron translation parts
of the SchrOdinger equation. It is also approximate that the force and potential acting
on the electrons depend on the fixed positions of nuclei, that is and the approximately

average value over several electron interactions with nuclei.

Hy(7, R) = Ey(7, R) , 2.4)

with the Hamiltonian operator written as

H=T, +V, +H, , (2.5)
ARYA
where V= Z’%—E“
A<B RAB
T, == Ly ad H :—ZLVLZ;ZA +Zi..
! all nuclei 2Mn d : i 2 iA riA i<j rlj

By assume that the solution of the SchrOdinger equation can be separated into

the form,

(£, R)=o(f, RX(R), (2.6)

and the SchrOdinger equation will also be separated into two equations, for the

electronic wavefunction,

(1, +V,(R)]o(7, R) = U(R)o(, R) @7



and for the nuclear motion.
[T, + U(R)[x(R)= £x(R) 2.8)

It can be seen that the potential term U(]?) depends on only the position of the

nuclei. This is used for an important construct known as the potential energy surface.

2.4 Linear Combinations of Atomic Orbitals (LCAO)

Approximation

Linear Combinations of Atomic Orbitals is involved in the calculation for
approximately solve the electronic SchrOdinger equation. The main idea of this
approximation is to suppose that individual molecular wavefunction can be obtained
from linear combination of a finite set of one-electron wavefunctions called the basis

set, ¢, and write in the form
N _
% (%) = 2,60, (%) (2.9)
p=1

where ¢, are the molecular orbital expansion coefficients. Then the one-electron
functions are brought together to approximate the full wavefunction w(xl,xz,. o N)
in form of Slater determinant:

Xx(xl) Xl(xz) X)(Xz) X](Xn)

\({jn—clc :_‘_l_dXZ(XI) XZ(XZ)

2.10
¥ (2.10)

p AL e T SRS L L

where x; = (F,,m i), ¥, 1is the space coordinate and ,; is the spin coordinate . Then

the electronic energy can be calculated from

E ={y,|y). (2.11)



2.5 Basis Functions

Two types of basis functions named Slater Type Orbitals (STO) and Gaussian

Type Orbitals (GTO), are normally used to represent the primitive functions ¢u(x) ,

for convenient one-electron wavefunction or spin orbitals xi(xi).

2.5.1 Slater-type atomic orbitals, STO

This set of functions is derived from exact solutions in the case of the

hydrogen atom, with general form as [Slater, 1930]

n~

Lexp(~LfT) Y., (6,6) .- (2.12)

T

P50 (1,1, m, &) =

It is usually used for small systems. Functions of this type yield a very good
approximation for orbital wavefunctions and produce good results of calculations.
However, the exponential term in the function causes some difficulties to evaluate

numerical integrals.

2.5.2 Gaussian-type atomic orbital, GTO

Functions of this type were introduced into molecular orbital computations by

Boy [1950]. Their general form can be written as
O oo M it, v, o) = x y*z" exp(—on(f‘z). (2.13)

They are less satisfactory than STO in representing atomic orbitals, because they do
not have a cusp at the origin. However, the advantage of this type of function is that

all integrals in the computations can be evaluated without numerical integration.



2.6 Hartree —Fock Theory and Hartree-Fock Self-Consistent-Field
Method

Hartree-Fock theory is the variational method which is one of the standard
techniques used in quantum mechanics. Hartree-Fock theory seeks the optimized
energy for the system under consideration. The Hamiltonian operator for many

electrons can be written as

H=3 2V} +4 D M (2.14)
ko \”A
which can be separated into two components,
H=H, +H, (2.15)
where
hz
H, =& - Zh (2.16)
x 2m |
and
2
H,=3) izw(“) 2.17)
k=l ‘rk‘ = r,‘ =/
The total energy of the system can be written as
E = E[i]= (7 H7) = (7|1,|7) + (7| 1, ]7) (2.18)

where W> is a eigenfunction constituted from tensor products of Z arbitrary kets
‘a’>, 2>,...
7)=la) 82 )7 ){e7)

(2.19)

10
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where a, b, ¢, ..., A, ..., § represent the states of one-electron states, and (1), (2), ...,

(k), ..., (Z) represent coordinate of an individual electron with an orthonormalized
constraint
<?»|p>:6)\H where A, p = o, B, ... , C.

The expectation value of H, becomes successively
)=o) = (0
-
_ Z<l/7!h(")$v7> (2.20)
k
£ z<1\h“)li>
A

and

=53 (e l7) a1

According to the variational technique, we seek to minimize with respect to

variations in the single-electron wavefunctions, |L). At the same time, the

wavefunctions are constrained to be orthonormal, <K’p> =38;, - Therefore we use the

method of Lagrange multipliers:

ALt

B{E[\TJ] + Y e (M p>}=0, (2.22)

where & is a variation with respect to any of the single-electron wavefunctions. Using

linear combinations of |oc>, B>, . .Q> that diagonalize €, , one get

SE[§]+ X, 8(MA) =0. (2.23)
A



This can be developed to

;(8k|{h(”§k“)>+Z<uf"‘)l‘v(‘z)lu(2)>\ﬁD>—ek|x>}

(2.24)
{< A0 \h + z< (v K \w ")lu > gk<k|}|5x> -
it is clearly seen that whole left side of equation can be zero if
B [A0) + 2 (@ 2uCH0) g, [2) = 0 (2.25)

il

This equation is called the Hartree equation.

Hartree-Fock Equation

The Hartree equation was derived based on the assumption that ‘\TJ) 1s a tensor

product of Z arbitrary kets, ’ocm>, lB(2)>, ........... , which can give a good

approximation for some systems. However, the Hartree equation itself does not
include the effect of Pauli’s exclusion principle, which requires the electron wave

function to be antisymmetric under particle interchanges. The wave function now

becomes

(= (2" (1Y Pl = (2)) " A7) (2.26)

p

where P is permutation operators, and A is the antisymmetric operator defined by

1
A=52(— e (2.27)
1E:

Then we apply the variational method with ‘\1/) in the same way as did with /\{7)

yields

() = 2 (W O) 2.28)

A

12



and

(f,}=4¥ .___\x%m _Woz)!Xu)H(z) )= Q0@ 02 @) (5 59
Ap

where the first term of <H2/\ is the Coulomb interaction term, and the second term is

the exchange interaction term. Then we can obtain

hO[0) 4+ Y <u(2’iw(‘2)‘u(2) o)y <u(2)3w(‘2)1k(2) ) e =0
I8 H

or FiA)~€, A =0 (2.30)
which is called the Hartree-Fock equation,

where the Fock operator F is defined as

y . / | \ / | N
FIA) =hla) + 2 (p@wi 2@ a0) 4 7 (L@ DR, 0) (231
u

n

Some more approximations must be introduced in order to solve the Hartree-
Fock equation. The wave function, |A), can be written as a linear combination of basis

function.

