# TRADING STRATEGY BASED ON INTRADAY ABNORMAL VOLUME IN THE STOCK EXCHANGE OF THAILAND 

Mr. Nathawuth Dejbordin

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Financial Engineering

Department of Banking and Finance
Faculty of Commerce and Accountancy
Chulalongkorn University
Academic Year 2016
Copyright of Chulalongkorn University

กลยุทธ์การซื้อขายโดยใช้ปริมาณการซื้อขายที่ผิดปกติระหว่างวันในตลาดหลักทรัพย์แห่งประเทศไทย

นายณัฐวุุติ เดชบดินทร์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมการเงิน ภาควิชาการธนาคารและการเงิน คณะพาณิชยศาสตร์และการบัญชี จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2559
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย


ณัฐวุฒิ เดชบดินทร์ : กลยุทธ์การซื้อขายโดยใช้ปริมาณการซื้อขายที่ผิดปกติระหว่างวันใน ตลาดหลักทรัพย์แห่งประเทศไทย (TRADING STRATEGY BASED ON INTRADAY ABNORMAL VOLUME IN THE STOCK EXCHANGE OF THAILAND) อ.ที่ปรึกษา วิทยานิพนธ์หลัก: ดร. พีรพงศ์ ทั่งวัฒโนทัย, 86 หน้า.

วิทยานิพนธ์ฉบับนี้นำเสนอกลยุทธ์การซื้อขายโดยอิงจากการสังเกตุและการคาดการณ์ของ ปริมาณการซื้อขายที่ผิดปกติของหุ้นในตลาดหลักทรัพย์แห่งประเทศไทย ตั้งแต่เดือนกรกฏาคม พ.ศ. 2553 ถึงเดือนมิถุนายน พ.ศ. 2559 การศึกษานี้พบว่าเหตุการณ์ปริมาณการซื้อขายที่ผิดปกติ (abnormal volume events) ซึ่งกำหนดโดยมีปริมาณการซื้อขายมาตรฐาน (standardized volume) และปริมาณทิศทางการซื้อขายมาตรฐาน (standardized directional volume) ที่สูง ผิดปกตินั้นถูกตามมาด้วยผลตอบแทนส่วนเกิน (excess returns) ที่เป็นบวก กลยุทธ์การซื้อขายโดย อิงจากเหตุการณ์เหล่านี้ได้ถูกทดสอบเพื่อยืนยันว่าเหตุการณ์ดังกล่าวสามารถนำมาใช้ประโยชน์ได้ และการทดสอบชี้ให้เห็นว่ากลยุทธ์ข้างต้นสามารถสร้างอัลฟ่า (alpha) ที่เป็นบวกหลังจากหักค่า คอมมิชชั่นในการซื้อขายแล้ว ในส่วนของงานวิจัยก่อนหน้านี้ได้แสดงให้เห็นว่าเหตุการณ์ปริมาณการ ซื้อขายที่ผิดปกติมักมาพร้อมกับผลตอบแทนส่วนเกินที่มีขนาดใหญ่ซึ่งเกิดขึ้นภายในวันซื้อขายเดียวกัน วิทยานิพนธ์ฉบับนี้จึงได้ต่อยอดกลยุทธ์การซื้อขายข้างต้นด้วยการพยายามดักจับผลตอบแทนส่วนเกิน ขนาดใหญ่ในวันที่เกินเหตุการณ์นั้นๆ โดยได้พัฒนาอัลกอริทึมซึ่งสามารถทำนายเหตุการณ์เหล่านั้น ด้วยความแม่นยำสูง (precision) และได้นำไปรวมเข้ากับกลยุทธ์ข้างต้นทำให้สามารถทำการซื้อได้ ก่อนสิ้นวัน นอกจากนี้การจำลองพอร์ตการซื้อขายบนข้อมูลนอกกลุ่มตัวอย่าง (out-of-sample data) ได้แสดงว่ากลยุทธ์การซื้อขายระหว่างวันสามารถสร้างผลตอบแทนส่วนเกินที่เพื่มขึ้น

ภาควิชา การธนาคารและการเงิน
สาขาวิชา วิศวกรรมการเงิน

ลายมือชื่อนิสิต
ลายมือชื่อ อ.ที่ปรึกษาหลัก $\qquad$
\# \# 5782941026 : MAJOR FINANCIAL ENGINEERING
KEYWORDS: ABNORMAL TRADING VOLUME / INTRADAY VOLUME / STOCK EXCHANGE OF THAILAND / TRADING STRATEGY

NATHAWUTH DEJBORDIN: TRADING STRATEGY BASED ON INTRADAY ABNORMAL VOLUME IN THE STOCK EXCHANGE OF THAILAND. ADVISOR: PEERAPONG DHANGWATNOTAI, Ph.D., 86 pp.

This thesis proposes a trading strategy which trades based on the observation and prediction of abnormal volume events of stocks listed on the Stock Exchange of Thailand (SET) during July 2010 to June 2016. This research found that a positive excess return follows an abnormal volume event defined by the abnormally-high standardized volume and standardized directional volume. To confirm that such events are exploitable, a strategy that trades on those events is tested and found that they generate positive alphas even after including commission fees. Previous work has shown that typically an abnormal volume event is accompanied by a substantial excess return on the same day. Thus, this thesis further improved the strategy by attempting to capture the excess returns on the same day as abnormal volume events. An algorithm capable of predicting those events with high precision is developed and integrated into the strategy, enabling trade initiation before the end of the day. A portfolio simulation on out-of-sample data shows that the intra-day strategy generates incremental excess returns.

Department: Banking and Finance Field of Study: Financial Engineering

Student's Signature $\qquad$
Advisor's Signature $\qquad$

## ACKNOWLEDGEMENTS

The completion of this master degree's thesis would not be possible without the assistance of many people whose name may not all be mentioned. Their contributions help develop both my programming and analytical skill and well as the insight necessary to complete this thesis. However, I would like to extend my utmost gratitude and appreciation to the following person.

First and foremost, I would like to express my gratitude to my thesis advisor, Peerapong Dhangwatnotai, Ph.D., for his continuous support and guidance. Without his knowledge and expertise, this thesis would not have been finished. Furthermore, I would like to offer my gratitude to Asst. Prof. Sira Suchintabandid, Ph.D., Kanis Saengchote, Ph.D., and my external examiner Asst. Prof. Nattawut Jenwittayaroje, Ph.D., for their constructive questions and comments that further improve my research mindset.

Second, I would like to give special thanks to both Ponlawat Bumroongsakulsawat and Porawat Tangpiyanan who provided a significant assistance toward this thesis. As well as to all my fellow classmates, professors, and faculty members at MFE and MSF Chula for all their continuing supports.

Finally, I am forever grateful for my family for their never ending support, encouragement, and understanding. Big thanks to these great individuals that inspired me to work hard on this thesis.

## CONTENTS

Page
THAI ABSTRACT ..... iv
ENGLISH ABSTRACT ..... $v$
ACKNOWLEDGEMENTS ..... vi
CONTENTS ..... vii
CHAPTER 1 INTRODUCTION ..... 1
1.1 Background and motivation .....  1
1.2 Research questions and objective of the study .....  3
1.3 Scope of the study ..... 4
1.4 Contributions ..... 4
1.5 Organization of the study ..... 5
CHAPTER 2 LITERATURE REVIEW AND HYPOTHESES DEVELOPMENT. ..... 6
2.1 The relationship between abnormal volume event and stock return ..... 6
2.2 Price adjustment under information asymmetry .....  8
2.3 Anticipation of abnormal volume events ..... 10
CHAPTER 3 DATA ..... 12
3.1 Stock tick data ..... 12
3.2 Daily market data ..... 13
CHAPTER 4 METHODOLOGY ..... 15
4.1 Definitions of abnormal volume events ..... 15
4.2 Prediction algorithm for abnormal volume events ..... 18
4.3 Event study analysis ..... 22
4.4 Out-of-sample portfolio simulation ..... 25
Page
CHAPTER 5 RESULT AND DISCUSSION ..... 30
5.1 The excess returns following the abnormal volume events ..... 30
5.1.1 First definition: V-event. ..... 31
5.1.2 Second definition: VD-event ..... 33
5.1.3 Third definition: VP-event ..... 35
5.1.4 Forth definition: VDP-event ..... 38
5.2 The incremental returns from the prediction of abnormal volume events. 42
5.3 Out-of-sample portfolio performance of different trading strategies ..... 47
CHAPTER 6 CONCLUSION ..... 58
REFERENCES ..... 61
APPENDIX ..... 63
VITA. ..... 86

## CHAPTER 1

## INTRODUCTION

### 1.1 Background and motivation

Trading volume is one of the most common market data available in an equity market across the globe after prices (such as open, high, low, and close price). Professional traders around the world use volume as one of their trading tools to either screen out liquid stocks, determine the market participant's interest in a particular asset or even use it directly to forecast future stock price movement.

In general, a rise in volume is believed to confirm the price uptrend. In opposition, a decline in volume is thought to hint a weakness of the trend and a reversal is imminent as people are no longer confident in the direction and the trendfollowing behavior dissipates. This belief has been proven to exist by many academic works, for instance, the very first empirical study done by Ying (1966) which stated that there exist a positive correlation between absolute price change and volume of the Standard \& Poor's 500 Composite Index. In other words, on average the increase (decrease) in the index price goes together with the rise (decline) in the volume. Later Miller (1977) point out that an increased in volume leads to a higher probability that investor will investigate the stock. However, when coupled with short-selling constraint, the only choice left for new investors is to buy which result in an upward
pressure on the stock price. In addition to the equity market, Karpoff (1987) reviewed multiple articles and confirmed that this correlated behavior exists throughout many time frames ranging from minutes to weekly and instruments such as common stocks and futures contract on market indices, commodities, and bond. It is important to point out that this behavior is right on average but not always the case because this inefficiency is well known and the market participants will trade on this while at the same time introduce more noise on to the volume-based signal. Trading solely on the price trend along with a rise and fall of the volume, therefore, does not guarantee a good performance.

There are cases when we can get a clear signal from volume. The phenomenon where volume expands far beyond its normal level is known as abnormal volume event. The distinct advantage provided by abnormal volume event is that the magnitude is so large compared to usual noises. However, the general belief in this area is still unclear plus there are few academic studies done specifically on this topic. One of the literature by Bajo (2010) showed a long-only strategy (for stocks) that achieve up to $36-39 \%$ of the yearly market adjusted return (without commission). It is done simply by holding the stocks after they experience abnormal volume events for just one day. On average these abnormal volume events are followed by positive excess returns. Few other literature also suggests that this phenomenon exists in many markets. Looking at returns after the abnormal volume events in Thai market (stocks
listed on SET100), I found an evidence that is inconsistent with the result of Bajo (2010). This mismatch raise the question whether the phenomenon or some versions of it exists in Thai market.

It is plausible that the high-frequency tick data could improve the profitability that revolves around abnormal volume events. This data can be considered as a not entirely public information due to the difficulty of data acquisition, in particular for an extended period. Therefore, it is very likely that this data still contains additional unexploited information that may improve the profitability. One of the approaches that this study investigates is to incorporate additional information (from tick data) to the usual definition of abnormal volume events and creates a new variation which exhibits a greater high-volume premium. The second approach utilizes another known phenomenon of an abnormal volume event that is not believed to be exploitable. These events have been shown by Bajo (2010) that they are associated with enormous same date returns. However, these events are known at the end of the day, and thus it is impossible to capture these significant gains. This study investigates the predictability of an abnormal volume event before the end of the day to clarify this issue.

### 1.2 Research questions and objective of the study

This study investigates an opportunity that revolves around an abnormal volume event for the stocks listed on the SET100 index (Thailand). As mentioned
earlier, a preliminary testing reveals that this phenomenon in Thai market is inconsistent to other markets. To clarify this issue, the following questions are explored:

1. To what extent can trading exploit the excess returns following abnormal volume events?
2. Could a high-frequency tick data help improve the profitability?
3. Is it possible to predict an abnormal volume event before the end of the day?

### 1.3 Scope of the study

This study investigates the relationship between stocks' abnormal volume event and the excess return associated with it. As well as perform a trading simulation on out-of-sample data of the stocks that are members of the SET100 index (Thailand) during the period July 2010 to June 2016.

### 1.4 Contributions

This study shows a new empirical evidence of the relationship between stocks' abnormal volume event and the excess returns associated with it for the stocks that are members of SET100 index (Thailand). This thesis extends the existing literature by addressing this issue in another market (Thai market). The knowledge obtained could be used by various traders, for instance, retail technical traders and market
makers to improve their trading performance or to use as a part of their trading strategy construction/refinement process. The choice of the stock universe also ensures sufficient liquidity allowing the scaling of portfolio size to some extent. It is also possible that this understanding could help increase the speed of price adjustment by reducing the high-volume premium that follows an abnormal volume event. In other words, as more traders take profits regarding the abnormal volume events, the opportunity offered by this study would diminish.

### 1.5 Organization of the study

The remainder of this study is organized as follows. Chapter 2 provides the literature review and hypothesis development while Chapter 3 covers data used in this research. Chapter 4 describe the research methodology and all relevant formulation. Chapter 5 exhibits the results of this research as well as discuss the obtained result, and lastly, Chapter 6 concludes the study. Both references and the appendix are located after Chapter 6.

## CHAPTER 2

## LITERATURE REVIEW AND HYPOTHESES DEVELOPMENT

This chapter reviewed three distinct findings as well as formed the hypotheses. Section 2.1 presents the existing evidence on the topic of the relationship between abnormal volume event and stock return. Section 2.2 reviews the subject of price adjustment under information asymmetry environment. This behavior raises a potential feature that may improve the stock returns after it experiences an abnormal volume events. Lastly, Section 2.3 explores the anticipation of an abnormal volume event with a prediction algorithm.

### 2.1 The relationship between abnormal volume event and stock return

Abnormal volume event refers to the case when a stock experiences a sudden large change in trading volume. Pritamani and Singal (2001) studied the price pattern around a significant price change event and concluded that this large price change event tends to be accompanied by a good earning announcement. If this substantial price change goes together with an abnormal volume event, the stock tends to show a price continuation (trending). On the other hand, Gervais, Kaniel, and Mingelgrin (2001) demonstrated an empirical result based on weekly data that a stock tends to exhibit high-volume premium after it experiences an abnormal volume event regardless of earning announcement. This evidence is consistent with Huang and Heian (2010) who showed that the premium after an abnormal volume event is vigorous and
persistent across stocks listed on the New York Stock Exchange (NYSE) and the American Stock Exchange (AMEX). They further stated that most of the excess return resides within first four weeks after an abnormal volume event and the return declines as the length of the holding period increases. Also, Bajo (2010), who expanded this topic further by decreasing the timeframe down to daily showed that a positive excess return persists after an abnormal volume event and there is no price-reversal over the following month based on the stocks listed on the Milan Stock Exchange (Italy). Consistent with Gervais et al. (2001), he showed evidence that there are excess returns following abnormal volume events regardless of earnings announcements. In other words, news announcements do not significantly affect the behavior of the excess returns that follow abnormal volume events. He also suggested that this action arises from the exploitation of undisclosed information with a mixture of many positive and few negative private information because buying the stock is easier than short-selling it. This thesis extends previous studies by examining the excess returns following the abnormal volume events defined by abnormally-high standardized volume (V-event) in Thai market.

H1: The excess returns after the abnormal volume events defined by abnormally-high standardized volume are positive.

### 2.2 Price adjustment under information asymmetry

Information asymmetry refers to a scenario where not every market participants possess the same information which gives rise to an informed and uninformed trader. Theoretical work by Glosten and Milgrom (1985) showed that given this condition the price would adjust to its fair value through a sequence of same-side trades by an informed trader. Another theoretical work by Kyle (1985) suggested that an informed trader and a market maker trade strategically against each other to maximize their profit and thus slow down the price adjustment process. The reason behind is that an informed trader must remain discrete to prevent bid-ask spread widening from matching deals too often but at the same time must be aggressive enough to realized profit using their inside knowledge. This idea of bid-ask spread widening also supported with theoretical works by Easley and O'Hara (1987). The literature explained that for an uninformed market maker to be safe, they must place a small limit order at a favorable price (close to best price) while placing a large limit order at an unfavorable price (far from best price). This action forced the informed trader to either trade slow to get a good price or trade fast and get a bad price. Easley and O'Hara (1992) later extended their market model and stated that the market maker could infer the information held by the informed trader by observing the buy and sell trading behaviors. However, they suggested that watching few concentrated trades may not be informative as those may arise from a liquidity issue. Louhichi (2012) also supported this idea that the asymmetry between buy-initiated volume and sell-initiated volume
is more informative (compared to regular volume) in predicting the stock return for the stocks listed on the Euronext market (Paris).

With these concepts, it seems plausible that the asymmetry between buyinitiated volume and sell-initiated volume is the proxy for the information held by an informed investor. In other words, an extreme buy-over-sell (sell-over-buy) volume may reflect the exploitation of positive (negative) information by the informed investor. This thesis inspects the excess returns following the abnormal volume events defined by abnormally-high standardized volume and standardized directional volume (VDevent) in Thai market to test this theory.

H2: The excess returns after the abnormal volume events defined by abnormally-high standardized volume and standardized directional volume are positive.

Aside from directional volume, another feature that could reflect the intention of informed investor is the stock's close-to-close return. It is sensible that a leak of relevant and high-impact private information would force the informed trader to act in a more aggressive manner, and thus contributes to some level of price changes. This thesis examines the excess returns following the abnormal volume events defined by abnormally-high standardized volume and sufficient price change (VP-event) in Thai market to test this concept.

H3: The excess returns after the abnormal volume events defined by abnormally-high standardized volume and sufficient price change are positive.

It is possible that the directional volume and price change features do not hold the same information (not perfectly correlated) and thus might possess a positive synergy that further improves the excess return when used together. This thesis reviews the excess returns following the abnormal volume events defined by abnormally-high standardized volume and standardized directional volume and sufficient price change (VDP-event) in Thai market to investigate this idea.

H4: The excess returns after the abnormal volume events defined by abnormally-high standardized volume and standardized directional volume and sufficient price change are positive.

According to Bajo (2010), these abnormal volume events also tend to show an enormous excess returns on the event date (same-day return). To exploit this phenomenon, a prediction of an abnormal volume event is required such that a trade can be made even before the event is confirmed at the end of the day. In another word, an intraday prediction algorithm for abnormal volume events is needed to capture a portion of those huge same-day excess returns.

### 2.3 Anticipation of abnormal volume events

Various literature has proposed many end-of-day volume prediction algorithms in the form of a complex time-series model that predicts using intraday volume. For instance, Chen, Chen, Ardell, and Lin (2011) proposed a two-component hierarchical model - a weighted sum between ARMA/GARCH model on daily volume and Gaussian-
multinomial model on intraday volume. Yan and Li (2012) proposed an ARMA-EGARCH model on an intraday volume time-series. Satish, Saxena, and Palmer (2014) proposed a three-component model - a dynamically weighted sum of average historical intraday volume, ARMA model on daily volume, and ARMA model on intraday volume. However, the goal for these algorithms is to reduce overall volume tracking error instead of focusing on only the abnormal volume event and so are not suitable for our purpose. Hence, to push the profitability further, this thesis proposes a prediction algorithm based on intraday volume that forecasts the best performing definition of abnormal volume events.

H5: The abnormal volume events can be predicted by an algorithm and exploited to generate positive excess returns.

Portfolio simulations on out-of-sample data are also performed to illustrate the improvement in term of portfolio performance for the four definitions of abnormal volume events (V-event, VD-event, VP-event, and VDP-event) as well as after augmenting the best performing definition with a prediction algorithm. Commission are also factored in to obtain results that are more indicative of the trading strategies' performance in live trading.

H6: There exist an implementable trading strategy based on abnormal volume events, which generates Sharpe ratio higher than the market, and a positive information ratio and alpha.

## CHAPTER 3

DATA

This chapter explains the two groups of data used and the methods of the data acquisition. Section 3.1 presents the information regarding high-frequency stock tick data while the Section 3.2 reviews the information on the relevant daily market data.

### 3.1 Stock tick data

The required data to study the behavior of the excess returns around abnormal volume events are adjusted price (as total return index) and volume. However, this work also explores the asymmetry between buy-initiated volume and sell-initiated volume as well as a prediction of the abnormal volume events. Thus, a high-frequency tick data, containing the timestamp, trade flag (auto matching, big lot, etc.), best bid/ask price, matching price and volume, and the trade side (deduce from up/down tick), is needed. The collected tick data is from Thomson Reuters for the stocks ${ }^{1}$ that are members of SET100 index (Thailand) during April 2015 to June $2016^{2}$. In a case of incomplete data, the tick data for that particular day is replaced with the data from Bloomberg instead and, if not possible, assign it as a zero trading day. The tick data is processed to create the directional volume variable by taking the difference between

[^0]the buy-initiated volume and sell-initiated volume of the auto-matching deals ${ }^{3}$. Both directional volume and matching volume are consolidated into 5-minutes intraday intervals. This procedure creates a total of 55 intervals (bin) that starts at the market opening auction and ends at the market closing auction as shown in Table 1. Note that the auction volume does not possess trade side and therefore not included in the calculation of the directional volume.

### 3.2 Daily market data

In addition to tick data, this thesis acquires a daily data of SET100 index and all firms that are members of the SET index from Thomson Reuter over the period from April 2010 to June 2016. These data are used to examine the portfolio factor-adjusted performance, to compute excess return, and to double check the quality of the tick data. The data acquired are open and close prices (as total return index), trading volume, market capitalization, and price-to-book ratio. The daily total return of Thai Short-term Government Bond Index obtained from The Thai Bond Market Association (ThaiBMA) is used as a risk-free rate.

[^1]Table 1: Intraday bins and time intervals

| Morning session |  |  |  |
| :---: | :---: | :---: | :---: |
| n, bin <br> number | Interval time | n, bin <br> number | Interval time |
| 1 | Open1-10:05:00 | 16 | $11: 15: 01-11: 20: 00$ |
| 2 | $10: 05: 01-10: 10: 00$ | 17 | $11: 20: 01-11: 25: 00$ |
| 3 | $10: 10: 01-10: 15: 00$ | 18 | $11: 25: 01-11: 30: 00$ |
| 4 | $10: 15: 01-10: 20: 00$ | 19 | $11: 30: 01-11: 35: 00$ |
| 5 | $10: 20: 01-10: 25: 00$ | 20 | $11: 35: 01-11: 40: 00$ |
| 6 | $10: 25: 01-10: 30: 00$ | 21 | $11: 40: 01-11: 45: 00$ |
| 7 | $10: 30: 01-10: 35: 00$ | 22 | $11: 45: 01-11: 50: 00$ |
| 8 | $10: 35: 01-10: 40: 00$ | 23 | $11: 50: 01-11: 55: 00$ |
| 9 | $10: 40: 01-10: 45: 00$ | 24 | $11: 55: 01-12: 00: 00$ |
| 10 | $10: 45: 01-10: 50: 00$ | 25 | $12: 00: 01-12: 05: 00$ |
| 11 | $10: 50: 01-10: 55: 00$ | 26 | $12: 05: 01-12: 10: 00$ |
| 12 | $10: 55: 01-11: 00: 00$ | 27 | $12: 10: 01-12: 15: 00$ |
| 13 | $11: 00: 01-11: 05: 00$ | 28 | $12: 15: 01-12: 20: 00$ |
| 14 | $11: 05: 01-11: 10: 00$ | 29 | $12: 20: 01-12: 25: 00$ |
| 15 | $11: 10: 01-11: 15: 00$ | 30 | $12: 25: 01-12: 30: 00$ |


| Afternoon session |  |  |  |
| :---: | :---: | :---: | :---: |
| n, bin <br> number | Interval time | n, bin <br> number | Interval time |
| 31 | Open2 - 14:35:00 | 46 | $15: 45: 01-15: 50: 00$ |
| 32 | $14: 35: 01-14: 40: 00$ | 47 | $15: 50: 01-15: 55: 00$ |
| 33 | $14: 40: 01-14: 45: 00$ | 48 | $15: 55: 01-16: 00: 00$ |
| 34 | $14: 45: 01-14: 50: 00$ | 49 | $16: 00: 01-16: 05: 00$ |
| 35 | $14: 50: 01-14: 55: 00$ | 50 | $16: 05: 01-16: 10: 00$ |
| 36 | $14: 55: 01-15: 00: 00$ | 51 | $16: 10: 01-16: 15: 00$ |
| 37 | $15: 00: 01-15: 05: 00$ | 52 | $16: 15: 01-16: 20: 00$ |
| 38 | $15: 05: 01-15: 10: 00$ | 53 | $16: 20: 01-16: 25: 00$ |
| 39 | $15: 10: 01-15: 15: 00$ | 54 | $16: 25: 01-16: 30: 00$ |
| 40 | $15: 15: 01-15: 20: 00$ | 55 |  |
| 41 | $15: 20: 01-15: 25: 00$ |  |  |
| 42 | $15: 25: 01-15: 30: 00$ |  |  |
| 43 | $15: 30: 01-15: 35: 00$ |  |  |
| 44 | $15: 35: 01-15: 40: 00$ |  |  |
| 45 | $15: 40: 01-15: 45: 00$ |  |  |

## CHAPTER 4

## METHODOLOGY

This chapter explains the methodology and the statistical tests used in this research. Section 4.1 describes the four definitions of abnormal volume events (Vevent, VD-event, VP-event, and VDP-event). Section 4.2 formulates the prediction algorithm for abnormal volume events. Section 4.3 outlines the event study methodology used to examine excess returns around the abnormal volume events. Finally, Section 4.4 summarizes the process of the out-of-sample portfolio simulation along with the performance metrics used in the evaluation.

### 4.1 Definitions of abnormal volume events

This thesis examines four definitions of abnormal volume events. The first one defined by abnormally-high standardized volume (V-event). Second one defined by abnormally-high standardized volume and standardized directional volume (VD-event). Third one defined by abnormally-high standardized volume and sufficient price change (VP-event). And the last one defined by abnormally-high standardized volume and standardized directional volume and sufficient price change (VDP-event).

The criterion to define V-event, which inspired by Bajo (2010), is designed to detect an extreme deviation of trading volume from its normal level. It is done by converting the daily volume into $z$-score $\left(V_{i, t}\right)$, which compares with its 66 most recent
non-zero-trading daily observation including the current day (roughly three months period) and looks for the occurrence of large value. Thus the V -event occurs for the stock $i$ on day $t$ when

$$
V_{i, t}>c_{1},
$$

where $V_{i, t}=\frac{\log v_{i, t}-\mu_{i, t}}{\sigma_{i, t}}$ and $c_{1}$ is a threshold parameter,
$\log v_{i, t}$ is the natural logarithm of $(1+$ daily volume of stock $i$ on day $t)$,
$\mu_{i, t}$ and $\sigma_{i, t}$ are the mean and standard deviation of the 66 most recent non-zero-trading observation on $\log v_{i, t}$ including the current day.

To define VD-event, another criterion which checked for an extreme deviation of the asymmetry between buy-initiated volume and sell-initiated volume from its normal level is needed. Similarly, this is done by converting the directional volume ${ }^{4}$ into $z$-score $\left(D_{i, t}\right)$, which compares using the same look-back period as that of $V_{i, t}$, and looks for the occurrence of large value. The VD-event is said to occur for the stock $i$ on day $t$ if

$$
V_{i, t}>c_{1} \text { and } D_{i, t}>c_{2},
$$

where $D_{i, t}=\frac{d_{i, t}-\theta_{i, t}}{\eta_{i, t}}$ and $c_{2}$ is a threshold parameter,
$d_{i, t}$ is the daily buy-initiated volume minus sell-initiated volume (excluding auction) of stock $i$ on day $t$,

[^2]$\theta_{i, t}$ and $\eta_{i, t}$ are the mean and standard deviation of the 66 most recent non-zero-trading observation on $d_{i, t}$ including the current day.

Adding the sufficient price change condition to the first definition (V-event) altered it into VP-event. The idea is to consider only those abnormal volume event that exhibits an adequate level of close-to-close return $\left(P_{i, t}\right)$. Therefore, the VP-event occurs for the stock $i$ on day $t$ when

$$
V_{i, t}>c_{1} \text { and } P_{i, t}>\frac{c_{3}}{100}
$$

where $P_{i, t}=\frac{\operatorname{close}_{i, t}}{\operatorname{close}_{i, t-1}}-1$ and $c_{3}$ is a threshold parameter, close $_{i, t}$ is the end-of-day adjusted closing price of stock $i$ on day $t$.

The last definition of abnormal volume events defined as VDP-event. It is created to examine the potential synergy between the directional volume and price change. The definition of VDP-event is simply the combination of all three criteria. Hence, the VDP-event is said to occur for the stock $i$ on day $t$ if

$$
V_{i, t}>c_{1}, D_{i, t}>c_{2} \text { and } P_{i, t}>\frac{c_{3}}{100}
$$

Note that in the case of an event, an increase in trading tends to last for a few consecutive days. The definitions take only the first abnormal volume event and reject any repeated events that occur within the 22 subsequent days to make the event unique.

### 4.2 Prediction algorithm for abnormal volume events

The prediction algorithm extends the criteria for the definitions of abnormal volume events from daily data to intraday data. The core idea of this algorithm is to make a prediction within the same day $t$ that an abnormal volume event supposed to occur by comparing the evolutions of the intraday features (volume, directional volume, and price change) against its normal daily behavior with the $z$-score method. This approach is possible because the cumulative data would converge to its final end-of-day values as more information accumulates throughout the trading day. Few adjustments are made to the calculation for each feature by replacing the current end-of-day data with an intraday data $^{5}$ (cumulative intraday volume, directional volume and intraday price). In fact, this prediction algorithm can operate at any frequency from as fast as every second up to few hours interval. For this thesis, it is decided to use a 5-minute interval to balance between the responsiveness of the algorithm and the simplicity of data handling. The modifications are applied as follows:

$$
V_{i}^{n}=\frac{\log v_{i}^{n}-\mu_{i}^{n}}{\sigma_{i}^{n}}
$$

where $\log v_{i}^{n}$ is the natural logarithm of ( $1+$ cumulative intraday volume from the start of the day up to $n^{\text {th }}$ interval of stock $i$ )

[^3]$\mu_{i}^{n}$ and $\sigma_{i}^{n}$ are the mean and standard deviation of 66 most recent non-zero-trading observation on $\log v_{i, t}$ with the current day replaced by $\log v_{i}^{n}$
$$
D_{i}^{n}=\frac{d_{i}^{n}-\theta_{i}^{n}}{\eta_{i}^{n}}
$$
where $d_{i}^{n}$ is the cumulative intraday buy-initiated volume minus cumulative intraday
sell-initiated volume (excluding auction) volume up to $n^{\text {th }}$ interval of stock $i$ $\theta_{i}^{n}$ and $\eta_{i}^{n}$ are the mean and standard deviation of the 66 most recent non-zero-trading observation on $d_{i, t}$ with the current day replaced by $d_{i}^{n}$
$$
P_{i}^{n}=\frac{\text { intraday close }_{i}^{n}}{{\text { last } \text { close }_{i}}^{2}}-1
$$
where intraday close $e_{i}^{n}$ is the current day adjusted close price at $n^{\text {th }}$ interval and
last close ${ }_{i}$ is the yesterday adjusted close price (end-of-day) for stock $i$

The thresholds are also altered to be time interval-dependent to reflect the reduction in uncertainty as more information disclosed throughout the day. The modifications for these thresholds are made such that they can control the degree of conservativeness in the prediction behavior as well as keep the formulations simple (selected a linear model for this purpose). The earliest possible prediction designed to be at the end of the first 5 minutes of trading $(n=1)$ with some starting threshold parameter $b$. This parameter controls the degree of conservativeness because if the value is high, it would require the intraday feature to exhibits even more extreme value. This increase the likelihood that the day will end up as an abnormal volume event. The final prediction can be made at last moment right before the closing call auction ( $n=54$ ) because the decision could then executed during the auction ( $n=55$ ).

