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We consider prospects for cosmic ray acceleration at superluminal shocks and
examine in detail the example of the pulsar wind termination shock. We study various models
of the shock and acceleration mechanisms. Not only did we modify a transport equation for use
in this case but we also wrote a computer program to simulate particle orbits in a simple pulsar
wind termination shock model using the parameters suggested by Gallant and Arons (1994).

From the study of the particle orbits we found that most particles do not cross the shock
more than once. We expect that pitch angle scattering effects should be important, despite their
neglect in some previous work, to make a larger fraction of particles recross the shock and gain
energy from shock drift acceleration. From our study we found that neither particle orbit nor
transport equation methods are sufficient for modeling the acceleration of particles by the
shock. However, we find that even when particles gain energy at the shock, they lose their
energy outside of the shock if the magnetic field declines with the radius from the pulsar, since
particles would drift from the equator to the pole which is in the direction of energy loss.
Therefore, the results of our simulations show that whether high energy particles produced by
this type of shock could retain that energy on their way out of the pulsar nebula depends
strongly on the assumed dependence of B on r in the nebula.
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Chapter 1

Introduction

Observations of galactic cosmic rays at the top of the atmosphere show a
power law distribution as in Fig. 1.1. The power law distribution can be written

in mathematical form as

N(E)dE = KE“dE, (1.1)

where the energy E is expressed in terms of the kinetic energy per nucleon and
a is the power law index. To describe this distribution of cosmic rays, we need a
mechanism that can accelerate particles to gain energy. The mechanism we need
was found by Fermi (1949) and further developed by many investigators (e.g.,
Bell, 1978; Blandford and Ostriker, 1978). Today the mechanism which we use
to explain the power-law spectrum is called “first-order Fermi acceleration.” This
mechanism usually occurs together with shock phenomena. Thus, to describe the
data in Fig. 1.1 we assume that the galactic cosmic rays were accelerated at a
shock. The mechanisms of shock acceleration are quite good for describing this
power law spectrum. However, in our work the shock acceleration that we are
interested in is different in that we hope to explain the most energetic galactic
cosmic rays (B ~ 10 — 10" eV) which are more energetic than those acceler-
ated by supernova remnants. The maximum energy of particles from supernova
remnants is about 10*® eV (Lagage and Cesarsky, 1983) and the particles that
have an energy greater than 10'° eV are expected to be extragalactic (i.e., from

other galaxies). Therefore, the origin of cosmic rays in the range 10'5 — 10'% ¢V

is still an unsolve problem. Pulsar magnetospheres are a possible candidate for
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the sources of the most energetic galactic cosmic rays (Hillas, 1984; Bell, 1992;
Lucek aﬁd Bell, 1994) because of the high electrostatic potential in such regions.

For the shock acceleration mechanisms of less energetic galactic cosmic
rays, the shock front velocity compared with the flow upstream is much less than
the velocity of light. On the other hand, the shocks that we are interested in have
a velocity compared with the flow upstream that is near the velocity of light. In
fact, the shocks we are interested in are called superluminal shocks, as classified
by the velocity of the intersection between the shock front and a given magnetic
field line.

The study of the mechanisms of acceleration of particles in superluminal
shocks in our work separates into two parts. The first part considers pulsar wind
termination shocks as candidate shocks for high energy galactic cosmic ray accel-
eration as a case study. The pulsar that we choose to examine is the Crab pulsar
because it is the nearest, brightest, and isolated pulsar. The other part considers
a modified transport equation and Rankine-Hugoniot conditions for superluminal
shocks.

In Chapter 2 we discuss our specific example for the studying superlu-
minal shocks: pulsar wind termination shocks. In this chapter we give general
knowledge about pulsars or neutron stars, and the model of the crab pulsar which
is concerned with the structure of the pulsar wind termination shock.

In Chapter 3 we modify a cosmic ray transport equation and Rankine-
Hugoniot conditions for use in the relativistic flow.

In Chapter 4 we simulate the trajectory of protons ejected from the Crab
pulsar through the structure of the pulsar magnetic field, both inside and outside

the shock.

The last chapter gives the conclusions. We draw some conclusions about
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Figure 1.1: The differential energy spectra of cosmic rays measured
at the top of the Earth’s atmosphere for various nuclear
species (Longair. 1997).



the Crab pulsar in connection with the structure of its pulsar wind termination

shock and the results of the simulations.
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Chapter 2

A Specific Example:
Pulsar Wind Termination Shocks (PWTS)

The accidental discovery of a pulsar in 1967 (Hewish et al., 1968) was
one of the most interesting events in astrophysics. The various models describing
both the pulsar structure and the interactions with their surrounding nebula have
been developed through 30 years after the finding. Now we know that pulsars
are neutron stars which have about a 10> G magnetic dipole field and rotate
very fast. Radio was the first range of frequencies of electromagnetic waves that
was used to study pulsars; thereafter, we use many frequency ranges to study
them, including visible light and X-rays. The Crab nebula is the best-observed
pulsar nebula, and we can study it as the prototype of other pulsars because
it is the brightest and nearest pulsar. Not only the Crab pulsar but also the
surrounding Crab nebula is interesting. The linearly polarized light from some
emitting regions of the Crab nebula implies that there is synchrotron radiation in
the Crab nebula, according to Shklovskii’s prediction in 1953 (Shklovskii, 1953)
Some data strongly suggest that there should be shocks within our Galaxy which
can accelerate particles to 10" eV. Pulsar wind termination shocks (PWTS) are
potential candidates. A PWTS is a superluminal shock in which the flow velocity
upstream is near the velocity of light. For the Crab nebula, we expect the PWTS
to be located at about 0.1 R, where R, is the radius of the nebula. Because
of high-quality observations for this system, we use the Crab nebula as a specific

example for the study of superluminal shocks.



2.1 General Structure of Pulsars

After the discovery of a pulsar in 1968. there have been many models to describe

the phenomena of pulsars. This section will discuss some general structures of

pulsars.

2.1.1 Neutron Stars

Neutron stars are superdense stars that are believed to result from supernova
explosions. From the theory of stellar evolution we know that stars are in equi-
librium when the contracting force due to gravitation equals the thermal pressure
due to nuclear reactions, depending on what state the star is in. The nearest ex-
ample of this is the Sun of our solar system. It is in an intermediate state of
stellar evolution and is in equilibrium between the gravitational force and the
thermal pressure that comes from burning hydrogen to helium. This state will go
on for about another 5 x 10° years and then change to the red-giant phase when
it burns out its hydrogen. After that, it will become a white dwarf, sustained by
electron degeneracy pressure. For more massive stars, the next state is burning
helium, followed by a whole sequence of states, each leading to the next state by
burning the product of the current state. However, for very massive stars, when
the evolution goes to the state of producing iron, the element with the highest
binding energy per nucleon, there are no more elements to burn exothermically.
so the dominant gravitational force will collapse the star. FElectron degener-
acy pressure cannot support a core mass greater than the Chandrasekhar mass,
M, ~ 1.46 M. Therefore, for such a massive star, the density of the star will
increase until reaching the density at which degenerate neutron pressure, due to
the Pauli exclusion principle, can balance the gravitational force. The internal

structure of neutron stars is also a field that many astrophysicists are interested



in. We will not discuss about the structure inside neutron stars in detail. How-
ever, we will show the rough structure inside neutron stars in Table 2.1 and Fig.

2.1 (Ostlie and Carroll, 1996)

Quter crust

Figure 2.1: A 1.4 Mg, neutron star model (Ostlie and Carroll, 1996).

The first observed radio pulses (in 1968) have a period of 1.377 s at a
frequency of 81.5 MHz (Lipunov, 1992; Fig.2.2) This indicates that magnetized
neutron stars are the source because the pulses have a short and regular period.

Conservation of angular momentum provides the explanation. As the

star’s core contracts,

Ly = Ty

2 2
M-Rlw; = M<Rjwy

9 o)

:—f - (%Y (2.1)

where the subscripts ¢ and f refer to initial and final states respectively. Written



Transition density Degeneracy
(g em™3) Composition pressure
iron nuclei,
7 nonrelativistic free electrons electron
~ 1 x 108 electrons become relativistic
iron nuclei.
relativistic free electrons electron
~1x10° neutronization
neutron-rich_nuclei,
relativistic free electrons electron
~ 4 x 104" neutron drip
neutron-rich nuclei,
f free neutrons,
relativistic free electrons electron
md x 192 neutron degeneracy pressure dominates
neutron-rich nuclei.
% superfluid free neutrons.
relativistic free electrons neutron
~ 2 x 10 nuclei dissolve
superfluid free neutrons,
superconducting free protons,
relativistic free electrons neutron
e 4 IO pion production
superfluid free neutrons.
superconducting free protons,
relativistic free electrons.
other elementary particies {pions. ...7) neutron

Table 2.1: Composition of neutron star material (Ostlie and Carroll,
1996).