DE }jjcxj ) (2.32)
substituting this into Hartree-Fock equation and multiply by {i{ we obtain the result

Zea, {iFl7) =2, Yo, ). (2.33)
It can be rewritten in form of matrix equation

> By —erS;)=0 (2.34)
J

where =<¢iiFJ¢j> are elements of the Fock matrix F, and S =/¢i)¢j> are

elements of the overlap matrix S. The equation can be rewritten in the more compact

matrix form

Fe = Sce. (2.35)

13



This equation is called the Roothaan-Hall equation, which provides the ability to solve
the Hartree-Fock equation with numerical procedures using digital computers
[Roothaan, 1951; Hall, 1951]. This technique is commonly used in problem solving
and is called the Roothaan Hartree-Fock Self Consistent Field method (SCF).

2.7 Basis set superposition error

In the calculation of stabilization energies, using the SCF method, of two
species, A and B, an erroneous result is obtained when finite bases are employed. The
reason is the finite separation of two species sites of A and B. The basis set located on
B sites can overlap and improve the basis set of A, and vice versa. To estimate the
effect, the energy of the A species is calculated with both basis sets of A and B, but
without the B species itself. Next, one calculates for the B species with both basis sets
of A and B, without the A species. The results can be used to improve the value of the
total energy. The Counterpoise method was first introduced by Boys and Bernardi
[1970] to correct the inaccuracy. This method determines the subsystem energies
using the same basis set functions as used in the full system. Suppose that {A} and
{B} are the basis sets of subsystems A and B, respectively. The interaction energy of

whole system can be written as

AE = E 45({4},{B}) - (E,({4}) + E5({B})) (2.36)
and the Counterpoise correction as

ne=(E,({4)~ E,((4}.{B)+(E({B}) - E5({4},(B}))  (237)
The Counterpoise corrected interaction energy can be written

AE,, = AE +Ae. (2.38)
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CHAPTER 3
MOLECULAR DYNAMICS SIMULATION

3.1 What is Molecular Dynamics?

Molecular dynamics (MD) is a computer simulation technique where the time
evolution of a set of interacting atoms is followed by integrating their equations of
motion. In molecular dynamics one follows the laws of classical mechanics, and most

notably Newton's law:

F=ma, (3.1)

for each atom i in a system constituted by N atoms. Here, m; is the atomic mass,

a, =d’r / dt’ its acceleration, and F; the force acting upon it, due to the interactions

j
with other atoms. Therefore, in contrast with the Monte Carlo method, molecular
dynamics is a deterministic technique: given an initial set of positions and velocities,
the subsequent time evolution is in principle completely determined. In more pictorial
terms, atoms will “move" into the computer, bumping into each other, wandering
around (if the system is fluid), oscillating in waves in concert with their neighbors,
perhaps evaporating away from the system if there is a free surface, and so on, in a

way pretty similar to what atoms in a real substance would do.

The computer calculates a trajectory in a 6/N-dimensional phase space (3N
positions and 3N momenta). However, such trajectory is usually not particularly
relevant by itself. Molecular dynamics is a statistical mechanics method. Like Monte
Carlo, it is a way to obtain a set of configurations distributed according to some
statistical distribution function, or statistical ensemble. An example is the

microcanonical ensemble, corresponding to a probability density in phase space
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where the total energy is a constant £: §(H(I')~ E). Here, H( I" ) is the Hamiltonian,

and represents the set of positions and momenta. & is the Dirac function, selecting out
only those states which have a specific energy E. Another example is the canonical

ensemble, where the temperature 7 is constant and the probability density is the

Boltzmann function exp(-H((1")/k,T

According to statistical physics, physical quantities are represented by
averages over configurations distributed according to a certain statistical ensemble. A
trajectory obtained by molecular dynamics provides such a set of configurations.
Therefore, a measurements of a physical quantity by simulation is simply obtained as
an arithmetic average of the various instantaneous values assumed by that quantity
during the MD run. Statistical physics is the link between the microscopic behavior
and thermodynamics. In the limit of very long simulation times, one could expect the
phase space to be fully sampled, and in that limit this averaging process would yield
the thermodynamic properties. In practice, the runs are always of finite length, and
one should exert caution to estimate when the sampling may be good (system at
equilibrium) or not. In this way, MD simulations can be used to measure
thermodynamic properties and therefore evaluate, say, the phase diagram of a specific

material.

3.2 Historical Molecular Dynamics

e The first paper reporting a molecular dynamics simulation was written by Alder
and Wainwright [1957]. The purpose of the paper was to investigate the phase
diagram of a hard.sphere system, and in particular the solid and liquid regions. In
a hard sphere system, particles interact via instantaneous collisions, and travel as
free particles between collisions. The calculations were performed on a UNIVAC

and on an IBM 704.
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The article Dynamics of radiation damage by Gibson, Goland, Milgram and
Vineyard from Brookhaven National Laboratory, appeared in 1960, is probably
the first example of @ molecular dynamics calculation with a continuous potential
based on a finite difference time integration method. The calculation for a 500-
atoms system was performed on an IBM 704, and took about a minute per time
step. The paper, dealing with creation of defects induced by radiation damage (a
theme appropriate to cold war days), is done exceedingly well, and is hard to

believe that it is almost 40 years old.

Rahman at Argonne National Laboratory has been a well known pioneer of
molecular dynamics. In this famous 1964 paper Correlations in the motion of
atoms in liquid argon, he studies a number of properties of liquid Ar, using the
Lennard-Jones potential on a system containing 864 atoms and a CDC 3600
computer. The legacy of Rahman's computer codes is still carried by many

molecular dynamics programs in operation around the world, descendant of

Rahman's.

Verlet calculated in 1967 the phase diagram of argon using the Lennard-Jones
potential, and computed correlation functions to test theories of the liquid state.
The bookkeeping device which became known as Verlet neighbor list was
introduced in these papers. Moreover the *“Verlet time integration algorithm" was

used. Phase transitions in the same system were investigated by Hansen and

Verlet a couple of years later.
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3.3 Molecular Dynamics Procedure

To perform molecular dynamics simulation it may be possible to consider the

following steps (Figure 3.1):

Prepare necessary constants and initailize coordinations and velocities of all

particles in the system.

Calculate forces acting on each particle, due to interactions with its neighbors, and
move particles follow the Newton’s law. This operation is repeated for a large

number of timesteps.