Since the definition for abnormal volume event is predefined, the end-of-day threshold cannot change, and so the time interval-dependent threshold must converge to this value. Note that at $\mathrm{n}=54$, the information regarding directional volume is fully revealed as it does not include the volume of the auction and thus the threshold must be equal to its ending threshold. On the other hand, volume and price still require the last piece of information after the closing auction to be complete. Aside, the intraday stock price also tends to fluctuate a lot. Hence, the threshold regarding the intraday price change is kept as constant to promote generalization.

$$
\begin{gathered}
V_{i}^{n}>b_{1}\left(\frac{55-n}{54}\right)+c_{1}\left(\frac{n-1}{54}\right) \\
D_{i}^{n}>b_{2}\left(\frac{54-n}{53}\right)+c_{2}\left(\frac{n-1}{53}\right) \\
P_{i}^{n}>\frac{c_{3}}{100}
\end{gathered}
$$

with $b_{1}$ and $b_{2}$ as the 1 st interval threshold parameters,
$c_{1}, c_{2}, c_{3}$ as the parameter associated with the definition of abnormal volume event (end-of-day) and $n$ as an integer correspond to the position of 5-minute intraday interval ranging from 1 to 54

As an example (with illustration in Figure 5), the prediction of VD-event is made (with parameters $b_{1}, b_{2}, c_{1}, c_{2}$ ) for the stock $i$ within day $t$ at the end of $n^{\text {th }} 5$-minute interval when

$$
V_{i}^{n}>b_{1}\left(\frac{55-n}{54}\right)+c_{1}\left(\frac{n-1}{54}\right) \text { and } D_{i}^{n}>b_{2}\left(\frac{54-n}{53}\right)+c_{2}\left(\frac{n-1}{53}\right)
$$

Figure 5: A sample illustration on the intraday prediction of VD-event within day $t$

Correct prediction of VD-event



Figure 5 (continued)


### 4.3 Event study analysis

The excess (abnormal) returns ${ }^{6}$ or ARs around the abnormal volume events examined according to the standard event study methodology. The market adjusted and market and risk adjusted (CAPM) returns are estimated for a 28 days window [5,+22] around the abnormal volume events. Both alpha and beta values for CAPM are determined by a linear regression of daily returns on 50 days window [-55,-6] before an event as shown in Figure 1. The significance of the average excess return tested by both parametric $T$ test and non-parametric Wilcoxon signed ranked test. Due to this

[^4]timeline, the excess return following the abnormal volume event is analyzed through the 22-day cumulative average abnormal returns or CAAR[1,22], and the same-day excess returns of the abnormal volume events are calculated by the same-day average abnormal returns or AAR[0].

Figure 1: Event study timeline in relative to event day


Similarly, this thesis employs an intraday event study to examine the excess returns of the predictions of the abnormal volume events according to the timeline shown in Figure 2. The window centered on the event date split into five timestamps; Last Close (day -1), Open, Prediction, Close, and Next Open (day 1). With this timeline, the incremental exploitable excess returns that follow the predictions of abnormal volume events is calculated as CAAR[After prediction till next open].

Figure 2: Intraday event study timeline centered on the event date


The calculation and the statistical test of AAR and CAAR are done as follows:

$$
\text { Market adjusted } A R_{i, t}=R_{i, t}-R_{S E T 100, t}
$$

Market and risk adjusted $A R_{i, t}=R_{i, t}-R_{\text {riskfree }, t}-\alpha_{i}-\beta_{i}\left(R_{i, t}-R_{S E T 100, t}\right)$

$$
\begin{aligned}
& \text { Average abnormal return at day } t, A A R_{t}=\sum_{i=1}^{N} \frac{A R_{i, t}}{N} \\
& \text { Cumulative abnormal return of event } i, C A R_{i}\left[T_{0}, T_{1}\right]=\sum_{t=T_{0}}^{T_{1}} A R_{i, t} \\
& \text { Cumulative average abnormal return } \operatorname{CAAR}\left[T_{0}, T_{1}\right]=\sum_{t=T_{0}}^{T_{1}} A A R_{t}
\end{aligned}
$$

Statistical parametric $T$ test on abnormal return
$H_{0}: A A R=0, H_{a}: A A R \neq 0$

$$
t_{A A R, t}=\sqrt{N} \frac{A A R_{t}}{S_{A A R, t}} \quad \text { and } \quad S_{A A R, t}^{2}=\frac{\sum_{i=1}^{N}\left(A R_{i, t}-A A R_{t}\right)^{2}}{N-1}
$$

$$
H_{0}: C A A R=0, H_{a}: C A A R \neq 0
$$

$$
t_{C A A R}=\sqrt{N} \frac{C A A R}{S_{C A A R}} \quad \text { and } \quad S_{C A A R}^{2}=\frac{\sum_{i=1}^{N}\left(C A R_{i}-C A A R\right)^{2}}{N-1}
$$

Statistical non-parametric Wilcoxon signed rank test on abnormal return
$H_{0}: \operatorname{median}(A R)=0, H_{a}: \operatorname{median}(A R) \neq 0$

$$
\begin{gathered}
W_{t}=\sum_{i=1}^{N} \operatorname{rank}\left(\left|A R_{t}\right|\right) \mathbb{I}_{(0, \infty)}\left(A R_{t}\right) \\
z_{A A R, t}=\frac{W_{t}-E\left[W_{t}\right]}{\sqrt{V\left(W_{t}\right)}}, \quad V\left(W_{t}\right)=\frac{N(N+1)(2 N+1)}{24} \quad \text { and } \quad E\left[W_{t}\right]=\frac{N(N+1)}{4} \\
H_{0}: \operatorname{median}(C A R)=0, H_{a}: \operatorname{median}(C A R) \neq 0 \\
W=\sum_{i=1}^{N} \operatorname{rank}(|C A R|) \mathbb{I}_{(0, \infty)}(C A R) \\
z_{C A A R}=\frac{W-E[W]}{\sqrt{V(W)}} \quad, \quad V(W)=\frac{N(N+1)(2 N+1)}{24} \quad \text { and } \quad E[W]=\frac{N(N+1)}{4}
\end{gathered}
$$

Where $\mathbb{I}_{(0, \infty)}(x)$ is an indicator function which takes a value 1 when $x$ falls within $(0, \infty)$ and 0 otherwise.

### 4.4 Out-of-sample portfolio simulation

This thesis formulates a trading strategy to show that abnormal volume events are exploitable. When a stock experiences an abnormal volume event, it is added to the portfolio using the opening price of the next day and held for 22 trading days. The rebalance is done daily at the opening call auction to maintain an equally weighted portfolio with a $15 \%$ limit on the maximum weight of any stock. The purpose of the maximum weight is to limit idiosyncratic risk toward a single stock, and this value is inspired from the SEC regulation (ทน.87/2558) impose on Thai mutual fund under single
entity limit section. After a prediction of abnormal volume event, the portfolio must perform additional rebalance ${ }^{7}$ to reach equal weight as new stock is added to the portfolio. Upon incorrect prediction (confirmed after market close), the predicted stock is removed from the portfolio at the next day opening auction. The commission fee set at a constant rate of $0.15 \%$ of traded value.

This work implements a sliding window methodology to examine the out-ofsample performance with a window size of 1-year as shown in Figure 3 to check for the robustness of each strategy. The data in each window splits into two equal portions with the first half as a training session and the later as a testing session.

Figure 3: Sliding window methodology


[^5]The uniform grid optimization (with finite boundary) executes on a training session which searches for a set of a parameter that gives a highest in-sample aftercommission portfolio performance (information ratio) along with a statistically positive CAAR[1,22]. Since the strategy is long-only, the market risk exposure is expected to be high and therefore it is reasonable to measure the performance in relative to the market (benchmark) instead of the absolute measurement. Additionally, having a statistically positive CAAR is expected to help reduce the likelihood of parameter overfitting by having a sufficient number of trades. The out-of-sample performance is simulated with the obtained parameter using the data in a testing session, and its expost performance gauged by the Sharpe ratio (Sharpe, 1966), information ratio (Treynor \& Black, 1973), and 4-factor alpha (Carhart, 1997) which calculated as follows:

$$
\begin{gathered}
\text { Sharpe ratio }=\frac{\operatorname{mean}\left(R_{\text {port }}-R_{\text {risk free }}\right)}{\operatorname{stddev}\left(R_{\text {port }}-R_{\text {riskfree }}\right)} \sqrt{\text { days }} \\
\text { Information ratio }=\frac{\operatorname{mean}\left(R_{\text {port }}-R_{\text {SET100 }}\right)}{\operatorname{stddev}\left(R_{\text {port }}-R_{\text {SET100 }}\right)} \sqrt{\text { days }} \\
\text { 4-factor } \alpha=R_{\text {port }}-R_{\text {riskfree }}-\beta_{\text {SET100 }}\left(R_{\text {SET100 }}-R_{\text {riskfree }}\right)-\beta_{H M L} H M L-\beta_{S M B} S M B \\
-\beta_{P R 1 Y R} P R 1 M O
\end{gathered}
$$

The variable days ${ }^{8}$ refers to the number of trading days. HML is the excess return between high and low book-to-market value stocks. SMB represents the excess return

[^6]between small and big market capitalization stocks. PR1MO represents an excess return between the previous winner and loser stocks. The factor's daily excess return computed as the return on equally weighted long top 30\% and short bottom 30\% stocks (in the SET universe) of its factor. Unlike earlier works, the HML and SMB factor portfolios (Figure 4a and 4b) rebalanced on a daily basis under frictionless market condition. However, the differences should not be significant as the fundamental values tend to be stable. The PR1MO or momentum factor portfolio (Figure 4c) also rebalanced without commission on a daily basis with a look-back period of 1-month (22 trading days) to focus on short-term momentum effect. The alpha and betas values for the factor model are obtained through linear regression. All returns used in these calculations are daily log returns.

Figure 4a: HML factor portfolio construction


Long equally weighted small cap (30) in all group
Short equally weighted big cap (30) in all group

Figure 4b: SMB factor portfolio construction


Figure 4c: PR1MO factor portfolio construction


## CHAPTER 5

## RESULT AND DISCUSSION

In this chapter, three distinct groups of results are offered and discussed. Section 5.1 presents the excess returns that follow different definitions of abnormal volume events. Section 5.2 shows the incremental excess returns of the prediction algorithm on best performing definition of abnormal volume events. And lastly, Section 5.3 exhibits the out-of-sample portfolio performance of trading strategies that trade on these abnormal volume events.

### 5.1 The excess returns following the abnormal volume events

In this subsection, I present the excess returns that follow each definition of abnormal volume events (hypothesis 1 to 4). The four definitions are abnormally-high standardized volume (V-event), abnormally-high standardized volume and standardized directional volume (VD-event), abnormally-high standardized volume and sufficient price change (VP-event), and finally, abnormally-high standardized volume and standardized directional volume and sufficient price change (VDP-event). The excess returns examined is the 22-day cumulative average abnormal returns following the events or in short $\operatorname{CAAR}[1,22]$. A detailed statistics represent only one set of a parameter per definition as an example. However, the APPENDIX contains the
complete results that include other sets of a parameter. The evidence presents on two periods due to the limitation of tick data; the short period which covers July 2015 to June 2016 (1-year) and the extended period that covers July 2010 to June 2016 (6year).

### 5.1.1 First definition: V-event

As shown in Panel A of Table 2, based on July 2015 to June 2016 (1-year data) the CAAR[1,22] for V-event reaches as high as $1.516 \%$ on a market adjusted basis and 2.338\% on a market and risk adjusted basis for threshold parameter $c_{1}=2.225$. Both values are statistically significant (by both tests). The CAAR slowly accumulates and reaches the maximum value at the end of 22-day (roughly 1-month or 4-week) as shown in Figure 6 and 7. In the long run from July 2010 to June 2016 (6-year data), there is weak evidence to supports that V-event with the same threshold parameter $c_{1}=2.225$ exhibits a positive CAAR[1,22] as shown in Panel A of Table 3. The market adjusted CAAR[1,22] reaches up to $0.450 \%$ and is significant at $10 \%$ level for only the parametric test while the market and risk adjusted CAAR[1,22] rises to 1.341\% (and is significant by both statistical tests). The shape of CAARs (both adjustment method) resemble the short run profile in the sense that they both show a negative excess returns on day 1 and accumulate up until day 22 at a much slower rate as illustrated in Figure 8 and 9. The vast difference in CAARs between 1 -year and 6 -year suggests that the excess return following V -event is heavily dependent on the market condition
and on average an economically significant market adjusted return should not be expected to follow the V -event.

In addition to this particular definition with the threshold parameter of $c_{1}=$ 2.225, a strong significantly positive market adjusted CAAR (both statistical tests) also exist for other sets of a parameter based on the 1-year data. The parameter ranges from $c_{1}=1.975$ to 2.35 (see Table $\vee$ in APPENDIX) which suggests that the definition is somewhat robust. However, based on 6-year data, a significance at 10\% level (only parametric test) for the market adjusted CAAR is found only at the parameter $\mathrm{C}_{1}=$ 2.225. This poor robustness along with a weak significance raise the likelihood that the rejection of the null hypothesis (Ha: CAAR[1,22] is significantly different from zero) is a result of type I error. This result further explains that the market adjusted return following $V$-event is dependent on the market condition, and on average a significant positive value should not be expected. Upon closer inspection, it is not the case where a majority of the following market adjusted returns are close to zero but rather a mixture of a comparable amount of slightly more positive and less negative 22-day returns. However, the market and risk adjusted CAAR suggest otherwise. The parameter $c_{1}$ that shows a substantial significance for both statistical tests span roughly from $c_{1}=$ 1.725 to 2.475 (both 1-year and 6-year data). This result caused by a negative regression alpha value (result not included), which when used to adjust the excess returns on a
daily basis (22 days in total) along with a beta close to one, a small negative alpha value could overstate the entire CAAR[1,22].

The evidence does not support that V -event is followed by a positive excess return for the stocks that are members of SET100 index which contradict with hypothesis 1. For market adjusted return, the 6-year data exhibits a weak significance on CAAR[1,22] for only the parametric test and one parameter which is likely to be a result of type 1 error. However, in a strong bull and bear market conditions (1-year data), there is substantial evidence which supports this phenomenon similar to previous literature (Gervais, Kaniel et al., 2001; Bajo, 2010). A possible explanation could due to the lack of small stocks used in this research, unlike prior literature which includes all stocks listed in their respective market. The typical family-firm status or agency problem between management and shareholders among small stocks might be the key that provides a consistent positive market adjusted returns that follow V event. On the other hand, with the issue that the negative regression alpha value might overstate the market and risk adjusted return, the result obtained may not be as reliable as in the market adjusted basis.

### 5.1.2 Second definition: VD-event

By incorporating the asymmetry between buy and sell volume in addition to the standard volume (VD-event), the average excess return increase while the number of events decreases. As shown in Panel B of Table 2, based on the 1-year data the

CAAR[1,22] for VD-event reaches as high as $2.060 \%$ on a market adjusted basis and 3.089\% on a market and risk adjusted basis for threshold parameters $c_{1}=2.225$ and $c_{2}=2.1$. Both values are statistically significant. These excess returns are higher than the CAARs of V -event while the standard deviations remain at a comparable level. Both CAAR profiles for VD-event also show a more stable growth when compared to V-event as illustrated in Figure 6 and 7. The definition of VD-event excludes many Vevents that are followed by a negative excess return. Suggesting that the directional volume does carry additional information which agrees with earlier theoretical (Glosten \& Milgrom, 1985; Kyle, 1985; Easley \& O’Hara, 1987; Easley \& O’Hara, 1992) and empirical (Louhichi, 2012) literatures.

In addition to the selected definition with threshold parameters $C_{1}=2.225$ and $c_{2}=2.1$, a significantly positive market adjusted CAAR (both statistical tests) also exist for other sets of a parameter based on the last 1-year data (similar to V-event). The significant parameters span over an area (see Table VI in APPENDIX) which also suggests that the definition is robust. For market and risk adjusted CAAR, the significance covers an even larger area. Compared to the V -event with the same $c_{1}$ parameter, the VDevent exhibits a higher CAAR (both adjustment method) along with a better significance for many $c_{2}$ parameters which further reinforced the idea that directional volume has more information content than normal volume.

The evidence supports that VD-event is followed by a positive excess return for the stocks that are members of SET100 index which is consistent with hypothesis 2. However, the long-run behavior of VD-event is inconclusive due to the limited data source. Nevertheless, there is still a possibility that in the long run (on average) VDevent is still followed by a positive excess return. The reason is that the definition is both robust and the short-run (1-year) data showed that introducing directional volume can remove many of those $V$-events that are followed by negative excess returns. A possible explanation for this phenomenon is that the directional volume could be treated as a non-conventional market data when compared to prices and volume. This data is not available in daily frequency (based on Reuters and Bloomberg) but instead, must be obtained/construct via tick data. It increases the difficulty of the strategy backtesting process. Therefore, it is possible the directional volume still contains additional information which can be used to better forecast the future stock returns.

### 5.1.3 Third definition: VP-event

As shown in Panel C of Table 2, based on the 1-year data the CAAR[1,22] for VP-event reaches $1.733 \%$ on a market adjusted basis and $2.756 \%$ on a market and risk adjusted basis threshold parameters $c_{1}=2.225$ and $c_{3}=0$. Both numbers are statistically significant. These excess returns are slightly higher than the CAARs of V event but lower than VD-event. The standard deviations remain at a comparable level.

The number of events also lies in between those two definitions. This result suggests that the price change might be inferior to the directional volume regarding the information content embedded inside. The CAAR profiles for both adjustment methods are also similar to other definitions as shown in Figure 6 and 7. However, based on the long-run (6-year) data, there is weak evidence to support that VP-event with same threshold parameters $c_{1}=2.225$ and $c_{3}=0$ exhibits a positive CAAR[1,22] as shown in Panel B of Table 3. The market adjusted CAAR[1,22] reaches up to $0.245 \%$ but fails to show significance at 10\% level for both statistical tests while the market and risk adjusted CAAR[1,22] rise to $1.461 \%$ and is significant by both statistical tests. The CAAR profiles for both adjustment methods also resemble the definition of Vevent as shown in Figure 8 and 9 .

In addition to this definition with threshold parameters of $c_{1}=2.225$ and $c_{3}=$ 0, a significantly positive market adjusted CAARs (both statistical tests) also exist for other sets of a parameter based on the last 1-year data. However, these parameters (with significant CAAR) does not span over a continuous area as in VD-event case but instead in small clumps (see Table VII in APPENDIX). Suggesting that these results might overfit to some outlier, and the definition is not robust. Based on 6-year data, all sets of a parameter fail to shows a significant market adjusted CAAR which further reinforced that the VP-event is not stable. On the other hand, the market and risk adjusted CAAR exhibit a significant excess returns for many sets of a parameter that
span over a large area in the grid. This contradiction between adjustment methods could arise due to the regression alpha as mentioned earlier which potentially overstates the market and risk adjusted CAAR as well as the statistic values for both tests.

The evidence does not support that VP-event is followed by a positive excess return for the stocks that are members of SET100 index which opposes the hypothesis 3. For market adjusted return, the 6 -year data exhibits no evidence to support this phenomenon at 10\% level for both statistical tests. Although there is substantial evidence that supports this behavior based on 1-year data, the obtained result might be overfitted and does not reflect its generalized response. These results also imply that a profitable market adjusted return should not be expected to follow VP-event. This observation suggests that the level of price change may contain less information content than the directional volume which is not surprising since prices (open, high, low, and close) are the most traditional data used to forecast the future stock returns. Investors around the globe consistently search for a method to extract information out of prices, and thus they should not possess as much additional information as the directional volume. Similar to V-event, the result on the market and risk adjusted return is inconclusive as it may be overstated unlike the market adjust return.

### 5.1.4 Forth definition: VDP-event

As shown in Panel D of Table 2, based on the 1 year data the CAAR[1,22] for VDP-event reaches up to $2.025 \%$ on a market adjusted basis and $2.987 \%$ on a market and risk adjusted basis for threshold parameters $c_{1}=2.225, c_{2}=1.975$, and $c_{3}=0$. Compared to VD-event, these excess returns are slightly less while the number of events reduces by seven (145 to 138). Both (adjustment methods) CAAR profiles for VPD-event almost coincide with the VD-event as shown in Figure 6 and 7. The evidence suggests that adding the level of price change on to VD-event does not increase the information content as the set of events is almost the same. It also concludes that the price change and directional volume has no positive synergy.

In addition to the designated definition with threshold parameters $C_{1}=2.225$, $c_{2}=1.975$, and $c_{3}=0$, a significantly strong positive market adjusted CAAR (both statistical tests) also exist for other sets of parameter based on the last 1-year data. The parameters span over a volume through all three parameters centered on $c_{1}=$ 2.1, $c_{2}=2.1$, and $c_{3}=0$ (see Table VIII in APPENDIX) which suggests that this definition is robust. This property is likely to inherit from the definition of VD-event. For market and risk adjusted CAAR, the parameters with significant CAAR[1,22] cover an even larger volume. Compared to the VD-event with the same $c_{1}$ and $c_{2}$ parameters, the VDPevent exhibit a lower CAAR (both adjustment methods) values for many $C_{3}$ parameters which further reinforced the idea that price change does not contain additional information content after volume and there is no synergy between these two features.

The evidence supports that VDP-event is followed by a positive excess return
for the stocks that are members of SET100 index which is consistent with hypothesis
4. However, the long-run behavior of VDP-event cannot be confirmed.

Table 2: Excess returns around abnormal volume events based on data from July 2015 to June 2016

Panel A: V-event (c1 = 2.225)

|  | Market adjusted |  |  |  | Market and risk adjusted |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Window | CAAR(\%) | SD(\%) | $T$ Test | Sign Test | CAAR(\%) | SD(\%) | T Test | Sign Test | $N$ |
| [-5,-1] | -0.521 | 5.839 | -1.43 | -1.21 | -0.288 | 5.691 | -0.81 | -0.18 | 258 |
| [0] | 1.023 | 4.520 | 3.64*** | 3.86*** | 1.024 | 4.570 | 3.6*** | 3.78 *** | 258 |
| [1,22] | 1.516 | 9.731 | 2.5** | $2.79 * * *$ | 2.338 | 11.508 | 3.26* | $3.22^{* * *}$ | 258 |

Panel B: VD-event ( $c 1=2.225, c 2=2.1$ )

| Market adjusted |  |  |  |  | Market and risk adjusted |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Window | CAAR(\%) | SD(\%) | $T$ Test | Sign Test | CAAR(\%) | $S D(\%)$ | $T$ Test | Sign Test | $N$ |
| [-5,-1] | -0.765 | 5.551 | -1.66* | -1.03 | -0.344 | 5.394 | -0.77 | 0.25 | 145 |
| [0] | 3.543 | 3.246 | 13.14*** | 9.48*** | 3.590 | 3.207 | $13.48^{* * *}$ | 9.5*** | 145 |
| [1,22] | 2.060 | 9.742 | $2.55 * *$ | $2.45 * *$ | 3.089 | 11.431 | $3.25 * * *$ | $2.82 * * *$ | 145 |

Panel C: VP-event $(c 1=2.225, c 3=0)$

| Window | CAAR(\%) | SD(\%) | $T$ Test | Sign Test | CAAR(\%) | SD(\%) | T Test | Sign Test | $N$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [-5,-1] | -0.576 | 6.483 | -1.23 | -0.01 | -0.179 | 6.266 | -0.4 | 1.39 | 193 |
| [0] | 3.333 | 3.242 | $14.28^{* * *}$ | 10.76*** | 3.378 | 3.254 | 14.42*** | 10.84*** | 193 |
| [1,22] | 1.733 | 9.699 | 2.48** | 2.66 *** | 2.756 | 10.889 | $3.52^{* * *}$ | $3.25^{* * *}$ | 193 |

Panel D: VDP-event ( $c 1=2.225, c 2=1.975, c 3=0$ )


Notes: The table analyzes the relationship between a different definition of abnormal volume events and its excess returns. The threshold parameters associated with these definitions are selected to represent most significant results. The cumulative average abnormal returns (CAAR) are computed both with a market adjusted and a market and risk adjusted (CAPM). The statistical significance is calculated using the parametric student's $T$ test and nonparametric Wilcoxon singed rank test. ${ }^{* * *}{ }^{* *}$, * indicate that the coefficients are significantly different from zero at $1 \%, 5 \%$, and $10 \%$ levels respectively.

Figure 6: Market adjusted CAAR relative to event day for different definition of abnormal volume events using data from July 2015 to June 2016


Figure 7: Market and risk adjusted CAAR relative to event day for different abnormal volume event using data from July 2015 to June 2016


Table 3: Excess returns around abnormal volume events based on data from July 2010 to June 2016

Panel A: V-event $(c 1=2.225)$


Panel B: VP-event (c1 = 2.225, c3 = 0)


Notes: The table analyzes the relationship between a different definition of abnormal volume events and its excess returns. The threshold parameters associated with these definitions are selected to represent most significant results. The cumulative average abnormal returns (CAAR) are computed both with a market adjusted and a market and risk adjusted (CAPM) approach. The statistical significance is calculated using the parametric student's T test and non-parametric Wilcoxon singed rank test. ${ }^{* * *}$, ${ }^{* *}$, * indicate that the coefficients are significantly different from zero at $1 \%, 5 \%$, and $10 \%$ levels respectively.

Figure 8: Market adjusted CAAR relative to event day for different definition of abnormal volume events using data from July 2010 to June 2016


Figure 9: Market and risk adjusted CAAR relative to event day for different abnormal volume event using data from July 2010 to June 2016


### 5.2 The incremental returns from the prediction of abnormal volume events

The predictability of the best performing definition of an abnormal volume event is examined to push the strategy further. The thesis checks on the magnitude of an average excess return that belongs to the day that an abnormal volume event occurs and found it to be consistent with Bajo (2010). According to Table 2 and 3, the excess returns (both adjustment methods) on the event day or AAR[0] for all four definitions of abnormal volume events are significant (both statistical tests) and are much larger than their CAAR[1,22]. This result suggests that predicting the abnormal volume event before it confirms at the market close could provide an additional exploitable return and thus advance the strategy. Note that the result in this section only covers the period from July 2015 to June 2016 (1-year data) since it required the tick data.

The best performing definition of abnormal volume event is VD-event (see Section 5.3) with the best in-sample parameters of $c_{1}=2.225$ and $c_{2}=2.6$ (training period from June 2015 to December 2015). The average incremental return examined is the CAAR with the window [after prediction till next day open] and is computed as a raw return. However, it should not deviate significantly from the market adjusted value as on average an intraday market return is minuscule. A detailed statistics represent only one set of a parameter as an example. However, the Table IX in APPENDIX contains the complete results that include other sets of a parameter $b$.

According to Table 4, the prediction algorithm with parameters $b_{1}=6.225$ and $b_{2}=1.6$ can anticipate a VD-event at a very high precision ${ }^{9}$ of $94 \%$ which results in a significant incremental CAAR of $0.986 \%$ (both statistical tests) and is consistent with hypothesis 5. The magnitude of the average exploited return reaches almost a quarter of the whole event day return. For the missed events ${ }^{10}$, the average incremental return is $0.703 \%$ and is significant at $5 \%$ level (both statistical tests). The CAAR profiles in Figure 10 also illustrate the returns behavior between the predicted events and missed events to be highly similar.

[^7]Table 4: Statistics of the prediction of abnormal volume events
Panel A: Returns around the prediction of VD-event ( $c 1=2.225, c 2=2.6$ ) with starting threshold b1 $=6.225$ and b2 $=1.6$

|  | Prediction |  |  |  |  | Missed event |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Timestamp | $A A R(\%)$ | $S D(\%)$ | T Test | Sign Test | $N$ | $A A R(\%)$ | SD(\%) | T Test | Sign Test | $N$ |
| Open | 0.360 | 2.762\% | 1.3 | $3.97 * * *$ | 99 | 0.854 | 1.074 | 4.96*** | $4.31^{* * *}$ | 39 |
| Prediction | 3.088 | 2.936\% | $10.46{ }^{* * *}$ | 7.84*** | 99 | 3.123 | 2.834 | 6.88*** | $5.07 * * *$ | 39 |
| Close | 0.649 | 1.610\% | 4.01*** | $3.74 * * *$ | 99 | 0.650 | 1.661 | $2.44^{* *}$ | $2.11^{* *}$ | 39 |
| Next Open | 0.336 | 1.093\% | 3.06 *** | 3.2 *** | 99 | 0.053 | 1.319 | 0.25 | 0.38 | 39 |
| Window | CAAR(\%) | $S D(\%)$ | $T$ Test | Sign Test | $N$ | CAAR(\%) | $S D(\%)$ | $T$ Test | Sign Test | $N$ |
| After prediction till next open | 0.986 | 1.703 | $5.76{ }^{* * *}$ | $5.24 * * *$ | 99 | 0.703 | 1.979 | $2.22 * *$ | 2.05** | 39 |

Panel B: Prediction statistics

|  | $N$ | Performance metrics |  |
| :--- | :---: | :--- | :---: |
| Correct predictions (true positive) | 93 | Precision | $94 \%$ |
| Incorrect predictions (false positive) | 6 | Recall | $70 \%$ |
| Missed events (false negative) | 39 |  |  |

Panel C: Prediction timing

|  | Bin Number ( $n$ ) | Minutes Before Closing Call Auction |
| :--- | :---: | :---: |
| Average | 50.0606 | 19.70 |
| Last prediction | 54 | 0 |
| First prediction | 31 | 115 |

Notes: The table analyzes the relationship between the intraday prediction of VD-event and its incremental excess returns. The intraday CAAR is computed as raw returns but should not deviate significantly from its market adjusted value as on average the intraday market returns in minuscule. The missed events CAAR is calculated by assuming the prediction mark at $50^{\text {th }}$ bin to match the average prediction timing. The statistical significance is calculated using the parametric student's $T$ test and non-parametric Wilcoxon singed rank test. ${ }^{* * *}$, **, * indicate that the coefficients are significantly different from zero at $1 \%, 5 \%$, and $10 \%$ levels respectively.