Figure 2.2: Discovery of the first pulsar, PSR 1991+21 (Ostlie and
Carroll, 1996).

in terms of the rotation period, P, this is
TR ELS .

P =P, (E> (2.2)
Neutron stars are compact stars that evolve from supergiant stars, so the rotation
period, which changes as the radius of the stas squared, is so short, on the order
of a few milliseconds. For example, if our Sun were to become a neutron star
which has radius about 10* m, its period would become about 10™* s. Not only is
there a uniform and short period signal received from pulsars, but the data also
show a spin-down of periods of neutron stars, as shown in Fig. 2.3.

This figure shows that the periods of the pulsars are longer than in the
past, indicating that there is a loss of rotational energy of the pulsars; in fact the
rate of the spin-down is consistent with dipole radiation from the expected dipole
magnetic field.

The other important property of neutron stars is their magnetic fields. It

is strongly believed that magnetic fields near neutron stars are in dipole form as
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Figure 2.3: Spin-down of the Vela radiopulsar (Lipunov, 1992).
in Fig. 2.4. Then the magnetic dipole field of a neutron star, like any general
magnetic dipole field, is

2m cos 8 msin
B= IPE ST 28 €4, (23)

where e, and ey are unit vectors in the directions of radius and polar angle,

respectively, and m is the magnetic dipole moment,

ByR3

9

(2.4)

where By and Rg are the magnetic field strength and radius at the pole of the
neutron star, respectively. The magnitude of the magnetic field of the neutron star
is also huge. on the order 10® — 10'? G. Like the rotation speed, the tremendous
magnetic field strength comes from the evolution of the star and the principle of

conservation of magnetic flux. The flux of a magnetic field, ®, through a surface

S is defined as the surface integral
?= [ B da.
S

In approximate terms, if we ignore the geometry of the magnetic field, this means

that the preduct of the magnetic field strength and the area of the star’s surface
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Figure 2.4: The magnetic field of a neutron star (Ostlie and Carroll,
1996).

remains constant. Thus

Bi4rnR? = BleWR?
. 2
% = 2z
It is not at all clear what should be considered as the value of the initial magnetic
field of an iron core at the center of a presupernova star. As an extreme case, we
can use the largest observed white-dwarf magnetic field of B ~ 5 x 10® G. Then
the magnetic field of the neutron star would be

B (5)

~ 1.3 x 10%G

R

BYT.S

where Ryq/Rns =~ 512 (Ostlie and Carroll, 1996). This shows that neutron stars
could be formed with extremely strong magnetic fields, although this particular
estimate must be viewed as an upper limit rather than a typical value.

Two main properties, the strong magnetic dipole field and fast rotation,

of neutron stars are the origin of almost evervthing that we observe. The first
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observed data received from pulsars were radio pulses. We can estimate the
magnetic field strength of the pulsar from the radio pulsars which we observed.
We know from Fig. 2.2, the increase in the period, that pulsars are spinning
down, so if the rotation energy of the neutron stars changes mainly to magnetic

dipole radiation energy, we can calculate rates of the loss of the rotation energy:

dE d (%—Iuﬂ)

dt dt
d /1
= 27— (—
A <P2>
A 42T .
E = —%P, (2.6)

where I, w and P are the moment of inertia, angular velocity and period of rotation

of neutron stars, respectively. Next, we consider the power of magnetic dipole

radiation (Jackson, 1975),

dP ¢ 3 "
Eﬁ_gﬁRe[rn-ExB] (2.7)

where Q is the solid angle, n is the unit vector that points to the observer, B and

E are magnetic and electric fields, and P is the power from the radiation.' For

this case (Jackson, 1975)

ikr 1 ik )
o R ikr
B=k(nxm)xn . +[3n(n-m)~m]<r3 —7"2)6 (2.8)
and
E = —k*(n x m)eikr <1 - L) (2.9
- T ikr/) 2.9)

In Egs. 2.8 and 2.9, m refers to the magnetic dipole moment whose magnitude
appeared in Eq. 2.4. Then using Egs. 2.7, 2.8 and 2.9 we will get
dpP
dQ

IB* is the comnplex conjugate of the magnetic field B; E and B are expressed as complex
wave functions.

Y 2
87rk |(n x m)|
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P = /gc-/sﬂmy?sm?edfz
w

474 B RS

where the minus sign implies a loss of energy. Assuming that the rotation energy

is transferred to magnetic dipole radiation, we equate Eqs. 2.6 and 2.10:

Ar*B2RS  4x%IP ‘
3EPT . P3 (2.11)

From the equality we can estimate the value of the magnetic field at the pole of

a neutron star:

V33IPP ‘
By = e (2.12)
1

We will use the Crab pulsar as an example of this approximation. The Crab pulsar
has a radius of about 10° cm (Ostlie and Carroll, 1996), a mass of about 1.4 Mg
and a period and rate of period increase of 0.0333 seconds and 421.288 x 10713,

respectively. The magnetic field strength at the pole, by Eq. 2.12, is about
3.8x10'% G.

2.1.2 Pulsar Magnetosphere

The interaction between a pulsar and its surrounding nebula is also important.
This interaction is the effect of the two main properties of pulsars or neutron
stars, their rotation and magnetic dipole field. The PWTS is concerned with or
at least based on this interaction. We will discuss this interaction only briefly
because pulsar magnetospheres comprise a broad topic with many models, like
neutron star structure.

The mass of a neutron star is great, =~ 1.4V, but the radius is very
small, ~ 10° cm, so the attractive gravitational force is huge. Does this imply
that there is a vacuum outside of pulsars? No. Goldreich and Julian (1969)

showed that there is an electric field, due to the rotation and magnetic field of
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neutron stars, leading to the conclusion that a rotating magnetic neutron star
cannot be surrounded by a vacuum. Their model, which is an idealized model,
with aligned spin and rotation axes, shows that there is an electric field component

parallel to the magnetic field:

7
B:.B=— <¥> <E> B3 cos? 6. (2.13)
T

However, for a more realistic model, Mestel (1971) showed that the component
of the electric field parallel to the magnetic field of a rotating neutron star with

its rotation axis and magnetic dipole axis inclined by a relative angle x was:

E-B

12

QR
— (—) B3 cosf
a
x [cos® x cos® § + sin” x cos? @sin? 0
+2sin x cos x cos 0 sin 6 cos . (2.14)

This electric field has more influence than the gravitational force, so electrons
and ions on the surface will be pulled up from the surface. After the particles are
pulled up, the magnetic field will be along the equipotential lines of the electric
field, as in Fig. 2.5. If magnetic field lines are along equipotentials, then it
immediately follows that the plasma motion, which is just the E x B/B? drift
velocity (neglecting any motion along field lines), corresponds to rigid corotation
of the plasma with the pulsar. The plasma does not rotate as a rigid body
structure; this rotation appears only in the cylindical region with a radius smaller

than the light cylinder radius, R, which was defined by Gold (Gold, 1968 cited
by Michel, 1991) as

c
Ri. = a (2.15)

This corresponds to the radius at which the corotation speed is ¢; beyond this

corotation is not physically possible. Beyond the light cylinder radius the mag-

netic field will be dragged by the plasma. Thus, the structure of the magnetic



Figure 2.5: Magnetic and electric fields about an aligned rotator.
Solid lines are the dipole magnetic field lines, while
the dotted lines are the electrostatic field lines, (a) for

the vacuum case and (b) for the Goldreich-Julian case
(Michel, 1991).

field of the pulsar within tile light cylinder is a poloidal field and outside light
cylinder is a toroidal field as in Fig. 2.6.

For plasma in the pulsar’s magnetosphere, there are not only particles
at the pole of pulsar, which are pulled up by the electric field along the magnetic
field, but there are also electron-positron pairs (Arons, 1979; 1983 cited in Michel,
1991). These pairs are created by the charged particles ejected from the vicinity
of the pulsar’s magnetic pole and are quickly accelerated to a relativistic velocity
by the electric field along the curved magnetic field. The charged particles will
radiate energetic photons by curvature radiation. The photons have so much en-

ergy that they can spontaneously undergo electron-positron pair production, as

in this equation

, (2.16)
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Figure 2.6: Magnetic field outside the light cylinder (Michel, 1991).
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given the presence of an electromagnetic field or nearby matter (for momentum
conservation). These electrons and positrons are accelerated and in turn emit

their own energetic photons which create more electron-positron pairs, and so on.