Calculate system properties and store all positions and velocities for future

investigations.
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The Scheme in Molecular Dynamics Simulation

starting configurations, velocities,
accelerations and forces

predict configurations, velocities,
accelerations, etc.,

at a time ¢ + Of using the current values of

these aquantities

MM or QM
-dE

I

calculate interaction energy E (using either

method ), force on each atom F; (d— =F)
Y.

correct the predicted configurations,
velocities, accelerations, etc., using
the new accelerations

move particles by force F; to the new

I

I

I

I

I

I

I

I

I

I and acceleration (q; = ﬁ)
I i

I

I

I

I

I

|

: configurations

integration
algorithm

forces, etc. of all particles

store coordinates, velocities, accelerations,

Finished?

calculate properties of
the system

Figure 3.1 Scheme in molecular dynamics simulation (MM and QM denote

Molecular Mechanics and Quantum Mechanics, respectively).
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3.3.1 The Predictor-Corrector Algorithm

The finite difference approach is a standard method for solving systems of
differential equations. A basic concept, called the predictor-corrector algorithm,
supposes that one knows the positions, velocities, etc. at time . Then one can estimate

positions, velocities, etc. at time ¢ + 6t from a Taylor series expansion around ¢
FP(r+80) =7 (t)+ 8¢ 5(e)+ 38t a(t) +18¢% b(e)+...
VP (¢ +80) =v(t)+ 8¢ alt) + L8t b(t)+...
a?(r+8t)=alt)+ot b(e)+...
bP(r+8t)=b(t)+...,
where 7(¢), v(¢), a(t), and b(¢) represent positions, velocities, accelerations and the
first derivative of accelerations, respectively, at time ¢. The superscript p marks a
predicted value. However, in the present step, these formulas cannot generate

sufficiently precise trajectories as time evolves because the value of b(f)is not given

yet and is thus initially set to zero. One way to improve the result is to determine 5(r)
from a(¢) and a(¢+8¢) using

() ~ Zz’(t+6é2—c—z(t)' )

In the next step, the corrector step, the new b(¢) is used to recalculate the new set of
7(r+8¢), (s +8¢),alt +8¢), and b(z+8¢) using equation (3.3). The corrector step may

be iterated. Nevertheless, in our simulations only one corrector step was performed.

Another way to obtain a better trajectory is the method introduced by Gear

[1966; 1971]. The corrected accelerations, a°(z+8¢), at predicted positions,

7P(r+38t), are calculated and brought to compare with predicted accelerations,

a*(t +dt) , yielding the estimated size of the error in the prediction step:

Ad(r+8t) =ac(t+8t)—a?(t+8¢). (3.5)
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The error size and results from the predictor step are used in the correction step, e.g.,

by
7t 4 81) =F Pt + 1) + cohalr + 1)
Tt +82) =P (¢t +8¢t) + ¢, Ad(t + 8t)
~ ~ 3 (3.6)
G(t+8t)=ar(t+6t) +cyAdt +81)
be(r+8t)=b7(r+8t)+c,Aalt +8t).

The values of corrector coefficients depend on the choice of process used in the

calculation, such as the order of finite difference being used in the algorithm.

3.3.2 Periodic Boundary Conditions

The number of particles in computer simulations is usually limited by the
efficiency of the computer. Only a few thousand particles, compared to 6x10 per
mole of a real system, can be simulated in a tiny container. It can be supposed that a
large fraction of particles lies near the container walls. Those particles will experience
quite different interactions from particles in the bulk. Nevertheless, this problem can
be overcome by introducing periodic boundary conditions to simulate infinite systems
[Bormn and Karman, 1912]. The container, usually of cubic shape, is replicated
throughout space to form an infinite lattice. The particles in the original container and
its periodic images will progress in the same way in the course of simulations. When a
particle leaves the container by crossing a boundary, there will be an image of that

particle entering the container on the opposite boundary.
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3.3.3 Cut-Off Limit

In the case of short-range interactions, rapidly dropping to zero, one can
neglect the interactions beyond a distance called the cut-off limit. Normally, it is never
greater than half of the periodic box-length to include only the nearest images of

distinguishable particles in interaction calculations.

3.3.4 Long-Range Interactions

Interactions over distances far beyond half of the periodic box length are called
long-range interactions. Sometimes they cannot be ignored, and they make computer
simulations more difficult. Two standard techniques for this problem are Ewald

summation [Ewald, 1921] and reaction field correction [Onsager, 1936].

The Ewald summations handle all particles with their images as they are in a
solid crystallized system. In case of coulombic interaction the potential energy of the
system, V, can be written down as

b

V=3>|222Z,
’ NF AL

AL

: (3.7)

where 7, j represent all particles in the periodic box, and 7 is a vector of integers
representing the periodic images. This summation conditionally converges to a known

limit for numerous sorts of long-range potentials.
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The reaction field method introduced without the assumption of periodicity,
treats all particles beyond the cut-off sphere as forming a continuum with a given
dielectric constant. Therefore, any charge lying inside the cut-off sphere will polarize

the continuum and create a reaction field at the center.
3.3.5 Shifted and Shifted-Force Potentials

The truncation of the potential at a cut-off introduces some difficulties in

defining a consistent potential and force, since the potential function, V(r,.j) , contains

a discontinuity at 7, =7, . The problem may be avoided by shifting the potential

function by an amount V, =V(rc). However, the force at r; =r,,, is still

discontinuous. For conservation of energy, the shift-force potential method [Streett,

1978] is introduced, and the shift-force potential can be calculated from equation

(3.8).

e ) { v )-v.-v( e -r) n<r 68

0 T, >,
3.4 Calculation of Macroscopic Properties
3.4.1 Structural Properties

Liquid structure cannot be written as an exact arrangement in space as
in the case of crystalline solids. It is usually be described in terms of comparative

arrangements of atoms with other atoms. One essential measure is the radial
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distribution function (RDF), represented by g,.j(r). This function presents the

probability per unit volume of finding particle j at distance r from particle i. The RDF

is normalized to be 1 for a completely random distribution. Another quantity related to

the RDF is the running integration number, represented by n,.j(r) , easily calculated

from

n,.j(r) = p'[g,.j(r)41tr2 ar, (3.9)
0

where
p = number density = N/V .
An average coordination number is defined as the value of n,.j(r) at the first minimum

of gy(r) following the first peak. Any particles at distances less than this first

minimum belong to the first solvation shell.
3.4.2 Dynamical Properties

The most common way to present dynamical properties of the system is to

formulate via the time-correlation function,

(4(0)B(1)) X
€)= o) 8(0) (.10

where <A(0)B(t)> can be calculated using the averaging formula,

1 ! max
(40)B(t)) =—— >, Alty) Bty +1). (3.11)

[mw( to=1

Another meaningful dynamical property is the time-autocorrelation function, defined

as

C . (6)=(4(0)4()), (3.12)
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and yet another is the self-diffusion coefficient, D, which is related to the velocity

autocorrelation function by the Green-Kubo relation [Frenkel and Smit 1996],

p="1t]c, (0)dr (3.13)

The elementary Stokes-Einstein theory of diffusion of liquid [Frenkel 1946] shows

that the relation of the self-diffusion coefficient, D, and viscosity, v, is

1 kyT

:%_v , (3.14)

where a is the radius of fluid particle, ks is Boltzmann’s constant, and T is the

absolute temperature.