Figure 10: Intraday CAAR around the prediction of VD event and its prediction timing based on data from July 2015 to June 2016


The evidence suggests that the algorithm prioritizes on getting the least incorrect predictions (high precision) rather than the coverage of all events (high
recall ${ }^{11}$ ). This predictive performance is achieved by delaying the prediction timing because the uncertainty of the daily data decreases as information accumulates throughout the day. The decline in risk is particularly important to the directional volume as the cumulative directional volume can either increase or decrease, unlike the cumulative volume which is strictly non-decreasing. Based on this setting, the earliest prediction made is 115 minutes before closing call auction ( $n=31$ ) while most of the predictions are concentrated within the last 15 minutes resulting in an average of 19.7 minutes $(\mathrm{n}=50.0606$ ) before closing call auction. The empirical distribution of the prediction timing is also shown in Figure 10 which resembles an exponential function. The shape of the distribution appears as expected due to the parameter $b_{1}$ which sets at a very high level. It forced the algorithm to be conservative and thus prioritizes precision over recall. If both the values $b_{1}$ and $b_{2}$ are low, the algorithm would predict in a more aggressive manner. Precision will drops while the recall increases. The average prediction timing would also decrease, and the distribution would change. For the average incremental returns, predicting earlier would exploit a larger portion of these large event day returns but will be diluted by those incorrect predictions. The dilution is found to be the dominant factor and cause a net reduction (see Table IX in APPENDIX).

[^8]
### 5.3 Out-of-sample portfolio performance of different trading strategies

A portfolio simulation on out-of-sample data is done to reflect the performance of the strategy under an environment close to real trading. Due to the limitation of tick data, the simulation for a portfolio that trades on the observation of VD-event and VDP-event as well as the prediction enhanced portfolio only covers the short testing period (January 2016 to June 2016, half year). On the other hand, the simulation for a portfolio related to V -event and VP -event would include both short and long testing period (January 2011 to June 2016, 5.5-year) to allow a fair comparison. Note that the market's Sharpe ratio for the short and the long testing period is 0.956 and 0.179 , respectively. Both the training and testing performance comparisons of different portfolios are also illustrated in Figure 11 to 14.

Without the commission, trading on an observation of V-event does generate a Sharpe ratio higher than the market, a positive information ratio, and a significant 4factor alpha at 5\% level as shown in Table 5 and 6. However, after including the commission fee, all performance indicators drop and the long testing period portfolio fails to achieve a significant 4-factor alpha. This reduction mainly attributes to the design of the rebalancing policy as the stocks must be equally weighted on a daily basis, especially when a stock is introduced or removed from the portfolio. The massive changes in portfolio's composition induce a high turnover rate which caused this substantial reduction by amplifying the total transaction cost. An example in Panel

A of Table 6 illustrates that the magnitude of all performance indicators reduced by more than half because of the commission fee. This observation also agrees with the event study results. According to the short period, the V-event strategy appears to be able to generate an economically significant return (after commission alpha) while in the extended period this strategy no longer able to sustain this performance due to weak robustness. The factor analysis also reveals that the V -event strategy allocated most of its risk into market risk and some into size and momentum risk. This evidence supports that the definition of V -event is followed by a mixture of slightly more positive and less negative excess returns as the momentum factor (winner minus loser) can explain the portfolio movement.

Trading on the observation of VD-event improves all performance indicators when compared to the V-event strategy. Even after commission, the VD-event strategy is still able to generate both a relatively high Sharpe ratio and information ratio as well as a significant 4-factor alpha at 1\% level. It turns out that this definition rejects many of those V-events that followed by a negative excess returns. Similarly, the effect of commission fee persists in the same manner as in V-event strategy which reduces the magnitude of alpha by $0.023 \%$ as shown in Panel B of Table 5. This result suggests that having less number of events does not lessen the burden of commission fee from daily rebalancing. This evidence shows that the definition of VD-event is both robust and is expected to be followed by a positive excess return (larger high-volume
premium than V -event). The factor analysis also shows that the VD-event strategy allocated more of its risk into momentum risk and less into market risk when compared to V -event, suggesting that adding directional volume move the strategy closer to those momentum-based trading styles. Note that VD-event strategy also showed the best out-of-sample performance and thus the best in-sample definition of VD-event ( $c_{1}=2.225$ and $c_{2}=2.6$ ) is subjects to an augmentation with a prediction algorithm.

The portfolio that trades on the observation of VP-event exhibits an out-ofsample performance that does not surpass $V$-event strategy both before and after commission. All three performance indicators report an inferior value when compared to V -event strategy. In the long testing period, the VP-event strategy does not even generate a significantly positive alpha (before commission) at 10\% level as shown in Panel B of Table 6. Even though the VP-event strategy exhibits a better training performance than V-event strategy (see Figure 11 and 13), it does not perform well under out-of-sample testing which reflects the potential overfitting problem of the definition as mentioned earlier in Section 5.1.3. The factor analysis illustrates that the market, size and momentum factor (with comparable betas) explains the returns of VP-event portfolio similarly to the V-event strategy. This evidence reinforced the theory that price change is both unstable and does not hold an incremental information content that can improve the profitability, unlike directional volume.

The portfolio that trades on the observation of VDP-event shows an out-ofsample performance that is slightly worse than VD-event strategy. According to Panel D of Table 5, all performance indicators and the coefficients of factor analysis does not deviate much from the VD-event. This evidence suggests that adding the price change criterion into VD-event does not improve the profitability of the definition which agrees with the results from event study analysis. It also reinforced the theory that the price change does not hold a significant incremental information along with no positive synergy toward the directional volume, and thus unable to improve the out-of-sample performance.

The intraday VD-event anticipation strategy is the result of final augmentation which exhibits the best out-of-sample performance as shown in Panel E of Table 5. As expected from the intraday event study result, the performance improves as a consequence of this development, reaching a Sharpe ratio of 2.169 , an information of 1.205, and a significantly positive 4 -factor alpha of $0.185 \%$ at $1 \%$ level (after commission). The beta values and the commission effects on alpha obtained from factor analysis are highly similar to those of VD-event strategy suggesting that the prediction is made conservatively and preserve most of the portfolio's daily returns by not introducing unnecessary turnover from an incorrect prediction. This evidence is also consistent with hypothesis 6 which stated that there exist an implementable
trading strategy based on abnormal volume events, which generates Sharpe ratio higher than the market, and a positive information ratio and alpha.

It is important to note that all strategies exhibit an extremely high portfolio turnover. The alpha of each portfolio decreases by roughly $0.025 \%$ after the inclusion of commission fee. Back calculating gives an average daily portfolio turnover of 8.333\% or approximately a yearly turnover of $2100 \%$.

Table 5: Different portfolio performance on out-of-sample data (testing session: January 2016 to June 2016)

| Panel A: V-event strategy | After commission |  |  |  | Before commission |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sharpe ratio |  | 1.6 |  |  |  | 1.9 |  |  |
| Information ratio |  | 0.6 |  |  |  | 1.0 |  |  |
| Carhart's factor model | Coeff. | SE | T Stat | $p$-value | Coeff. | SE | T Stat | $p$-value |
| 4-factor alpha (\%) | 0.102 | 0.053 | 1.421 | 0.039 | 0.125 | 0.053 | 1.871 | 0.011 |
| Market beta | 0.683 | 0.056 | 12.259 | 0.000 | 0.683 | 0.056 | 12.283 | 0.000 |
| Value beta | 0.087 | 0.104 | 0.837 | 0.404 | 0.083 | 0.103 | 0.799 | 0.426 |
| Size beta | 0.134 | 0.112 | 1.199 | 0.233 | 0.138 | 0.112 | 1.230 | 0.221 |
| Momentum beta | 0.477 | 0.093 | 5.110 | 0.000 | 0.475 | 0.093 | 5.093 | 0.000 |
| Adjusted R ${ }^{2}$ | 0.666 |  |  |  | 0.666 |  |  |  |


| Panel B: VD-event strategy |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Performance indicators |  | After commission |  |  | Before commission |  |  |  |
| Sharpe ratio |  | 1.9 |  |  |  | 2.23 |  |  |
| Information ratio |  | 1.0 |  |  |  | 1.28 |  |  |
| Carhart's factor model | Coeff. | SE | T Stat | p-value | Coeff. | SE | T Stat | p-value |
| 4-factor alpha (\%) | 0.170 | 0.062 | 2.727 | 0.007 | 0.193 | 0.062 | 3.104 | 0.002 |
| Market beta | 0.598 | 0.071 | 8.370 | 0.000 | 0.597 | 0.071 | 8.376 | 0.000 |
| Value beta | 0.112 | 0.133 | 0.841 | 0.402 | 0.111 | 0.132 | 0.841 | 0.402 |
| Size beta | 0.141 | 0.144 | 0.984 | 0.327 | 0.140 | 0.143 | 0.977 | 0.330 |
| Momentum beta | 0.764 | 0.120 | 6.381 | 0.000 | 0.765 | 0.119 | 6.406 | 0.000 |
| Adjusted R ${ }^{2}$ | 0.535 |  |  |  | 0.536 |  |  |  |

Table 5 (continued)
Panel C: VP-event strategy

| Performance indicators | After commission | Before commission |
| ---: | :---: | :---: |
| Sharpe ratio | 1.565 | 1.871 |
| Information ratio | 0.543 | 0.996 |


| Carhart's factor model | Coeff. | SE | T Stat | p-value | Coeff. | SE | T Stat | p-value |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4-factor alpha (\%) | 0.079 | 0.037 | 2.135 | 0.035 | 0.103 | 0.037 | 2.778 | 0.006 |
| Market beta | 0.737 | 0.042 | 17.354 | 0.000 | 0.731 | 0.043 | 17.153 | 0.000 |
| Value beta | 0.082 | 0.079 | 1.037 | 0.302 | 0.084 | 0.079 | 1.054 | 0.294 |
| Size beta | 0.202 | 0.085 | 2.368 | 0.020 | 0.197 | 0.086 | 2.293 | 0.024 |
| Momentum beta | 0.360 | 0.071 | 5.063 | 0.000 | 0.364 | 0.071 | 5.098 | 0.000 |
| Adjusted R ${ }^{2}$ | 0.783 |  |  |  | 0.780 |  |  |  |

Panel D: VDP-event strategy


Panel E: Intraday VD-event anticipation strategy

| Performance indicators | After commission | Before commission |
| ---: | :---: | :---: |
| Sharpe ratio | 2.169 | 2.450 |
| Information ratio | 1.205 | 1.513 |


| Carhart's factor model | Coeff. | SE | T Stat | $p$-value | Coeff. | SE | T Stat | $p$-value |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4-factor alpha (\%) | 0.185 | 0.062 | 3.003 | 0.003 | 0.210 | 0.061 | 3.422 | 0.001 |
| Market beta | 0.586 | 0.071 | 8.303 | 0.000 | 0.586 | 0.070 | 8.335 | 0.000 |
| Value beta | 0.086 | 0.131 | 0.658 | 0.512 | 0.089 | 0.131 | 0.683 | 0.496 |
| Size beta | 0.107 | 0.142 | 0.752 | 0.454 | 0.103 | 0.141 | 0.731 | 0.466 |
| Momentum beta | 0.756 | 0.118 | 6.386 | 0.000 | 0.759 | 0.118 | 6.435 | 0.000 |
| Adjusted R |  |  |  |  |  |  |  |  |

Notes: The table detailed the out-of-sample performance of a portfolio that trades on the observation and prediction of abnormal volume event. The commission fee is set at $0.15 \%$ of traded value and intraday rebalancing incur bid-ask spread cost. All reported values are based on daily frequency except Sharpe ratio and information ratio which represent as 6-month values (121 days). The market's Sharpe ratio for this period is 0.956

Figure 11: Comparison between different training portfolio performance from July 2015 to December 2015


After commission training portfolio comparison
Commission @ 0.15\%


Figure 12: Comparison between different out-of-sample portfolios performance from January 2016 to June 2016


Table 6: Different portfolio performance on out-of-sample data (testing session: January 2011 to June 2016)

Panel A: V-event strategy
Performance

| indicators |  | After commission |  |  | Before commission |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sharpe ratio | 0.389 |  |  |  | 0.697 |  |  |  |
| Information ratio | 0.271 |  |  |  | 0.717 |  |  |  |
| Carhart's factor model | Coeff. | SE | T Stat | p-value | Coeff. | SE | T Stat | $p$-value |
| 4-factor alpha (\%) | 0.015 | 0.017 | 0.870 | 0.384 | 0.035 | 0.017 | 2.050 | 0.041 |
| Market beta | 0.730 | 0.015 | 48.356 | 0.000 | 0.729 | 0.015 | 48.328 | 0.000 |
| Value beta | -0.049 | 0.034 | -1.447 | 0.148 | -0.050 | 0.034 | -1.471 | 0.141 |
| Size beta | 0.167 | 0.023 | 7.337 | 0.000 | 0.168 | 0.023 | 7.379 | 0.000 |
| Momentum beta | 0.061 | 0.022 | 2.812 | 0.005 | 0.061 | 0.022 | 2.801 | 0.005 |
| Adjusted R ${ }^{2}$ | 0.651 |  |  |  | 0.651 |  |  |  |

Panel B: VP-event strategy

| Performance | After commission | Before commission |
| ---: | :---: | :---: |
| indicators | 0.316 | 0.609 |
| Sharpe ratio | 0.135 | 0.512 |


| Carhart's factor model | Coeff. | SE | TStat | p-value | Coeff. | SE | T Stat | $p$-value |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4-factor alpha (\%) | 0.010 | 0.017 | 0.554 | 0.579 | 0.028 | 0.017 | 1.598 | 0.110 |
| Market beta | 0.671 | 0.015 | 48.396 | 0.000 | 0.671 | 0.015 | 43.302 | 0.000 |
| Value beta | -0.035 | 0.035 | -1.003 | 0.316 | -0.035 | 0.035 | -1.001 | 0.317 |
| Size beta | 0.183 | 0.023 | 7.861 | 0.000 | 0.184 | 0.023 | 7.897 | 0.000 |
| Momentum beta | 0.069 | 0.022 | 3.083 | 0.002 | 0.068 | 0.022 | 3.060 | 0.002 |
| Adjusted R ${ }^{2}$ | 0.598 |  |  |  | 0.597 |  |  |  |

Notes: The table detailed the out-of-sample performance of a portfolio that trades on the observation and prediction of abnormal volume event. The commission fee is set at $0.15 \%$ of traded value. All reported values are based on daily frequency except Sharpe ratio and information ratio which is annualized. The market's annualized Sharpe ratio for this period is 0.179 .

Figure 13: Comparison between different training portfolio performance from July 2010 to December 2015


After commission training portfolio comparison Commission @ 0.15\%


Figure 14: Comparison between different out-of-sample portfolios performance from January 2011 to June 2016



## CHAPTER 6

## CONCLUSION

This research investigates the relationship between abnormal volume events and the associated excess returns as well as proposes a robust trading strategy for the stock listed on SET100 index (Thailand). In contrast to previous literature, a stock that experiences an abnormal volume event (V-event) does not follow by a high-volume premium that persists through time. However, this high-volume premium exists under some particular market condition (strong bull and bear).

Incorporating the asymmetry between buy-initiated volume and sell-initiated volume (VD-event) further improves the excess returns. Previous theoretical (Glosten and Milgrom, 1985; Kyle, 1985; Easley and O’Hara, 1992) and empirical (Louhichi, 2012) literature suggest that an unbalanced trading sequence possesses the non-public information held by an informed trader and can be utilized to improve the prediction of the future stock returns. The evidence concludes that directional volume contains incremental information after volume. On the other hand, integrating the level of price change instead of directional volume (VP-event) does not improve the excess returns. The evidence suggests that the price change (close-to-close returns) contains less information than the directional volume. The robustness of this definition also found to be very low. According to the results of VDP-event, these two features do not exhibit a positive synergy that can further improve the following excess returns. An out-of-
sample portfolio simulation later illustrates that the best performing strategy is based on the VD-event.

It is possible to predict the arrival of the VD-event at a very high precision if not far in advance. The proposed algorithm, which predicts based on the intraday data, can anticipate these events within the day and generate a significantly positive incremental returns. The algorithm signifies the importance of high-frequency data that, if handled correctly, can further improve the profitability of a trading strategy while introducing a slightly more risk. Also, this thesis finds the relationship between an abnormal volume event and the same-day excess return to be consistent with earlier findings.

The results of the portfolio simulation on out-of-sample data agree with the event study findings. All performance indicators improve after the definition of abnormal volume events is changed from V-event to VD-event and reach their peak after combined with the prediction algorithm (adding the price change does not improve the out-of-sample performance). Even though the intraday VD-event anticipation strategy is tested in the short period, the market condition for training (bear market) is entirely different from the testing period (bull market). This evidence suggests that the proposed strategy have a potential to be robust because it can outperform in both market conditions. A longer study period that includes other market conditions would further help validate the strategy's robustness.

The 4-factor analysis helps explain the underlying trading style for each strategy. As expected, all portfolios showed a significant market beta since there is no short position involved in the simulations. The value of momentum beta increases when the definition changes from V-event to VD-event. The reason is that the VDevent strategy relies more on the high-volume premium in a similar manner to those short-term momentum-based strategies than V-event strategy. For size and value beta, both values are either small or insignificant which suggests that all definitions of abnormal volume event are probably not related to these two fundamentals.

This paper also used one strong assumption that the market has an infinite liquidity meaning that there is no market impact and price does not move as marketable orders get executed. This effect is especially significant since the proposed strategy exhibit a high trading activity (turnover) as deduced earlier from the impact of commission fee on daily alpha. A further testing on the intraday VD-event anticipation strategy under real market liquidity (depth of market) is recommended to obtain results that are even better indicative of the trading strategy performance in live trading.

## REFERENCES

Bajo, E. (2010). The Information Content of Abnormal Trading Volume. Journal of Business Finance \& Accounting, 37(7-8), 950-978. doi:10.1111/j.14685957.2010.02197.x

Carhart, M. M. (1997). On Persistence in Mutual Fund Performance. The Journal of Finance, 52(1), 57-82. doi:10.1111/j.1540-6261.1997.tb03808.x

Chen, S., Chen, R., Ardell, G., \& Lin, B. (2011). End-of-day stock trading volume prediction with a two-component hierarchical model. The journal of trading, 6(3), 61-68.

Easley, D., \& O'Hara, M. (1987). Price, trade size, and information in securities markets. Journal of Financial Economics, 19(1), 69-90. doi:http://dx.doi.org/10.1016/0304-405X(87)90029-8

Easley, D., \& O'Hara, M. (1992). Adverse Selection and Large Trade Volume: The Implications for Market Efficiency. The Journal of Financial and Quantitative Analysis, 27(2), 185-208. doi:10.2307/2331367

Gervais, S., Kaniel, R., \& Mingelgrin, D. H. (2001). The High-Volume Return Premium. The Journal of Finance, 56(3), 877-919. doi:10.1111/0022-1082.00349

Glosten, L. R., \& Milgrom, P. R. (1985). Bid, ask and transaction prices in a specialist market with heterogeneously informed traders. Journal of Financial Economics, 14(1), 71-100. doi:http://dx.doi.org/10.1016/0304-405X(85)90044-3

Huang, Z., \& Heian, J. B. (2010). TRADING-VOLUME SHOCKS AND STOCK RETURNS: AN EMPIRICAL ANALYSIS. Journal of Financial Research, 33(2), 153-177. doi:10.1111/j.1475-6803.2010.01266.x

Karpoff, J. M. (1987). The Relation Between Price Changes and Trading Volume: A Survey. The Journal of Financial and Quantitative Analysis, 22(1), 109-126. doi:10.2307/2330874

Kyle, A. S. (1985). Continuous Auctions and Insider Trading. Econometrica, 53(6), 13151335. doi:10.2307/1913210

Louhichi, W. (2012). Does trading activity contain information to predict stock returns? Evidence from Euronext Paris. Applied Financial Economics, 22(8), 625-632. doi:10.1080/09603107.2011.621879

Miller, E. M. (1977). Risk, Uncertainty, and Divergence of Opinion. The Journal of Finance, 32(4), 1151-1168. doi:10.2307/2326520

Pritamani, M., \& Singal, V. (2001). Return predictability following large price changes and information releases. Journal of Banking \& Finance, 25(4), 631-656. doi:http://dx.doi.org/10.1016/S0378-4266(00)00091-1

Satish, V., Saxena, A., \& Palmer, M. (2014). Predicting intraday trading volume and volume percentages. The journal of trading, 9(3), 15-25.

Sharpe, W. F. (1966). Mutual Fund Performance. The Journal of Business, 39(1), 119138.

Treynor, J. L., \& Black, F. (1973). How to Use Security Analysis to Improve Portfolio Selection. Journal of Business.

Yan, R., \& Li, H. (2012, 19-20 May 2012). Modeling and forecasting the intraday volume of Shanghai security composite index. Paper presented at the Systems and Informatics (ICSAI), 2012 International Conference on.

Ying, C. C. (1966). Stock Market Prices and Volumes of Sales. Econometrica, 34(3), 676-685. doi:10.2307/1909776

## APPENDIX

Table I: Stocks used in this research based on historical SET100 constituent

|  | 2010H2 | 2011H1 | 2011H2 | 2012H1 | 2012H2 | 2013H1 | 2013H2 | 2014H1 | 2014H2 | 2015H1 | 2015H2 | 2016H1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | ADVANC | ADVANC | ADVANC | ADVANC | ADVANC | AAV |
| 2 | AMATA | AMATA | AJ | AJ | AJ | ADVANC |
| 3 | AOT | AOT | AMATA | AMATA | AMATA | AJ | AMATA | AMATA | AMATA | AMATA | AMATA | AMATA |
| 4 | AP | AP | AOT | AOT | AOT | AMATA | AOT | AOT | AOT | ANAN | ANAN | ANAN |
| 5 | ASP | ASP | AP | AP | AP | AOT | AP | AP | AP | AOT | AOT | AOT |
| 6 | BANP U | BANPU | ASP | ASP | ASP | AP | BANPU | ASP | BANPU | AP | AP | AP |
| 7 | BAY | BAY | BANPU | BANPU | BANPU | BANPU | BAY | BANPU | BAY | BANPU | ASP | BA |
| 8 | BBL | BBL | BAY | BAY | BAY | BAY | BBL | BAY | BBL | BAY | BA | BANPU |
| 9 | BCP | BCP | BBL | BBL | BBL | BBL | BCH | BBL | BCH | BBL | BANPU | BBL |
| 10 | BEC | BEC | BCP | BCP | BCP | BCH | BCP | BCH | BCP | BCH | BBL | BCP |
| 11 | BECL | BECL | BEC | BEC | BEC | BCP | BEC | BCP | BEC | BCP | BCP | BDMS |
| 12 | BDMS | BDMS | BECL | BECL | BECL | BEC | BECL | BDMS | BECL | BEC | BDMS | BEAUTY |
| 13 | BH | BH | BDMS | BDMS | BDMS | BECL | BDMS | BEC | BDMS | BECL | BEAUTY | BEC |
| 14 | BIGC | BIGC | BH | BH | BH | BDMS | BH | BECL | BH | BDMS | BEC | BEM |
| 15 | BLA | BLA | BIGC | BIGC | BIGC | BH | BIGC | BH | BIGC | BH | BECL | BH |
| 16 | BLAND | BLAND | BLA | BJC | BJC | BIGC | BJC | BIGC | BJC | BIGC | BH | BJCHI |
| 17 | BMCL | BTS | BLAND | BLA | BLA | BJC | BLA | BJC | BJCHI | BJC | BJCHI | BLA |
| 18 | BTS | CCET | BTS | BLAND | BLAND | BLA | BLAND | BLA | BLA | BJCHI | BLAND | BLAND |
| 19 | CCET | CENTEL | CENTEL | BTS | BTS | BLAND | BTS | BLAND | BLAND | BLAND | BMCL | BTS |
| 20 | CENTEL | CK | CK | CENTEL | CENTEL | BTS | CENTEL | BMCL | BMCL | BMCL | BTS | CBG |
| 21 | CK | CPALL | CPALL | CK | CK | CENTEL | CK | BTS | BTS | BTS | CBG | CENTEL |
| 22 | CPALL | CPF | CPF | CPALL | CPALL | CK | CPALL | CENTEL | CENTEL | CENTEL | CENTEL | CHG |
| 23 | CPF | CPN | CPN | CPF | CPF | CPALL | CPF | CHG | CK | CK | CK | CK |
| 24 | CPN | DCC | DCC | CPN | CPN | CPF | CPN | CK | CPALL | CPALL | CKP | CKP |
| 25 | DCC | DELTA | DELTA | DCC | DCC | CPN | DCC | CPALL | CPF | CPF | CPALL | CPALL |
| 26 | DELTA | DTAC | DTAC | DELTA | DELTA | DCC | DELTA | CPF | CPN | CPN | CPF | CPF |
| 27 | DTAC | EGCO | EGCO | DTAC | DTAC | DELTA | DEMCO | CPN | DCC | DELTA | CPN | CPN |
| 28 | EGCO | ESSO | ESSO | EGCO | EGCO | DTAC | DTAC | DCC | DELTA | DEMCO | DELTA | DELTA |
| 29 | ESSO | GFPT | GFPT | ESSO | ESSO | EGCO | EGCO | DELTA | DTAC | DTAC | DEMCO | DTAC |
| 30 | GFPT | GJS | GJS | GFPT | GFPT | ESSO | ESSO | DTAC | EARTH | EARTH | DTAC | EARTH |
| 31 | GJS | GLOBAL | GLOBAL | GLOBAL | GLOBAL | GFPT | GLOBAL | EGCO | EGCO | EGCO | EARTH | EGCO |
| 32 | GLOW | GLOW | GLOW | GLOW | GLOW | GLOBAL | GLOW | ERW | ERW | ERW | EGCO | EPG |
| 33 | GSTEL | GSTEL | GSTEL | GSTEL | GSTEL | GLOW | GOLD | ESSO | ESSO | GFPT | ERW | GL |
| 34 | HANA | HANA | HANA | GUNKUL | GUNKUL | GSTEL | GSTEL | GFPT | GFPT | GLOBAL | GFPT | GLOW |


| 35 | Hemraj | HEMRAJ | HEMRAJ | HANA | HANA | GUNKUL | GUNKUL | GLOBAL | GLOBAL | GLOW | GLOBAL | GPSC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 36 | HMPRO | HMPRO | HMPRO | hemraj | Hemraj | Hemraj | HEMRAJ | GLOW | GLOW | GUNKUL | GLOW | GUNKUL |
| 37 | IRPC | IRPC | IRPC | HMPRO | HMPRO | HMPRO | HMPRO | GUNKUL | GUNKUL | HANA | GUNKUL | HANA |
| 38 | ITD | ITD | ITD | IRPC | INTUCH | INTUCH | INTUCH | HEMRAJ | HEMRAJ | HMPRO | HANA | HMPRO |
| 39 | IVL | IVL | IVL | ITD | IRPC | IRPC | IRPC | HMPRO | HMPRO | ICHI | HMPRO | ICHI |
| 40 | JAS | JAS | JAS | IVL | ITD | ITD | ITD | INTUCH | INTUCH | IFEC | ICH\| | INTUCH |
| 41 | KBANK | KBANK | KBANK | JAS | IVL | IVL | IVL | IRPC | IRPC | INTUCH | INTUCH | IRPC |
| 42 | MBKET | MBKET | MBKET | KBANK | JAS | JAS | JAS | ITD | ITD | IRPC | IRPC | ITD |
| 43 | BCH | BCH | KGI | KBS | KBANK | KBANK | KBANK | IVL | IVL | ITD | ITD | IVL |
| 44 | KKP | KKP | BCH | BCH | KBS | KKP | KCE | JAS | JAS | IVL | IVL | JAS |
| 45 | KSL | KKC | KKP | KKP | KGI | KSL | KKP | JMART | KBANK | JAS | JAS | KBANK |
| 46 | KTB | KSL | KKC | KSL | BCH | KTB | KTB | KBANK | KCE | KBANK | KBANK | KCE |
| 47 | KYE | KTB | KSL | KTB | KKP | KTC | KTC | KCE | KKP | KCE | KCE | KKP |
| 48 | LANNA | KYE | KTB | LANNA | KSL | LANNA | LH | KKP | KTB | KKP | KKP | KTB |
| 49 | LH | LANNA | LANNA | LH | ктв | LH | LOXLEY | KTB | KTC | KTB | KTB | KTC |
| 50 | LOXLEY | LH | LH | LHBANK | KTC | LOXLEY | LPN | KTC | LH | KTC | KTC | LH |
| 51 | LPN | LOXLEY | LOXLEY | LOXLEY | LANNA | LPN | MAJOR | LH | LOXLEY | KTIS | LH | LHBANK |
| 52 | MAJOR | LPN | LPN | LPN | LH | MAJOR | MAKRO | LOXLEY | LPN | LH | LHBANK | LPN |
| 53 | MAKRO | MAOOR | MAOR | MAJOR | LHBANK | MAKRO | MALEE | LPN | M | LOXLEY | LOXLEY | M |
| 54 | MCOT | MAKRO | MAKRO | MAKRO | LOXLEY | MALEE | MBK | MAOR | MAJOR | LPN | LPN | MAJOR |
| 55 | MILL | MCOT | MCOT | MCOT | LPN | MINT | MCOT | MBK | MC | M | M | MINT |
| 56 | MINT | MINT | MCS | MCS | MAJOR | PF | MDX | MCOT | MCOT | MAJOR | MAJOR | PLANB |
| 57 | PDI | PDI | MINT | MINT | MAKRO | PS | MINT | MINT | MEGA | MC | MC | PLAT |
| 58 | PS | PS | PDI | PHATRA | MALEE | PTL | PF | PS | MINT | MEGA | MINT | PS |
| 59 | PSL | PSL | PHATRA | PS | MCOT | PTT | PS | PTT | NOK | MINT | MONO | PTG |
| 60 | PTT | PTT | PS | PSL | MINT | PTTEP | PTT | PTTEP | NYT | NOK | PS | PTT |
| 61 | PTTAR | PTTAR | PSL | PTL | PF | PTTGC | PTTEP | PTTGC | PS | PS | PSL | PTTEP |
| 62 | PTTC | PTTC | PTL | PTT | PS | QH | PTTGC | QH | PSL | PSL | PTT | PTTGC |
| 63 | PTTEP | PTTEP | PTT | PTTEP | PTL | RATCH | QH | RATCH | PTT | PTG | PTTEP | QH |
| 64 | QH | QH | PTTEP | PTTGC | PTT | RML | RATCH | ROBINS | PTTEP | PTT | PTTGC | ROBINS |
| 65 | RATCH | RATCH | PTTGC | QH | PTTEP | ROBINS | ROBINS | RS | PTTGC | PTTEP | QH | RS |
| 66 | RCL | RCL | QH | RATCH | PTTGC | ROJNA | ROJNA | SAMART | OH | PTTGC | RATCH | S |
| 67 | ROBINS | ROBINS | RATCH | ROBINS | QH | SAMART | RS | SC | RATCH | QH | ROBINS | SAMART |
| 68 | ROJNA | ROJNA | RCL | SAMART | RATCH | SAMTEL | SAMART | SCB | ROBINS | RATCH | RS | SAMTEL |
| 69 | SAMART | SAMART | ROBINS | SAMTEL | RML | SAT | SAMTEL | SCC | RS | ROBINS | S | SAWAD |
| 70 | SAMTEL | SAMTEL | SAMART | SAT | ROBINS | SC | SAT | scce | SAMART | SAMART | SAMART | SCB |
| 71 | SAT | SAT | SAMTEL | SC | SAMART | SCB | SC | SF | SCB | SAWAD | SAPPE | SCC |
| 72 | SC | SCB | SAT | SCB | SAMTEL | Scc | SCB | SIRI | Scc | SCB | SAWAD | SCCC |



Notes:
Many securities used in this research has been delisted, however, most historical daily market data can still be acquired via
Thomson Reuter database. In both 2014H1 and 2015H1 list, U City PCL (ticker U) is removed from the list as the price is too low such that one up/down tick tend to hit the ceiling/floor price. In both 2010H2 and 2011H1 list, there is no available data for Phatra Capital PCL (ticker PHATRA) and so it is remove from the universe.