2.2 The Crab Pulsar

The best example for the study of pulsars is the Crab pulsar. The Crab pulsar
has many interesting properties. First, this pulsar was discovered in 1054 A.D.
by a Chinese astronomer. In this discovery, he found a new star in the sky that
never appeared in this position and the brightness of this star was so high that
he could see this star by the naked eye. Additionally, the star was still bright
for a long time, about 23 days. Really, what the astronomer found was not the
Crab pulsar but rather the supernova which later became the Crab pulsar. The
reason for being called the Crab nebula, even through it is in Taurus, is its shape
like a Crab as Fig. 2.7. The outstanding property of this nebula is its brightness.
It is the pulsar nebula most suitable for observation and study of the structure
of pulsar nebulae, so we use it as a prototype. The data received in many ways
makes studying this pulsar, and this nebula, easier. The data such as the image
in the X-ray band of the ROSAT/HRI instrument and in the optical band of the
Hubble Space Telescope are useful in the analysis. In particular, the WFPC2
camera of the Hubble Space Telescope is very helpful in modeling the pulsar and
its interaction with surrounding nebula. From the studies of the Crab pulsar we
can classify the bright regions surrounding the pulsar as in Fig. 2.8.

A Knot is a sharp, bright region located at the southeast of the pulsar.
In the figure we can see two knots in this direction, where knot 1 is located ét

0”.65 and the other, knot 2, is at 3”.8 from the pulsar.
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Figure 2.7: The Crab nebula (http://www. seds.org/billa/twn/orig/
n1952n0a0.jpg).



Figure 2.8: WFPC2 image of the bright region of the Crab pulsar
(Hester et al. 1995).
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A Wisp is a bright region located at the northwest of the pulsar. Wisps
are different in each position. Wisp 1 and the Thin Wisp are located at 77.3
and 17.8 from the pulsar, respectively. Wisp 2 is not like first two. It has an
amorphous form and is located at 14”. The counter wisp is located at 8”.3 to
the southeast of the pulsar. The anvil is also amorphous in form but is located

between the counter wisp and the pulsar.

2.3 Models of Shocks in the Crab Nebula

One result of the interaction between the pulsar and its surrounding nebula is the
shock from the pulsar wind. As we have discussed, thé PW'TS may be the source
of the highest energy galactic cosmic rays of E ~ 10 eV (Bell, 1992; Lucek and
Bell, 1994), so the study of the interaction between pulsars and their nebulae is
important. Because the Crab pulsar is the prototype of a general pulsar, we will
consider the structure of shocks in the Crab nebula. There are many models of
the shock in the Crab pulsar. The first was proposed in 1974 (Rees and Gunn,
1974). This model proposed that the shock is located at about 10 per cent of the
nebular radius. This estimate of the shock radius is still used and our simulations
use this shock radius, too. Aschenbach and Brinkmann (1975) modeled the X-ray
structure of the Crab nebula. Their model is shown in Fig. 2.9. As can be seen in
Fig. 2.9, the geometry of this model has cylindrical symmetry, whereas the shock
model of Rees and Gunn (1974) had spherical symmetry. The limited angular
extent may well be accurate; however, in our work we use the simpler model,
Rees and Gunn’s model. Later models of shocks in the Crab nebula have been
concerned with optical or IR features near the Crab pulsar (Gallant and Arons,

1994; Hester et al., 1995). In modeling these features, the model of Aschenbach
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Figure 2.9: The model of the X-ray torus of Aschenbach and
Brinkmann (1975).
and Brinkmann is more realistic than the model of Rees and Gunn. Even though
the models of optical features orient the shock model in the nearly same direction,
there are differences in details of the models, such as those of Gallant and Arons
(1994) and Hester et al. (1995).

An important interaction of the pulsar wind and the external magnetic
field is by svnchrotron radiation of charged particles, especially electrons, which
is readily observed from Earth. The bright regions in the Crab nebula mostly
consist of light from synchrotron radiation. Now many works try to model the
Crab nebula structure, pulsar wind structure, or shock structure via describing
the bright regions. The recent work of Gallant and Arons fit their model to a
contour plot of the I-band appearance of the inner region of the Crab nebula in
optical synchrotron light (Fig. 2.10). From the Crab nebula image of van den

Bergh and Prichet (Fig. 2.11), the best-fit parameters of their model of the wind

from the Crab pulsar are as in Table 2.2.
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Figure 2.10: A contour plot of an I-band image of the Crab nebula

(van den Bergh & Pritchet, 1989 cited by Gallant and
Arons, 1994).

WIND PARAMETERS

Parameter Value

7 R S AR 1904 0.003 + 0.002
premN /mN ... 2
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Table 2.2: Best-fit wind parameters from the model of Gallant and
Arons (1994).
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Figure 2.12: Assumed equatorial wind geometry in the model of Gal-
lant and Arons (1994).

In Table 2.2, o is the ratio between the field energy and particle energy,
o = B?/(4xmN~vc?), B is the magnetic field, m is the particle mass, N is the
density of particles, 7y is the Lorentz factor of the flow, ¢ is the velocity of light,
p is the ratio of ion to pair energy fluxes, /)‘ = NiAmy/(Nim,), Nyzy is the
ion (electron-positron pair) density, 4 is the atomic number, Mpe) 1S the mass
of the proton (electron), and § is the angle between the equator of pulsar and
the plane of the sky as in Fig. 2.12. On the other hand, the high-resolution
observational data from the Hubble Space Telescope show the fine structure of
the bright regions (Hester et al, 1993) as in Fig. 2.8. Hester et al. (1995) used
these data to model the Crab pulsar wind structure and also the shock structure,
in Fig. 2.13 differently from the model of Gallant and Arons. Even through the
model of Hester et al. comes from higher resolution data, in our opinion they

do not describe the detalls of the mechanisms in their model. The model comes
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Figure 2.13: The Crab nebula structure in the model by Hester et al.,
(1995).
from looking at the data and imagining the structure. Therefore, in our work we
choose to use the model of Gallant and Arons via their values for each parameter
and the wind structure.

The structure of the magnetic field around the pulsar is also an interesting
problem in the study of pulsars. The forms of magnetic field in the far zone and
the near zone are quite different. The near zone magnetic structure is a dipole
field form in which the poloidal magnetic field dominates. On the other hand,
the magnetic field structure in the far zone 1s dominated by the toroidal magnetic
field. and would accumulate in the region R, < R < R, {(Rees and Gunn, 1974).

In some models of the magnetic field there are striped (alternating) magnetic
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fields (Coroniti, 1990) in the far zone and these magnetic stripes may undergo
reconnection and accelerate particles.
Both models have good and bad points in different aspects so we cannot

absolutely reject one model and accept the other one.



Chapter 3

Extension of Diffusive Shock Acceleration Theory
to a Relativistic, Superluminal Shock

In Chapter 2, we saw that many models about pulsars are concerned with
shocks, including pulsar wind termination shocks (PWTS), which might acceler-
ate high energy particles from a pulsar. Because it is a superluminal shock, the
mechanisms of acceleration will be different from subluminal shocks, as will be
discussed later. Then in this chapter we will present modified mechanisms for
a superluminal shock. However, before we discuss these mechanisms we should
know the basic idea of the mechanisms of acceleration such as the first-order

Fermi mechanism.

3.1 Mechanisms of Accelerating Particles

In the observed data of galactic cosmic rays, the spectrum is in power law form
(Fig. 1.1 in chapter 1). Some scientists try to explain this by modeling cosmic
ravs as a fluid. These cosmic rays can come to us by diffusion through interstellar
matter. For this model we can generate an equation describing the distribution

of the cosmic rays,

dN(E) d

_= = =(B(E)N(E)) + Q(E,t) + DV’N(B), (3.1)

This equation is called the “diffusion-loss equation” (Longair, 1994). Here N(E)

is the number density of cosmic rays, Q(F) is the number density of ejected
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Figure 3.1: Collision between a particle of mass m and a cloud of
mass M: (a) A head-on collision, (b) a following collision
(Longair, 1994).
cosmic rays, and in the last term of the right side of the equation there is a scalar
diffusion coefficient, D. The energy loss/gain parameter, b(E), is an important

parameter also, which is defined as

r E .
b(E) = —%. (3.2)