CHAPTER 4
DETAIL OF CALCULATIONS

Lithium-liquid ammonia solution consists of ammonia molecules, lithium ions
and free (conduction) electrons. In this study two different models of the
pseudopotential have been employed. The molecular dynamics simulation has been
used to calculate structural and dynamical properties of highest coﬁcentrated lithium-

ammonia solutions.

4.1 Simulation Models

4.1.1 Total Energy

The total potential which describes the effective interaction for all particles in
the flexible MD simulations consists of 2 parts namely inter- and intramolecular
potential functions, Interaction between sites of kind 1 and j in metal ammonia svstem

containing free electrons is given by

VIR) = Vi R) + VVing(R) 4.1)
where VU3(R) is the direct interaction and V34(R) is the change of the direct

interaction due to the presence of free electrons.

The Vijdir(R) is usually developed using quantum chemical calculations while
the VU;4(R) can be calculated using pseudopotntial method [Hannongbua et al. 1988,
1992, 1997]

In this chapter, three types of the functions, Vina, Vijdi,(R) and Vijind(R) have

been described.
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4.1.2 Ammonia Intramolecular Potential

Several intramolecular potential describing flexibility of the ammonia
molecule avaiable in the literatures [Bopp et al. 1982, 1984, Spirko 1983]. They are
derived base on spectroscopic data. In this study that reported by Spirko has been
used. This function accounts also for the inversion mode of the molecule by means of

a strongly anharmonic potential. The potential function is given by,

1 5 5 E I -
+§ZZE/‘S/S/ +ZZZEijISjSk 4.2)

Sy = %(2&‘1 - Ary — Ar3),

55 :%(zmI ~Aa, - Aay), (4.3)
1

§4 = ﬁ(Arz —Ar3),

1
S5 = E(Aaz —Aa3),

where Ar; and Ag; are the three N-H distances and H-N-H angles, respectively. A is

the distance of the nitrogen atom from the plan spanned by the three hydrogen atoms,

and all constants are given by

Inversion force constants,

k; = -0.53741 k' = +1.0806
ko = +2.08241 k', = -5.7569
ks = -0.77902

K4 = +0.3500
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Second-order force constants,

Fiy = 6.8186
Fi2 = Fu = 6.8975
Fi3 = Fss = 0.6166
Fas = F4 = 0.0028
Third-order force constants,
Fui = -3.92836
Fin =Fu = -11.9988
F23 = Fus = -4.8718x107
Fi33 = Fi55 = -0.10989
F222 = -2.82914
Foa4 = 8.4874
F223 = Fiu = 5.9505%10°
Fass = 1.1901x107
Fo33 = Fass = -1.0983x107
Fias = 21.966x10
Fi33 = -0.06747
Fsss o 0.2024
Fourth-order force constants,
Frin = 2.8351
Fiio = Fliaa = 17.163
Fiis = Fiyss = 0.08564
Fia2 = 8.1277
Floas = -24.3830
Fi333 = 0.01625
Fisss = -0.04875
Foom = Faqaq = 4.3066
Fo244 = 8.6133
Fao33 = Fass = F344

= Fyass = 0.04078
F3333 = Fsss5 = 0.08044

Fi3ss = 0.16087
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For this model of intramolcular potential is well known for flexible molecule

ammonia in molecular dynamics simulation.
4.1.3 Intermolecular Potentials

The interactions between particles in the system are described by potential
function which varies accordding to the characteristics of components, such as the
electromagnetic force, overlap, induction, etc. However, the potential of any system
can be written, in general form, as

)= YUY YUFEIS S YU E i i, (44

= j=iy i= j=i+ k=j+
The first term of the right side of equation, U 1(7’,- ) , represents the influence from a

potential due to the external force field, such as the gravity field. The second function,
U, (Fi ,Fj>, called the pair potential, represents the potential from two body

interactions. It is usually the most important term and can be written as a function of

the magnitude of the distance between the pairs. The next term, U, (F,- ,Fj,r"k), called

the three-body term, is generally expected to be small and is neglected in a number of
models because it slows down computer simulations as well as requiring much time
and effort for the development of the function. However, in the case of condensed
systems, the three-body term probably becomes meaningful and affects some outrun
properties. The remaining terms, called non-additive or many-body interaction terms,

are generally expected to have very small effects on the system.

Pair Potential

Concentrated lithium—ammonia solution is a quantum system which consisting
of lithium ions and free electrons in liquid ammonia, the system has to be described
by the pair potential and pseudopotential. The last one is necessary to describe the
effect of the free electrons on the pair potentials which are routinely used for classical

simulations.
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In this study, ammonia-ammonia potential function and parameter parameters
(Table 4.1), were taken from [Hannongbua, et al., 1988]. The lithium-lithium and
lithium-ammonia potential function and parameter (Table 4.2) [Hannongbua, et al.,

1992] have been applied

Table 1. Directed intermolecular potentials employed in simulation. Energies are

given in units of 107 J with the distances in A.

Vin(R) = 14.85/R + 55719/R"> — 13.6/R°
Var(R) = -4.95/R + 0.01042 {exp[-4.6(R-2.4)]-2exp[-2.3(R-2.4]}
Vur(R) = 165/R + 48.64exp(-3.7R)

Table 4.2 Parameter potential functions for the Li-ammonia pair potentials function

the energy are given in kJ mol™ with R in A.

V! (R) ="+ 5+ Cexp(-DR)

A B C D
Li-Li 1390 0 -18.7 1.62
Li-N -1686 4024 0 -
Li-H 562 2865 -229 0.31
Pseudopotential

In comparison to the previous studies [Hannongbua et al. 1988, 1992, 1997].
The effective volume, Qg is newly defined. Total volume of the simulation cube (Q2)
is substituted by those occupied by metal ions () and by ammonia volume (Q,).
According to the Pauli’s exclusion principle, i.e.,
Qr = Q- NpnQn - N.Q,, (4.5)
where Np, and are numbers of lithium atoms and ammonia molecules, respectively.
Volumes of N, metal ions and N, ammonia moleéules were calculated by,

Q == _—_r3c,m and Q = ‘4_:;17"3a (46)
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r., and r,are effective radius of lithium ions (7, ,=1.28) and ammonia molecules

c,m

(r,=4.3) [Hannongbua, et al., 1992] A set of model pseudopotential which is used to

represent the electron-site interactions has the form of Ashcroft’s Model
Pseudopotential [1966]:

drz,

W u (‘]) == 0 qz
E

4nz,
we—j (q) == Q 2 Cos(qrc,j)

£4

withj =N, Li; r,, =151 and Zy=-0.8022, Zys=0.2674, Z=1.