Table II: Descriptive statistics of V values

| Percentile | 2010H2 | 2011H1 | 2011H2 | 2012H1 | 2012H2 | 2013H1 | 2013H2 | 2014H1 | 2014H2 | 2015H1 | 2015H2 | 2016H1 | All |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.1 | -3.31 | -3.16 | -3.40 | -3.20 | -2.90 | -2.93 | -3.55 | -3.24 | -2.93 | -2.92 | -3.12 | -3.04 | -3.50 |
| 1 | -2.48 | -2.33 | -2.56 | -2.29 | -2.28 | -2.27 | -2.61 | -2.34 | -2.31 | -2.27 | -2.44 | -2.27 | -2.52 |
| 5 | -1.79 | -1.75 | -1.83 | -1.67 | -1.64 | -1.59 | -1.98 | -1.60 | -1.72 | -1.67 | -1.76 | -1.55 | -1.78 |
| 10 | -1.45 | -1.39 | -1.46 | -1.34 | -1.30 | -1.25 | -1.61 | -1.26 | -1.40 | -1.34 | -1.37 | -1.21 | -1.40 |
| 20 | -1.01 | -0.97 | -0.99 | -0.91 | -0.88 | -0.79 | -1.18 | -0.81 | -0.95 | -0.94 | -0.92 | -0.77 | -0.94 |
| 30 | -0.66 | -0.65 | -0.64 | -0.58 | -0.56 | -0.45 | -0.85 | -0.47 | -0.64 | -0.63 | -0.61 | -0.43 | -0.61 |
| 40 | -0.35 | -0.35 | -0.34 | -0.30 | -0.28 | -0.18 | -0.57 | -0.19 | -0.35 | -0.36 | -0.32 | -0.15 | -0.31 |
| 50 | -0.06 | -0.10 | -0.06 | -0.04 | -0.02 | 0.08 | -0.30 | 0.08 | -0.09 | -0.11 | -0.06 | 0.10 | -0.05 |
| 60 | 0.21 | 0.15 | 0.21 | 0.21 | 0.24 | 0.33 | -0.04 | 0.35 | 0.18 | 0.14 | 0.22 | 0.37 | 0.21 |
| 70 | 0.53 | 0.43 | 0.49 | 0.50 | 0.52 | 0.60 | 0.23 | 0.63 | 0.47 | 0.42 | 0.51 | 0.65 | 0.50 |
| 80 | 0.88 | 0.76 | 0.83 | 0.82 | 0.89 | 0.93 | 0.57 | 0.98 | 0.81 | 0.76 | 0.85 | 0.98 | 0.85 |
| 90 | 1.38 | 1.22 | 1.28 | 1.29 | 1.39 | 1.39 | 1.07 | 1.45 | 1.31 | 1.26 | 1.35 | 1.44 | 1.35 |
| 95 | 1.78 | 1.62 | 1.66 | 1.69 | 1.81 | 1.79 | 1.46 | 1.85 | 1.73 | 1.67 | 1.76 | 1.84 | 1.78 |
| 99 | 2.58 | 2.36 | 2.37 | 2.45 | 2.62 | 2.48 | 2.21 | 2.62 | 2.51 | 2.52 | 2.54 | 2.56 | 2.64 |
| 99.9 | 3.46 | 3.21 | 3.15 | 3.32 | 3.69 | 3.53 | 2.88 | 3.52 | 3.47 | 3.44 | 3.78 | 3.49 | 3.83 |
| Observations | 12,276 | 11,781 | 12,500 | 12,000 | 12,500 | 12,100 | 12,400 | 11,979 | 12,400 | 11,800 | 12,375 | 12,000 | 146,111 |
| Zero Trading | 7 | 32 | 104 | 2 | 3 | 7 | 2 | 0 | 4 | 0 | 16 | 67 | 244 |
| $\checkmark$ Values | 12,269 | 11,749 | 12,396 | 11,998 | 12,497 | 12,093 | 12,398 | 11,979 | 12,396 | 11,800 | 12,359 | 11,933 | 145,867 |
| Mean | -0.051 | -0.092 | -0.075 | -0.029 | 0.014 | 0.078 | -0.294 | 0.089 | -0.059 | -0.072 | -0.031 | 0.116 | -0.035 |
| Median | -0.063 | -0.100 | -0.059 | -0.041 | -0.023 | 0.078 | -0.301 | 0.076 | -0.093 | -0.112 | -0.060 | 0.103 | -0.051 |
| StdDev | 1.100 | 1.018 | 1.067 | 1.025 | 1.054 | 1.025 | 1.041 | 1.060 | 1.047 | 1.019 | 1.066 | 1.037 | 1.090 |
| Skewness | 0.112 | 0.104 | -0.046 | 0.111 | 0.222 | 0.059 | 0.071 | 0.063 | 0.193 | 0.253 | 0.147 | 0.053 | 0.127 |
| Kurtosis | 2.934 | 3.049 | 2.962 | 3.040 | 3.133 | 3.052 | 2.995 | 3.062 | 2.998 | 3.144 | 3.120 | 3.034 | 3.337 |

Notes:
The number of V values used in the analysis during 2015 H 2 is less than shown. This is to allow a proper comparison between different definitions of abnormal volume event by omitting the day with corrupted missing $D$ values (see below in Zero Trading for $D$ values). However, the result does not affected significantly when all $V$ values are used.

Table III: Descriptive statistics of $D$ values

| Percentile | 2015H2 | 2016H1 | All |
| :---: | :---: | :---: | :---: |
| 0.1 | -4.38 | -4.80 | -4.66 |
| 1 | -2.82 | -2.63 | -2.76 |
| 5 | -1.57 | -1.56 | -1.58 |
| 10 | -1.11 | -1.07 | -1.11 |
| 20 | -0.66 | -0.60 | -0.65 |
| 30 | -0.38 | -0.34 | -0.39 |
| 40 | -0.20 | -0.16 | -0.20 |
| 50 | -0.04 | 0.00 | -0.04 |
| 60 | 0.11 | 0.09 | 0.13 |
| 70 | 0.31 | 0.29 | 0.32 |
| 80 | 0.57 | 0.61 | 0.61 |
| 90 | 1.05 | 1.16 | 1.14 |
| 95 | 1.61 | 1.82 | 1.75 |
| 99 | 3.21 | 3.59 | 3.39 |
| 99.9 | 5.36 | 5.83 | 5.62 |
| Observations | 12,375 | 12,000 | 24,375 |
| Zero Trading | 1,655 | 67 | 1,722 |
| D Values | 10,720 | 11,933 | 22,653 |
| Mean | -0.023 | 0.033 | 0.006 |
| Median | -0.041 | 0.000 | -0.041 |
| StdDev | 1.019 | 1.070 | 1.062 |
| Skewness | 0.437 | 0.715 | 0.580 |
| Kurtosis | 7.691 | 8.186 | 7.703 |

Table IV: Descriptive statistics of $P$ values

| Percentile | 2010H2 | 2011H1 | 2011H2 | 2012H1 | 2012H2 | 2013H1 | 2013H2 | 2014H1 | 2014H2 | 2015H1 | 2015H2 | 2016H1 | All |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.1 | -0.11 | -0.08 | -0.13 | -0.07 | -0.07 | -0.11 | -0.10 | -0.09 | -0.08 | -0.10 | -0.11 | -0.08 | -0.10 |
| 1 | -0.05 | -0.05 | -0.08 | -0.05 | -0.04 | -0.07 | -0.07 | -0.05 | -0.05 | -0.05 | -0.06 | -0.05 | -0.06 |
| 5 | -0.03 | -0.03 | -0.04 | -0.03 | -0.02 | -0.04 | -0.04 | -0.03 | -0.03 | -0.03 | -0.03 | -0.03 | -0.03 |
| 10 | -0.02 | -0.02 | -0.03 | -0.02 | -0.02 | -0.03 | -0.03 | -0.02 | -0.02 | -0.02 | -0.02 | -0.02 | -0.02 |
| 20 | -0.01 | -0.01 | -0.02 | -0.01 | -0.01 | -0.02 | -0.02 | -0.01 | -0.01 | -0.01 | -0.02 | -0.01 | -0.01 |
| 30 | -0.01 | -0.01 | -0.01 | -0.01 | -0.01 | -0.01 | -0.01 | -0.01 | -0.01 | -0.01 | -0.01 | -0.01 | -0.01 |
| 40 | 0.00 | 0.00 | -0.01 | 0.00 | 0.00 | -0.01 | -0.01 | 0.00 | 0.00 | -0.01 | -0.01 | 0.00 | 0.00 |
| 50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 70 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
| 80 | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
| 90 | 0.03 | 0.02 | 0.03 | 0.02 | 0.02 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 | 0.03 |
| 95 | 0.05 | 0.04 | 0.04 | 0.03 | 0.03 | 0.05 | 0.04 | 0.03 | 0.03 | 0.03 | 0.03 | 0.04 | 0.04 |
| 99 | 0.09 | 0.06 | 0.08 | 0.06 | 0.06 | 0.08 | 0.08 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.07 |
| 99.9 | 0.16 | 0.09 | 0.13 | 0.10 | 0.10 | 0.12 | 0.12 | 0.10 | 0.10 | 0.11 | 0.10 | 0.11 | 0.11 |
| Observations | 12,276 | 12,276 | 11,781 | 12,500 | 12,000 | 12,500 | 12,100 | 12,400 | 11,979 | 12,400 | 11,800 | 12,375 | 12,000 |
| Zero Trading | 7 | 7 | 32 | 104 | 2 | 3 | 7 | 2 | 0 | 4 | 0 | 16 | 67 |
| P Values | 12,269 | 12,269 | 11,749 | 12,396 | 11,998 | 12,497 | 12,093 | 12,398 | 11,979 | 12,396 | 11,800 | 12,359 | 11,933 |
| Mean | -0.051 | 0.002 | 0.000 | 0.000 | 0.001 | 0.002 | 0.000 | -0.001 | 0.002 | 0.000 | 0.000 | -0.001 | 0.001 |
| Median | -0.063 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| StdDev | 1.100 | 0.025 | 0.021 | 0.027 | 0.019 | 0.018 | 0.027 | 0.027 | 0.020 | 0.019 | 0.021 | 0.022 | 0.021 |
| Skewness | 0.112 | 1.157 | 0.165 | 0.189 | 0.387 | 0.951 | 0.278 | 0.294 | 0.384 | 0.517 | 0.742 | -0.318 | 0.501 |
| Kurtosis | 2.934 | 12.648 | 7.882 | 8.944 | 6.450 | 14.286 | 5.969 | 8.746 | 6.947 | 16.049 | 12.741 | 11.937 | 4.613 |

Notes:
The number of $P$ values used in the analysis during 2015 H 2 is less than shown. This is to allow a proper comparison between different definitions of abnormal volume event by omitting the day with corrupted missing D values (see below in Zero Trading for D values). However, the result does not affected significantly when all $P$ values are used.
Table V: The 22-day excess returns and the counts of $V$-event

| CAAR[1,22] market adjusted ( |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Data\c1 | 1.1 | 1.225 | 1.35 | 1.475 | 1.6 | 1.725 | 1.85 | 1.975 | 2.1 | 2.225 | 2.35 | 2.475 | 2.6 | 2.725 | 2.85 | 2.975 | 3.1 | 3.225 |
| Period1 | 0.193 | 0.201 | 0.232 | 0.062 | 0.104 | 0.253 | 0.509 | $0.823^{\text {a,d }}$ | $1.035^{\text {a,d }}$ | $1.516^{\text {b,f }}$ | $1.319^{\text {b,f }}$ | $0.924^{\text {d }}$ | $0.843^{\text {d }}$ | 0.208 | 0.758 | 1.348 | 1.29 | 1.339 |
| Period2 | 0.107 | 0.145 | $0.282^{\text {a }}$ | 0.217 | 0.23 | 0.226 | 0.259 | 0.28 | 0.311 | $0.45^{\text {a }}$ | 0.418 | 0.526 | 0.498 | 0.56 | 0.418 | 0.247 | 0.055 | -0.472 |

CAAR $[1,22]$ market and risk adjusted (\%)

| Datalc1 | 1.1 | 1.225 | 1.35 | 1.475 | 1.6 | 1.725 | 1.85 | 1.975 | 2.1 | 2.225 | 2.35 | 2.475 | 2.6 | 2.725 | 2.85 | 2.975 | 3.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Period1 | 0.352 | 0.441 | 0.483 | 0.576 | 0.616 | $0.91^{\text {a,d }}$ | $1.255^{b, e}$ | $1.732^{c, f}$ | $1.994^{c, f}$ | $2.338^{c, f}$ | $1.927^{b, f}$ | $1.455^{\text {a,e }}$ | $1.376^{e}$ | 0.903 | 1.067 | $1.892^{d}$ | $2.463^{d}$ |
| $2.592^{d}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


Number of events

| Number of events |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Data\c1 | 1.1 | 1.225 | 1.35 | 1.475 | 1.6 | 1.725 | 1.85 | 1.975 | 2.1 | 2.225 | 2.35 | 2.475 | 2.6 | 2.725 | 2.85 | 2.975 | 3.1 | 3.225 |
| Period1 | 742 | 699 | 654 | 586 | 536 | 470 | 423 | 358 | 303 | 258 | 220 | 172 | 142 | 114 | 90 | 73 | 54 | 45 |
| Period2 | 4145 | 3862 | 3573 | 3249 | 2949 | 2605 | 2310 | 1982 | 1676 | 1408 | 1160 | 932 | 754 | 595 | 477 | 365 | 286 | 214 |

The table analyzes the relationship between abnormal volume event and the excess returns (in percentage) according to the event study. The definition of abnormal volume events is $V$-event with different threshold values (cl) ranging from 1.1 to 3.225 with equal spacing. The data of Period1 correspond to dataset from July 2015 - June 2016 while Period2 correspond to July 2010 - June 2016 . The cumulative average abnormal returns are reported for $1,22]$ window period. The excess log returns are computed both with a market adjusted and a market and risk adjusted (CAPM) approach. The statistical significance is calculated using the parametric student's T test and non-
parametric Wilcoxon singed rank test. The superscript a, $\mathrm{b}, \mathrm{c}$ and superscript d , $\mathrm{e}, \mathrm{f}$ indicate that the coefficients are significantly different from zero at the $10 \%, 5 \%$, and $1 \%$ level based on parametric test and non-parametric test
respectively.

| CAAR[1,22] market and risk adjusted (\%) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Data\c1 | 1.1 | 1.225 | 1.35 | 1.475 | 1.6 | 1.725 | 1.85 | 1.975 | 2.1 | 2.225 | 2.35 | 2.475 | 2.6 | 2.725 | 2.85 | 2.975 | 3.1 | 3.225 |
| Period1 | 0.352 | 0.441 | 0.483 | 0.576 | 0.616 | $0.91{ }^{\text {a,d }}$ | $1.255^{\text {b,e }}$ | $1.732^{\text {c.f }}$ | $1.994^{\text {c,f }}$ | $2.338^{\text {cff }}$ | $1.927^{\text {b,f }}$ | $1.455^{\text {a,e }}$ | $1.376^{e}$ | 0.903 | 1.067 | $1.892^{\text {d }}$ | $2.463^{\text {d }}$ | $2.592{ }^{\text {d }}$ |

Table VI: The 22-day excess returns and the counts of VD-event

| c1)c2 | 1.1 | 1.225 | 1.35 | 1.475 | 1.6 | 1.725 | 1.85 | 1.975 | 2.1 | 2.225 | 2.35 | 2.475 | 2.6 | 2.725 | 85 | 2.975 | 3.1 | 3.225 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.1 | 0.581 | 0.538 | 0.34 | 0.402 | 0.454 | 0.528 | 0.693 | 0.664 | 0.61 | 0.572 | 0.367 | 0.431 | 0.822 | 0.604 | 0.309 | 0.269 | -0.184 | 0.002 |
| 1.225 | 0.576 | 0.532 | 0.314 | 0.395 | 0.342 | 0.408 | 0.568 | 0.59 | 0.662 | 0.656 | 0.377 | 0.532 | 0.724 | 0.479 | 0.21 | 0.188 | -0.216 | -0.05 |
| 1.35 | 0.666 | 0.604 | 0.474 | 0.56 | 0.532 | 0.57 | $0.828^{\text {a }}$ | $0.852^{\text {a }}$ | 0.811 | 0.841 | 0.624 | 0.75 | $0.981^{\text {d }}$ | 0.657 | 0.391 | 0.379 | 0.043 | 0.04 |
| 1.475 | 0.44 | 0.433 | 0.33 | 0.309 | 0.358 | 0.387 | 0.756 | 0.831 | 0.858 | $0.95{ }^{\text {a }}$ | 0.73 | 0.838 | $1.094^{\text {a,d }}$ | 0.807 | 0.6 | 0.537 | 0.149 | 0.064 |
| 1.6 | 0.497 | 0.5 | 0.373 | 0.401 | 0.505 | 0.539 | 0.629 | 0.758 | 0.826 | 0.801 | 0.716 | 0.699 | 0.978 | 0.684 | 0.544 | 0.456 | 0.091 | 0.068 |
| 1.725 | 0.657 | 0.661 | 0.691 | 0.888 | 0.911 | 0.961 | $1.013^{\text {a }}$ | $1.223^{\text {b,d }}$ | $1.339^{\text {bee }}$ | $1.418^{\text {be, }}$ | $1.338^{\text {bee }}$ | $1.273^{\text {a,e }}$ | $1.573^{\text {bee }}$ | $1.193^{\text {a }}$ | 1.172 | 0.977 | 0.653 | 0.573 |
| 1.85 | 0.554 | 0.513 | 0.572 | 0.732 | 0.79 | 0.906 | 0.936 | $1.165^{\text {a,d }}$ | $1.28{ }^{\text {aje }}$ | $1.347^{\text {bee }}$ | $1.383^{\text {b,e }}$ | $1.27^{\text {a d }}$ | $1.616^{\text {b,e }}$ | $1.199^{\circ}$ | 1.128 | 0.997 | 0.705 | 0.552 |
| 1.975 | 0.856 | 0.773 | 0.843 | 0.996 | $1.077^{\text {a,d }}$ | $1.152^{\text {a,d }}$ | $1.366^{\text {bee }}$ | $1.57{ }^{\text {bee }}$ | $1.616^{\text {bee }}$ | $1.579^{\text {bee }}$ | $1.531^{\text {bee }}$ | $1.382^{\text {a,d }}$ | $1.422^{\text {a,d }}$ | 1.158 | 1.037 | 0.665 | 0.633 | 0.698 |
| 2.1 | 0.949 | 1.062 | 1.09 | $1.299^{\text {a,d }}$ | $1.323^{\text {a,d }}$ | $1.361^{\text {a,d }}$ | $1.406^{\text {b,d }}$ | $1.609^{\text {b,e }}$ | $1.671^{\text {bee }}$ | $1.63^{\text {b,e }}$ | $1.606^{\text {b,d }}$ | $1.437^{\text {a d }}$ d | $1.501^{\text {a,d }}$ | 1.202 | 1.228 | 0.858 | 0.95 | 1.08 |
| 2.225 | $1.366^{\text {a d }}$ | $1.526^{\text {b,e }}$ | $1.564^{\text {b,e }}$ | $1.786^{\text {b,e }}$ | $1.832^{\text {bee }}$ | $1.92{ }^{\text {b,e }}$ | $1.807^{\text {b,e }}$ | $2.029^{\text {b,e }}$ | $2.06{ }^{\text {bee }}$ | $2.021^{\text {bee }}$ | $2.005^{\text {bee }}$ | $1.762^{\mathrm{b}, \mathrm{d}}$ | $1.769^{\text {b,d }}$ | 1.404 | 1.384 | 0.859 | 0.963 | 1.104 |
| 2.35 | 1.124 | 1.289 | 1.331 | 1.197 | 1.182 | 1.328 | 1.228 | 1.366 | 1.462 | 1.218 | 1.306 | 1.31 | 1.257 | 1.033 | 1.044 | 0.516 | 0.546 | 0.572 |
| 2.475 | 0.593 | 0.759 | 0.78 | 0.867 | 1.008 | 1.184 | 1.352 | 1.424 | $1.697^{\text {a d }}$ d | $1.606^{\text {d }}$ | $1.652^{\text {d }}$ | $1.661^{\text {d }}$ | 1.614 | 1.543 | 1.401 | 0.904 | 0.892 | 0.793 |
| 2.6 | 0.116 | 0.286 | 0.261 | 0.32 | 0.474 | 0.544 | 0.775 | 0.838 | 1.021 | 1.204 | 1.257 | 1.257 | 1.136 | 1.038 | 0.801 | 0.507 | 0.483 | 0.435 |
| 2.725 | -0.561 | -0.561 | -0.687 | -0.567 | -0.421 | -0.343 | -0.032 | 0.047 | 0.264 | 0.172 | 0.172 | 0.172 | 0.076 | 0.076 | -0.251 | -0.543 | -0.596 | -0.687 |
| 2.85 | 1.186 | 1.186 | 1.054 | 1.245 | 1.42 | 1.42 | 1.93 | 1.978 | 1.993 | 2.024 | 2.013 | 2.013 | 1.981 | 1.981 | 1.601 | 1.367 | 1.352 | 1.344 |
| 2.975 | 1.308 | 1.308 | 1.148 | 1.148 | 1.357 | 1.357 | 1.778 | 1.832 | 1.846 | 1.913 | 1.896 | 1.896 | 1.78 | 1.78 | 1.323 | 1.323 | 1.304 | 1.089 |
| 3.1 | 1.643 | 1.643 | 1.425 | 1.425 | 1.75 | 1.75 | 2.411 | 2.519 | 2.569 | 2.742 | 2.742 | 2.742 | 2.6 | 2.6 | 1.909 | 1.909 | 1.909 | 1.909 |
| 3.225 | 1.467 | 1.467 | 1.208 | 1.208 | 1.308 | 1.308 | 2.016 | 2.121 | 2.16 | 2.316 | 2.316 | 2.316 | 2.127 | 2.127 | 1.286 | 1.286 | 1.248 | 1.248 |


| CAAR [1,22] market and risk adjusted (\%) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| c1 \c2 | 1.1 | 1.225 | 1.35 | 1.475 | 1.6 | 1.725 | 1.85 | 1.975 | 2.1 | 2.225 | 2.35 | 2.475 | 2.6 | 2.725 | 2.85 | 2.975 | 3.1 | 3.225 |
| 1.1 | $1.113^{\text {b,e }}$ | $1.024^{\text {b,e }}$ | $0.8{ }^{\text {a }}$ | $0.864^{\text {a,d }}$ | $0.974^{\text {a,d }}$ | $1.01{ }^{\text {b,d }}$ | $1.099^{\text {b,d }}$ | $0.986^{\text {a }}$ | $1.082^{\text {a,d }}$ | $1.161^{\text {b,d }}$ | 0.938 | 1.003 | $1.386^{\text {b,e }}$ | 1.113 | 0.891 | 1.086 | 0.631 | 0.567 |
| 1.225 | $1.089^{\text {b,e }}$ | $1.024^{\text {b,e }}$ | 0.769 | 0.829 | $0.875^{\text {a }}$ | $0.921^{\text {a }}$ | $0.956^{\text {a }}$ | 0.931 | $1.151^{\text {b }}$ | $1.265^{\text {b,d }}$ | 1.019 | $1.177^{\text {a,d }}$ | $1.351^{\text {b,d }}$ | 1.041 | 0.877 | 1.007 | 0.598 | 0.463 |
| 1.35 | $1.165^{\text {b,e }}$ | $1.059^{\text {b,e }}$ | $0.939^{\text {a }}$ | $1.021^{\text {a,d }}$ | $1.064^{\text {a,d }}$ | $1.047^{\text {a }}$ | $1.294^{\text {b,d }}$ | $1.27^{\text {b,d }}$ | $1.269^{\text {b,d }}$ | $1.516^{\text {b,e }}$ | $1.395^{\text {b,d }}$ | $1.5^{\text {b,e }}$ | $1.768^{\text {c,e }}$ | $1.351^{\text {a,d }}$ | 1.163 | $1.323^{\text {a }}$ | 0.983 | 0.668 |
| 1.475 | $1.061^{\text {b,d }}$ | $0.966^{\text {a }}$ | 0.89 | 0.868 | $0.997^{\text {a }}$ | $0.988^{\text {a }}$ | $1.382^{\text {b,d }}$ | $1.4{ }^{\text {b,d }}$ | $1.433^{\text {b,d }}$ | $1.686^{\text {c,e }}$ | $1.562^{\text {b,e }}$ | $1.605^{\text {b,e }}$ | $1.955^{\text {c,f }}$ | $1.651^{\text {b,e }}$ | $1.537^{\text {b,d }}$ | $1.603^{\text {b,d }}$ | 1.157 | 0.826 |
| 1.6 | $1.157^{\text {b,d }}$ | $1.085^{\text {a d }}$ | $1.077^{\text {a }}$ | $1.069^{\text {a }}$ | $1.23{ }^{\text {b,d }}$ | $1.255^{\text {b,d }}$ | $1.41^{\text {b,d }}$ | $1.443^{\text {b,d }}$ | $1.514^{\text {b,d }}$ | $1.622^{\text {b,e }}$ | $1.609^{\text {b,e }}$ | $1.544^{\text {b,e }}$ | $1.935^{\text {c,e }}$ | $1.645^{\text {b,d }}$ | $1.574^{\text {b,d }}$ | $1.575^{\text {a }}$ | 1.107 | 0.8 |
| 1.725 | $1.474^{\text {b,e }}$ | $1.349^{\text {b,d }}$ | $1.428^{\text {b,d }}$ | $1.656^{\text {b,e }}$ | $1.682^{\text {b,e }}$ | $1.731^{\text {b,e }}$ | 1.797 ${ }^{\text {cee }}$ | $1.915^{\text {c,e }}$ | $2.041^{\text {cee }}$ | $2.26{ }^{\text {c,f }}$ | $2.252^{\text {c,e }}$ | $2.111^{\text {c,e }}$ | $2.537^{\text {c,f }}$ | $2.133^{\text {b,e }}$ | $2.151^{\text {b,e }}$ | $1.973^{\text {b,d }}$ | 1.445 | 1.2 |
| 1.85 | $1.432^{\text {b,d }}$ | $1.241^{\text {a }}$ | $1.343^{\text {a,d }}$ | $1.521^{\text {b,d }}$ | $1.587^{\text {b,d }}$ | $1.75{ }^{\text {b,e }}$ | $1.804^{\text {b,e }}$ | 1.934 ${ }^{\text {cee }}$ | $2.126^{\text {c,e }}$ | 2.337 c,f | $2.429^{\text {c,f }}$ | $2.278^{\text {c,e }}$ | $2.717^{\text {c,f }}$ | $2.287^{\text {c,e }}$ | $2.247^{\text {c,e }}$ | $2.082^{\text {b,d }}$ | $1.694^{\text {a }}$ | 1.268 |
| 1.975 | $1.686^{\text {b,e }}$ | $1.594^{\text {b,e }}$ | $1.645^{\text {b,e }}$ | $1.801^{\text {b,e }}$ | $1.952^{\text {b,e }}$ | $2.084^{\text {cee }}$ | $2.397^{\text {c.f }}$ | $2.607^{\text {c,f }}$ | $2.69{ }^{\text {c,f }}$ | $2.672^{\text {c.f }}$ | $2.625^{\text {c,f }}$ | $2.502^{\text {c,f }}$ | $2.624^{\text {c,f }}$ | $2.377^{\text {c,e }}$ | $2.221^{\text {b,e }}$ | $1.904^{\text {b }}$ | $1.795^{\text {a }}$ | 1.638 |
| 2.1 | $1.867^{\text {b,e }}$ | $1.842^{\text {b,e }}$ | $1.895^{\text {b,e }}$ | $2.153^{\text {cee }}$ | $2.212^{\text {c,e }}$ | $2.33{ }^{\text {cee }}$ | $2.435^{\text {c,e }}$ | $2.668^{\text {c,f }}$ | $2.763^{\text {c,f }}$ | $2.744^{\text {c,f }}$ | $2.702^{\text {c,e }}$ | $2.563^{\text {c,e }}$ | $2.677^{\text {c,e }}$ | $2.436{ }^{\text {b,e }}$ | $2.4222^{\text {bee }}$ | $2.129^{\text {b,d }}$ | $2.154^{\text {b,d }}$ | $2.048^{\text {a }}$ |
| 2.225 | $2.232{ }^{\text {b,e }}$ | $2.244^{\text {bee }}$ | $2.31{ }^{\text {b,e }}$ | $2.617^{\text {cee }}$ | $2.641^{\text {cee }}$ | $2.817^{\text {c.f }}$ | $2.781^{\text {c,f }}$ | $3.036^{\text {c,f }}$ | 3.089 c cf | $3.096{ }^{\text {c.f }}$ | $3.058^{\text {c,f }}$ | $2.823^{\text {cee }}$ | $2.932^{\text {cee }}$ | $2.689^{\text {b,e }}$ | $2.739^{\text {b,e }}$ | $2.385^{\text {b,d }}$ | $2.422^{\text {b,d }}$ | $2.374^{\text {a,d }}$ |
| 2.35 | $1.687^{\text {a }}$ | $1.927^{\text {b,d }}$ | $2.002{ }^{\text {b,d }}$ | $1.93{ }^{\text {b,d }}$ | $1.837^{\text {a }}$ | $2.137^{\text {b,d }}$ | $1.964^{\text {b,d }}$ | $2.141^{\text {b,d }}$ | $2.265^{\text {b,d }}$ | $2.11^{\text {b,d }}$ | $2.177^{\text {b,d }}$ | $2.33^{\text {b,d }}$ | $2.34{ }^{\text {b,d }}$ | $2.105^{\text {a,d }}$ | $2.174^{\text {a,d }}$ | 1.824 | 1.825 | 1.805 |
| 2.475 | 1.007 | 1.24 | 1.3 | 1.352 | 1.53 | $1.892^{\text {a,d }}$ | $2.038^{\text {a,d }}$ | $2.152^{\text {a,d }}$ | $2.475^{\text {b,e }}$ | $2.344^{\text {b,e }}$ | $2.436^{\text {b,e }}$ | $2.587^{\text {b,e }}$ | $2.649^{\text {b,e }}$ | $2.564{ }^{\text {b,e }}$ | $2.381^{\text {a,e }}$ | 1.996 | 1.956 | 1.874 |
| 2.6 | 0.451 | 0.69 | 0.686 | 0.816 | 1.018 | 1.299 | 1.423 | 1.538 | 1.721 | 1.849 | $1.961{ }^{\text {d }}$ | $1.961{ }^{\text {d }}$ | 1.919 | 1.801 | 1.536 | 1.366 | 1.128 | 1.12 |
| 2.725 | 0.122 | 0.122 | 0.102 | 0.169 | 0.394 | 0.754 | 0.994 | 0.972 | 1.197 | 1.12 | 1.12 | 1.12 | 1.181 | 1.181 | 0.825 | 0.85 | 0.539 | 0.538 |
| 2.85 | 1.739 | 1.739 | 1.744 | 1.863 | 2.094 | 2.094 | $2.486^{\text {a,d }}$ | $2.442^{\text {a }}$ | $2.526^{\text {a }}$ | $2.544^{\text {a }}$ | $2.592^{\text {a }}$ | $2.592^{\text {a }}$ | $2.747^{\text {a }}$ | $2.747^{\text {a }}$ | 2.319 | 2.482 | 2.108 | 2.139 |
| 2.975 | 2.009 | 2.009 | 2.021 | 2.021 | 2.311 | 2.311 | 2.662 | 2.613 | 2.72 | 2.819 | 2.885 | 2.885 | 2.941 | 2.941 | 2.44 | 2.44 | 2.029 | 1.979 |
| 3.1 | $3.614^{\text {a }}$ | $3.614^{\text {a }}$ | $3.686^{\text {a }}$ | $3.686^{\text {a }}$ | $4.23{ }^{\text {b,d }}$ | $4.23{ }^{\text {b,d }}$ | $4.903^{\text {b,e }}$ | $4.918^{\text {b,d }}$ | $5.179^{\text {b,e }}$ | $5.561{ }^{\text {b,e }}$ | $5.561{ }^{\text {b,e }}$ | $5.5611^{\text {b,e }}$ | $5.777^{\text {b,e }}$ | $5.777^{\text {b,e }}$ | $5.116^{\text {a,d }}$ | $5.116^{\text {a,d }}$ | $4.586^{\text {a }}$ | $4.586^{\text {a }}$ |
| 3.225 | $3.487^{\text {a,d }}$ | $3.487^{\text {a,d }}$ | $3.564^{\text {a,d }}$ | $3.564^{\text {a,d }}$ | $3.985^{\text {b,d }}$ | $3.985^{\text {b,d }}$ | $4.726^{\text {b,e }}$ | $4.734^{\text {b,e }}$ | $5.024^{\text {b,e }}$ | $5.449^{\text {b,e }}$ | $5.449^{\text {b,e }}$ | $5.449^{\text {b,e }}$ | $5.695^{\text {b,e }}$ | $5.695^{\text {b,e }}$ | $4.913^{\text {a,d }}$ | $4.913^{\text {a,d }}$ | 4.271 | 4.271 |