In the definition we can see that if b(E) is positive the particles lose energy. Par-
ticles can lose their energy by many processes such as ionization, bremsstrahlung,
adiabatic losses, synchrotron radiation and inverse Compton scattering, and b(E)
has a unique form in each process. The idea now known as second-order Fermi
acceleration was generated first by Fermi in 1949. Although this idea is no longer
believed to account for galactic cosmic rays, it is the seed of the later idea of shock
acceleration (first-order Fermi acceleration) of cosmic rays. It is well known that
magnetic mirroring will occur when a particle travels in a non-uniform magnetic
field. We can treat the magnetic mirroring as an elastic collision with a massive
cloud as in Fig. 3.1. For this event we classify two types of collisions. The first
is the head-on collision and the second is the following collision. We can show

that from a head-on or following collision the particle will gain or lose energy



(Longair, 1994) as

2Vve g
AE=FE {M 42 <K> } , (3.3)

c? c
where V' is the massive cloud velocity, v is the particle velocity and 8 is the
angle between the two. For a head-on collision particles will gain energy but the
particles will lose energy for a following collision. The head-on collision has more

probability than the following collision because of a higher relative velocity, so

the particles gain energy on average. The probability of a collision of moving
V cosf

particles depends on 6 as (1 + ) (Longair, 1994). When we average AE,

weighted by the probability, over cosf from -1 to 1 we get

L [2Vwcosd Vy? 14
[ o2l a (T) ] o (1 £220)  aeoss
=1 C c c

L V cosf
/ v(1+ s Ydcos @
£1

L

and in the limit v — ¢ this equation will give
AE, 8 <V>'2

<E>:§_ (3.4)

c
Clearly, the particle gains elnergy to second order in % That is why this mecha-
nism is called “second order Fermi acceleration.” This mechanism is believed to
operate in impulsive solar flares, in which context it is referred to as “stochastic
acceleration.” Even through this mechanism can explain the power law distribu-
tion of galactic cosmic rays, there are some problems with this model, e.g., the
random velocities of interstellar clouds in the Galaxy are very small compared
with the velocity of light, of order 10™* ¢ and the number of collisions would be

roughly one per year.

3.1.1 First-Order Fermi Acceleration

First-order Fermi acceleration is a modified version of the above mechanism. It

is developed from the idea of Fermi and used in many ways in astrophysics now.
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Figure 3.2: Steady state of the shock in the shock rest frame.

There were many people dealing with this mechanism in the late 1970s such
as Bell (1978) and Blandford and Ostriker (1978). Shocks, which are defined
as discontinuities in the flow velocity, are usually involved with this mechanism
as we will discuss later. Let us consider the mechanism of this acceleration.
When shocks occur there will be two regions separated by them. They are called
“upstream” and “downstream.” On both sides of shocks (Fig. 3.2), there are
parameters called By, vy, p1 and Ba, va, pg, where B is the magnetic field strength,
v is the flow velocity, p is the mass density, and the subscripts 1 and 2 refer to
the upstream and downstream regions, respectively. At a steady state, a flux of
high energy particles is assumed to be present both upstream and downstream.
Reasonable assumptions are that the velocity of high energy particles is very
much greater than the velocity of the shock, and the thickness of the shock
front is very small compared to the Larmor radius of particles. Like the second-
order Fermi acceleration mechanism, we consider the head-on and following elastic

collisions with turbulent magnetic field irregularities. For simplifving the problem
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Figure 3.3: Analogy for the acceleration of ions near a shock (Tera-
sawa, 1995).
we consider only the case of direct collisions. This situation can be illustrated
as in Fig. 3.3. For the head-on collision, the momentum of particle changes by
~ 2mV] while the change of momentum of the particle in the following collision
~ —2mV;. Because V) < V5, the particle gains momentum in a complete cycle,

Ap = 2m(V) — V3) > 0. The energy gain in a general collision from an oblique

shock is (Bell, 1978)

—
(UV]
Ot

=

L ¥ey - (Vi — Vg
Ek+1:Ek( i b g >>

where Ey, is the k™ crossing energy, v (ko) is the particle velocity after crossing the
shock k times in upstream (downstream) direction, and V¢ is the flow velocity
upstream (downstream). It has been shown (Longair, 1994; Protheroe. 1996)

that the average of energy gain is
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The energy increase is of first order in V/c. Since usually V' << ¢, this
is more efficient than the previous mechanism, so this mechanism is called “first-
order Fermi acceleration.” In this work we consider this acceleration mechanism

at shocks, but it can also take place in other situations (Ruffolo and Chuychai,

1999).

3.2 Shocks

In any fluid, if the sources of sound have velocities greater than the velocity of
sound waves in such a fluid, the interesting phenomena called a “shock” will oc-
cur. When shocks occur there is a discontinuity in the velocity of the flow in
space. The discontinuity is caused by a collision between two fluids or between
a supersonic fluid and an obstacle which have a supersonic relative velocity. At
subsonic velocities, the forward region of a fluid can communicate via waves with
the region behind it, which‘ gradually changes its velocity, whereas for a super-
sonic flow, when the forward region impacts the shock, the region behind will
also collide with the same speed and make a compressional discontinuity in the
fluid. Such discontinuities are called shock waves. In fact, we can define a shock
as a discontinuity of the flow velocity in space. In astrophysics shocks play an
important role in acceleration of cosmic rays. In the universe, there are many
regions where shocks occur, such as at the edge of the solar system (solar wind
termination shock) and at supernova remnants (supernova shocks and pulsar
wind termination shocks). We can classify shocks in many ways. However, in
this thesis we will classify them into two classes by determining the velocity of
intersection of the magnetic field line and the shock wave front. The first cate-

gory comprises subluminal shocks and the second comprises superluminal shocks.
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3.2.1 Subluminal Shocks

When we call a shock subluminal it means that the intersection point of magnetic
field lines and the shock front travels with a velocity less than the velocity of light.
In astrophysics there are many shocks that can be classified as in subluminal
shocks such as solar wind termination shocks and bow shocks.

In Fig. 3.2, the magnetic field is inclined to the flow velocity v in both
the upstream and downstream regions. In the plasma rest frame, the electric
field vanishes because the plasma is a good conductor. Due to the relativistic
transformation,

E' =v(E+v x B), (3.7)
where E' is the electric field in the plasma rest frame and E and B are the electric
field and magnetic field in shock rest frame, respectively. Then in the shock rest

frame, if v is not parallel to B there is an electric field
E=-vxB. (3.8)

However, there is a special frame in which the electric field disappears. In the de
Hoffman-Teller frame (de Hoffman and Teller, 1950), we see that the intersection
of the magnetic field and the shock wave front is at rest (Fig. 3.4). Fluid flow
from upstream to downstream absolutely must cross the shock.

It is reasonable to use a transport equation to describe the behavior of
particles in the fluid flow crossing the shock. For example, Ruffolo (1999) solved
a transport equation for a shock in the solar wind. The transport equation which

describes the particle transport is (Ruffolo, 1995)

OF(t, 1, z,p) 0
huali SR Rk o A Y
o 5, (t, 1, 2,p)

. 92
-1 =2

9 olp) 0 (1 - H%;i) F(t, 1, 2,p), (3.9)
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Figure 3.4: Shock in the de Hoffman-Teller frame (Ruffolo, 1999).

where F' = d*N/dzdudp is the density of particles in a given magnetic flux tube,

t is the time in the'shock frame,

1 1s the pitch angle cosine in the wind frame,

z is the distance from the shock along the magnetic field in the

de Hoffman-Teller or shock frame,

p is the particle momentum in the wind frame,

v is the particle velocity in the wind frame,

u is the solar wind speed along the magnetic field in the shock frame, and

v 1s the pitch angle scattering coefficient.
In this transport equation we can identify each term on the right hand side. The
first term accounts for the effect of streaming, the second term is for convection
by the wind. and the effect of pitch angle scattering is in the third term. Note
that, for convenience (Kirk, 1994), F is in a so-called mixed frame where mo-

mentum space variables (e.g., 4 and p) are defined in the wind frame and 2z and
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t are in the shock frame. In addition to the transport equation, which applies on
either side of the shock, we must use special conditions describing how particles
cross the shock; for example, at an oblique shock the particles may be reflected
or transmitted by the shock, depending on their pitch and gyrophase angles.
We also need conditions relating the fluid flow on either side of the shock.
called Rankine-Hugoniot conditions. These conditions come from the conserva-
tion of mass, momentum, and energy. For simplicity, consider the fluid flow to

be parallel to the shock normal. The first condition,

P11 = Paly, (3.10)

comes from the conservation of mass. The next condition comes from the conser-

vation of momentum, i.e., with a non-divergent momentum flux:

2 2
B

2 1 2 2 ;

— Dy = Pols + == + Do, al

pivy + S + D1 = pavy R lpz (3.11)

where p;(ps) is the pressurev. upstream (downstream). Note that the terms in the
momentum flux have units of pressure or energy, and represent the ram pressure,
magnetic field pressure, and plasma pressure, respectively. The final condition is
the conservation of energy, i.e., equality of the energy flux on either side.

' pp B}

P1 B B}
'-1p1 8mp

F—l:@; 87rp27

1 1
51)% = = 51);_2) S (312)

where I' is the adiabatic index (ratio of specific heats). Note that here we have
divided both sides of Eq. 3.12 by the mass flux. By using the transport equation
and Rankine-Hugoniot conditions, we can solve the problem as in Ruffolo (1999).