Atomic units are used in all equations throughout this study. Notation w;(q)
and &(q) are the form factor and the dielectric function will define below. By the use

. of pseudopotential theory and assumption that electron states from a spherical Fermi

surface, one obtains,

; _Qp singR
Voa(R) =~ [ F(@)= ", @.7)
when,
Q4" (\1-&lq) |
F' =5 - VVI» w; 9 48
and
4
elg) =1+ ?H(q) 4.9)
k /(x)
[I{g)=—-%t e (4.10)
R e ey
V3
g , 1 32°Z N, )
=, = ke = 4.11
T T [Q—N”,Qm—NaQa,J @10
and
1 4-x" |2+x
== 4,
£(x) > e bl (4.12)
Two models of the local field function are employed in this work.,
Model I. Geldart-Vosko local field function [Gurskii 1992]
1 x*
Glx)=— - (4.13)
=3 ¥ +2(1+0.1532)
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Model II. Ichimaru’ s local field function [Ichimaru and Usumi, 1981].

) : ) ~x* [2+3
G(x):Ax“+Bx“+C+[Ax“4—(B+§’;A)x‘—({44Y ln\;w] (4.14)
X 2—x
when
A4=0.029
B=%y,lrs) = [1-2(0)]- 14
C==37,(rs)+ 1 - 2(0)] -4 4
ozi[ jIZ: dified B ion.
2(0) 2 I,(Z) | (Z) = modified Bessel funtion
1 1/2 ‘4 /3 1
SO
Vs 9 Aky
1 %d0y2[1+2d1y1+(%d2+d12)y2+(%d3+%dld2)y3+%d1d3y§
VO(FS):Z“L 2
[1+dy, +dyy, +dsys]
dy =006218 d, =2.82224
d, =981379 d;=073641
where
Yi :rsl/z’ Yo =Tss J’3:"S3/2

4.2 Molecular Dynamics Simulation

In this study, molecular dynamics simulations of the lithium-ammonia solution
have been performed for the concentrated lithium-ammonia solutions, x;; = 0.1958
(50 Li and 205 NH;). The corresponding experimental densities at 241 K and
atmospheric pressure is 0.498 g.cm” leading to side-length of the basic periodic cube
of 23.39 A. Due to the strong screening of the Coulombic interactions by the indirect
contributions, cut-off of the total site-site potentials at 12 R was justified, which saved
a significant amount of computer time compared with the Ewald method [Ewald,

1921]. The starting configuration was randomly generated.
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RESULTS AND DISCUSSION

5.1 Pair Potentials and Pseudopotential Effects

To take into account effect of free electrons in the concentrated lithium-ammonia
solution, two models of pseudopotential have been applied. The results obtained from
these models representing the site-site interactions are illustrated in Figures 5.1. Total
potential, Y,,(R), with i, j = H, N, and Li have been calculated according to equation 4.1.
Direct potentials, VY4,(R), yielded from the pair potential functions (Table 4.1 and 4.2)
and used in previous work [Hannongbua, et al., 1988] have been again employed while
indirect potentials, V,a(R), are calculated from equations 4.5 - 4.14. The total lithium-

ammonia and ammonia-ammonia interactions are depicted in Figure 5.2.

[t can be seen from Figures 5.1 that, when free electrons are taken into
consideration, total site-site potentials are much weaker, less positive and less negative,
than the 77;,(R). In Figure 5.2, changes of the lithium-ammonia and ammonia-ammonia
potentials which are about 25% and 35%, respectively, are relatively small in comparison
with those taken place on the site-site interactions. This fact can be understood as mutual
cancellation of the Coulombic interaction [Gurskii et al., 1990]. As can be seen from
Figure 5.2, the interaction approaches zero very quickly after the minimum. Therefore,
Ewald procedure [Ewald, 1921] which is known to be used to correct an error due to
long-range Coulombic effect in computer simulations, was not applied. This leads to the

reduction of considerable amount of computer time.
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Figure 5.1 Total site-site potentials as a function of the distances for the six different interactions,

calculated from models I (solid line) and model II (dotted line). The dashed line denotes

direct interactions.
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Figure 5.3 Lithium-lithium (a) and lithium-ammonia (b) pair potentials taken from literatures.

Solid lines are from [Hannongbua, et al., 1992] and dotted lines from [Hannongbua,
et al., 1997].
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Some comments should be made concerning the pseudopotential models used in
this work and in the previous works by [Hannongbua, et al., 1992,1997]. Modification is
focused on volume of the simulation cube (Q2). An idea is to identify an effective volume
where free electrons are able to be occupied in the solution. In the previous works
[Hannongbua, et al., 1992, 1997], total volume of the simulation cube has been used
without modification. In reality free electrons can not move into certain area which
occupied by molecules and ions. Therefore, what is examined in this study is to substract
total volume of the simulation cube by those occupied by ammonia molecules and
lithium ions. With this approach, significant changes of the site-site and ion-ammonia
interactions have been yielded (Figure 5.2 and 5.3). Comparison with the results obtained
from the two models, in terms of the depth and position of the potential minima, both
site-site and total (lithium-ammonia and ammonia-ammonia) potentials are not sensitive
to the choice of the pseudopotential models used (Figure 5.2). The total lithium-lithium
and lithium-ammonia solution applied in this study are much weaker than the previous
work while the ammonia-ammonia interaction is not significant different. Note that
flexible molecular dynamics simulation is not able to performed in the previous works
(molecules are collapsed after certain time steps). The authors conclude that an
intramolecular potential for ammonia molecules which derives from experimental data
for pure liquid ammonia may not suitable for this solution which contains high
concentration of metal ions and free electrons. With the new approach using the effective
volume of the simulation cube, flexible molecular dynamics simulation can be smoothly

carried out.

5.2. Structural Properties

With the time step of 1.25x107° s, equilibrium was reached after 60,000 and
40,000 time-steps at the average temperature of 241 K and 242 K for the pseudopotential
model I and II, respectively. Snapshot of all particles distributed in the simulation cube,

one out of 20,000 configurations after equilibrium, is displayed in Figure 5.4.
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Figure 5.4 Snapshot of the 19.58 mole percent of lithium ions in liquid ammonia using the
pseudopotential (a) model I and (b) model 1I. The single red balls represent lithium
ions. The white together with blue balls denote ammonia molecules (white for
hydrogen and blue for nitrogen). The largest orange balls are insert in order to mark

the corners of the simulation box.
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Figure 5.5 Ammonia-ammonia radial distribution functions and their integration numbers

obtained from the simulations using pseudopotential (a) model I and (b) model II.
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It can be seen easily from Figure 5.4 that, lithium-ammonia clusters and big
cavities are formed in the solution. However more detailed understanding of the solution

properties have been investigate in term of radial distribution functions (RDF).