Table II (continued)

| Number of events |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| c1 \c2 | 1.1 | 1.225 | 1.35 | 1.475 | 1.6 | 1.725 | 1.85 | 1.975 | 2.1 | 2.225 | 2.35 | 2.475 | 2.6 | 2.725 | 2.85 | 2.975 | 3.1 | 3.225 |
| 1.1 | 509 | 491 | 477 | 460 | 441 | 418 | 401 | 385 | 357 | 335 | 310 | 294 | 279 | 264 | 245 | 224 | 211 | 189 |
| 1.225 | 474 | 459 | 445 | 427 | 409 | 389 | 373 | 358 | 335 | 316 | 294 | 281 | 267 | 256 | 240 | 220 | 206 | 187 |
| 1.35 | 433 | 420 | 405 | 392 | 377 | 363 | 349 | 337 | 320 | 301 | 281 | 270 | 259 | 249 | 234 | 214 | 202 | 182 |
| 1.475 | 392 | 380 | 364 | 358 | 346 | 334 | 320 | 307 | 294 | 279 | 264 | 253 | 244 | 236 | 223 | 204 | 195 | 176 |
| 1.6 | 353 | 345 | 330 | 326 | 313 | 305 | 296 | 284 | 273 | 262 | 249 | 239 | 228 | 221 | 210 | 193 | 185 | 168 |
| 1.725 | 309 | 300 | 290 | 286 | 277 | 270 | 262 | 252 | 239 | 228 | 218 | 212 | 203 | 199 | 188 | 174 | 166 | 156 |
| 1.85 | 278 | 271 | 266 | 260 | 250 | 244 | 238 | 228 | 219 | 208 | 201 | 195 | 187 | 183 | 174 | 161 | 155 | 146 |
| 1.975 | 234 | 228 | 225 | 220 | 214 | 209 | 201 | 194 | 188 | 183 | 178 | 173 | 168 | 164 | 157 | 147 | 141 | 132 |
| 2.1 | 198 | 195 | 193 | 189 | 182 | 180 | 175 | 170 | 165 | 160 | 156 | 151 | 147 | 143 | 136 | 128 | 124 | 114 |
| 2.225 | 173 | 169 | 167 | 164 | 159 | 157 | 154 | 150 | 145 | 142 | 138 | 136 | 132 | 128 | 123 | 115 | 111 | 103 |
| 2.35 | 143 | 140 | 138 | 136 | 130 | 129 | 126 | 121 | 116 | 111 | 108 | 107 | 103 | 101 | 97 | 90 | 89 | 85 |
| 2.475 | 116 | 114 | 112 | 111 | 107 | 106 | 103 | 99 | 96 | 91 | 90 | 89 | 85 | 84 | 82 | 77 | 77 | 74 |
| 2.6 | 92 | 91 | 90 | 88 | 84 | 83 | 81 | 77 | 75 | 71 | 70 | 70 | 67 | 66 | 65 | 59 | 58 | 57 |
| 2.725 | 70 | 70 | 69 | 68 | 64 | 63 | 60 | 58 | 56 | 53 | 53 | 53 | 51 | 51 | 50 | 47 | 46 | 45 |
| 2.85 | 54 | 54 | 53 | 52 | 50 | 50 | 47 | 46 | 45 | 42 | 41 | 41 | 39 | 39 | 38 | 35 | 34 | 34 |
| 2.975 | 44 | 44 | 43 | 43 | 41 | 41 | 39 | 38 | 37 | 35 | 34 | 34 | 33 | 33 | 32 | 32 | 31 | 30 |
| 3.1 | 31 | 31 | 30 | 30 | 28 | 28 | 26 | 25 | 24 | 22 | 22 | 22 | 21 | 21 | 20 | 20 | 19 | 19 |
| 3.225 | 27 | 27 | 26 | 26 | 25 | 25 | 23 | 22 | 21 | 19 | 19 | 19 | 18 | 18 | 17 | 17 | 16 | 16 |
| Notes: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Panel A. Period1

| CAAR[1,22] market adjusted (\%) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| c1)c3 | -4.5 | -4 | -3.5 | -3 | -2.5 | -2 | -1.5 | -1 | -0.5 | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
| 1.1 | 0.432 | $0.493{ }^{\text {d }}$ | 0.451 | $0.593^{\text {a d }}$ | $0.704^{\text {b,e }}$ | $0.704^{\text {b,e }}$ | $0.781^{\text {b,e }}$ | $0.791^{\text {b,e }}$ | $0.823^{\text {b,e }}$ | $0.869^{\text {b,e }}$ | $0.835^{\text {b,e }}$ | $0.742^{\text {b,d }}$ | $0.758^{\text {b,d }}$ | 0.613 | 0.584 | 0.215 | 0.11 | -0.31 |
| 1.225 | 0.344 | 0.357 | 0.395 | 0.459 | 0.509 | 0.503 | 0.572 | $0.641^{\text {a }}$ | $0.626^{\text {a }}$ | $0.668^{\text {a }}$ | $0.702^{\text {a,d }}$ | $0.614^{\text {d }}$ | $0.68{ }^{\text {a }}$ | 0.593 | 0.509 | 0.25 | 0.037 | -0.419 |
| 1.35 | 0.398 | 0.358 | 0.335 | 0.421 | 0.432 | 0.449 | 0.397 | 0.45 | 0.484 | 0.634 | 0.608 | 0.563 | 0.62 | 0.603 | 0.463 | 0.091 | 0.104 | -0.582 |
| 1.475 | 0.175 | 0.248 | 0.224 | 0.299 | 0.375 | 0.32 | 0.411 | 0.548 | 0.593 | $0.793^{\text {a }}$ | $0.744^{\text {a }}$ | 0.746 | 0.715 | 0.528 | 0.345 | 0.086 | -0.02 | -0.716 |
| 1.6 | 0.236 | 0.264 | 0.231 | 0.341 | 0.365 | 0.383 | 0.535 | 0.691 | 0.696 | $0.781^{\text {a }}$ | 0.742 | 0.692 | 0.646 | 0.565 | 0.292 | 0.145 | -0.186 | -0.64 |
| 1.725 | 0.393 | 0.462 | 0.354 | 0.478 | 0.458 | 0.451 | 0.627 | 0.779 | 0.749 | $0.854^{\text {a d }}$ | 0.783 | 0.64 | 0.643 | 0.689 | 0.201 | 0.111 | -0.205 | -0.576 |
| 1.85 | 0.63 | $0.723^{\text {d }}$ | 0.65 | 0.652 | 0.667 | 0.664 | $0.801^{\text {d }}$ | $0.925^{\text {a,d }}$ | $0.894^{\text {a,d }}$ | $0.912^{\text {a,d }}$ | $0.839^{\text {d }}$ | 0.549 | 0.583 | 0.549 | 0.088 | 0.008 | -0.357 | -0.688 |
| 1.975 | $0.97^{\text {a,e }}$ | $0.965^{\text {a,e }}$ | $1.019^{\text {a,e }}$ | $1.005^{\text {a,e }}$ | $0.958^{\text {a,e }}$ | $0.898{ }^{\text {d }}$ | $0.978^{\text {a,e }}$ | $1.058^{\text {a,e }}$ | $0.996^{\text {a,e }}$ | $0.998^{\text {a,e }}$ | $0.9{ }^{\text {d }}$ | 0.666 | 0.721 | 0.784 | 0.437 | 0.229 | -0.133 | -0.484 |
| 2.1 | $1.053^{\text {a,e }}$ | $1.012^{\text {a,e }}$ | $0.912^{\text {d }}$ | $0.888^{\text {d }}$ | 0.739 | 0.729 | 0.857 | $0.995^{\text {d }}$ | $1.027^{\text {a,e }}$ | $1.055^{\text {d }}$ | $0.989^{\text {d }}$ | 0.687 | 0.755 | 0.823 | 0.349 | 0.301 | 0.125 | -0.095 |
| 2.225 | $1.411^{\text {b,e }}$ | $1.356^{\text {b,e }}$ | $1.272^{\text {a,e }}$ | $1.274^{\text {a,e }}$ | $1.296{ }^{\text {a,e }}$ | $1.239^{\text {a,e }}$ | $1.313^{\text {a,e }}$ | $1.384^{\text {b,e }}$ | $1.404{ }^{\text {b,e }}$ | $1.733^{\text {b,f }}$ | $1.673^{\text {b,e }}$ | $1.297^{\text {a,d }}$ | $1.414^{\text {a,e }}$ | $1.432^{\text {a,e }}$ | 0.856 | 1.017 | 0.792 | 0.353 |
| 2.35 | $1.411^{\text {b,e }}$ | $1.349^{\text {a,e }}$ | $1.094^{\text {e }}$ | $1.035^{\circ}$ | $1.01{ }^{\text {d }}$ | 0.917 | 0.903 | $0.942^{\text {d }}$ | $0.991{ }^{\text {d }}$ | $1.301^{\text {a,d }}$ | $1.198^{\text {d }}$ | 0.802 | 0.924 | 1.18 | 0.961 | 1.077 | 0.9 | 0.537 |
| 2.475 | 0.775 | 0.681 | 0.571 | 0.526 | 0.584 | 0.465 | 0.496 | 0.484 | 0.497 | 0.865 | 0.718 | 0.227 | 0.427 | 0.727 | 0.703 | 0.595 | 0.378 | 0.148 |
| 2.6 | 0.51 | 0.388 | 0.327 | 0.309 | 0.259 | 0.11 | 0.114 | -0.04 | -0.04 | 0.437 | 0.474 | -0.201 | -0.11 | 0.312 | 0.253 | 0.378 | 0.012 | -0.474 |
| 2.725 | -0.319 | -0.579 | -0.708 | -0.657 | -0.707 | -0.871 | -0.935 | -1.003 | -1.003 | -0.41 | -0.378 | -1.005 | -0.985 | -0.512 | -0.459 | -0.47 | -0.849 | -1.284 |
| 2.85 | 0.278 | -0.05 | -0.2 | -0.2 | -0.238 | -0.261 | -0.28 | -0.226 | 0.303 | 0.975 | 1.047 | 0.602 | 0.697 | 0.465 | 0.633 | 0.761 | 0.162 | -0.488 |
| 2.975 | 0.713 | 0.297 | 0.124 | 0.124 | 0.101 | 0.077 | 0.06 | 0.057 | 0.762 | 0.484 | 0.484 | 0.11 | 0.135 | -0.214 | -0.088 | 0.05 | 0.117 | -0.35 |
| 3.1 | 1.577 | 0.97 | 0.569 | 0.569 | 0.589 | 0.568 | 0.556 | 0.556 | 0.563 | 0.454 | 0.454 | -0.365 | -0.347 | -0.486 | 0.301 | 0.301 | 0.244 | -0.324 |
| 3.225 | 1.433 | 0.653 | 0.11 | 0.11 | 0.248 | 0.205 | 0.173 | 0.173 | 0.164 | -0.003 | -0.003 | 0.064 | 0.064 | -0.112 | 0.139 | 0.139 | 0.289 | -0.311 |


| CAAR[1,22] market and risk adjusted (\%) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| c1\c3 | -4.5 | -4 | -3.5 | -3 | -2.5 | -2 | -1.5 | -1 | -0.5 | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
| 1.1 | $0.743^{\text {b,e }}$ | $0.799^{\text {b,e }}$ | $0.784^{\text {b,e }}$ | $0.941^{\text {b,f }}$ | 1.029 c,f | $1.074^{\text {c,f }}$ | $1.229^{\text {c,f }}$ | $1.254^{\text {c,f }}$ | $1.278{ }^{\text {c,f }}$ | $1.411^{\text {c,f }}$ | $1.348^{\text {c.f }}$ | $1.271^{\text {c,f }}$ | $1.321^{\text {c.f }}$ | $1.315^{\text {c.f }}$ | $1.302^{\text {c,f }}$ | $1.068{ }^{\text {b,e }}$ | $1.096{ }^{\text {a,e }}$ | $0.905^{\text {d }}$ |
| 1.225 | $0.763^{\text {b,e }}$ | $0.757^{\text {b,e }}$ | $0.802^{\text {b,e }}$ | $0.903^{\text {b,e }}$ | $0.995^{\text {c,f }}$ | $1.02{ }^{\text {b,e }}$ | $1.146^{\text {c,f }}$ | $1.206^{\text {c,f }}$ | $1.185^{\text {c,f }}$ | $1.284^{\text {c,f }}$ | $1.323^{\text {c,f }}$ | $1.198{ }^{\text {c,f }}$ | $1.241^{\text {c,e }}$ | $1.26^{\text {b,e }}$ | $1.257^{\text {b,e }}$ | $1.15^{\text {b,e }}$ | $1.169^{\text {a,d }}$ | 0.91 |
| 1.35 | $0.795^{\text {b,d }}$ | $0.751^{\text {a,d }}$ | $0.703^{\text {a }}$ | $0.804^{\text {b,d }}$ | $0.843^{\text {b,d }}$ | $0.86{ }^{\text {b,d }}$ | $0.85{ }^{\text {b,d }}$ | $0.896^{\text {b,d }}$ | $0.966^{\text {b,e }}$ | $1.24{ }^{\text {c,e }}$ | $1.24{ }^{\text {c,e }}$ | $1.146^{\text {b,e }}$ | $1.215^{\text {b,e }}$ | $1.213^{\text {b,e }}$ | $1.135^{\text {b,e }}$ | $1^{\text {a,d }}$ | $1.243^{\text {b,d }}$ | 0.851 |
| 1.475 | $0.758^{\text {a }}$ | $0.872^{\text {a,d }}$ | $0.826^{\text {a }}$ | $0.889^{\text {a }}$ | $0.965^{\text {b,d }}$ | $0.852^{\text {a }}$ | $0.987^{\text {b,d }}$ | $1.131^{\text {b,d }}$ | $1.237^{\text {cee }}$ | $1.494^{\text {cee }}$ | $1.498^{\text {c,e }}$ | $1.413^{\text {c,e }}$ | $1.399^{\text {c,e }}$ | $1.127^{\text {b,d }}$ | $1.118^{\text {a,d }}$ | $1.124^{\text {a,d }}$ | $1.142^{\text {a }}$ | 0.738 |
| 1.6 | $0.836^{\text {a d }}$ | $0.884^{\text {a,d }}$ | $0.817^{\text {a,d }}$ | $0.925^{\text {a,d }}$ | $0.933^{\text {a,d }}$ | $0.914^{\text {a }}$ | $1.155^{\text {b,e }}$ | $1.316^{\text {c,e }}$ | $1.323^{\text {c,e }}$ | $1.491^{\text {c,e }}$ | $1.506^{\text {c,e }}$ | $1.38{ }^{\text {b,e }}$ | $1.3{ }^{\text {b,e }}$ | $1.206^{\text {b,d }}$ | $1.174^{\text {a,d }}$ | $1.308^{\text {a,d }}$ | 1.097 | 0.911 |
| 1.725 | $1.135^{\text {b,e }}$ | $1.193^{\text {b,e }}$ | $1.065^{\text {b,e }}$ | $1.201^{\text {b,e }}$ | $1.215^{\text {b,e }}$ | $1.281{ }^{\text {b,e }}$ | $1.523^{\text {c.f }}$ | $1.7^{\text {c,f }}$ | $1.655^{\text {c,f }}$ | $1.826^{\text {c,f }}$ | $1.783^{\text {c.f }}$ | $1.578^{\text {b,e }}$ | $1.605^{\text {c,e }}$ | $1.626^{\text {b,e }}$ | $1.268^{\text {a,d }}$ | $1.43{ }^{\text {a,d }}$ | 1.147 | 1.015 |
| 1.85 | $1.414^{\text {c,f }}$ | $1.507^{\text {c,f }}$ | $1.433^{\text {c,f }}$ | 1.473 c,f | $1.493{ }^{\text {c,f }}$ | 1.599, ${ }^{\text {cf }}$ | $1.808^{\text {c,f }}$ | 1.964,f | $1.998{ }^{\text {c,f }}$ | 2.067 cf | $2.007^{\text {c.f }}$ | $1.645^{\text {b,e }}$ | $1.709^{\text {c,e }}$ | $1.613^{\text {b,e }}$ | $1.209^{\text {a }}$ | 1.256 | 0.989 | 0.904 |
| 1.975 | $1.946^{\text {c,f }}$ | $1.95{ }^{\text {c,f }}$ | $2.069^{\text {c,f }}$ | $2.161^{\text {c,f }}$ | $2.061{ }^{\text {c,f }}$ | $2.07{ }^{\text {c,f }}$ | $2.183^{\text {c,f }}$ | $2.277^{\text {c,f }}$ | 2.263 c,f | $2.252^{\text {c,f }}$ | $2.175^{\text {c,f }}$ | $1.921^{\text {c,f }}$ | $1.97{ }^{\text {c,e }}$ | $2.039^{\text {c,e }}$ | $1.747^{\text {b,e }}$ | $1.761^{\text {b,d }}$ | 1.501 | 1.413 |
| 2.1 | $2.088^{\text {c,f }}$ | $2.071{ }^{\text {c,f }}$ | $1.976^{\text {c,f }}$ | $2.034^{\text {c,f }}$ | $1.855^{\text {c,e }}$ | $1.813^{\text {c,e }}$ | $1.94{ }^{\text {c,f }}$ | $2.136^{\text {c,f }}$ | $2.212^{\text {c,f }}$ | $2.293{ }^{\text {c,f }}$ | $2.239^{\text {c,f }}$ | $1.879^{\text {b,e }}$ | $1.954^{\text {b,e }}$ | $1.994^{\text {b,e }}$ | $1.579^{\text {a,d }}$ | $1.783^{\text {a,d }}$ | $1.811^{\text {a,d }}$ | $1.81{ }^{\text {a,d }}$ |
| 2.225 | $2.265^{\text {c,f }}$ | $2.266^{\text {c,f }}$ | $2.225^{\text {c,f }}$ | $2.313^{\text {c.f }}$ | $2.223^{\text {c,f }}$ | $2.141^{\text {c,f }}$ | $2.238^{\text {c.f }}$ | $2.342^{\text {c,f }}$ | $2.38{ }^{\text {c,f }}$ | $2.756^{\text {c.f }}$ | $2.705^{\text {c,f }}$ | $2.421^{\text {c,f }}$ | $2.587^{\text {c.f }}$ | $2.571^{\text {c.f }}$ | $2.153^{\text {b,e }}$ | $2.528^{\text {b,e }}$ | $2.44{ }^{\text {b,e }}$ | $2.319^{\text {b,d }}$ |
| 2.35 | $2.113^{\text {c,f }}$ | $2.122^{\text {c,f }}$ | $2.004^{\text {b,f }}$ | $2.042^{\text {b,f }}$ | $2.009^{\text {b,e }}$ | $1.947^{\text {b,e }}$ | $1.925^{\text {b,e }}$ | $2.044^{\text {b,e }}$ | $2.142^{\text {b,e }}$ | $2.419^{\text {c,e }}$ | $2.303^{\text {b,e }}$ | $1.958^{\text {b,d }}$ | $2.14{ }^{\text {b,e }}$ | $2.439^{\text {b,e }}$ | $2.263{ }^{\text {b,e }}$ | $2.55{ }^{\text {b,e }}$ | $2.578^{\text {bee }}$ | $2.439^{\text {b,e }}$ |
| 2.475 | $1.345^{\text {e }}$ | $1.326^{\text {e }}$ | $1.255^{\text {d }}$ | $1.312^{\text {d }}$ | $1.331^{\text {d }}$ | 1.198 | 1.188 | 1.277 | 1.314 | $1.652^{\text {a }}$ | 1.478 | 1.054 | 1.279 | $1.748^{\text {d }}$ | 1.766 | 1.736 | 1.733 | 1.793 |
| 2.6 | $0.916^{\text {d }}$ | 0.844 | 0.786 | 0.92 | 0.866 | 0.696 | 0.679 | 0.639 | 0.639 | 1.053 | 1.11 | 0.624 | 0.606 | 1.241 | 1.23 | 1.353 | 1.118 | 0.948 |
| 2.725 | 0.475 | 0.275 | 0.234 | 0.484 | 0.499 | 0.28 | 0.184 | 0.178 | 0.178 | 0.718 | 0.705 | 0.075 | 0.066 | 0.84 | 1.166 | 1.147 | 1.039 | 0.926 |
| 2.85 | 0.632 | 0.373 | 0.322 | 0.322 | 0.332 | 0.258 | 0.292 | 0.338 | 1.012 | 1.651 | 1.651 | 1.216 | 1.251 | 1.228 | 1.723 | 1.821 | 1.801 | 1.746 |
| 2.975 | 1.389 | 1.028 | 1 | 1 | 1.068 | 0.987 | 1.046 | 1.056 | 1.972 | 1.612 | 1.612 | 1.259 | 1.134 | 0.846 | 1.413 | 1.525 | 1.905 | 2.373 |
| 3.1 | $3.323^{\text {b,d }}$ | $2.828^{\text {a }}$ | 2.723 | 2.723 | 3.053 | 2.989 | 3.154 | 3.154 | $3.453^{\text {a }}$ | 3.37 | 3.37 | 2.684 | 2.545 | 2.409 | $3.869^{\text {a }}$ | $3.869^{\text {a }}$ | 3.987 | 3.42 |
| 3.225 | $3.333^{\text {a,d }}$ | 2.703 | 2.557 | 2.557 | 2.874 | 2.783 | 2.991 | 2.991 | 3.381 | 3.266 | 3.266 | 3.582 | 3.582 | 3.41 | 4.149 | 4.149 | 4.312 | 3.729 |

Table VII (contimued)

| Number of events |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| c1lc3 | -4.5 | -4 | -3.5 | -3 | -2.5 | -2 | -1.5 | -1 | -0.5 | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
| 1.1 | 724 | 721 | 716 | 709 | 697 | 682 | 664 | 658 | 648 | 615 | 605 | 569 | 550 | 503 | 468 | 409 | 358 | 314 |
| 1.225 | 682 | 679 | 668 | 657 | 645 | 631 | 619 | 608 | 602 | 573 | 564 | 530 | 507 | 461 | 431 | 375 | 332 | 295 |
| 1.35 | 635 | 629 | 620 | 609 | 598 | 583 | 572 | 561 | 555 | 521 | 512 | 484 | 466 | 432 | 404 | 354 | 311 | 279 |
| 1.475 | 570 | 562 | 550 | 543 | 531 | 520 | 514 | 502 | 492 | 465 | 458 | 431 | 416 | 389 | 362 | 317 | 281 | 255 |
| 1.6 | 515 | 509 | 498 | 493 | 480 | 468 | 460 | 453 | 445 | 415 | 408 | 387 | 380 | 351 | 323 | 282 | 252 | 234 |
| 1.725 | 452 | 446 | 435 | 428 | 418 | 407 | 401 | 391 | 387 | 364 | 358 | 335 | 329 | 302 | 286 | 253 | 230 | 213 |
| 1.85 | 401 | 396 | 386 | 377 | 371 | 364 | 357 | 350 | 344 | 323 | 318 | 298 | 292 | 271 | 256 | 227 | 207 | 192 |
| 1.975 | 330 | 326 | 321 | 310 | 307 | 301 | 296 | 290 | 284 | 267 | 262 | 245 | 238 | 223 | 212 | 189 | 173 | 159 |
| 2.1 | 278 | 273 | 268 | 261 | 256 | 252 | 247 | 243 | 240 | 228 | 223 | 207 | 203 | 194 | 185 | 164 | 147 | 133 |
| 2.225 | 240 | 235 | 228 | 222 | 218 | 214 | 210 | 209 | 206 | 193 | 188 | 177 | 172 | 165 | 156 | 140 | 125 | 115 |
| 2.35 | 203 | 199 | 192 | 187 | 183 | 179 | 176 | 174 | 171 | 161 | 157 | 150 | 145 | 137 | 130 | 118 | 104 | 98 |
| 2.475 | 157 | 154 | 151 | 146 | 142 | 139 | 138 | 134 | 133 | 126 | 122 | 116 | 110 | 103 | 98 | 90 | 78 | 75 |
| 2.6 | 131 | 129 | 125 | 122 | 117 | 113 | 111 | 107 | 107 | 102 | 99 | 92 | 86 | 81 | 76 | 73 | 62 | 58 |
| 2.725 | 96 | 94 | 91 | 90 | 86 | 83 | 81 | 79 | 79 | 74 | 73 | 70 | 68 | 63 | 59 | 57 | 48 | 45 |
| 2.85 | 73 | 71 | 68 | 68 | 64 | 63 | 62 | 61 | 59 | 54 | 53 | 50 | 48 | 46 | 42 | 41 | 33 | 29 |
| 2.975 | 57 | 56 | 53 | 53 | 49 | 48 | 47 | 47 | 45 | 42 | 42 | 39 | 38 | 38 | 34 | 33 | 28 | 24 |
| 3.1 | 38 | 37 | 35 | 35 | 31 | 30 | 29 | 29 | 28 | 27 | 27 | 25 | 24 | 24 | 21 | 21 | 18 | 17 |
| 3.225 | 30 | 29 | 27 | 27 | 24 | 23 | 22 | 22 | 21 | 20 | 20 | 19 | 19 | 19 | 18 | 18 | 17 | 16 |

\footnotetext{
Panel B. Period2

| CAAR[1,22] market adjusted (\%) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| c11c3 | -4.5 | -4 | -3.5 | -3 | -2.5 | -2 | -1.5 | -1 | -0.5 | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
|  | 0.161 | 0.172 | 0.177 | 0.192 | 0.189 | 0.181 | 0.18 | 0.154 | 0.142 | 0.143 | 0.148 | 0.115 | 0.136 | 0.035 | 0.02 | -0.024 | $-0.077^{\text {d }}$ | -0.183 ${ }^{\text {e }}$ |
| 1.225 | 0.226 | 0.215 | 0.232 | 0.23 | 0.206 | 0.176 | 0.148 | 0.174 | 0.155 | 0.133 | 0.163 | 0.126 | 0.117 | 0.044 | 0.053 | 0.005 | -0.054 | ${ }^{-0.129{ }^{\text {d }}}$ |
| 1.35 | 0.368 | 0.343 | 0.35 | 0.339 | 0.334 | 0.32 | 0.321 | 0.319 | 0.314 | 0.27 | 0.299 | 0.235 | 0.228 | 0.151 | 0.129 | 0.092 | 0.079 | -0.044 |
| 1.475 | 0.288 | 0.314 | 0.307 | 0.291 | 0.295 | 0.262 | 0.27 | 0.283 | 0.259 | 0.267 | 0.268 | 0.252 | 0.235 | 0.164 | 0.159 | 0.117 | 0.088 | -0.029 |
| 1.6 | 0.24 | 0.258 | 0.275 | 0.277 | 0.264 | 0.236 | 0.216 | 0.205 | 0.185 | 0.2 | 0.185 | 0.169 | 0.162 | 0.146 | 0.095 | 0.052 | -0.021 | -0.086 |
| 1.725 | 0.205 | 0.21 | 0.201 | 0.189 | 0.149 | 0.143 | 0.15 | 0.149 | 0.146 | 0.131 | 0.114 | 0.073 | 0.085 | 0.11 | -0.005 | -0.024 | -0.027 | 0.013 |
| 1.85 | 0.224 | 0.233 | 0.248 | 0.219 | 0.206 | 0.211 | 0.212 | 0.21 | 0.165 | 0.121 | 0.102 | 0.015 | 0.023 | 0.044 | -0.064 | -0.028 | -0.046 | 0.041 |
| 1.975 | 0.255 | 0.228 | 0.259 | 0.242 | 0.222 | 0.209 | 0.19 | 0.185 | 0.146 | 0.116 | 0.109 | 0.021 | 0.024 | 0.077 | -0.01 | -0.02 | -0.059 | -0.025 |
| 2.1 | 0.291 | 0.257 | 0.279 | 0.239 | 0.196 | 0.187 | 0.206 | 0.188 | 0.148 | 0.156 | 0.149 | 0.072 | 0.1 | 0.172 | 0.12 | 0.084 | 0.039 | 0.092 |
| 2.225 | 0.316 | 0.298 | 0.298 | 0.265 | 0.254 | 0.261 | 0.278 | 0.256 | 0.196 | 0.245 | 0.22 | 0.13 | 0.223 | 0.277 | 0.233 | 0.228 | 0.223 | 0.203 |
| 2.35 | 0.305 | 0.301 | 0.244 | 0.191 | 0.196 | 0.175 | 0.205 | 0.189 | 0.15 | 0.111 | 0.059 | -0.043 | 0.055 | 0.176 | 0.14 | 0.182 | 0.192 | 0.113 |
| 2.475 | 0.437 | 0.463 | 0.425 | 0.352 | 0.388 | 0.35 | 0.379 | 0.325 | 0.273 | 0.287 | 0.223 | 0.08 | 0.171 | 0.27 | 0.259 | 0.249 | 0.267 | 0.098 |
| 2.6 | 0.439 | 0.46 | 0.369 | 0.352 | 0.372 | 0.331 | 0.321 | 0.252 | 0.228 | 0.225 | 0.192 | 0.082 | 0.17 | 0.311 | 0.351 | 0.353 | 0.372 | 0.295 |
| 2.725 | 0.514 | 0.508 | 0.425 | 0.404 | 0.474 | 0.445 | 0.434 | 0.381 | 0.378 | 0.431 | 0.393 | 0.285 | 0.371 | 0.511 | 0.627 | 0.564 | 0.585 | 0.564 |
| 2.85 | 0.37 | 0.351 | 0.246 | 0.204 | 0.294 | 0.28 | 0.262 | 0.226 | 0.295 | 0.403 | 0.362 | 0.302 | 0.43 | 0.446 | 0.555 | 0.538 | 0.556 |  |
| 2.975 | 0.218 | 0.153 | 0.075 | 0.053 | 0.12 | 0.165 | 0.095 | 0.094 | 0.207 | 0.099 | 0.03 | 0.007 | 0.056 | 0.016 | 0.062 | 0.168 | 0.375 | 0.269 |
| 3.1 | 0.266 | 0.116 | -0.014 | -0.067 | -0.025 | 0.069 | -0.026 | -0.033 | 0.011 | -0.051 | -0.144 | -0.233 | -0.146 | -0.134 | -0.012 | 0.127 | 0.098 | 0.029 |
| 3.225 | -0.272 | -0.377 | 0.517 | -0.582 | -0.563 | -0.362 | -0.366 | -0.377 | -0.324 | -0.395 | -0.378 | -0.28 | -0.141 | -0.141 | -0.01 | 0.065 | 0.116 | -0.069 |