In the superluminal case we will modify this transport equation and the

Rankine-Hugoniot conditions.
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downstream upstream

Figure 3.5: Shock in the normal incidence {rame.
3.2.2 Superluminal Shocks

In this case the shock wave front travels with a speed near that of light, or the
magnetic fleld is very nearly perpendicular to the shock. Due to this event, we
cannot use the simplifying de Hoffman-Teller frame, as in the previous section.
The situation of the shock in Fig. 3.2 shows that the intersection of the magnetic
field and shock wave front travels wifh speed vsec§. Note that this is merely a
mathematical point; we are not implying that any physical object travels with
v > ¢. When this intersection point travels with a speed greater than that of
light, we then call it a superluminal shock. Even through we cannot use the de
Hoffman-Teller frame, there are many frames of reference that we can use, such
as the normal incidence frame as in Fig. 3.5.

Because we changed frames of reference and this case is a relativistic
case, we must modify our transport equation and Rankine-Hugoniot conditions.
This task is based on the assumption that first-order Fermi acceleration mech-

anism still works at a superluminal shock, which may well be true in certain
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astrophysical situations, but in general needs to be checked (see Chapter 4).

3.3 Modified Transport Equation and Rankine-
Hugoniot Conditions

3.3.1 Modified Transport Equation

We will derive the modified transport equation from a Fokker-Planck equation for

the transport of energetic particles in the interplanetary magnetic field (Ruffolo,

1995):

OF(t, i, z,p) 0 </_\z )
ot 0z \ At

0 Ay
5 (%7)

a wl(/ll;p/) a El
+8p’ [ % nout EF

0 (Ap ‘
-—55;<2§;F), (3.13)

where (1, p') is the pitch-angle scattering coeflicient, the distribution function

F'is given by

N
F(t,u,z,p) = ———
(t, 'y 2,p') Ty

where N represents the number of particles inside a given flux tube, and Az, Ay',
and Ap’ represent the mean change in each quantity over a time At¢. The transport
equation in the subluminal case as in Eq. 3.9 is also developed from Eq. 3.13.
Here primed variables are in the wind frame. Now it will be modified for the
superluminal case in this section. We will first consider the streaming term alone.

From Eq. 3.9, selecting only the streaming term leads to

of of ,
o= U (3.14)



38

where
_ d°N
T dxdip

is the phase space density of particles in either the shock frame or the wind frame.

Transforming Eq. 3.14 from the shock frame to the wind frame via the relation

of _ ,,0f\ E (0f . 9f _
<% + v 82’> == (87& +uv$> : (3.15)

As in the subluminal shock case, it is convenient (especially for numerical evalu-

(Earl, 1984), we get

ation) to solve for the density of particles in the mixed frame. Thus we consider
the relation between phase space in the shock and wind frames according to the
Lorentz transformation. Basically, the volume of phase space must be invariant

under a Lorentz transformation,
d3qd3p = quld.’Spl'

Phase space in the shock frame transforms to phase space in the mixed frame

(with position in the shock frame and momentum in the wind frame) as

d3qd3p s d3q d3p/
E Er

Using the definition of the phase space density, f, we find

E
f:—E‘—f,

where f* is the phase space density in the mixed frame. From Eq. 3.15 and Eq.

3.3.1 we get
of | sg0f _of Of
gy " ag - ot P a2

Now we can write a relativistic transport equation, with only a streaming term,

(3.16)

in the mixed frame:

of* of* B
or TH g =0
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If we consider straight magnetic field lines, as in Fig. 3.2 | then f* can be replaced
by F at this point. The main reason that we use the mixed frame with momentum
in the wind frame is to write the scattering term in a simple form (Kirk, 1994:
Ruffolo, 1995). For this case we can add a scattering term (Earl, 1984):

BF  OF 10

OF o o E
ot

=2 (¢, ) ===F 17

To simplify, we approximate that the magnetic fields on both sides of shock.
upstream and downstream, are uniform. That means there are no focusing terms
in the transport equation on either side of the shock and the second term in Eq.
3.13 must vanish. Furthermore, there is no acceleration or deceleration except at
the shock. This leads to the vanishing of the last term on the right hand side of
Eq. 3.13. Next, the second term on the left hand side of Eq. 3.17 needs to be
adjusted. In Eq. 3.13 this term, the first term on the right hand side, described
the speed of the guiding centers of the particles along the z-direction. In our case
the z-direction is parallel to the normal of the shock front. Hence,

Az
A~ Mvcos g, (3.18)

where @ is the angle between the magnetic field and the shock normal. Moreover,
we must tranform pv cos @ from the shock frame to the mixed frame. In changing
this variable we cannot use a Galilean transformation, but rather must use a
Lorentz transformation. Guiding center velocities of particles in the shock frame

can be found in this way. From the relation

&2
pvcosd = vy = EHE—, (3.19)

transforming p and E to the mixed frame by Lorentz transformations yields a

velocity in the mixed frame of

pi¢¢ _ pctBE

E ~ "B+ Bpc



40

pic*/E' + Bc
1+ Bpjc/E’
wv'cosf +u
1+ Bpjc/E

/'\"El
= (E ) (@' cosf +u). (3.20)

Now our transport equation is in the form

! F ! / I ]
LUPC. pEr AP pe.) 0 (£F> (3.21)

Sl S g sbd F A B il Al
g T SR SS9 G B

This is our modified transport equation. This equation can be used in both up-

stream and downstream regions.

3.3.2 Modified Rankine-Hugoniot Conditions

We can use the modified transport equation, from the last subsection, to describe
flows on both sides of shock. However, the problem at the shock front cannot
be solved via the transport equation alone. Additional tools for solving this
problem are Rankine-Hugoniot conditions. Since this is a superluminal shock,
non-relativistic Rankine-Hugoniot conditions are not adequate. Thus this sub-
section is concerned with the modification of non-relativistic Rankine-Hugoniot
conditions to relativistic Rankine-Hugoniot conditions.

For the relativistic case, it is necessary to use the “energy-momentum-

stress” tensor (Landau and Lifshitz, 1963), which is a symmetric tensor,

i 3.22
Ty T To T 342
Tag 131 T3 T3

to derive the modified conditions. Tpg is the energy density. Tp;, when 7 runs from

1 to 3, is the energy flux density in the i® direction. T}, is the i** component of
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the momentum density. 735, when ¢ and 7 run from 1 to 3, is the flux density of

the /" component of the momentum density in the j** direction, or the three-

dimensional stress tensor (Goldstein, 1980).
There are some relevant conventions about tensors. When there are two

repeated indices there is an implied sum and indices run from 0 to 3,

a;b;

Z a;b;

= agby + @1b; + asbs + azbs (323)

We consider this problem in the steady state in which the conditions
88% = (3.24)
are satisfied. These conditions lead us to the modified Rankine-Hugoniot condi-
tions. Our problem, now, is to find each element of the tensor, T', in the shock
frame. A simple way is to find the elements of the tensor in the co-moving frame
and transform them to the shock frame by Lorentz transformation matrices.
Before we find the value of the elements of the tensor, we set another
notational convention. Primed variables are the variables in the co-moving frame
and unprimed variables are the variables in the shock frame. The variables that
have subscript 1 (2) are the variables upstream (downstream). A specific exam-
ple of such shocks is the PWTS, which is a perpendicular shock in many models.
Then we will find modified Rankine-Hugoniot conditions in the perpendicular
case and fortunately the paper of de Hoffman and Teller (1950) has discussed
this. We will follow their method in finding the modified conditions.
To coincide with the modified transport equation, we choose the per-
pendicular shocks propagating in the z-direction and the magnetic field in the

z-direction. Owing to the infinite value of the conductivity, all electric fields



42

vanish in the primed frame. We define the quantity n’ as the relativistic energy

density for the primed system:

1.2

n'c* = p'(myc® + £, (3.25)

where p’ is the density of particles, my is the average rest mass, and E' is the excess
energy per particle over and above the rest energy. The momentum-energy-stress

tensor in the primed frame is then

n 2 -
n'c® + — 0 0 0
8
H/2
0 p - 0 0
TI = 8 HIQ (3 26)
0 0 P+ 5 0
i 12
0 0 0 y
L e St |

Next we transform the tensor in the primed frame to the unprimed frame, the

shock frame, by using the Lorentz transformation matrix, A, which is, in this

situation,
v 0 0 —By
0 10 O
= 2
A 8 9T 0 . (3.27)
—fy 0 0 ~«
Thus we get the tensor in the unprimed frame:
r e 72 e 12
! vt H v f W LB v H
+ =0 +=—(1+= + =+ —
Tt e ltd 0 ME T oy |
e = |
1=F3 =g
c? c
H/2
0 p — 0 0
T — 8 e
0 0 P+ — 0
2 8 _
,+v,'vH’ ,2+,+H’2(1 v?
" T i 1) S N
LT 0 0 7 Prgr 02)
v* V2
L e 1-=