5.2.1 Radial Distribution Functions

The ammonia-ammonia RDFs and the corresponding running integration numbers
are presented in Figure 5.5. The lithium-ammonia and lithium-lithium RDFs are given in
Figure 5.6. No dramatic difference has been significantly found for all RDFs obtained
from the two pseudopotential models. Characteristic values as well as those obtained for
a single lithium ion in 215 ammonia molecules which is named for convenience as dilute
solution [Hannongbua et al., 1988] are summarized in Table 5.1. The coordination
number is defined as multiplication between an area under the RDFs (integrated up to the
distances beyond their maxima) and number density (number per total volume) of such
species. Compare that of dilute solution, shape, distances to all peaks and coordination

numbers are completely changed, except those of the Li-N RDF.

Screening effect in the concentrated lithium-ammonia solution reduces strongly
the repulsion of the site of the same changes, leading to a much less repulsion of the N-N
and H-H interactions (Figure 5.1). These causes, therefore, to more pronounced first
peaks of the N-N RDF at about 2.9 A in comparison to dilute solution. Distance to this
maximum is 0.43 A shorter than that of dilute solution (Figure 5.5 and Table 5.1). This

leads consequently the integration number of 8.5 in comparison to that of 12.8 of dilute

solution.

In 19.58 mole percent of lithium ions in liquid ammonia, about four ammonia
molecules are available for each lithium ion. While running integration number of the ion
obtained from the Li-N RDF are six ammonia molecules in the radius of 2.1 A. Both

coordination number and size of the solvation shell are identical to these obtained from
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the simulation of dilute solution (Table 5.1). This result indicates obviously that reduction
of the lithium ammonia interaction of about 35% caused by the indirect potential (Figure
5.2) dose not effect the lithium solution shell. However, running integration number of

six is average from these of 5, 6 and 7 with percentage of 8%, 85% and 7%, respectively.

First peak of the Li-Li RDF is quite pronounced (Figured 5.6) centered at about
2.6 A. The running integration number is 2.2 integrated up to the first minimum of 3.5 A,
Distribution of Li-Li coordination numbers are given in Table 5.2. This shows that Li
cluster of the average size of about 2-3 ions have been formed. Second and third peaks

appear at 4.3 A and 5.5 A, respectively.

As the two previous works [Hannongbua, et al., 1992] and [Hannongbua, et al.,
1997] have to be often mentioned, they will be named work I and II, respectively. In
work I, the Geldart-Vosko local field function was used and the 19.58 mole percent
lithium ions in liquid ammonia was studied by molecular dynamics simulations. The
second one, work II, was studied using [shimaru local field function for the system
consisting of 11.80 mole percent of lithium ions in liquid ammonia by Monte Carlo

simulations.

Compare the results obtained from model I of this study (with a smaller effective
volume) and previous work I which the same local field function was used for both cases.
Distance to the first maximum, Ry, of N-N RDF of model [ is about 0.13 A longer than
that of work I while the Li-Li RDF is about 0.56 A shorter. The running integration
numbers integrated up to the first minimum of the N-N RDF increase from 5.8 to 8.5 in
this study while that of Li-Li RDF decrease from 3.0 to 2.2. Consequently, dramatic
changes on the N-H and H-H RDFs have been also found. Moreover, the second and
third peaks of the Li-Li RDF are clearly appeared for this work but not for the previous

work [.
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Figure 5.6 Lithium-ammonia radial distribution functions and their integration number obtained

from the simulation using pseudopotential (a) model I and (b) model II.
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Table 5.1 Characteristic values of the radial distribution functions, g, (r) for the lithium —

ammonia solution. ry | Ny and 1y, are distances in A where , ggp (r) has first and
second maximum and first minimum, respectively , nep(rm1) is running integration

numbers, integrated up to ry,. Those values for the dilute solution, 0.46 mole percent,

are also given, in parenthesis, for comparison.

Model I
of Ran 2as(Ruet) B Gup(Rm1) | Nap(Ron) Ry

N-N 2.95(3.38) 7.91 3.85(4.29) 0.99 8.5(12.8) 427
N-H 2.46(3.62) 3.43 3.49(4.47) 5.2 32.4(34.2) -
H-H 2.01(3.82) 242 | 2.70(4.56) 4.2 28.3(36.5) -
Li-N 2.09(2.29) 18.96 |2.80(2.88) 0.71 6.0(6.0) 4.01
Li-H 2.22(2.87) 5.890 | 3.48(3.40) 1.92 18.9(18.0) 4.20
Li-Li 2.64 9.80 3.5 1.89 22 4.29

Model I —
N-N 2.89 7.86 3.80 1.03 8.5 4.28
N-H 2.50 2.98 3.51 5.0 30.4 -
H-H 2.09 2.01 3.20 4.4 28.8 -
Li-N 2.15 18.05 2.80 0.97 6.2 4.13
Li-H 2.18 5.72 3.58 1.90 18.9 4.22
Li-Li 2.57 8.30 352 0.89 2.1 431

Table 5.2 Percentage of nearest neighbor lithium ions, nyy (R), around a central one.

nLiLi(le) 0 1 2 3 4

% 411652 |24 | 5
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Although the same local field functions were applied for model II of this study

and previous work II, unfortunately they were not possible to be directly compared,

because they were performed at different concentrations. However, the results shows, in

changing from work II to model II, Ry of N-N RDF increases from 2.80 A to 2.89 A and

corresponding integration number decrease from 8.1 to 8.5. First peak of the Li-Li RDF

of 2.74 A of work 1I reduces to 2.57 A in this study while their corresponding integration

number increase from 0.8 to 2.1.

P(cos u)

T T s T S T T T v T “‘”‘I T
40 08 06 04 02 00 02 04 08 08 1.0

a

COS L

Figure 5.7 Distribution of cos p (u is defined as the nitrogen-lithium-nitrogen angle calculated)

for the ammonia molecules in the solvation shell of the lithium ions. Solid and dotted

lines were obtained from model I and I1, respectively.
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Figure 5.8 Distribution of cos @ (o is defined as the angle between the vector parallel to dipole

moment of ammonia molecule and the vector pointing from the nitrogen atom toward

the lithium ion) for ammonia molecules in the solvation shell of lithtum ions. The

solid and dashed lines were obtained from the simulations using pseudopotential

models I and 11, respectively.
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Figure 5.9 Snapshot which show that one ammonia molecule was shared by 2, 3 or 4 lithium tons
(nitrogen-lithium distances < 2.5 R). The single red balls represent lithium ions. The
white together with blue balls denote ammonia molecules (white for hydrogen and

blue for nitrogen).