Table III (continued)

| CAAR[1,22] market and risk adjusted (\%) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| c11c3 | -4.5 | -4 | -3.5 | -3 | 2.5 | -2 | 1.5 | -1 | -0.5 | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
| 1.1 | $0.358^{\text {b,e }}$ | $0.378^{\text {b,e }}$ | $0.391{ }^{\text {b,f }}$ | $0.436{ }^{\text {c,f }}$ | 0.456 c,f | $0.474{ }^{\text {c.f }}$ | $0.513^{\text {c,f }}$ | $0.515^{\text {c.f. }}$ | $0.515^{\text {c.f }}$ | $0.551^{\text {c,f }}$ | 0.55 c.f | $0.527^{\text {c,f }}$ | 0.579 | 0.52 ${ }^{\text {c,f }}$ | $0.533^{\text {b,f }}$ | $0.502^{\text {b,e }}$ | $0.5^{\text {b,e }}$ | 0.333 |
| 1.225 | 0.467 | 0.45 | $0.476{ }^{\text {c.f }}$ | $0.508^{\text {c.f }}$ | $0.52^{\text {c. }}$ | 0.499ct | $0.523^{\text {c.f }}$ | $0.587^{\text {c,f }}$ | $0.589^{\text {c }}$ | $0.608^{\text {c.f }}$ | $0.642^{\text {c.f }}$ | 0.608 | $0.61{ }^{\text {cr }}$ | 0.599 ${ }^{\text {c.f }}$ | $0.642^{\text {c,f }}$ | $0.616^{\text {c.f }}$ | $0.604^{\text {b }}$ | $0.444^{\text {d }}$ |
| 1.35 | $0.688^{\text {cf }}$ | $0.676^{\text {c.f }}$ | $0.682^{\text {c.f }}$ | 0.7 | $0.722^{\text {c,f }}$ | $0.708^{\text {cff }}$ | $0.764^{\text {c.f }}$ | $0.806^{\text {c,f }}$ | $0.825^{\text {ct }}$ | $0.842^{\text {c,f }}$ | $0.882^{\text {c.f }}$ | $0.819^{\text {c.f }}$ | $0.831^{\text {c,f }}$ | $0.78{ }^{\text {c }}$ | $0.802^{\text {c,f }}$ | $0.805^{\text {cff }}$ | $0.852^{\text {c.f }}$ | $0.652^{\text {be, }}$ |
| 1.475 | $0.703^{\text {cf }}$ | $0.757^{\text {c,f }}$ | $0.75{ }^{\text {c,f }}$ | 0.769, ${ }^{\text {c.f }}$ | $0.803^{\text {c.f. }}$ | $0.766^{\text {c.f }}$ | $0.808^{\text {cf }}$ | $0.842^{\text {c.f. }}$ | $0.832^{\text {cf }}$ | $0.893{ }^{\text {c.f. }}$ | 0.899 cf | $0.897^{\text {c.f }}$ | $0.916^{\text {c.f }}$ | $0.875^{\text {c }}$ | $0.927^{\text {c.f }}$ | 0.889 cf | $0.876^{\text {c.f }}$ | $0.662^{\text {be, }}$ |
| 1.6 | $0.753^{\text {cff }}$ | $0.786^{\text {c.f. }}$ | $0.804{ }^{\text {c.f }}$ | $0.841^{\text {c,f }}$ | $0.846^{\text {c,f }}$ | $0.821^{\text {c.f }}$ | $0.85{ }^{\text {c }}$ | $0.88{ }^{\text {c }}$ | $0.88^{\text {c }}$ | 0.946 | $0.936^{\text {c.f }}$ | $0.944^{\text {c.f }}$ | 0.955 | 0.955 | $0.965^{\text {c,f }}$ | $0.94{ }^{\text {c, }}$ | $0.877^{\text {c }}$ | $0.766^{\text {bee }}$ |
| 1.725 | $0.829^{\text {c,f }}$ | $0.847^{\text {c,f }}$ | 0.84 c.f | $0.854{ }^{\text {c.f }}$ | $0.848^{\text {c,f }}$ | 0.858 | $0.919^{\text {c,f }}$ | $0.97{ }^{\text {cif }}$ | 0.998 | $0.98{ }^{\text {c }}$ | 0.974 | $0.952^{\text {c,f }}$ | 0.989 | 1.035 | 0.879 | 0.848 | 0.902 | $0.934^{\text {ce. }}$ |
| 85 | $0.985^{\text {cff }}$ | $1.006^{\text {c,f }}$ | $1.027^{\text {c,f }}$ | $1.027^{\text {c,f }}$ | $1.044^{\text {c.f. }}$ | $1.095^{\text {c,f }}$ | $1.164^{\text {c.f }}$ | $1.191^{\text {c,f }}$ | $1.208^{\text {cf }}$ | $1.195^{\text {c,f }}$ | $1.167^{\text {c,f }}$ | $1.104^{\text {cif }}$ | $1.122^{\text {c,f }}$ | $1.148^{\text {cf }}$ | $1.02{ }^{\text {c, }}$ | $1.006^{\text {c,f }}$ | $1.041^{\text {c,f }}$ | $1.154^{\text {c.f }}$ |
| 1.975 | $1.14{ }^{\text {c, }}$, | $1.135^{\text {cff }}$ | $1.179{ }^{\text {c,f }}$ | $1.21{ }^{\text {c,f }}$ | $1.222^{\text {c,f }}$ | $1.252^{\text {cff }}$ | $1.272^{\text {c,f }}$ | $1.302^{\text {c.f }}$ | $1.296^{\text {cf }}$ | $1.27^{\text {c, }}$ | $1.273^{\text {c.f }}$ | $1.2{ }^{\text {c.f }}$ | $1.1811^{\text {c.f }}$ | $1.234^{\text {c.f }}$ | $1.158^{\text {cf }}$ | $1.059^{\text {c.f }}$ | 1.079 ${ }^{\text {cff }}$ | $1.123^{\text {c, }}$ |
| 2.1 | $1.214^{\text {c.f }}$ | $1.222^{\text {c. }}$ | $1.25{ }^{\text {cff }}$ | $1.256^{\text {c,f }}$ | 1.259 c,f | $1.287^{\text {cff }}$ | $1.341^{\text {c,f }}$ | $1.332^{\text {c.f. }}$ | 1.306 | $1.331^{\text {c,f }}$ | $1.34{ }^{\text {c, }}$ | 1.275 | $1.272^{\text {c,f }}$ | $1.318^{\text {cf }}$ | $1.275^{\text {c,f }}$ | $1.205^{\text {cf. }}$ | $1.239^{\text {c }}$ | $1.282^{\text {cf }}$ |
| 225 | $1.287^{\text {cf. }}$ | $1.312^{\text {c.f }}$ | $1.33{ }^{\text {c.f }}$ | $1.348^{\text {c,f }}$ | $1.367^{\text {c,f }}$ | $1.384^{\text {c.f. }}$ | $1.433^{\text {cff }}$ | $1.421^{\text {c,f }}$ | $1.381^{\text {c.f }}$ | $1.461^{\text {c.f }}$ | $1.447^{\text {c.f }}$ | $1.38{ }^{\text {cff }}$ | $1.464{ }^{\text {c.f }}$ | $1.507^{\text {cf }}$ | $1.499^{\text {c }}$ | $1.489^{\text {c.f }}$ | $1.534^{\text {c.f }}$ | $1.613^{\text {cff }}$ |
|  | $1.274^{\text {c.f }}$ | $1.297^{\text {c.f }}$ | $1.287^{\text {c.f }}$ | $1.274^{\text {c.f. }}$ | $1.353^{\text {c.f. }}$ | $1.368^{\text {c.f }}$ | $1.401^{\text {c.f }}$ | $1.413^{\text {c.f. }}$ | $1.387^{\text {cf }}$ | $1.396^{\text {c,f }}$ | $1.353^{\text {c.f }}$ | $1.297^{\text {c,f }}$ | $1.392^{\text {c.f }}$ | $1.501^{\text {cf }}$ | $1.48{ }^{\text {ct }}$ | $1.533^{\text {c.f. }}$ | $1.614^{\text {c.f }}$ | $1.53{ }^{\text {ce }}$ |
| 2.475 | $1.369^{\text {cff }}$ | $1.414^{\text {c,f }}$ | $1.425^{\text {c,f }}$ | $1.384^{\text {c.f. }}$ | $1.501^{\text {c,f }}$ | $1.48{ }^{\text {c,f }}$ | $1.528^{\text {cff }}$ | $1.51{ }^{\text {c,f }}$ | $1.484^{\text {c.f }}$ | $1.524^{\text {c,f }}$ | $1.4{ }^{\text {c, }}$, | $1.393^{\text {cf. }}$ | $1.497^{\text {c,f }}$ | $1.635^{\text {cff }}$ | $1.632^{\text {c.f }}$ | $1.665^{\text {cf. }}$ | 1.729 c,f | $1.626^{\text {c.f. }}$ |
| 2.6 | $1.375^{\text {c,f }}$ | 1.407 ${ }^{\text {c.f }}$ | $1.368^{\text {c,f }}$ | $1.392^{\text {c.f. }}$ | $1.504{ }^{\text {c.f }}$ | $1.483^{\text {c.f }}$ | $1.513^{\text {c,f }}$ | $1.471^{\text {c,f }}$ | $1.459{ }^{\text {c.f }}$ | $1.488^{\text {c,f }}$ | $1.473^{\text {c.f. }}$ | $1.433^{\text {c.f }}$ | $1.524^{\text {c,f }}$ | $1.712^{\text {cf }}$ | $1.732^{\text {c,f }}$ | 1.771 | $1.83{ }^{\text {c }}$ | $1.837^{\text {cf }}$ |
| 2.725 | $1.655^{\text {cf }}$ | $1.659{ }^{\text {c,f }}$ | $1.662^{\text {c.f }}$ | $1.667^{\text {c,f }}$ | $1.806^{\text {c,f }}$ | $1.794^{\text {c.f. }}$ | $1.838^{\text {cf }}$ | $1.788^{\text {c,f }}$ | $1.77{ }^{\text {c }}$ | $1.867^{\text {c,f }}$ | $1.835^{\text {c,f }}$ | $1.785^{\text {c,f }}$ | $1.886^{\text {ct }}$ f | $2.078{ }^{\text {cf }}$ | $2.197^{\text {c,f }}$ | $2.215^{\text {c,f }}$ | $2.312^{\text {c.f. }}$ | $2.327^{\text {c.f }}$ |
| 2.85 | $1.371^{\text {bee }}$ | $1.374^{\text {b,e }}$ | $1.371^{\text {be, }}$ | $1.314^{\text {b,e }}$ | $1.501^{\text {b,e }}$ | $1.513^{\text {bee }}$ | $1.585^{\text {ce, }}$ | $1.52^{\text {b,e }}$ | $1.601^{\text {ce }}$ | $1.741^{\text {c,e }}$ | $1.701^{\text {ce }}$ | $1.688^{\text {ce }}$ | $1.858^{\text {cff }}$ | $1.941^{\text {cf }}$ | $2.054{ }^{\text {c.f }}$ | $2.133^{\text {c.f }}$ | $2.23{ }^{\text {cf }}$ | $2.157^{\text {c.e }}$ |
| 2.975 | $1.372^{\text {b,e }}$ | $1.357^{\text {b,e }}$ | $1.395^{\text {b,e }}$ | $1.326^{\text {b,e }}$ | $1.481^{\text {b,e }}$ | $1.563^{\text {bee }}$ | $1.508^{\text {be, }}$ | $1.48{ }^{\text {b,e }}$ | $1.595^{\text {be, }}$ | $1.505^{\text {b,d }}$ | $1.452^{\text {b,d }}$ | $1.465^{\text {a,d }}$ | $1.598{ }^{\text {b,e }}$ | $1.647^{\text {b,e }}$ | $1.748^{\text {b,e }}$ | $1.952^{\text {b,e }}$ | $2.223^{\text {b,e }}$ | $2.306^{\text {bee }}$ |
| 3.1 | $1.447^{\text {b,e }}$ | $1.393^{\text {a,d }}$ | $1.417^{\text {a,d }}$ | $1.328^{\text {a,d }}$ | $1.507^{\text {a,d }}$ | $1.662^{\text {b,e }}$ | $1.604^{\text {b,d }}$ | $1.566^{\text {a,d }}$ | $1.593^{\text {a,d }}$ | $1.581^{\text {a,d }}$ | $1.511^{\text {a }}$ | $1.472^{\circ}$ | $1.549^{\text {a,d }}$ | $1.629^{\text {a,d }}$ | $1.798^{\text {a,d }}$ | $2.061^{\text {b,e }}$ | $2.089^{\text {b,e }}$ | $2.076^{\text {b,d }}$ |
| . 225 | 0.855 | 0.822 | 0.797 | 0.702 | 0.936 | 1.23 | 1.253 | 1.215 |  | 1.261 | 1.29 | 1.468 | $1.662^{\text {a }}$ | $1.74{ }^{\text {a }}$ | $1.934^{\text {a }}$ | $2.201^{\text {b }}$ | 2.316 | $2.191^{\text {a }}$ |

[^9]Table vIII：The 22－day excess returns and the counts of IDP－event
CAAR[1,22] market adjusted (\%)

| c1／c2 | 1.1 | 1.225 | 1.35 | 1.475 | 1.6 | 1.725 | 1.85 | 1.975 | 2.1 | 2.225 | 2.3 | 2.4 | 2.6 | 2.725 | 2.85 | 2.975 | 3.1 | 3.225 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.1 | －0．303 | －0．247 | －0．341 | －0．349 | －0．294 | －0．298 | －0．099 | －0．184 | －0．266 | －0．249 | －0．459 | －0．384 | 0.025 | －0．317 | －0．459 | －0．332 | －0．434 | －0．433 |
| 1.225 | －0．188 | －0．125 | $-0.364$ | －0．335 | －0．429 | －0．51 | －0．309 | －0．332 | －0．363 | －0．305 | －0．529 | －0．403 | －0．152 | －0．361 | －0．509 | －0．334 | －0．437 | －0．442 |
| 1.35 | －0．356 | －0．291 | －0．414 | －0．332 | $-0.272$ | －0．194 | 0.085 | 0.071 | －0．035 | 0.059 | －0．158 | －0．173 | －0．0 | －0．23 | －0．351 | －0．155 | －0．214 | －0．259 |
| 1.475 | －0．506 | －0．449 | $-0.499$ | －0．511 | $-0.422$ | －0．336 | 0 | －0．039 | －0．149 | 0.011 | －0．22 | －0．20 | －0．04 | －0．24 | －0．34 | －0．142 | －0．17 | －0．372 |
| 1.6 | －0．499 | －0．476 | －0．499 | －0．433 | $-0.373$ | －0．275 | －0．073 | －0．13 | －0．261 | －0．165 | －0．245 | －0．224 | －0．061 | －0．269 | －0．257 | －0．265 | 0．3 | －0．463 |
| 1.725 | －0．381 | －0．403 | －0．349 | －0．036 | －0．009 | 0.111 | 0.427 | 0.38 | 0.24 | 0.386 | 0.155 | 0.182 | 0.361 | 0.104 | 0.247 | 0.107 | 0.065 | －0．169 |
| 1.85 | －0．644 | －0．676 | －0．658 | －0．353 | $-0.274$ | －0．107 | 0.248 | 0.19 | 0.102 | 0.233 | 0.203 | 0.224 | 0.42 | 0.142 | 0.3 | 0.2 | 0.18 | －0．089 |
| 1.975 | －0．241 | $-0.382$ | $-0.36$ | －0．024 | 0.06 | 0.12 | 0.765 | 0.77 | 0.66 | 0.56 | 0.54 | 0.46 | 0.48 | 0.34 | ． 494 | 0.23 | 0.2 | －0．091 |
| 2.1 | 0.288 | 0.227 | 0.259 | 0.666 | 0.678 | 0.678 | 1.185 | 1.235 | 1.125 | 1.014 | 1 | 0.908 | 0.952 | 0.801 | 0.813 | 0.585 | 0.656 | 0.401 |
| 2.225 | 0.536 | 0.468 | 0.508 | 0.948 | 1.061 | 1.061 | 1.39 | 1.454 | 1.331 | 1.207 | 1.198 | 1.092 | 1.024 | 0.856 | 0.918 | 0.732 | 0.813 | 0.487 |
| 2.35 | 0.61 | 0.641 | 0.691 | 0.664 | 0.791 | 0.791 | 1.068 | 1.131 | 0.979 | 0.593 | 0.707 | 0.707 | 0.617 | 0.645 | 0.716 | 0.737 | 0.722 | 0.334 |
| 2.475 | 0.015 | 0.015 | 0.068 | 0.212 | 0.369 | 0.369 | 1.234 | 1.327 | 1.327 | 0.83 | 0.894 | 0.89 | 0.781 | 0.781 | 0.781 | 0.781 | 0.763 | 0.441 |
| 2.6 | －0．747 | －0．747 | －0．747 | －0．581 | －0．398 | －0．398 | 0.665 | 0.746 | 0.746 | 0.683 | 0.763 | 0.763 | 0.612 | 0.612 | 0.612 | 0.612 | 0.578 | 0.5 |
| 2.725 | －2．445 | －2．445 | －2．445 | －2．271 | －2．074 | －2．074 | －0．561 | －0．442 | －0．442 | －0．563 | －0．563 | －0．563 | －0．563 | －0．563 | －0．563 | －0．563 | －0．646 | －0．788 |
| 2.85 | －0．987 | －0．987 | $-0.987$ | －0．672 | －0．672 | －0．672 | 0.374 | 0.374 | 0.374 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.161 | 0.148 |
| 2.975 | －0．712 | －0．712 | $-0.712$ | －0．712 | －0．712 | －0．712 | 0.043 | 0.043 | 0.043 | 0.043 | 0.043 | 0.043 | 0.043 | 0.043 | 0.043 | 0.043 | －0．049 | －0．461 |
| 3.1 | －0．597 | －0．597 | ${ }^{-0.597}$ | －0．597 | ${ }^{-0.597}$ | －0．597 | 0．467 | 0．467 | 0．467 | 0．467 | 0.467 0.538 | 0．467 | 0.467 0.538 | 0．467 | 0．467 | 0．467 | 0.365 | 0．365 |


| 26＇ | 26＇\＆ | szL＇t | szL＇t | szぐt | szL＇t | szL＇t | szL＇t | szL＇t | szぐt | szぐt | szL＇t | 88L＇ | 88L＇ | 88＇¢ | 88L＇ | 88L＇غ | 88L＇E | รzでغ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| โ¢¢＇$\varepsilon$ | โ¢¢¢ | $80 \mathrm{E}^{\text {¢ }}$ | $80 \mathrm{E}^{\prime} \mathrm{t}$ | $80 \mathrm{E}^{\circ} \mathrm{t}$ | 808＇t | $80 \varepsilon^{\prime}$＇t | $80 \varepsilon^{\circ} \mathrm{t}$ | $80{ }^{\prime}$＇t | 808＇t | 808＇t | 808＇t | ¢st ${ }^{\text {¢ }}$ | Sst ${ }^{\text {¢ }}$ | sst＇$\varepsilon$ | sst＇ | ¢st＇$\varepsilon$ | ¢St＇$\varepsilon$ | 「¢ |
| 960 ＇r | でて | でくでて | でぐて | でぐて | でくでて | \＆6t＇z | \＆6t＇r | と6でて | \＆6t＇r | \＆6t＇r | \＆6t＇r | ¢ $66 \%$ |
| 9Lでて | くでて | st8＇z | ¢ヶ8＇ | ¢ $58 . \mathrm{L}$ | ¢ร8＇ | st8\％ | st8＇ | st8＇t | ャ06て | ャ06＇r | ＋06\％ | てくでて | てくでて | てくでて | 816 ＇ | $816 . \tau$ | 816 ＇ | 58 \％ |
| 9เع＇ | 62 | 8とL＇T | 88く＇T | 88く＇I | 88く＇I |  | 8\＆L＇土 | $8 \varepsilon^{\prime}$＇T | $988^{\prime} \mathrm{T}$ | 988 ＇T |  | St＇0 | St＇0 | £80\％ | 980＇0－ | 9800－ | 9800－ | szl＇r |
| く50＇r | $\angle 10 \%$ | ¢¢¢゙て | s¢¢゙て | ¢¢¢゙て | ¢¢¢＇z | ¢¢¢＇z | ¢รs＇z | Lてを＇て | $\angle 8 \varepsilon^{\prime}$ | $\angle 8 \varepsilon^{\prime}$ て | $\angle 50^{\circ}$ | 8 CZ ＇T | $8 \mathrm{Lで} \mathrm{\tau}$ | ¢56\％ | ＜ 88 | $\angle 880$ | く $8^{\circ}$ | 9 \％ |
| ยโ๕＇て | ${ }^{8859}$ r | ${ }_{\text {¢6t9＇r }}$ | ${ }_{\text {¢6t9＇r }}$ | ${ }_{\text {¢ } 6 \text { ¢9 }}$ | ${ }^{\text {p6t9＇r }}$ | persL＇r | persL＇r | ${ }^{1885}$ | ${ }_{\text {reft }} 90 \cdot \varepsilon$ | ${ }^{\circ} \mathrm{e} 990$＇$\varepsilon$ | pe\＆LLCて | Tot＇て | Tot＇z | ¢58．${ }^{\text {¢ }}$ | scl＇ | くt9＇T | ＜t9＇T | ¢くでて |
| 99ttir | pe808＇て |  | ratて8て | petetc＇r | ${ }_{p 6609}$ |  |  |  | ${ }^{\circ} 9866^{\circ} \mathrm{C}$ | ${ }_{\text {\％qSIT }}$ | ${ }_{39}$ T68＇て | ョqで8でて | ョ9で8でて | \％e\＆t9＇r | pe\＆tstr | pe6totr | peてくどて | ¢£て |
| pe666＇r | ${ }_{\text {\％9988＇}}$ | ${ }_{39} 988{ }^{\text {c }}$ \％ | \％qでと＇$\varepsilon$ |  | \％qをでを | \％ดて¢＇ | \％95tb＇$\varepsilon$ |  | ョ＜ 09 ＇$\varepsilon$ | ${ }_{p, 5}$ L＇$\varepsilon$ |  |  | \％q887＇$\varepsilon$ | ${ }^{9} 800{ }^{\circ} \mathrm{E}$ | pez8z＇て | psozr | pq¢¢S＇z | szzて |
| pr889\％ |  | \％998＇て | ${ }^{9} 8880^{\circ} \mathrm{E}$ | ＊99tr＇E | \％9S＇$¢$ | ${ }^{9} 6$ TT＇$\varepsilon$ | \％88で¢ | ～99ちでغ | ¢6Lと＇ | \％ $26 \pm$ ¢ | ¢6โと＇ | ヶq99くて |  | ¢\％209て | ${ }^{886}$＇I | ${ }_{\text {ps } 26 . \tau}$ | \％etでて | Tて |
| \＆8でて | pq899＇て | patLS＇Z |  | ${ }^{\text {ra } 50<2}$ | ＊qLTLて | ッTOL＇ | ヶ996L＇て | ヶ¢て88て | － 0 ¢6\％ | »2750＇$\varepsilon$ | ${ }^{\circ} 200 \cdot \varepsilon$ | ข6Lでて | pestic | perz6＇โ | $9 \varepsilon \underbrace{\prime}$＇T | $888^{\text {＇}}$ T | pttg＇T | SL6＇ |
| 688.1 | ¢T9T＇て | ¢Iti＇r | pello ${ }^{\text {c }}$ | ．558＇工 | peszor | ${ }^{\text {8 }} 8$＇$\tau$ | ．ยโ6＇โ | p．856＇t | 609.1 | 8802＇I |  | 265＇T | 998＇$\tau$ | 9tて＇I | $\angle 88^{\circ}$ | 8890 | £98．0 | $58^{\prime} \tau$ |
| 959.1 | Ltく＇I | 288＇โ | ${ }^{\text {ets8＇T }}$ | Ls9＇ | ${ }^{\text {eLI8＇T }}$ | 869 ＇ | － 2 L＇土 | pe976＇T | EtS＇T | ${ }^{8} 88^{\prime}$ T | pq $\square^{\text {a }}$ | pe6EL＇T | ${ }^{\text {¢ }}$ L29＇t | ${ }^{\text {899 }}$＇T | $60{ }^{\prime} \mathrm{T}$ | szo | †くて＇T | szC＇T |
| 954 I | カTL＇I | 602＇T | ¢8t＇ | でず「 | $585^{\prime}$ T | 18t＇t | 69t＇t | ． 2 ¢＇s | Isて＇T | $\mathrm{etS}^{\text {¢ }}$ T | petIL＇T | Sot＇T | દเદ＇โ | ธ8＇＇ | LT＇土 | zLO＇T | 20 T | $9 . \tau$ |
| Tot＇ | 69 T | 989 ＇ | £รて＇T | $86{ }^{\prime} \tau$ | $6 \varepsilon \varepsilon \cdot \tau$ | 6 CL ＇T | \＆もて＇T | $8<\varepsilon^{\prime}$＇ | $86^{\circ} 0$ | てて＇し | $988^{\prime}$＇ | 2860 | 56.0 | IT8\％ | 2060 | $558{ }^{\circ}$ | 2610 | Sくt＇T |
| 9ยع＇ | $6 \mathrm{Es}^{\text {＇}}$ | LLS＇t | 29T＇T | \＆\％O＇ | £รて＇T | $9 \varepsilon \chi^{\prime}$ T | $992 \cdot \tau$ | pe\＆\＆t＇T | 901＇T | ${ }^{\text {p298＇T }}$ | pe\＆ts＇t | pとてz＇T | 2st＇t | £50＇ | ${ }^{\circ} 280^{\circ} \mathrm{T}$ | p9t＇t | ${ }^{8} 850^{\circ} \mathrm{T}$ | ¢ $\varepsilon$＇ |
| 986.0 | $9<2$ TT | くセ¢＇T | 2960 | St8\％ | $66^{\circ} \mathrm{O}$ | 688.0 | St8\％ | 9660 | ャ8 $4^{\circ}$ | $2580^{\circ}$ | S00＇T | ع16\％ | t26\％ | ${ }^{6} L^{\circ} \mathrm{O}$ | $\angle 88^{\circ}$ | ．66t＇T | ${ }^{\text {p }} 660^{\circ} \mathrm{T}$ | szr＇ |
| ع66\％ | $9 \bullet て ゙ \tau$ | 9 9¢＇โ | ¢ +8.0 | ع0 ${ }^{\circ}$ | ャ¢0＇T | $\varepsilon \angle 99^{\circ}$ | 9 9\％ | $\angle 6 L^{\circ}$ | 8290 | 2180 | ${ }^{\text {2 } 280}{ }^{\circ} \mathrm{T}$ | ${ }^{8} 886^{\circ}$ | $88^{\circ}$ | toc： | L080 | p8880 | ค8980 | T＇ |
| ร＜て＇ | T＇E | S $66^{\circ}$ | 58 Z | šL＇て | 92 |  | ¢ $\varepsilon^{\text {\％}}$ | ¢zでて | t＇r | SL6＇T | $58^{\text {¢ }}$ | SzL＇T | 9 | SLt | ऽ ${ }^{\text {I }}$ | ¢zて＇T | T＇T | 2010 |