(3.28)
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This tensor will hold on both sides of the shock. When upstream (downstream),
all quantities are given the subscript 1 (2). In the steady state the four diver-
gences of the tensor vanish as in Eq. 3.24. Since the flow depends only on the z
coordinate, we know that 0/0z and 8/0y derivatives are zero, and since the shock
system is stationary, the /0t derivative is zero. Hence the non-trivial equations
are 0733/0z = 0 and 0T3/0z = 0. This statement continues to hold across the

shock discontinuity. Then we find the energy-momentum stress tensor both up-

stream, 77, and downstream, 75, and consider only 33 and 30 components. We

obtain 2 % 22 o
Mo + i+ =01+ =) vl +pp+ 2 (1+2)
87T C L 8’IT C (3 :)9‘
2 = 2 £
L v
2 c2
and o e
v v v
Wi+ Pt 5wt 2t 2t
¢ A = &5 ;= 47 (3 30
- - s 30)
i sl
c2 c?

p1V1 Pav2
_ - . (3.31)
Uy U3
.~ 4fi—-R
c? c

Here H, and H, are related by virtue of the fact that we have assumed the
particles to be attached to the magnetic force lines. Thus, the density of magnetic

force lines is proportional to the density of particles and we have

H H |
p—,ll = ?22. (3323

Due to this relation and the conservation of particles we have

H{Ul _ éUg

= = (3.33)
-3 1-3
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We introduce the energy density 7 in the unprimed system
n ,
= 5 3.34)
n = ( )
and define the auxiliary quantity
/
p=—L (3.33)
Ke—g
C
Using Egs. 3.33, 3.34 and 3.35 we can simplify Egs. 3.29 and 3.30 to the unprimed
variables,
H‘Z 2
Mot +pp + —— = novd 4+ pp + =2 (3.36)
8 iy 87
viHY wpy | wHE .
mvp+ 22 2 (3.37)

)
muy + —1:% +

and
The modified Rankine-Hugoniot conditions in the superluminal case are Egs.

c4m
3.31, 3.36, and 3.37. Another condition that we use is Eq. 3.33. We use these

equations for flow across superluminal shocks.



Chapter 4

Simulation Results for

a Relativistic, Quasi-Perpendicular, Superluminal Shock

In this chapter we discuss our simulation results. We simulate the tra-
jectory of protons from the pulsar through the PWTS. The reason for these
simulations is that we expect that a possible explanation for high energy galac-
tic cosmic ray acceleration could be particle drift from the equator to the poles
of the shock which (presumably) has an approximately spherical geometry (see,
for example, Bell, 1992; Lucek and Bell, 1994). The parameters used in this
simulation mainly follow the model of Gallant and Arons (1994). In addition to
addressing the shock crossings of a proton, these simulations will tell us about

the applicability of our modified transport equation in Chapter 3.

4.1 Formulation

The situation we consider is for a proton ejected from a pulsar which passes
the shock, especially at the equatorial region (Aschenbach and Brinkmann, 1975;
Gallant and Arons, 1994). The wind flows with v =~ 4 x 10° through the shock
which is located at about 10% of the nebula radius (Coroniti, 1990; Bell, 1992;
Begelman, 1998). The toroidal magnetic field strength upstream is approximately
B;=5x%x107° G.

In the situation we simulate, the value of Lorentz factor is high. Hence,
it is reasonable that for computing dx/dt, we will approximate the velocity of the
particle to be c. The velocity v = ¢(1 — %)1/2 is, for v > 10°, indistinguishable

Y
from ¢ in the presence of computational round-off error. Consequently, in the
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equations used in the simulation, we suggest using v = c(p/p). The set of
equations we use in this simulation is
Dz

S S
/P2 + P2+ P>

Dy

Yy = mc, (41)
T y ' Fa
Dz
¢
VP2 + D+ 3

for position and

pr = q(vxB);+qE;,
py = q(vxB),+qE, (4.2)

p: = q(vxB),+qE,
for momentum. For the magnetic field structure we use
B o= B¢e¢,, (43)

where B is the magnetic field that averaged over the pulsar rotation and

BOR;siDG <R,
Brp = (44)
B .
3ByR,sinf r> R,
e
u = uer (4.3)
- & 0 Sy
i { c/3 r >R, (4.6)
and
E=-uxB, (4.7)
where

E is the electric field,

B is the magnetic field,
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u is the wind velocity,

R, is the shock radius, about 5 x 10%m,

r is the distance from the pulsar, and

6 is the polar angle.
Note that for simplicity we neglect the reversal of the B direction for § < 90°.
and we try to work only in the northern hemisphere.

We use Egs. 4.2 and 4.3 in simulating the trajectory of the particle.
These sets of equations are differential equations so we choose the adaptive step-
size Runge-Kutta method (Press et al., 1988) to solve them. On the other hand,
before we used results from this program we tested it for simple conditions for
which we can find analytic solutions as follows. The first condition we used to
test the program was the simplest one in which the particle was in a uniform
magnetic field. In this example we used an initial p, = 1.92 x 10712 kg m/s
(v = 4 x 10%, By = 1.0 x 107° T and other variables were set to zero. Under

these conditions we know that the particle has a circular orbit with gyroradius

=
Ry = -3

1.92 x 1072 kg m/s
(1.6 x 10-1°C)(1.0 x 10~3T)
1.2 x 10%m.

This value coincides with the result of the simulation as in Fig. 4.1. In the next
test case, we added a wind velocity only in the z direction, u, = 1.0 x 107% m/s,

to the previous case. Consequently, the electric field due to the plasma flow is
E, = —u;B,. (4.8)

The result of this program is shown in Fig. 4.2. This result coincides with the

analytic solution. When the program passed the test, we used this program to
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simulate the situation described above. The program is shown in Appendix A.

{(m)

8e+15 T T 0 T T
X
Be+15 |~ = -
E X X
T T T
= Poler X
des15 - P e Y R « -
s N .
4 \\ ><
9 / 5 X b N
2e+15 "/ / \“.
“ XX X X
Wind XX ;¢ X
of | e : 3
Pulsar Equator: B
=
20415 |- % -
Y / Shock front
-de+18 - -
X
e X
" FAAE NN e N, X
-6e+15 -de+15  -2e+15 Q 20415  de+15  Be+iS  8es1§ te+16 (m)

Figure 4.3: The situation used in the simulation.

4.2 Results

In this section we show the results of the program. In the simulations we choose a
proton injected near the shock radius, Rypeer & 5% 10 m, with a momentum near
the momentum that coincides with the wind Lorentz factor at a latitude above
the equatorial plane by about 10 degrees, coinciding with the upper latitude in
the model of Aschenbach and Brinkmann (1975). Fig. 4.3 shows the situation in
our simulation and we see that there is an electric field due to the pulsar wind
cross the magnetic field in the direction from the North pole to the equator.
Again, note that for simplicity we neglect the reversal of B for § > 90°, and we
work in the northern hemisphere. Now these are the results of the simulations:

Our simulations show that in most cases, particles do not cross

the shock again after the first crossing. There are some momentum values, such
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Figure 4.13: The result for momentum 4.885 x 107'* kg m/s (v ~ 9.68 x 108).
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as 4.3 — 4.885 x 107! kg m/s, for which the particle crosses the shock. For these
cases, there is shock-drift acceleration, i.e., motion along E, but at the same time
drift outside the shock cause the particle to lose energy. The direction of E, in
which particles gain energy, is from the north pole to the equator or the direction
of polar angle increase.

We can estimate the energy change if the particle drifts from the equator
to the pole (losing energy) or from the pole to the equator (gaining energy).
Physically, the maximum energy change by the shock drift mechanism is the

potential difference V' along the termination shock from the equator to the pole,

§=n/2t060=0:

where E is as in Eq. 4.7, and then

V= /0 cBORssinQdeH

/2 Ry
= —CBORS. (49)

The voltage difference V' is of magnitude 75 x 10* eV or 7,500 TeV. This is the
approximate value of the maximum energy gain if particles drift to the equator.
Our suggestion for a more complicated simulation model would be to consider
more realistic situations such as a wind velocity depending on the latitude of the
pulsar like in the case of the solar wind termination shock and a corresponding
magnetic structure model.

However, in these simulations we did not add the effect of pitch angle
scattering which in this case is an important effect. Gallant and Arons (1994)

have estimated §B/B =~ 0.1, which means there is high turbulence and pitch
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angle scattering. If this effect plays an important role, we expect that a fraction
of the particles will return to the shock and drift in the direction of energy gain.
For example, in Figs. 4.11 to 4.13, if pitch angle scattering makes the particles hit
the shock again at in a different angle and leads to shock drift to a lower latitude,
these particles will gain energy.