5.2.2 Solvation shell Struecture

The geometrical arrangement of the ammonia molecules in the solvation shells of
lithium ions can be deduced from the simulation in terms of distribution of cos pu where p
is defined as the N-Li-N angle. The result is depicted in Figure 5.7, where only the
ammonia molecules in the solvation shells are taken into consideration. Both plot shows
two peaks centered at 88° and 180° and the corresponding integration numbers up to the
minima beyond the two peak are 1 and 4 ammonia molecule, respectively. This indicates
octahedral arrangement of the ammonia molecule around the lithium ions. It is interesting
to note that the maximum shifted slightly from an ideal octahedral angle of p = 90° to
88°. This deviation is related to the cluster formation which will be clarified in the next

section.

5.2.3 Orientation of the Ammonia Molecule

Orientation of ammonia molecule in the solvation shell of the lithium ions is
described by the distribution of cos o, where a is defined as the angle between the vector
parallel to dipole moment of ammonia molecule and the vector pointing from the
nitrogen atom toward the lithium ion. The normalized distributions are presented in
Figure 5.8 for both models. The plots show strong preference by pointing the dipole

moment of the ammonia molecule pointing away from the ion. Both distributions are



quite broad. This means that in concentrated lithium-ammonia solutions, ammonia

molecules in the sovation shell of Li are very flexible.

5.2.4 Cluster Formation

We aim for more understanding in detail of the distribution of ammonia
molecules between the solvation shells of lithium ions and the bulk. The different feature
of the various RDFs depicted in Figure 5.5 and 5.6 was employed and considered only in
solvation shell (Li-N distance is smaller than the position of the first minimum in the Li-
N RDFs, 2.80 A for both models). The coordination number of lithium ion, is found to be
six. It has been calculated from the simulation that 20% of all NH; belongs to the bulk.
From the remaining 80% of molecules, 50% coordinates to one lithium ion and 30% bind
simultaneously to more than one lithium ions. In the following discussion we shall denote
these three kinds of NH; molecules, bind 0, 1 and more than 1 times to the same time, by
NO, N1, and N2, respectively. Average size of the clusters consists of 3.2 ions (ngiyi

(Rm1)=2.2).

Next point of interest is the distribution of the ammonia molecules N1 and N2 in
the solvation shells of the 50 lithium ions in the solution. With the notation Li(N1)n
(N2)6.m, the calculated results are given in Table 5.3 This data visualize size of the cluster
and their distribution in the solution. For instance, only separated octahedrally clusters,
Li(N1)¢, 1s available. Majority is the cluster of Li(Ni)3(N2); in which three NH; (N2)n

are shared by the other clusters

Table 5.3 The fraction in % of the cluster of kind m.

M|6|5| 4| 3|2
% | 416 28|40 22
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Snapshot plotted in Figure 5.9 demonstrates ammonia sharing. Two, three or four
lithium ions were found to coordinate simultaneously to one ammonia molecule.
Consequently, big cavities are formed in the solution (Figure 5.4). One believes that this
space is where free electron density is concentrated. Also, simulations by Deng, Martyna,
and Klein [1992, 1994] demonstrated this behavior, with free electrons move throughout

the cavities (Figure 5.10).

Figure 5.10 The electron density of a representative configuration of a cesium-ammonia solution
at high electron concentration. The system consists of 24 cesium ions in 256

ammonia molecules [Klein 1994].
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5.3 Dynamical Properties

The dynamical properties of the solution are conveniently calculated from the
simulation though time correlation functions. For a system of N particles, the time

dependent autocorrelation function (ACF) of a property A can be calculated form
equation 3.16 — 3.18.

5.3.1 Translational Motions

Translational motions of the molecules can be represented by the velocity
autocorrelation function (VACF). The center-of-mass VACFs of the two simulations,
model | and model [, both for molecules in the bulk and the first solvation shell have

been calculated separately and plotted in Figure 5.11 and 5.12 for model 1 and 1I,

respectively. The spectral density is defined as

I(w) = _EOCV(Z') cos(wt) dt ,

1.0+ 1.0+
 C, (1) G,

0.8

D.G—‘

0.4
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Figure 5.11 Normalized center-of-mass velocity autocorrelation functions for ammonia

molecules in the bulk (dashed line) and in the solvation shell (full line) of

lithium for (a) model 1 and (b) model IT.
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In Figure 5.11, the normalized center-of-mass velocity ACFs of the ammonia
molecules are presented separately for the bulk phase and for solvation shell of the
Li". For bulk ammonia, c,(t) decay to zero slower than sovated ammonia for both
models. This behavior indicates a relatively free translational motion of bulk
molecules that hydrogen bonding plays small role on the structure of the solution.
Strong interactions of the ammonia molecules with the lithiom ion in its solvation

shell lead to pronounced oscillation in the ACFs.

Fourier transform of ACFs shown in Figure 5.11. yields spectral density of the
translational motions plotted in Figure 5.12. The plot for bulk ammonia obtained from
both models show maximum of about 100 cm™. In the solvation shell, maximum of
the spectral density appear at about 300 cm™. The self diffusion coefficient, D, can be
calculated from equation (3.14) for the present simulation at about 241 K. The results
are 2.73263x10” cm’s”, 1.05172x10”° cm’s™, and 4.25944x10° cm’s”, 1.24148x107
cm’s’ for bulk and solvated molecule yielded from model I and model II,
respectively. While D in the dilute solution are 9.0x10” cm’s” and 1.9x10” ecm’s™ for
bulk and sovation shell and the experimental one for pure liquid ammonia of D =

5.3x10” cm®’s™ [Garroway and Cotts, 1997]
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Figure 5.12 Spectral density of the translational motions of the normalized center of mass
velocity autocorrelation functions shown in Figure 5.11 Normalized center of mass velocity
autocorrelation functions for ammonia molecules in the bulk (black line) and in the first
solvation shell (red line) of lithium obtained from the simulations for (a) model 1 and (b)

model II.
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5.3.2 Librational motions

Librational dynamics of the ammonia molecules in the simulated system can
be studied through the Fourier transform of the ACFs of velocity components of
hydrogen atoms. Details of the projections of the velocities onto degenerate axes are

explained by Bopp [1986].