Table VIII (continued)

| c1 1 c2 | 1.1 | 1.225 | 1.35 | 1.475 | 1.6 | 1.725 | 1.85 | 1.975 | 2.1 | 2.225 | 2.35 | 2.475 | 2.6 | 2.725 | 2.85 | 2.975 | 3.1 | 3.225 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.1 | 267 | 261 | 257 | 251 | 241 | 232 | 220 | 212 | 208 | 196 | 187 | 178 | 168 | 161 | 151 | 138 | 133 | 122 |
| 1.225 | 248 | 244 | 241 | 234 | 224 | 216 | 205 | 200 | 197 | 186 | 177 | 171 | 163 | 158 | 148 | 136 | 131 | 121 |
| 1.35 | 231 | 227 | 223 | 217 | 211 | 205 | 196 | 191 | 188 | 177 | 168 | 164 | 158 | 153 | 144 | 132 | 128 | 117 |
| 1.475 | 219 | 215 | 211 | 206 | 200 | 194 | 186 | 180 | 178 | 170 | 162 | 158 | 153 | 149 | 141 | 129 | 126 | 115 |
| 1.6 | 204 | 199 | 195 | 191 | 185 | 180 | 174 | 169 | 167 | 160 | 153 | 149 | 144 | 140 | 134 | 124 | 121 | 112 |
| 1.725 | 186 | 181 | 177 | 172 | 167 | 162 | 156 | 151 | 149 | 142 | 136 | 134 | 130 | 128 | 122 | 114 | 111 | 107 |
| 1.85 | 168 | 163 | 161 | 156 | 150 | 147 | 142 | 137 | 136 | 129 | 126 | 124 | 120 | 118 | 112 | 104 | 102 | 98 |
| 1.975 | 138 | 135 | 134 | 128 | 125 | 123 | 117 | 113 | 112 | 111 | 108 | 108 | 105 | 103 | 99 | 95 | 93 | 89 |
| 2.1 | 114 | 113 | 112 | 108 | 106 | 106 | 102 | 99 | 98 | 97 | 94 | 94 | 91 | 89 | 86 | 84 | 83 | 79 |
| 2.225 | 98 | 97 | 96 | 93 | 92 | 92 | 90 | 87 | 86 | 85 | 82 | 82 | 81 | 79 | 78 | 76 | 75 | 72 |
| 2.35 | 83 | 82 | 81 | 80 | 79 | 79 | 76 | 73 | 72 | 70 | 67 | 67 | 66 | 65 | 64 | 63 | 63 | 61 |
| 2.475 | 64 | 64 | 63 | 62 | 61 | 61 | 58 | 55 | 55 | 53 | 52 | 52 | 51 | 51 | 51 | 51 | 51 | 49 |
| 2.6 | 50 | 50 | 50 | 49 | 48 | 48 | 45 | 42 | 42 | 41 | 40 | 40 | 39 | 39 | 39 | 39 | 38 | 37 |
| 2.725 | 38 | 38 | 38 | 37 | 36 | 36 | 33 | 32 | 32 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 30 | 29 |
| 2.85 | 26 | 26 | 26 | 25 | 25 | 25 | 23 | 23 | 23 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 21 | 21 |
| 2.975 | 22 | 22 | 22 | 22 | 22 | 22 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 20 | 19 |
| 3.1 | 16 | 16 | 16 | 16 | 16 | 16 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 14 | 14 |
| 3.225 | 15 | 15 | 15 | 15 | 15 | 15 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 13 | 13 |


| CAAR[1,22] market |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| c1)c2 | 1.1 | 1.225 | 1.35 | 1.475 | 1.6 | 1.725 | 1.85 | 1.975 | 2.1 | 2.225 | 2.35 | 2.475 | 2.6 | 2.725 | 85 | 2.975 | 3.1 | 3.225 |
| 1.1 | 0.275 | 0.285 | 0.159 | 0.179 | 0.191 | 0.245 | 0.486 | 0.446 | 0.151 | 0.197 | -0.04 | -0.058 | 0.207 | -0.04 | -0.302 | -0.435 | -0.591 | -0.35 |
| 1.225 | 0.45 | 0.4 | 0.199 | 0.197 | 0.077 | 0.121 | 0.373 | 0.388 | 0.246 | 0.331 | -0.021 | 0.031 | 0.146 | -0.073 | -0.298 | -0.396 | -0.552 | -0.402 |
| 1.35 | 0.46 | 0.401 | 0.338 | 0.371 | 0.318 | 0.366 | 0.689 | 0.722 | 0.47 | 0.559 | 0.231 | 0.337 | 0.423 | 0.098 | -0.123 | -0.218 | -0.325 | -0.315 |
| 1.475 | 0.291 | 0.24 | 0.237 | 0.209 | 0.191 | 0.185 | 0.639 | 0.672 | 0.455 | 0.631 | 0.3 | 0.383 | 0.489 | 0.223 | 0.06 | -0.026 | -0.175 | -0.27 |
| 1.6 | 0.239 | 0.194 | 0.131 | 0.173 | 0.247 | 0.309 | 0.479 | 0.532 | 0.362 | 0.411 | 0.229 | 0.217 | 0.349 | 0.023 | -0.058 | -0.137 | -0.236 | -0.274 |
| 1.725 | 0.194 | 0.176 | 0.232 | 0.481 | 0.473 | 0.549 | 0.809 | 0.902 | 0.726 | 0.843 | 0.665 | 0.602 | 0.726 | 0.297 | 0.322 | 0.126 | 0.092 | -0.02 |
| 1.85 | -0.041 | -0.087 | -0.019 | 0.255 | 0.287 | 0.394 | 0.671 | 0.77 | 0.652 | 0.748 | 0.712 | 0.633 | 0.813 | 0.323 | 0.313 | 0.143 | 0.126 | -0.071 |
| 1.975 | 0.501 | 0.359 | 0.439 | 0.778 | 0.796 | 0.85 | $1.352^{\text {a,d }}$ | $1.389^{\text {a,d }}$ | $1.227^{\text {d }}$ | 1.133 | 1.023 | 0.835 | 0.842 | 0.553 | 0.513 | 0.132 | 0.112 | 0.175 |
| 2.1 | 0.578 | 0.661 | 0.687 | 1.089 | 1.019 | 1.019 | $1.392^{\text {a,d }}$ | $1.454^{\text {a,d }}$ | 1.274 | 1.169 | 1.047 | 0.896 | 0.928 | 0.549 | 0.71 | 0.377 | 0.434 | 0.58 |
| 2.225 | 1.029 | 1.136 | 1.17 | $1.617^{\text {a d }}$ | $1.618^{\text {a,d }}$ | $1.618^{\text {a,d }}$ | $1.866^{\text {b.e. }}$ | $1.924^{\text {bee }}$ | $1.666^{\text {a,d }}$ | $1.582^{\text {a,d }}$ | 1.457 | 1.233 | 1.174 | 0.715 | 0.839 | 0.338 | 0.399 | 0.564 |
| 2.35 | 0.91 | 1.118 | 1.16 | 1.2 | 1.185 | 1.185 | 1.411 | 1.471 | 1.358 | 1.04 | 1.142 | 1.164 | 1.1 | 0.827 | 0.989 | 0.556 | 0.544 | 0.597 |
| 2.475 | 0.391 | 0.615 | 0.663 | 0.781 | 0.982 | 0.982 | 1.666 | $1.754^{\text {d }}$ | $1.754^{\text {d }}$ | 1.382 | 1.437 | 1.469 | 1.393 | 1.3 | 1.3 | 0.907 | 0.892 | 0.795 |
| 2.6 | -0.18 | 0.05 | 0.05 | 0.187 | 0.421 | 0.421 | 1.259 | 1.35 | 1.35 | 1.298 | 1.367 | 1.367 | 1.269 | 1.149 | 1.149 | 0.642 | 0.616 | 0.564 |
| 2.725 | -1.515 | -1.515 | -1.515 | -1.368 | -1.126 | -1.126 | 0.047 | 0.147 | 0.147 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | -0.455 | -0.514 | -0.617 |
| 2.85 | -0.085 | -0.085 | -0.085 | 0.159 | 0.306 | 0.306 | 1.094 | 1.094 | 1.094 | 1.024 | 0.977 | 0.977 | 0.977 | 0.977 | 0.977 | 0.326 | 0.27 | 0.26 |
| 2.975 | -0.451 | -0.451 | -0.451 | -0.451 | -0.3 | -0.3 | 0.261 | 0.261 | 0.261 | 0.261 | 0.181 | 0.181 | 0.181 | 0.181 | 0.181 | 0.181 | 0.118 | -0.177 |
| 3.1 | -0.644 | -0.644 | -0.644 | -0.644 | -0.416 | -0.416 | 0.481 | 0.481 | 0.481 | 0.481 | 0.481 | 0.481 | 0.481 | 0.481 | 0.481 | 0.481 | 0.398 | 0.398 |
| 3.225 | -0.091 | -0.091 | -0.091 | -0.091 | -0.091 | -0.091 | 0.938 | 0.938 | 0.938 | 0.938 | 0.938 | 0.938 | 0.938 | 0.938 | 0.938 | 0.938 | 0.874 | 0.874 |

Table IIII (contimued)

| c1 \c2 | 1.100 | 1.225 | 1.350 | 1.475 | 1.600 | 1.725 | 1.850 | 1.975 | 2.100 | 2.225 | 2.350 | 2.475 | 2.600 | 2.725 | 2.850 | 2.975 | 3.100 | 3.225 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.1 | $0.947^{\text {a,d }}$ | $0.964^{\text {a,d }}$ | 0.799 | 0.79 | 0.83 | $0.934^{\text {d }}$ | $1.042^{\text {a,d }}$ | 0.854 | 0.606 | 0.75 | 0.567 | 0.499 | 0.752 | 0.42 | 0.399 | 0.499 | 0.427 | 0.414 |
| 1.225 | $1.164^{\text {b,e }}$ | $1.153^{\text {b,e }}$ | $0.922^{\text {d }}$ | 0.86 | 0.765 | 0.841 | 0.961 | 0.871 | 0.783 | 0.963 | 0.695 | 0.726 | 0.771 | 0.477 | 0.517 | 0.549 | 0.478 | 0.367 |
| 1.35 | $1.042^{\text {a,d }}$ | $1.014^{\text {a,d }}$ | $1.037^{\text {a }}$ | $1.027^{\text {a }}$ | 0.985 | 1.017 | $1.321^{\text {b,d }}$ | $1.251{ }^{\text {a }}$ | 0.939 | $1.248^{\text {a,d }}$ | 1.029 | 1.11 | 1.144 | 0.741 | 0.753 | 0.803 | 0.802 | 0.595 |
| 1.475 | 0.932 | 0.946 | 1 | 0.957 | 0.915 | 0.864 | $1.339^{\text {b,d }}$ | $1.279^{\text {a }}$ | 1.021 | $1.424^{\text {b,d }}$ | 1.172 | 1.209 | $1.328^{\text {a }}$ | 1.033 | 1.069 | 1.146 | 1.038 | 0.791 |
| 1.6 | 0.991 | 0.979 | 1.003 | 1.017 | 1.084 | 1.122 | $1.338^{\text {a }}$ | $1.293{ }^{\text {a }}$ | 1.07 | $1.343^{\text {a }}$ | 1.222 | 1.219 | 1.325 | 1.003 | 1.089 | 1.134 | 1.028 | 0.815 |
| 1.725 | 1.145 | 1.048 | 1.155 | $1.463^{\text {a,d }}$ | $1.436^{\text {a,d }}$ | $1.488^{\text {a,d }}$ | $1.712^{\text {b,d }}$ | $1.694^{\text {b,d }}$ | $1.494^{\text {a }}$ | $1.845^{\text {b,e }}$ | $1.71{ }^{\text {a,d }}$ | $1.63{ }^{\text {a,d }}$ | $1.723^{\text {a,d }}$ | 1.264 | 1.424 | 1.277 | 1.133 | 0.988 |
| 1.85 | 0.964 | 0.814 | 0.972 | 1.312 | 1.351 | $1.49^{\text {a,d }}$ | $1.751^{\text {b,d }}$ | $1.734^{\text {b,d }}$ | $1.636^{\text {a,d }}$ | $1.946^{\text {b,e }}$ | $1.928^{\text {b,e }}$ | $1.814^{\text {b,d }}$ | $1.962^{\text {b,e }}$ | 1.455 | 1.504 | 1.381 | 1.344 | 0.991 |
| 1.975 | $1.668^{\text {a,d }}$ | $1.486^{\text {d }}$ | $1.533^{\text {a,d }}$ | $1.954^{\text {b,e }}$ | $2.013^{\text {b,e }}$ | $2.111^{\text {b,e }}$ | $2.641^{\text {c,f }}$ | $2.683^{\text {c.f }}$ | $2.509^{\text {c,e }}$ | $2.478^{\text {c,e }}$ | $2.341^{\text {b,e }}$ | $2.18{ }^{\text {b,e }}$ | $2.208^{\text {b,e }}$ | $1.928^{\text {a,d }}$ | $1.869^{\text {a }}$ | 1.579 | 1.545 | 1.53 |
| 2.1 | $1.734^{\text {a,d }}$ | $1.689^{\text {a,d }}$ | $1.734^{\text {a,d }}$ | $2.236^{\text {b,e }}$ | $2.144^{\text {b,e }}$ | $2.144^{\text {b,e }}$ | $2.525^{\text {c,e }}$ | $2.656^{\text {c,e }}$ | $2.461^{\text {b,e }}$ | $2.426^{\text {b,e }}$ | $2.27{ }^{\text {b,e }}$ | $2.184^{\text {b,d }}$ | $2.185^{\text {b,d }}$ | $1.879^{\text {a }}$ | $2.003^{\text {a }}$ | 1.755 | 1.742 | 1.78 |
| 2.225 | $2.0766^{\text {a,d }}$ | $2.032^{\text {a,d }}$ | $2.086^{\text {a,d }}$ | $2.682^{\text {b,e }}$ | $2.581^{\text {b,e }}$ | $2.581^{\text {b,e }}$ | $2.823^{\text {b,e }}$ | $2.957^{\text {c,e }}$ | $2.664^{\text {b,e }}$ | $2.638^{\text {b,e }}$ | $2.468^{\text {b,d }}$ | $2.28{ }^{\text {b,d }}$ | $2.289^{\text {a,d }}$ | $1.973^{\text {a }}$ | $2.186^{\text {a }}$ | 1.866 | 1.854 | 1.966 |
| 2.35 | $1.93{ }^{\text {a }}$ | $2.248^{\text {a,d }}$ | $2.317^{\text {b,d }}$ | $2.494^{\text {b,e }}$ | $2.361^{\text {a,d }}$ | $2.361^{\text {a,d }}$ | $2.384^{\text {b,d }}$ | $2.54{ }^{\text {b,e }}$ | $2.406^{\text {b,d }}$ | $2.194^{\text {a,d }}$ | $2.279^{\text {a d }}$ | $2.389^{\text {a,d }}$ | $2.306^{\text {a,d }}$ | 2.023 | $2.297^{\text {a,d }}$ | 2.068 | 2.028 | 2.062 |
| 2.475 | 1.357 | 1.686 | 1.769 | 1.846 | $2.07^{\text {d }}$ | $2.07{ }^{\text {d }}$ | $2.582^{\text {b,e }}$ | $2.793^{\text {b,e }}$ | $2.793^{\text {b,e }}$ | $2.418^{\text {a,d }}$ | $2.538^{\text {a,e }}$ | $2.681^{\text {b,e }}$ | $2.58{ }^{\text {a,e }}$ | $2.473^{\text {a,d }}$ | $2.473^{\text {a d }}$ | $2.212^{\text {d }}$ | 2.164 | 2.128 |
| 2.6 | 0.836 | 1.17 | 1.17 | 1.256 | 1.519 | 1.519 | $2.139^{\text {d }}$ | $2.387^{\text {a,d }}$ | $2.387^{\text {a,d }}$ | $2.328^{\text {d }}$ | $2.479^{\text {a,d }}$ | $2.479^{\text {a d }}$ | $2.348^{\text {d }}$ | 2.208 | 2.208 | 1.866 | 1.599 | 1.6 |
| 2.725 | 0.042 | 0.042 | 0.042 | 0.132 | 0.43 | 0.43 | 1.376 | 1.436 | 1.436 | 1.337 | 1.337 | 1.337 | 1.337 | 1.337 | 1.337 | 1.175 | 0.825 | 0.832 |
| 2.85 | 1.458 | 1.458 | 1.458 | 1.622 | 1.694 | 1.694 | 2.175 | 2.175 | 2.175 | 2.092 | 2.14 | 2.14 | 2.14 | 2.14 | 2.14 | 1.966 | 1.494 | 1.531 |
| 2.975 | 1.388 | 1.388 | 1.388 | 1.388 | 1.464 | 1.464 | 1.836 | 1.836 | 1.836 | 1.836 | 1.88 | 1.88 | 1.88 | 1.88 | 1.88 | 1.88 | 1.388 | 1.306 |
| 3.1 | 3.156 | 3.156 | 3.156 | 3.156 | 3.369 | 3.369 | 4.074 | 4.074 | 4.074 | 4.074 | 4.074 | 4.074 | 4.074 | 4.074 | 4.074 | 4.074 | 3.421 | 3.421 |
| 3.225 | 4.226 | 4.226 | 4.226 | 4.226 | 4.226 | 4.226 | $5.073^{\text {a,d }}$ | 4.4 | 4.4 |


Table VIII (contimued)
Panal c. c3 $=0$

| CAAR[1,22] market adjusted (\%) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| c11c2 | 1.1 | 1.225 | 1.35 | 1.475 | 1.6 | 1.725 | 1.85 | 1.975 | 2.1 | 2.225 | 2.35 | 2.475 | 2.6 | 2.725 |  |  | 3.1 | 3.225 |
| 1.1 | 0.652 | 0.586 | 0.438 | 0.495 | 0.48 | 0.521 | 0.727 | 0.689 | 0.536 | 0.524 | 0.391 | 0.418 | ${ }^{0.643}$ | 0.461 | 0.208 | 0.12 | -0.082 | 0.099 |
| 1.225 | 0.657 | 0.567 | 0.363 | 0.442 | 0.355 | 0.404 | 63 | 0.637 | 0.62 | 0.646 | 0.456 | 0.578 | 0.582 | 0.377 | 0.158 | 0.1 | -0.113 | 0.031 |
| 1.35 | 0.785 ${ }^{\circ}$ | 0.698 | 0.578 | 0.684 | 0.632 | 0.628 | $0.961^{\text {a }}$ | 0.969 | 0.84 | . 9 | 0.68 | 0.8 | 0.82 | 0.509 | 0.29 | 0.235 | 0.10 | 0.127 |
| 1.475 | 0.591 | 0.557 | 0.4 | 0.465 | 0.502 | 0.459 | 0.942 | 1.006 | 0.92 | 1.03 | 0.78 | 0.9 | 0.94 | 0.663 | 0.50 | 0.42 | 0.24 | 0.18 |
| 1.6 | 0.562 | 0.539 | 0.412 | 0.441 | 0.573 | 0.619 | 0.808 | 0.87 | 0.836 | 0.837 | 0.651 | 0.692 | 0.794 | 0.509 | 0.432 | 0.348 | 0.212 | 0.211 |
| 1.725 | 0.464 | . 43 | 0.447 | 55 | 0.702 | 815 | $1.084^{\text {a }}$ | $1.205^{\text {a,d }}$ | $1.192^{\text {ad }}$ | $1.243^{\text {asd }}$ | $1.09{ }^{\text {d }}$ | $1.082^{\text {d }}$ | $1.178^{\text {d }}$ | 0.8 | 0.842 | 0.62 | 0.544 | 0.461 |
| 1.85 | 0.292 | 0.213 | 0.248 | 0.466 | 0.562 | 0.691 | 0.977 | $1.105^{\text {d }}$ | $1.154^{\text {a }}$ | $1.192^{\text {a,d }}$ | 1.158 | 1.106 | $1.235^{\circ}$ | 0.809 | 0.8 | 0.6 | 0.5 | 0.426 |
| 1.975 | 0.652 | 0.469 | 0.528 | 0.75 | 0.888 | 0.964 | 1.399 | 1.50 | 1.489 | 1.409 | 1.352 | 1.19 | 1.22 | 0.92 | 0.89 | 0.50 | 0.52 | 0.593 |
| 2.1 | 0.774 | 0.833 | 0.845 | 1.141 | 1.164 | 1.1914 ${ }^{\text {d }}$ | $1.524^{\text {b,d }}$ | $1.582^{\text {b,d }}$ | $1.573^{\text {b }}$ | 1.484 | 1.454 | 1.279 | 1.329 | 1.003 | 1.142 | 0.76 | ${ }^{0.855}$ | 1.01 |
| 2.225 | 1.251 | $1.35{ }^{\text {d }}$ | $1.371^{\text {d }}$ | $1.694^{3 . e}$ | $1.737^{\text {bee }}$ | $1.772^{\text {bee }}$ | $1.972^{\text {bee }}$ | $2.025^{\text {bee }}$ | $1.974{ }^{\text {bea }}$ | $1.901^{\text {bed }}$ | $1.88{ }^{\text {b }}$ | $1.629^{\circ}$ | $1.599^{\circ}$ | 1.2 | 1.302 | 0.758 | 0.863 | 1.033 |
| 2.35 | 0.765 | 0.943 | 0.962 | 0.904 | 0.88 | 0.972 | 1.136 | 1.18 | 1.276 | 0.996 | 1.083 | 1.101 | 1.061 | 0.82 | 0.99 | 0.473 | 0.503 | 0.537 |
| 2.475 | 0.067 | 0.246 | 0.256 | 0.35 | 0.508 | 0.621 | 1.144 | 1.198 | 1.493 | 1.364 | 1.41 | 1.43 | 1.39 | 1.31 | 1.35 | 0.863 | 0.85 | 0.756 |
| 2.6 | -0.583 | -0.398 | -0.439 | -0.39 | -0.209 | -0.209 | 0.424 | 0.463 | 0.666 | 0.842 | 0.894 | 0.894 | 0.824 | 0.714 | 0.71 | 0.455 | 0.43 | 0.381 |
| 2.725 | -1.805 | -1.805 | -1.805 | -1.683 | -1.487 | -1.487 | -0.565 | -0.492 | -0.239 | -0.33 | -0.33 | -0.33 | -0.327 | -0.327 | -0.327 | -0.631 | -0.687 | -0.782 |
| 2.85 | 0.596 | 0.596 | 0.596 | 0.817 | 0.955 | 0.955 | 1.567 | 1.567 | 1.567 | 1.522 | 1.496 | 1.496 | 1.55 | 1.55 | 1.55 | 1.304 | 1.286 | 1.278 |
| 2.975 | 0.581 | 0.581 | 0.581 | 0.581 | 0.75 | 0.75 | 1.291 | 1.291 | 1.291 | 1.291 | 1.252 | 1.252 | 1.252 | 1.252 | 1.252 | 1.252 | 1.231 | 1.005 |
| 3.15 | 0.625 | 0.625 | 0.6 | 0.625 | 0.905 | 0.905 | 1.824 | . 824 | 1.824 | 1.824 | 1.824 | 1.824 |  | 1.824 | 224 | 1.824 | . 82 | . 82 |
| 3.225 | 0.10 | 0.1 | 0.1 |  | 0.105 | 0.105 | 1.147 | 1.147 | 1.14 | 1.147 | 1.147 | 1.147 | 1.1 |  |  | 1.147 | 1.097 |  |

AAR [1,22] market and risk adjusted (\%)

| c1 | 1.1 | 1.225 | 1.35 | 1.475 | 1.6 | 1.725 | 1.85 | 1.975 | 2.1 | 2.225 | 2.35 | 2.475 | 2.6 | . 72 | 2.85 | 2.97 | 3.1 | 3.225 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.1 | $1.153^{\text {b }}$ | $1.051^{\text {b,e }}$ | $0.909^{\text {a }}$ | $0.968^{\text {a }}$ | 0.96 | 0.935 | $1.077^{\text {b }}$ | $0.963{ }^{\circ}$ | 0.913 | 1.016 | 0.863 | 0.854 | 1.09 | 0.83 | 0.66 | 0.84 | 0.66 | 0.635 |
| 1.225 | 1.104 | $1.017^{\text {b, }}$ | 0.836 | 0.927 | 0.878 | 0.865 | 0.97 | 0.94 | 1.02 | 1.16 | 1.005 | 1.09 | 1.09 | 0.80 | 0.7 | 0.82 | 0.62 | . 524 |
| 1.35 | $1.227^{\text {b,e }}$ | $1.133^{\text {b,e }}$ | $1.103^{\text {b,d }}$ | $1.236^{\text {b }}$ | $1.196^{\text {b,d }}$ | $1.091{ }^{\text {a }}$ | $1.433^{\text {b,d }}$ | $1.407^{\text {b }}$ | 1.251 | 1.521 | $1.367^{\text {b,d }}$ | 1.45 | 1.431 | 1.01 | 0.88 | 1.023 | 0.92 | . 742 |
| 1.475 | $1.159^{\text {b,d }}$ | $1.121^{\text {a,d }}$ | $1.106^{\circ}$ | $1.064^{\circ}$ | $1.122^{\text {a }}$ | 1.006 | 1.528 | $1.547^{\text {b,d }}$ | 1.44 | 1.726 | 1.525 | 1.588 | 1.634 | 1.342 | 1.286 | 1.333 | 1.13 | 0.92 |
| 1.6 | $1.234^{\text {b,d }}$ | $1.164^{\text {a }}$ | $1.117^{\circ}$ | 1.116 | $1.285^{\text {b }}$ | $1.271^{\circ}$ | $1.543^{\text {b }}$ | 1.536 | 1.473 | $1.649^{\text {b }}$ | $1.514^{\text {b }}$ | 1.477 | 1.625 | 1.352 | $1.349^{\circ}$ | 1.369 | 1.17 | 0.995 |
| 1.725 | 1.319 | 1.187 | . 219 | 1.472 | $1.53{ }^{\text {b, }}$ | 1.559 | 1.843 | 1.881 | 1.846 | 2.075 | $1.973^{\text {b }}$ | 1.854 | $2.001^{\text {b }}$ | 1.609 | 1.69 | 1.50 | 1.26 | . 143 |
| 1.85 | $1.178{ }^{\text {a }}$ | 1.012 | 1.101 | $1.346^{\circ}$ | $1.483^{\circ}$ | $1.591^{\text {b }}$ | $1.871^{\text {b }}$ | $1.914^{\text {b }}$ | $1.983^{\text {b }}$ | 2.206 | $2.206^{\text {c }}$ | 2.079 | $2.221^{\text {b }}$ | 1.794 | $1.83{ }^{\text {b }}$ | 1.661 | 1.50 | . 201 |
| 1.975 | $1.51{ }^{\text {b,d }}$ | $1.341^{\text {a }}$ | $1.385^{\text {a,d }}$ | $1.613^{\text {b,d }}$ | $1.81{ }^{\text {bee }}$ | $1.89{ }^{\text {b,em }}$ | $2.338^{\text {c }}$ | $2.487^{\text {c }}$ | $2.482^{\text {c, }}$ | 2.454 | $2.397^{\text {ce }}$ | 2.234 | $2.287^{\text {b }}$ | $2.009^{\text {b }}$ | $1.939^{\text {b }}$ | 1.623 | 1.61 | 1.609 |
| 2.1 | $1.776^{\text {b,d }}$ | $1.709^{\text {a,d }}$ | $1.755^{\text {a,e }}$ | $2.108^{\text {bee }}$ | $2.147^{\text {b,e }}$ | $2.183^{\text {b, }}$ | $2.52^{\text {c }}$ | 2.635 | $2.633^{\text {c, }}$ | 2.604 | $2.555^{\text {ce }}$ | 2.375 | 2.411 | $2.144^{\text {b }}$ | $2.246^{\text {b }}$ | 1.969 | 1.99 | $2.048^{\text {a }}$ |
| 2.225 | $2.176^{\text {b,e }}$ | $2.139^{\text {b,e }}$ | $2.199^{\text {b, }}$ | $2.619^{\text {c, }}$ | $2.611^{\text {cee }}$ | $2.656^{\text {cee }}$ | 2.869 | 2.987 | 2.924 | $2.903^{\text {c }}$ | 2.857 | 2.57 | 2.619 | 2.347 | 2.53 | 2.185 | 2.217 | $2.349^{\text {a }}$ |
| 35 | 1.572 | $1.839^{\circ}$ | 1.908 | 1.924 | 1.79 | 1.946 | 1.954 | 2.076 | $2.176^{\text {a }}$ | $1.983^{\circ}$ | 2.051 | 2.144 | $2.11^{\text {d }}$ | 1.859 | 2.104 | 1.805 | 1.806 | 1.838 |
| 2.475 | 0.766 | 1.027 | 1.097 | 1.154 | 1.326 | 1.518 | 1.921 | $2.073^{\text {a }}$ | $2.387^{\text {a d }}$ | $2.206^{\text {a,d }}$ | $2.305^{\text {a,d }}$ | $2.422^{\text {a,e }}$ | $2.387^{\text {a d }}$ | $2.294^{\text {a,d }}$ | $2.308^{\text {a,d }}$ | 1.979 | 1.93 | 1.912 |
| 2.6 | 0.045 | 0.311 | 0.31 | 0.448 | 0.647 | 0.647 | 1.127 | 1.287 | 1.443 | 1.55 | 1.666 | 1.666 | 1.597 | 1.466 | 1.466 | 1.406 | 1.16 | 1.157 |
| 2.725 | -0.411 | -0.411 | -0.411 | -0.342 | -0.103 | -0.103 | 0.668 | 0.705 | 0.901 | 0.805 | 0.805 | 0.805 | 0.86 | 0.86 | 0.86 | 0.888 | 0.57 | 0.572 |
| 2.85 | 1.702 | 1.702 | 1.702 | 1.844 | 1.91 | 1.91 | 2.315 | 2.315 | 2.315 | 2.25 | 2.294 | 2.294 | 2.407 | 2.407 | 2.407 | 2.581 | 2.2 | 2.231 |
| 2.975 | 2.04 | 㖪 |  | 04 | 129 | 2.129 | 2.487 | 2.487 | 2.487 | 2.487 | 2.548 | 2.548 | 2.548 | 2.548 | 2.548 | 2.548 | 2.127 | 2.078 |
| 3.1 | $4.429^{\text {a }}$ | $4.429^{\text {a }}$ | $4.429^{\text {a }}$ | $4.429^{\text {a }}$ | $4.695^{\text {a }}$ | $4.695^{\text {a }}$ | $5.434^{\text {b,d }}$ | $4.892^{\text {a }}$ | $4.892^{\text {a }}$ |
| 3.225 | 4.418 | 4.418 | 4.418 | 4.418 | 4.418 | 4.418 | $5.277^{\text {a }}$ | $5.277^{\text {a }}$ | 5.277 | 5.277 | 5.277 | 5.277 | 5.277 | 5.277 | 5.277 | 5.277 | 4.61 | 4.617 |

Table VIII (continued)

| Number of events |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| c1 1 c 2 | 1.1 | 1.225 | 1.35 | 1.475 | 1.6 | 1.725 | 1.85 | 1.975 | 2.1 | 2.225 | 2.35 | 2.475 | 2.6 | 2.725 | 2.85 | 2.975 | 3.1 | 3.225 |
| 1.1 | 469 | 457 | 444 | 428 | 411 | 394 | 376 | 361 | 335 | 319 | 297 | 281 | 266 | 250 | 232 | 213 | 200 | 181 |
| 1.225 | 436 | 427 | 414 | 397 | 380 | 365 | 350 | 337 | 315 | 300 | 280 | 267 | 254 | 242 | 227 | 209 | 195 | 178 |
| 1.35 | 393 | 386 | 373 | 361 | 348 | 338 | 326 | 316 | 300 | 284 | 266 | 256 | 244 | 234 | 220 | 202 | 191 | 173 |
| 1.475 | 355 | 348 | 335 | 329 | 318 | 310 | 298 | 287 | 276 | 265 | 251 | 240 | 230 | 222 | 210 | 194 | 186 | 168 |
| 1.6 | 322 | 316 | 304 | 300 | 288 | 282 | 275 | 265 | 256 | 248 | 237 | 228 | 216 | 209 | 199 | 184 | 177 | 161 |
| 1.725 | 284 | 277 | 268 | 264 | 256 | 249 | 242 | 233 | 223 | 215 | 206 | 201 | 191 | 187 | 177 | 165 | 158 | 149 |
| 1.85 | 254 | 248 | 243 | 238 | 229 | 224 | 220 | 211 | 203 | 195 | 189 | 184 | 176 | 171 | 163 | 152 | 146 | 138 |
| 1.975 | 212 | 207 | 204 | 200 | 195 | 191 | 185 | 178 | 172 | 170 | 165 | 160 | 155 | 151 | 145 | 137 | 132 | 124 |
| 2.1 | 178 | 176 | 174 | 171 | 166 | 165 | 161 | 157 | 152 | 150 | 146 | 141 | 137 | 133 | 127 | 121 | 117 | 109 |
| 2.225 | 154 | 151 | 149 | 147 | 144 | 143 | 141 | 138 | 133 | 132 | 128 | 126 | 123 | 119 | 115 | 109 | 105 | 99 |
| 2.35 | 127 | 124 | 122 | 121 | 117 | 117 | 114 | 111 | 107 | 104 | 101 | 100 | 98 | 96 | 93 | 88 | 87 | 84 |
| 2.475 | 102 | 100 | 98 | 97 | 95 | 95 | 92 | 89 | 87 | 84 | 83 | 82 | 80 | 79 | 78 | 75 | 75 | 73 |
| 2.6 | 81 | 80 | 79 | 77 | 75 | 75 | 72 | 69 | 68 | 66 | 65 | 65 | 63 | 62 | 62 | 58 | 57 | 56 |
| 2.725 | 59 | 59 | 59 | 58 | 56 | 56 | 53 | 52 | 51 | 50 | 50 | 50 | 49 | 49 | 49 | 46 | 45 | 44 |
| 2.85 | 44 | 44 | 44 | 43 | 42 | 42 | 40 | 40 | 40 | 39 | 38 | 38 | 37 | 37 | 37 | 34 | 33 | 33 |
| 2.975 | 34 | 34 | 34 | 34 | 33 | 33 | 32 | 32 | 32 | 32 | 31 | 31 | 31 | 31 | 31 | 31 | 30 | 29 |
| 3.1 | 21 | 21 | 21 | 21 | 20 | 20 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 18 | 18 |
| 3.225 | 17 | 17 | 17 | 17 | 17 | 17 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 15 | 15 |