Indeed, such scattering lies at the heart of standard diffusive shock ac-
celeration (e.g., Bell, 1978). In this case, the transport equation and Rankine-
Hugoniot conditions derived in Chapter 3 might be approximately valid. Both
methods of analysis involve simplifying assumptions: the particle orbits shown
here neglect pitch angle scattering, which our results show to be potentially im-
portant, in contrast to the work of Bell (1992) and Lucek and Bell (1994), who
did not require pitch angle scattering. On the other hand, the transport equa-
tions assumes a planar geometry, which is not very accurate given the large ratio
of the particle gyroradius to the shock radius. Also, such a transport equation
simplifies the dynamics within a gyroradius of the shock, even when the particle
orbits are taken into account in transferring particles across the shock, as in the
work of Sanguansak and Ruffolo, (1999). Therefore, our results indicate that
proper modeling of particle acceleration at a PWTS should incorporate both the
particle trajectory calculations, as performed here, and pitch angle scattering
due to random magnetic fields (Sukonthachat, 1999; Ruffolo and Sukonthachat,
1999). This would therefore be a Monte Carlo calculation (with particles perhaps
starting at the thermal velocity), either by the method of Kirk and Schneider
(1987), or by tracing particle orbits in turbulent magnetic fields (e.g., as in or-
bit calculations by Tanyong 1999 for fields calculated as in Sukonthachat, 1999;
Ruffolo and Sukonthachat, 1999).

There is another mechanism that is claimed to accelerate particles to gain

energies of up to 1000 times their initial energy (Bell, 1992; Lucek and Bell, 1994).
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Figure 4.18: The trajectory of four cosmic rays as they pass through
the nebula. In this figure only trajectory D leads to an
energy gain (Lucek and Bell, 1994).

This mechanism differs from our mechanism because it accelerates particles from
outside the Crab nebula as in Fig. 4.18.

On the other hand, our simulation indicates one further problem for any
of these mechanisms: the strong tendency that once particles leave the shock,
they drift back toward the north pole and lose energy again. This is because we
have assumed B, o 1/r (as in Fig. 2.6, from Michel, 1991), and in this case
the gradient drift is antiparallel to E and the drift in the outer nebula. On the
other hand, Bell (1992) assumed By  r, following older work of Rees and Gunn
(1974), and thus obtained a gradient drift parallel to E. In fact, the true depen-
dence of By, on r is not known. Therefore, we conclude that whether acceleration
at a SWPT really results in high-energy cosmic rays leaving the nebula depends

critically on the nature of drifts outside the shock.



Chapter 5

Summary and Conclusions

After the discovery of pulsars in 1967, models of pulsars were developed
continuously by many people. The interaction between the pulsar and the outer
environment is of interest because we expect that in the interaction of the pulsar
and the nebula there are shocks. The pulsar wind termination shocks (PWTS)
are analogous to the solar wind termination shocks but PW'TS are relativistic and
more energetic. The pulsar that we use as the prototype of pulsars is the Crab
pulsar. Goldreich and Julian (1960) concluded that a rotating magnetic neutron
star cannot be surrounded by a vacuum, but rather should be surrounded by the
powerful plasma ejected from the pulsar. The aligned rotation pulsar model (i.e.,
aligned rotation and magnetic dipole axes, Goldreich and Julian, 1969) can yield
an estimate of the toroidal magnetic field, B; ~ 4 x 107 to 4 x 107% Gauss at
r 2 0.1 to 1.0 parsecs, respectively, and a maximum energy to which charges are
accelerated in the Crab pulsar as Enq, &~ 2 x 1017 eV. More realistic models of
pulsars, with oblique rotation (Ostriker and Gunn, 1969; Mestel, 1971), estimate
the maximum energy as Ep.. &~ 2 X 1013 eV for electrons. The other component
of plasma from pulsars is an electron-positron plasma from pair production at
the polar cap of a pulsar (Arons, 1970, 1983 cited by Michel, 1991). After scien-
tists found that there should be plasma around pulsars which has a very strong

magnetic field, the interaction of the flow and the magnetic field became a topic
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of great interest.

If we accept the explanation of optical wisps by Gallant and Arons (1994),
then their successful fit provides evidence for a mainly toroidal magnetic field.
and even provides the rate of pitch angle scattering. In our magnetic field model
used in the simulations, we use a simple form of the magnetic field as perfectly
toroidal, with the magnitude of this field depending only on the polar angle.

To explore the possibility of particle acceleration at a superluminal PWTS,
we have a) constructed a transport equation in Fokker-Planck form that describes
diffusive shock acceleration at a relativistic shock, and b) traced orbits of particle
motion in model B and E fields near a PWTS. From particle orbit simulations,
most particles cross the shock only once, but there are some momentum values
for which particles cross the shock again. However, for these momenta the par-
ticle drifts from the equator to the pole, which is the direction of energy loss for
this case. Unlike Bell (1992) and Lucek and Bell (1994), we expect that pitch
angle scattering should have an important effect in that a fraction of the particles
could return to the shock making the particle drift in the direction in which the
particle repeatedly gains energy. Our results show that to properly approach this
problem, neither the particle orbit nor transport equation method is sufficient
because each of them has limitations; pitch angle scattering is not included in
the particle orbit meth’od and the transport equation uses a planar geometry and
only approximately treats dynamics within a gyroradius of the shock. Even if
particles are accelerated near the shock, our particle orbit simulations show that
the particles may well lose their energy due to drifts once they travel outside
the shock, in which case particles outside the pulsar nebula that could be high
energy cosmic rays are not produced. This result is strongly dependent on the
assumed dependence of B on r, and hence represents a major uncertainty in any

calculations of particle acceleration by a pulsar wind termination shock.
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Appendix A

Program Usage

Most of following is adapted from programs in Press et al.
inc¢lude"stdio.h"

#include'"=ath.h"
#include'stdlib.h"

TS

*define PGROW =2
2SHRNK -0.25
FCOR 0.0666€6686
SAFETY 0.9
ZRRCON 6.0e-¢
SMALL 1.0e-5
MAXSTR 20000
TENY 1.0e-3C
a -1.6021e-19 /=coulomb=/
c 3.0ed /*m/s5=/
Ry 5.0el5 /=m=x/

int ¥—ax=0, kounz=0;
double =xp=0, =xyp=0,dxsav=C;

void cdeint(ystart,nvar,xi,x2,sps,21,amin,nox,abad,derivs,rkgc)
double ystart(], xl,x2,eps,ii, boin;

in% nvar,=nok,=*nbad;

void (=derivs)();

void {=*rkqc)();

7

double xsav,x,hnext,ndid,a;

double *yscal,=y,=dydx,=dveczor();

igt petp,i;

wsyhald = 7N g -
7oid nrerror{),free_dvecto
ILE =iptl ,=3Ipt2,*ipt3,»Iy

a H

el

Zotl = fopen{“x.dat”,”s"};
fpt2 = fopen("y.dat","w");
fot3 = fopen("z.dat","w");
Zptde = fopen('px.dat","#");
fpt5 = fopen(“datal.dat","w");
ipt6 = fopen("data2.dat","w");

yscal = dvector(l,nvar);

y = dvector(l,nvar);

dydx = dvector(l,nvar);

X = "g&il:

R = (x2>x1)? fabs(al):-fabs(al);

*nox = (*nbad) = kount = Q; .

for (i=1;i<=nvar;i++) ylil=ystart([i];
if(xmax>0) xsav=x-dxsav*2.0;
- for(nstp=1;nstp<=MAXSTP;astp++){
(*derivs)(x,y,dydx);
for(i=1;i<=nvar;i++)
yscal{il=fabs(y[i])+fabs(dydx[i]*n)+TINY;
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1 (kmax>0){
if (fabs(x-xsav)>fabs(dxsav)){
if{kount<kmax-1){
xp [++kount]=x;
for(i=1;i<=nvar;i++) ypli][kountl=y{i];
xsav=x;