The spectral densities of the librational motions of ammonia in the bulk and in
the solvation shell of concentrated solutions are presented in Figure 5.13 - 5.14.
Frequency of rotation about x-, and y-axes increases from about 200 cm™ in the bulk

to about 400 - 1000 cm™ in the solvation shell of the lithium ions for both models.
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Figure 5.13 Spectral density of the rotation about x- (full line), y- (dashed line) and z-axes
(dotted line) for ammonia molecules in the bulk (a) and in the solvation shell of

lithium obtained from model I.
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Figure 5.14  Spectral density of the rotation about x- (full line), y- (dashed line) and z-
axes (dotted line) for ammonia molecules in the bulk (a) and in the solvation

shell of lithium obtained from model II.




5.3.3 Vibrational Motions

Various modes of vibrational frequencies calculated from the simulations of

concentrated solutions are shown in Table 5.4, as well as those obtained
experimentally. Note that statistical uncertainties in the calculation frequencies are
approximately 20 cm™'.The vibrational frequencies from experiments and from
simulations are consistent. Qualitative agreement of the vibrational frequency of the
bulk molecules indicates the quality of the potential used. The spectral calculated for

asymmetric stretching and bending shown in Figure 5.15.

Table 5.4 Comparison of various vibrational frequencies calculated from the simulaion
separately for ammonia molecules in the first solvation shell of lithium ions, the

bulk liquid, and in the gas phase with experimental results.

MD(Li" - NH;) Pure ammonia
(experiment data)
Solvation shell model I/Il | Bulk liquid model I/1T | Liquid® Gas’
Sym. Bend. 1160/1150 1125/1130 1066 932, 968
Asym. Bend. 1620/1640 1630/1650 1638 1627
Sym. Stretch. 3200/3250 3250/3300 3240 3336
Asym. Stretch. 3330/3350 3320/3340 3379 3444
[Birchall 1970] *[Spirko 1983].
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Figure 5.15 Asymmetric stretching and bending spectral densities obtained from the

simulation using pseudopotential (a) model I and (b) model II.



CHAPTER 6

CONCLUSION

With the approach suggested here, computer simulation tecniques developed
for classical systems have been used to investigate the system consisting of free

electrons.

6.1 Potential Functions

The total potential which describes the effective interaction for all particles in
the flexible MD simulations consists of 2 parts namely inter- and intramolecular
potential functions, Interaction between sites of kind 1 and j in metal ammonia system
containing free electrons is given by summation between Vijdi,(R) and Vijind(R). Where
Vijdir(R) is the direct interaction and Vijmd(R) 1s the change of the direct interaction due
to the presence of free electrons. The Vig(R) is usually developed using quantum
chemical calculations while the VUi4(R) was calculated using pseudopotntial method.

The total potential becomes generally much weaker than Vijdi,(R).

6.2 Structural and Dynamical Properties

The results from the simulations using two models of pseudopotential show
that lithium ion was solvated by six ammonia molecules. Solvent structure was
completely changed in comparison with those observed for pure liquid ammonia. Big
clusters of Lin(NH;3),~ and share of one ammonia molecule by 2 and 3 lithium ions

has been detected. As a consequence of the cluster formation, big cavities are formed
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in the solution. Once believes that this space is where the electron density is

concentrated.

6.3 Suggestions for Further Study
Some comments and suggestions for further study are the following.

e As it was found somehow that structural and dynamical properties obtained
from the two models in this study and from the previous works
[Hannongbua et al., 1992, 1997] are not sensitive to the pseudopotential
used. It is possible that structure of the solution is too tight, especially the
lithium-ammonia clusters. However, it is suggested to modifies the
available models or to find the other models of pseudopotential which yield

weaker binding.

e It is would be very interesting to per from simulation using temperature
dependent pseudopotential. The results, especially diffusion coefficient and
vibrational spectra can be directly compared to series of experimental-data
which available in the literature [Garroway and Cotts, 1973]. In this case,
and intramolecular potential for ammonia molecules would be newly
develop, using experimental data at high concentrated solution, not from

pure liquid ammonia as it is used before.
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Appendix

Molecular Dynamics Program Structure

MAIN

The program structure of MAIN program is shown in Figure A.1. This routine is
control other routine and simulation done.

PROGRAM MAIN

INCLUDE PARCOM
INCLUDE LVFCOM

CALL INPUT
CALL CONSTANT

CALL PSEU
CALL PSEUWRT
CALL PSEUREAD

CALL POWTPRP
CALL OUTPUT
CALL HISTSTRT

DO 10 LOOP = 1, NTSTEP
IF (MOD(LOOP,100).EQ.1) CALL NEBR
CALL POWT
CALL PRED
CALL CORR
CALL RUNTEST

IF (MOD(LOOP,10).EQ.1) CALL HISTOUT
10 CONTINUE

CALL HISTEND

STOP
END

Figure A.1 Procedural detail of MAIN program.
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PARCOM & LVFCOM

These parts are stored all sharing variables which used in program’s routines.

CONSTANT

The physical constants and widely used variables are set in this subroutine.

INPUT

This routine read all information necessary to perform the simulation from the input
file, and convert them to unit used in the program.

PSEUDO

The routine used for calculate the indirect interaction function,

_Q singR
Via R) == [ F(9)=adq
Q singR
d[—sfF(q)—q qdqj
F (R)=——ZF &
ind dR
PSEUDOWRT

This routine writes indirect interaction and indirect force into table.
PSEUREAD

This routine reads indirect interaction and indirect force from table.

POWTPRP

Since the shift-force potential method have been applied to the intermolecular

interaction calculations, the necessary value used in the method were prepared in thin
subroutine.
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OUTPUT

This subroutine simply writes the data used in program to an appropriate output files.

HISTSTRT

The actual simulation begin with reading the starting configuration, positions and
velocities, from configuration file, performing by this HISTSTRT subroutine.

NEBR

Since potential and the forces become zero beyond the cutoff distance, due to shift-
force potential method. Only the neighbor on the distance not longer than cutoff radius
need to account in calculation. This subroutine count for the neighbor list, containing
a list of effective particles, and update them at specified intervals.

- POWT

The force and potential on each particles in simulations system are calculated in this
subroutine. Each pairs of interaction were calculated by the specific subroutines called
by this subroutine.

PRED

The predicted 7(¢), #(r), @(t), and b(¢) for the next timestep of nitrogen atoms,

hydrogen atoms and calcium ions were calculated in this subroutine. The periodic
boundary conditions were also taken care.

CORR

after the predicted 7(z), #(z), @(r), and b(r) have been calculated, they were
corrected in this subroutine.

RUNTEST

This routine is used for observed any properties the simulations system and insert
required condition into the system. Any subroutine used for observe and for control
system properties were attached with this routine.
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HISTOUT

At every specified timesteps, this routine write the system configuration, positions and
velocities to the history files for later used.

HISTEND

Before the program terminated normally, this routine write the system last
configuration, positions and velocities to the appropriate files for later used.
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