¥
if ((x+h-%x2)*(x+h-x1)>0.0) h=x2-x;
(*rkqc) (y,dydx,nvar,&x,h,eps,yscal,&hdid, &hnext,derivs);
fprintf(fptl,”%le\n",y11);
fprintf(fpt2,"%le\n",y(2]);
fprintf(fpt3,"%le\n",y[31);
fprintf(fptd,”%le\n",y[4]);
fprintf(£fpt5,"ile %le Ale\n",sqrr(y{al*y(4]+y[6)xy(51+y(6]1=y[6]),
sqrt(y (11 xy[1)+y[2]*y [23+y [3]*y{3]),y[11);
fprintf(fpt6,"%25.411 %25.41f %26.41f\n",y(1],y{2],y(31);
if(hdid==h) ++(*nok); else ++(*nbad);
if ((x-x2)*(x2-x1)>=0.0){
for(i=1;i<=nvar;i++) {
ystart[i]=y[i];
¥
if (kmax){
xp [++kount]=x;
for (i=1;i<=nvar;i++) yplil[kountl=y[i];
b3
free_dvector{dydx,1);
free_dvector(y,1);
free_dvector(yscal,1);
return;
}
if (fabs(hnext)<=hmin) nrerror("Step size too small in ODEINT");
h=hnext;
} P
nrerror("Too many steps is routine ODEINT");
fclose(fptl);
fclose(fpt2);
fclose(fpt3);
fclose(fpt4);
fclose(£fpts);
fclose(fpt6);

void *derivs(x,y,dydx)
double x, y[1, dydx(];

{
double Bx(), By(), Bz(), Ux(), UyQO), Uz();
int i;
dydx[1] = y[4)/sqrt(y[4]*y[4]1+y[6])*y[6]+y[6]*y[6])*c;
dydx[2] = y[5]/sqrt(y(4)*y[4]l+y[6]*y(6]+y[6]*y[6])*c;
dydx[3] = y[6)/sqrt(y[4)*y[41+y(6]1*y[6]+y[61*y[6])*c;
dydx[4] = g*((-dydx[3])*By(y[1]l,y[2],y[31)+Uz(y(1],y(2],y[3])*

By(y(1],y(2],y(31));
dydx[5] = q*((dydx{3])*Bx(y[1],y[2],y(31)~Uz(y[1],y[2],y[3])*
Bx(y[11,y[2],y[31));
dydx[6] = g*((dydx[1]1*By(y[1],y[2],y(3])-dydx[2]=Bx(y[1],y[2],7(3]))
-(Ux(y[1],y[21,y[3])*By(y[1],y[2],y[3])-Uy(y[1],y(2],703])
*Bx(y[1],y(2],y[31)));
}

double Ux(x,y,2z)
double x,y,z;
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double r;

r=sqrt (xkx+y*y+zz) ;
if(r<Rs) return c*x/r;
else return (c/3)*x/r;

}

double Uy(x,y,z)
double X,y,z;

{
double r;
r=sqrt(xxx+y*y+rzxz);
1f(r<Rs) return c*(y/r);
else return (c/3)*(y/r);
}

double Uz(x,y,z)
double x,y,z;

{
double r;
r=sqrt (x*x+y*y+z*z) ;
if (r<Rs) return cx(z/r);
else return (c/3)*(z/r);
}

double Bx({x,y,z)
double x, y, z;
1

double r,bx;

r=sqrt (x*x+y*y+z*z);
if(r<Rs)

bx = -5.0e-9/*Rsxy*sqrt (x*x+y*y)/(x*r*r)*/;
else P

bx = -3.0%5,0e-9/%Rs*y*sqrt (x*x+yxy)/(r*r*r)+*/;
return bx;

double By(x,y,z)
double x,y,z;
{

double r,by;

r=sqrt (xxx+yky+zsz);
if (r<Rs)
by = 5.0e-9/*Rsxx*sqrt(xxx+y*y)/(r*r*xr)*/;
else
by = 3.0%5.0e-9/**Rs*x*sqrt(x*x+y*y)/(r+r*r)*/;
/*%/printf ("By is %le \n",by);
return by;

}

void rkqc(y, dydx, n, x ,htry, eps, yscal, hdid, hnext, derivs)
double y[], dydx[], #*x, htry, eps, yscalll, *hdid, #*hnext;

void (*derivs)(); /% ANSI: void (*derivs)(float,floatx,float *); */
int n;

/* Fifth-order Runge-Kutta step with monitoring of local truncation error to ensure accuracy and adjust stepsize.
Input are the dependent variable vector y[1..n] and its derivative dydx[1..n] at the starting value of the dependent
variables x. Also input are the stepsize to be attemped htry, the required accuracy eps. and the vector ysca[l..n]
against which the error is scaled. On output,y and x are replaced by their new values.hdid is the stepsize which



was actually accomplished , and hnext is the estimated next stepsize

computes the right-hand side derivatives( output are dydx([l..n] }*/

{

tat dj

double xsav, hh, h, temp, errmax;
double *dysav,*ysav,*ytemp,*dvector();
void rk4(),nrerror(),free_dvector();

dysav = dvector(l,n);

ysav = dvector(l,n);
ytemp = dvector(l,n);
xsav = (#x); /* Save initial values. */

for(i=1;i<=n;i++) {
ysav{i]l = y[il;
dysav[i]l = dydx[il;

¥
h=htry; /* Set stepsize to the initial trial value.*/
for(;;) A

hh = 0.5%h; /# Take two half steps. */
rk4(ysav, dysav, n, xsav, hh, ytemp,derivs);
*X = xsav+hh;
(*derivs)(+x, ytemp, dydx);
rk4(ytemp, dydx, n, *x, bhh, y, derivs);
*X = xsav+h;
if (*x==xsav) nrerror("Stop size too small in routine RKQC");
rk4(ysav,dysav,n,xsav,h,ytemp,derivs); /*Take the large step.*/
errmax=0.0;
for(i=l;i<=n;i++) {

ytemp(il=y[i]-ytemp[i]; /+* ytemp now contains the error estimate.*/

temp=fabs(ytempli]/yscallil);

if (errmax < temp) errmax = temp;

¥
errmax /=eps; /* Scale relative to required tolerance.*/

if(errmax<=1.0) { /* Step, succeeded. Compute size of next step. */
*hdid=h;

*hnext=(errmax> ERRCON 7

SAFETY*h*exp(PGROW*log(errmax)) : 4.0xh);

break;

b

¥
h = SAFETY*hxexp(PSHRNK*log(errmax));/*Turncation error too large, reduce step sizex/
}
for(i=1;i<=n;i++) {

y[il+=ytemp{i1#FCOR; /* Mop up fifth-order truncation error.*/
&
free_dvector(ytemp,1);
free_dvector(dysav,1);
free_dvector(ysav,1);

void rk4(y, dydx, n, x, h, yout,derivs)

double y[1, dydx(], x, h, yout(];

void (#derivs)(); /* ANSI: void (*derivs) (float,float *,float *);x/
int n;

70

. derivs is the user-supplied routine that

/* Given value for n variables y(1..n] and their derivatives dydx[1..n] known at x, use the fourth-order Runge-
Kutta method to advance the solution over an interval h and return the incremented variables ar yout{1..n],which

need not be a distinct array from y.The user supplies the routine derivs(x, y, dydx) which return derivatives
dydx at x. */

{

int 1;
double xh, hh, h6, *dym, *dyt, *yt,*dvector();
void free_dvector();

dym=dvector(l,n);



dyt=dvector(i,n);
yt=dvector(l,n);

hh=h*0.5;

h6=n/6.0;

xh=x+hh;

for(i=1;i<=n;i++) yt{il=y(il+hh*dydx(i]; /* First step */
(*derivs)(xh ,yt, dyt); /* Second step */
for(i=1;i<=n;i++) ytlil=y[i}+hhx*dyt[il;

(*derivs)(xh, yt, dym); /* Third step */

for(i=1;i<=n;i++) {
yeli]=y[i]+h*dym[i];
dym[i]+=dyt{i];
B
(*derivs) (x+h, yt, dyt); /* Fourth step */

for(i=1;i<=n;i++) /* Accumulate increments with proper weights.x/

yout [1]1=y [i]+h6x(dydx[i]+dyt [i]+2.0%dym[i]);
free_dvector(yt,1);

free_dvector(dyt,1);

free_dvector(dym, 1);

}

void main(void)
{
int nvar,i;
double ystart([7],x1,x2,eps,hl,p;
double hmin,nok,nbad;
void (*derives)();
/* FILE #*shock;

shock = fopen{"s.dat","w");*/

ystart[1] = Rs-5.0e13/*co0s(0.1745)*/;

ystart (2] = 0.0;

ystart{3] = 0.0/#Rs*sin(0.1745)%/;

ystart[4] = 3.22e-12%cos(0.1745)/1863.0; /* initial momentums/

ystart[5] = 0.0; L

ystart(6] = 3.22e~12%s5in(0.1745)/1863.0;

nvar = 6;

x1 =0

*Z = 8.

eps =1

hi =1

hmin = 0.0;

nok = 0.0
nbad = 0.0;
odeint(ystart,nvar,x1,x2,eps,hl,hmin,&nok,&nbad,derivs,rkqc);

/* for(i=0;p<Rs;i++)

{

p=-Rs+i*1.0el0;

fprintf(shock,"%le fle Ale\n",p,sqrt(Rs*Rs-pxp),~sqrt (Rs*Rs-p*p));
¥
fclose(shock);

¥/
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