Panal D. $c 3=-2$

| $c 1 \backslash c 2$ | 1.1 | 1.225 | 1.35 | 1.475 | 1.6 | 1.725 | 1.85 | 1.975 | 2.1 | 2.225 | 2.35 | 2.475 | 2.6 | 2.725 | 2.85 | 2.975 | 3.1 | 3.225 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.1 | 0.57 | 0.556 | 0.365 | 0.379 | 0.408 | 0.5 | 0.662 | 0.621 | 0.492 | 0.446 | 0.279 | 0.347 | 0.736 | 0.519 | 0.278 | 0.251 | -0.227 | -0.017 |
| 1.225 | 0.56 | 0.513 | 0.317 | 0.332 | 0.275 | 0.359 | 0.533 | 0.542 | 0.537 | 0.523 | 0.284 | 0.445 | 0.632 | 0.388 | 0.177 | 0.169 | -0.26 | -0.069 |
| 1.35 | 0.598 | 0.556 | 0.44 | 0.472 | 0.449 | 0.506 | 0.78 | 0.79 | 0.665 | 0.685 | 0.512 | 0.663 | 0.887 | 0.563 | 0.354 | 0.355 | 0.002 | 0.021 |
| 1.475 | 0.318 | 0.337 | 0.242 | 0.212 | 0.248 | 0.298 | 0.708 | 0.769 | 0.708 | 0.782 | 0.612 | 0.747 | $0.996{ }^{\text {a }}$ | 0.712 | 0.566 | 0.514 | 0.108 | 0.044 |
| 1.6 | 0.424 | 0.405 | 0.247 | 0.274 | 0.363 | 0.421 | 0.661 | 0.723 | 0.699 | 0.657 | 0.563 | 0.599 | 0.871 | 0.578 | 0.506 | 0.431 | 0.047 | 0.048 |
| 1.725 | 0.606 | 0.584 | 0.559 | 0.761 | 0.785 | 0.84 | $1.061{ }^{\text {a }}$ | $1.199^{\text {a,d }}$ | $1.209^{\text {a,d }}$ | $1.266^{\text {a,d }}$ | $1.177^{\text {a,d }}$ | $1.171^{\text {a,d }}$ | $1.467^{\text {b,e }}$ | 1.091 | 1.147 | 0.958 | 0.614 | 0.554 |
| 1.85 | 0.389 | 0.316 | 0.351 | 0.514 | 0.572 | 0.695 | 0.926 | 1.072 | $1.133^{\text {a,d }}$ | $1.176^{\text {a,d }}$ | $1.207^{\text {a,d }}$ | $1.157^{\text {d }}$ | $1.503^{\text {b,e }}$ | 1.087 | 1.099 | 0.975 | 0.661 | 0.526 |
| 1.975 | 0.788 | 0.615 | 0.674 | 0.831 | 0.917 | $0.999^{\text {d }}$ | $1.459^{\text {b,e }}$ | $1.57{ }^{\text {b,e }}$ | $1.555^{\text {b,e }}$ | $1.489^{\text {b,e }}$ | $1.436^{\text {a,d }}$ | $1.278^{\text {a,d }}$ | $1.309^{\text {a,d }}$ | 1.031 | 1 | 0.631 | 0.582 | 0.672 |
| 2.1 | 0.838 | 0.896 | 0.908 | 1.126 | 1.147 | $1.182^{\text {d }}$ | $1.501^{\text {b,d }}$ | $1.596{ }^{\text {b,d }}$ | $1.588^{\text {b,d }}$ | $1.514^{\text {a,d }}$ | $1.485^{\text {a,d }}$ | 1.305 | 1.359 | 1.043 | 1.18 | 0.812 | 0.905 | 1.058 |
| 2.225 | 1.287 | $1.382^{\text {a,d }}$ | $1.403^{\text {a,d }}$ | $1.636^{\text {a,e }}$ | $1.676^{\text {b,e }}$ | $1.72{ }^{\text {b,e }}$ | $1.91{ }^{\text {b,e }}$ | $2.01{ }^{\text {b,e }}$ | $1.961{ }^{\text {b,e }}$ | $1.906^{\text {b,e }}$ | $1.886^{\text {b,e }}$ | $1.63{ }^{\text {a,d }}$ | $1.624^{\text {a }}$ | 1.235 | 1.336 | 0.808 | 0.913 | 1.08 |
| 2.35 | 0.806 | 0.978 | 0.997 | 0.845 | 0.82 | 0.922 | 1.08 | 1.17 | 1.265 | 0.99 | 1.076 | 1.078 | 1.061 | 0.821 | 0.991 | 0.473 | 0.503 | 0.537 |
| 2.475 | 0.062 | 0.238 | 0.247 | 0.339 | 0.494 | 0.622 | 1.133 | 1.186 | 1.474 | 1.352 | 1.398 | 1.404 | 1.396 | 1.317 | 1.356 | 0.863 | 0.851 | 0.756 |
| 2.6 | -0.564 | -0.382 | -0.423 | -0.374 | -0.195 | -0.195 | 0.43 | 0.469 | 0.669 | 0.842 | 0.894 | 0.894 | 0.824 | 0.714 | 0.714 | 0.455 | 0.43 | 0.381 |
| 2.725 | -1.76 | -1.76 | -1.76 | -1.639 | -1.445 | -1.445 | -0.538 | -0.465 | -0.218 | -0.33 | -0.33 | -0.33 | -0.327 | -0.327 | -0.327 | -0.631 | -0.687 | -0.782 |
| 2.85 | 0.603 | 0.603 | 0.603 | 0.819 | 0.953 | 0.953 | 1.551 | 1.551 | 1.551 | 1.522 | 1.496 | 1.496 | 1.55 | 1.55 | 1.55 | 1.304 | 1.286 | 1.278 |
| 2.975 | 0.59 | 0.59 | 0.59 | 0.59 | 0.754 | 0.754 | 1.279 | 1.279 | 1.279 | 1.291 | 1.252 | 1.252 | 1.252 | 1.252 | 1.252 | 1.252 | 1.231 | 1.005 |
| 3.1 | 0.637 | 0.637 | 0.637 | 0.637 | 0.905 | 0.905 | 1.778 | 1.778 | 1.778 | 1.824 | 1.824 | 1.824 | 1.824 | 1.824 | 1.824 | 1.824 | 1.82 | 1.82 |
| 3.225 | 0.149 | 0.149 | 0.149 | 0.149 | 0.149 | 0.149 | 1.133 | 1.133 | 1.133 | 1.147 | 1.147 | 1.147 | 1.147 | 1.147 | 1.147 | 1.147 | 1.097 | 1.097 |

Table VIII (contimued)

| CAAR[1,22] market and risk adjusted (\%) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| c1)c2 | 1.1 | 1.225 | 1.35 | 1.475 | 1.6 | 1.725 | 1.85 | 1.975 | 2.1 | 2.225 | 2.35 | 2.475 | 2.6 | 2.725 | 2.85 | 2.975 | 3.1 | 3.225 |
| 1.1 | $1.099^{\text {b,e }}$ | $1.091^{\text {b,e }}$ | 0.886 ${ }^{\text {a,d }}$ | $0.898^{\text {a,d }}$ | $0.927^{\text {a d }}$ | 0.983 ${ }^{\text {a d }}$ | $1.07^{\text {b,d }}$ | $0.947^{\text { }}$ | $0.968{ }^{\text {a }}$ | $1.049^{\text {a }}$ | 0.845 | 0.908 | $1.301^{\text {a,d }}$ | 0.973 | 0.811 | 1.037 | 0.528 | 0.574 |
| 1.225 | $1.043^{\text {b,e }}$ | $1.046^{\text {bee }}$ | $0.824^{\text {a,d }}$ | $0.83{ }^{\text {d }}$ | 0.804 | 0.87 | $0.923{ }^{\text {a }}$ | 0.887 | $1.031^{\text {a }}$ | $1.147^{\circ}$ | 0.922 | 1.08 | $1.261^{\text {a,d }}$ | 0.895 | 0.796 | 0.957 | 0.492 | 0.47 |
| 1.35 | $1.042^{\text {b,e }}$ | $1.037^{\text {bee }}$ | $0.965^{\text {a,d }}$ | $0.999^{\text {a,d }}$ | $0.98{ }^{\text {a }}$ | 0.985 ${ }^{\text {a }}$ | $1.252^{\text {b,d }}$ | $1.216^{\text {b,d }}$ | $1.132^{\text {a }}$ | $1.382^{\text {b,d }}$ | $1.285^{\text {b,d }}$ | $1.404^{\text {b,e }}$ | $1.663^{\text {bee }}$ | $1.187^{\text {a }}$ | 1.061 | $1.251^{\text {a }}$ | 0.881 | 0.677 |
| 1.475 | $0.928^{\text {a }}$ | $0.96{ }^{\text {a }}$ | 0.872 | 0.83 | 0.88 | 0.893 | $1.327^{\text {bod }}$ | $1.333^{\text {b,d }}$ | $1.276^{\text {b }}$ | $1.543^{\text {bee }}$ | $1.447^{\text {b,d }}$ | $1.505^{\text {b,e }}$ | $1.848^{\text {ce }}$ | $1.486^{\text {b,d }}$ | $1.44{ }^{\circ}$ | $1.532^{\text {b }}$ | 1.054 | 0.836 |
| 1.6 | $1.105^{\text {a d }}$ | $1.067^{\text {a }}$ | 1.002 | 0.992 | $1.063^{\text {a }}$ | $1.115^{\text {a }}$ | $1.41^{\text {b,d }}$ | $1.393^{\text {b }}$ | $1.369^{\text {b }}$ | $1.494^{\text {b,d }}$ | $1.474^{\text {b,d }}$ | $1.436^{\text {b }}$ | $1.82{ }^{\text {b,e }}$ | $1.468^{\circ}$ | $1.47^{\circ}$ | $1.5{ }^{\text {a }}$ | 0.997 | 0.811 |
| 1.725 | $1.464^{\text {b,e }}$ | $1.377^{\text {b,d }}$ | $1.354^{\text {a,d }}$ | $1.59{ }^{\text {b,e }}$ | $1.595^{\text {bee }}$ | $1.588^{\text {b,d }}$ | $1.81{ }^{\text {b,e }}$ | $1.874^{\text {b,e }}$ | $1.89{ }^{\text {b,e }}$ | $2.127^{\text {c.e }}$ | $2.113^{\text {ce }}$ | $2.001^{\text {b,e }}$ | $2.423^{\text {c.f. }}$ | $1.951^{\text {b,e }}$ | $2.051^{\text {b,d }}$ | $1.896^{\text {b }}$ | 1.329 | 1.214 |
| 1.85 | $1.288^{\text {a }}$ | 1.131 | $1.219^{\text {a }}$ | $1.403^{\text {a }}$ | $1.456^{\text {b }}$ | $1.559^{\text {b,d }}$ | $1.772^{\text {b,d }}$ | $1.838^{\text {b,d }}$ | $1.959^{\text {bee }}$ | $2.19{ }^{\text {ce }}$ | $2.28{ }^{\text {cee }}$ | $2.158^{\text {ce }}$ | $2.598^{\text {cff }}$ | $2.091^{\text {b,e }}$ | $2.14{ }^{\text {b,e }}$ | $1.998^{\text {b,d }}$ | 1.569 | 1.275 |
| 1.975 | $1.615^{\text {b,d }}$ | $1.456^{\text {a d }}$ | $1.499^{\text {a,d }}$ | $1.661^{\text {b,d }}$ | $1.801^{\text {b,e }}$ | $1.859^{\text {b,e }}$ | $2.368^{\text {cee }}$ | $2.509 \mathrm{c}, \mathrm{f}$ | $2.505^{\text {cee }}$ | $2.499{ }^{\text {cff }}$ | $2.446^{\text {ce }}$ | $2.312^{\text {c,e }}$ | $2.425^{\text {c,e }}$ | $2.162^{\text {b,e }}$ | $2.101^{\text {b,d }}$ | $1.806^{\text {a }}$ | 1.66 | 1.652 |
| 2.1 | $1.762^{\text {b,d }}$ | $1.696^{\text {b,d }}$ | $1.741^{\text {b,d }}$ | $2.011^{\text {b,e }}$ | $2.046^{\text {bee }}$ | $2.059^{\text {b,e }}$ | 2.379 ce | $2.533^{\text {c,e }}$ | $2.528^{\text {ce }}$ | $2.522^{\text {c,e }}$ | $2.472^{\text {ce }}$ | $2.32^{\text {b,e }}$ | $2.421^{\text {b,e }}$ | $2.163^{\text {b }}$ | $2.262^{\text {b, }}$ | $1.995^{\circ}$ | $2.016^{\text {a }}$ | $2.074^{\text {a }}$ |
| 2.225 | $2.187^{\text {b,e }}$ | $2.152^{\text {bee }}$ | $2.21^{\text {b,e }}$ | $2.535^{\text {ce }}$ | $2.526^{\text {cee }}$ | $2.544^{\text {c,e }}$ | $2.745^{\text {c,e }}$ | $2.914^{\text {c.f }}$ | $2.851^{\text {ce }}$ | $2.859^{\text {ce }}$ | $2.813^{\text {ce }}$ | $2.563^{\text {b }}$ | $2.659^{\text {bee }}$ | $2.394^{\text {b }}$ | $2.574^{\text {b }}$ | $2.241^{\text {a,d }}$ | $2.274^{\text {a }}$ | $2.406^{\text {a,d }}$ |
| 2.35 | 1.555 | $1.812^{\text {a }}$ | $1.878^{\text {a }}$ | $1.798^{\text {a }}$ | 1.664 | $1.784^{\text {a }}$ | $1.788^{\text {a }}$ | $1.96{ }^{\text {a }}$ | $2.053^{\text {a }}$ | $1.895^{\circ}$ | $1.96{ }^{\text {a }}$ | $2.088^{\text {a }}$ | $2.11^{\text {a }}$ | 1.859 | $2.104^{\text {a }}$ | 1.805 | 1.806 | 1.838 |
| 2.475 | 0.7 | 0.955 | 1.021 | 1.077 | 1.243 | 1.393 | 1.784 | 1.928 | $2.232^{\text {a d }}$ d | 2.095 ${ }^{\text {a,d }}$ | $2.191^{\text {a,d }}$ | $2.35^{\text {a,d }}$ | $2.387^{\text {a d }}$ | $2.294^{\text {a d }}$ d | $2.308^{\text {a d }}$ | 1.979 | 1.937 | 1.912 |
| 2.6 | 0.023 | 0.285 | 0.283 | 0.42 | 0.615 | 0.615 | 1.087 | 1.243 | 1.396 | 1.55 | 1.666 | 1.666 | 1.597 | 1.466 | 1.466 | 1.406 | 1.164 | 1.157 |
| 2.725 | -0.434 | -0.434 | -0.434 | -0.366 | -0.133 | -0.133 | 0.622 | 0.658 | 0.849 | 0.805 | 0.805 | 0.805 | 0.86 | 0.86 | 0.86 | 0.888 | 0.571 | 0.572 |
| 2.85 | 1.624 | 1.624 | 1.624 | 1.762 | 1.823 | 1.823 | 2.215 | 2.215 | 2.215 | 2.25 | 2.294 | 2.294 | 2.407 | 2.407 | 2.407 | 2.581 | 2.2 | 2.231 |
| 2.975 | 1.93 | 1.93 | 1.93 | 1.93 | 2.013 | 2.013 | 2.357 | 2.357 | 2.357 | 2.487 | 2.548 | 2.548 | 2.548 | 2.548 | 2.548 | 2.548 | 2.127 | 2.078 |
| 3.1 | $4.146^{\text {a }}$ | $4.146^{\text {a }}$ | $4.146^{\text {a }}$ | $4.146^{\text {a }}$ | $4.386^{\text {a }}$ | $4.386^{\text {a }}$ | 5.072 ${ }^{\text {a,d }}$ | 5.072 ${ }^{\text {a,d }}$ | $5.072^{\text {a,d }}$ | $5.434^{\text {b,d }}$ | $5.434^{\text {b,d }}$ | $5.434^{\text {b,d }}$ | $5.4344^{\text {b,d }}$ | $5.434^{\text {b,d }}$ | $5.434^{\text {b,d }}$ | $5.434^{\text {b,d }}$ | $4.892^{\text {a }}$ | $4.892^{\text {a }}$ |
| 225 |  |  |  |  |  |  | $4.861^{\text {a,d }}$ |  |  | $5.277^{\text {a,d }}$ | 5.277 ${ }^{\text {a,d }}$ | $5.277^{\text {a,d }}$ | 5.277 ${ }^{\text {a,d }}$ | $5.277^{\text {a,d }}$ | $5.277^{\text {a,d }}$ | 5.277 ${ }^{\text {a,d }}$ |  |  |


| c11c2 | 1.1 | 1.225 | 1.35 | 1.475 | 1.6 | 1.725 | 1.85 | 1.975 | 2.1 | 2.225 | 2.35 | 2.475 | 2.6 | 2.725 | 2.85 | 2.975 | 3.1 | 3.225 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.1 | 501 | 482 | 471 | 454 | 436 | 413 | 396 | 388 | 353 | 332 | 306 | 290 | 275 | 259 | 241 | 222 | ${ }^{208}$ | 188 |
| 1.225 | 464 | 449 | 438 | 421 | 404 | 384 | 368 | 353 | 331 | 313 | 290 | 277 | 263 | 251 | 236 | 218 | 203 | 186 |
| 1.35 | 421 | 409 | 397 | 385 | 372 | 358 | 344 | 332 | 316 | 298 | 277 | 266 | 254 | 243 | 229 | 211 | 199 | 181 |
| 1.475 | 380 | 368 | 356 | 350 | 340 | 328 | 314 | 301 | 289 | 276 | 260 | 249 | 239 | 230 | 218 | 201 | 192 | 175 |
| 1.6 | 340 | 333 | 320 | 316 | 305 | 297 | 288 | 276 | 266 | 257 | 244 | 235 | 223 | 215 | 205 | 190 | 182 | 167 |
| 1.725 | 297 | 289 | 280 | 276 | 268 | 262 | 254 | 244 | 232 | 223 | 213 | 208 | 198 | 193 | 183 | 171 | 163 | 155 |
| 1.85 | 265 | 259 | 254 | 248 | 240 | 235 | 230 | 219 | 210 | 201 | 194 | 189 | 181 | 176 | 168 | 157 | 151 | 144 |
| 1.975 | 221 | 216 | 213 | 208 | 204 | 200 | 193 | 185 | 179 | 176 | 171 | 166 | 161 | 157 | 151 | 143 | 137 | 130 |
| 2.1 | 186 | 184 | 182 | 178 | 173 | 172 | 168 | 162 | 157 | 154 | 150 | 145 | 141 | 137 | 131 | 125 | 121 | 113 |
| 2.225 | 162 | 159 | 157 | 154 | 151 | 150 | 148 | 143 | 138 | 136 | 132 | 130 | 126 | 122 | 118 | 112 | 108 | 102 |
| 2.35 | 132 | 129 | 127 | 125 | 121 | 121 | 118 | 113 | 109 | 105 | 102 | 101 | 98 | 96 | 93 | 88 | 87 |  |
| 2.475 | 104 | 102 | 100 | 99 | 97 | 97 | 94 | 91 | 89 | 85 | 84 | 83 | 80 | 79 | 78 | 75 | 75 | 73 |
| 2.6 | 82 | 81 | 80 | 78 | 76 | 76 | 73 | 70 | 69 | 66 | 65 | 65 | 63 | 62 | 62 | 58 | 57 | 56 |
| 2.725 | 60 | 60 | 60 | 59 | 57 | 57 | 54 | 53 | 52 | 50 | 50 | 50 | 49 | 49 | 49 | 46 | 45 | 44 |
| 2.85 | 45 | 45 | 45 | 44 | 43 | 43 | ${ }^{41}$ | 41 | 41 | 39 | 38 | 38 | 37 | 37 | 37 | 34 | 33 | 33 |
| 2.975 | 35 | 35 | 35 | 35 | 34 | 34 | 33 | 33 | 33 | 32 | 31 | 31 | 31 | 31 | 31 | 31 | 30 | 29 |
| 3.1 | 22 | 22 | 22 | 22 | 21 | 21 | 20 | 20 | 20 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 18 | 18 |
| 3.225 | 18 | 18 | 18 | 18 | 18 | 18 | 17 | 17 | 17 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 15 | 15 |

Table VIII (contimued)

| CAAR[1,22] market adjusted (\%) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| c1\c2 | 1.1 | 1.225 | 1.35 | 1.475 | 1.6 | 1.725 | 1.85 | 1.975 | 2.1 | 2.225 | 2.35 | 2.475 | 2.6 | 2.725 | 2.85 | 2.975 | 3.1 | 3.225 |
| 1.1 | 0.556 | 0.538 | 0.328 | 0.39 | 0.437 | 0.526 | 0.707 | 0.668 | 0.545 | 0.502 | 0.329 | 0.374 | 0.76 | 0.537 | 0.302 | 0.261 | -0.202 | -0.017 |
| 1.225 | 0.563 | 0.517 | 0.285 | 0.366 | 0.307 | 0.388 | 0.582 | 0.594 | 0.593 | 0.582 | 0.337 | 0.472 | 0.659 | 0.409 | 0.203 | 0.18 | -0.234 | -0.069 |
| 1.35 | 0.641 | 0.578 | 0.432 | 0.508 | 0.483 | 0.536 | $0.831^{\text {a }}$ | $0.843^{\text {a }}$ | 0.723 | 0.746 | 0.565 | 0.688 | 0.911 | 0.582 | 0.377 | 0.364 | 0.026 | 0.021 |
| 1.475 | 0.411 | 0.402 | 0.283 | 0.25 | 0.303 | 0.349 | 0.758 | 0.82 | 0.762 | 0.848 | 0.667 | 0.773 | $1.021^{\text {a }}$ | 0.729 | 0.587 | 0.522 | 0.132 | 0.044 |
| 1.6 | 0.441 | 0.438 | 0.299 | 0.326 | 0.433 | 0.486 | 0.724 | 0.788 | 0.767 | 0.737 | 0.649 | 0.629 | 0.899 | 0.599 | 0.53 | 0.441 | 0.072 | 0.048 |
| 1.725 | 0.596 | 0.592 | 0.611 | 0.809 | 0.835 | 0.906 | $1.125^{\text {a }, \mathrm{d}}$ | $1.263^{\text {b,d }}$ | $1.275^{\text {b,d }}$ | $1.348^{\text {b,e }}$ | $1.265^{\text {a,e }}$ | $1.197^{\text {a,d }}$ | $1.49{ }^{\text {b,e }}$ | 1.104 | 1.16 | 0.962 | 0.635 | 0.554 |
| 1.85 | 0.419 | 0.367 | 0.413 | 0.574 | 0.632 | 0.771 | 0.999 | $1.145^{\text {a,d }}$ | $1.209^{\text {a,d }}$ | $1.269^{\text {a,e }}$ | $1.303^{\text {a,e }}$ | $1.186^{\text {a d }}$ | $1.527^{\text {b,e }}$ | 1.101 | 1.113 | 0.979 | 0.683 | 0.526 |
| 1.975 | 0.695 | 0.605 | 0.662 | 0.815 | 0.898 | $0.999^{\text {d }}$ | $1.447^{\text {b,e }}$ | $1.555^{\text {b,e }}$ | $1.54{ }^{\text {b,e }}$ | $1.494^{\text {b,e }}$ | $1.443^{\text {b,e }}$ | $1.288^{\text {a,d }}$ | $1.319^{\text {a d }}$ | 1.048 | 1.019 | 0.64 | 0.608 | 0.672 |
| 2.1 | 0.763 | 0.877 | 0.889 | 1.099 | 1.119 | $1.189^{\text {d }}$ | $1.499^{\text {b,d }}$ | $1.591^{\text {b,e }}$ | $1.583^{\text {b,d }}$ | $1.532^{\text {b,d }}$ | $1.505^{\text {a,d }}$ | $1.331^{\text {a }}$ | $1.384^{\text {a }}$ | 1.077 | 1.211 | 0.837 | 0.929 | 1.058 |
| 2.225 | 1.201 | $1.363^{\text {a,d }}$ | $1.382^{\text {a,d }}$ | $1.608^{\text {b,e }}$ | $1.646^{\text {b,e }}$ | $1.734^{\text {b,e }}$ | $1.919^{\text {b,e }}$ | $2.017^{\text {b,e }}$ | $1.969^{\text {b,e }}$ | $1.916^{\text {b,e }}$ | $1.897^{\text {b,e }}$ | $1.648^{\text {a,d }}$ | $1.643^{\text {a,d }}$ | 1.268 | 1.366 | 0.836 | 0.939 | 1.08 |
| 2.35 | 0.784 | 0.951 | 0.969 | 0.821 | 0.796 | 0.945 | 1.1 | 1.189 | 1.281 | 1.014 | 1.099 | 1.101 | 1.085 | 0.853 | 1.018 | 0.482 | 0.513 | 0.537 |
| 2.475 | 0.063 | 0.232 | 0.241 | 0.329 | 0.478 | 0.659 | 1.156 | 1.208 | 1.487 | 1.37 | 1.414 | 1.421 | 1.413 | 1.337 | 1.375 | 0.87 | 0.857 | 0.756 |
| 2.6 | -0.557 | -0.38 | -0.42 | -0.373 | -0.2 | -0.135 | 0.476 | 0.515 | 0.711 | 0.88 | 0.931 | 0.931 | 0.864 | 0.759 | 0.759 | 0.455 | 0.43 | 0.381 |
| 2.725 | -1.818 | -1.818 | -1.818 | -1.7 | -1.512 | -1.445 | -0.538 | -0.465 | -0.218 | -0.33 | -0.33 | -0.33 | -0.327 | -0.327 | -0.327 | -0.631 | -0.687 | -0.782 |
| 2.85 | 0.603 | 0.603 | 0.603 | 0.819 | 0.953 | 0.953 | 1.551 | 1.551 | 1.551 | 1.522 | 1.496 | 1.496 | 1.55 | 1.55 | 1.55 | 1.304 | 1.286 | 1.278 |
| 2.975 | 0.59 | 0.59 | 0.59 | 0.59 | 0.754 | 0.754 | 1.279 | 1.279 | 1.279 | 1.291 | 1.252 | 1.252 | 1.252 | 1.252 | 1.252 | 1.252 | 1.231 | 1.005 |
| 3.1 | 0.637 | 0.637 | 0.637 | 0.637 | 0.905 | 0.905 | 1.778 | 1.778 | 1.778 | 1.824 | 1.824 | 1.824 | 1.824 | 1.824 | 1.824 | 1.824 | 1.82 | 1.82 |
| 3.225 | 0.149 | 0.149 | 0.149 | 0.149 | 0.149 | 0.149 | 1.133 | 1.133 | 1.133 | 1.147 | 1.147 | 1.147 | 1.147 | 1.147 | 1.147 | 1.147 | 1.097 | 1.097 |


| CAAR[1,22] market and risk adjusted (\%) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| c1\c2 | 1.1 | 1.225 | 1.35 | 1.475 | 1.6 | 1.725 | 1.85 | 1.975 | 2.1 | 2.225 | 2.35 | 2.475 | 2.6 | 2.725 | 2.85 | 2.975 | 3.1 | 3.225 |
| 1.1 | $1.079^{\text {b,e }}$ | $1.025^{\text {b,e }}$ | $0.811^{\text {a,d }}$ | $0.876^{\text {a,d }}$ | $0.963^{\text {a,e }}$ | $1.012^{\text {a,d }}$ | $1.112^{\text {b,d }}$ | $0.991^{\text {a,d }}$ | $1.017^{\text {a,d }}$ | $1.1^{\text {a,d }}$ | 0.908 | 0.958 | $1.349^{\text {b,e }}$ | 1.072 | 0.92 | 1.117 | 0.638 | 0.574 |
| 1.225 | $1.056^{\text {b,e }}$ | $1.008^{\text {b,e }}$ | 0.763 | $0.824^{\text {d }}$ | $0.844^{\text {d }}$ | $0.902^{\text {d }}$ | $0.969^{\text {a }}$ | 0.935 | $1.082^{\text {a }}$ | $1.2^{\text {b,d }}$ | 0.987 | $1.13{ }^{\text {a }}$ | $1.311^{\text {a,d }}$ | 0.998 | 0.907 | 1.039 | 0.605 | 0.47 |
| 1.35 | $1.122^{\text {b,e }}$ | $1.033^{\text {b,e }}$ | $0.925^{\text {a,d }}$ | $0.992^{\text {a,d }}$ | $1.022^{\text {a,d }}$ | $1.019^{\text {a }}$ | $1.299^{\text {b,d }}$ | $1.266^{\text {b,d }}$ | $1.185^{\text {b }}$ | $1.436^{\text {bee }}$ | $1.349^{\text {b,d }}$ | $1.453^{\text {b,e }}$ | $1.711^{\text {b,e }}$ | $1.289^{\text {a }}$ | 1.172 | $1.334^{\text {a }}$ | 0.993 | 0.677 |
| 1.475 | $1.012^{\text {a,d }}$ | $0.937^{\text {a,d }}$ | 0.874 | 0.834 | 0.951 | 0.956 | $1.389^{\text {b,d }}$ | $1.397^{\text {b,d }}$ | $1.343^{\text {b,d }}$ | $1.601^{\text {be }}$ | $1.514^{\text {b,e }}$ | $1.555^{\text {bee }}$ | $1.896^{\text {cee }}$ | $1.588^{\text {bee }}$ | $1.549^{\text {b,d }}$ | $1.616^{\text {b,d }}$ | 1.168 | 0.836 |
| 1.6 | $1.11^{\text {a,d }}$ | $1.038^{\text {a,d }}$ | $1.021^{\text {a }}$ | 1.012 | $1.158^{\text {a }}$ | $1.201^{\text {a,d }}$ | $1.493^{\text {b,d }}$ | $1.48^{\text {b,d }}$ | $1.459^{\text {b,d }}$ | $1.574^{\text {b,e }}$ | $1.558^{\text {b,e }}$ | $1.491^{\text {b,d }}$ | $1.872^{\text {b,e }}$ | $1.578^{\text {b,d }}$ | $1.585^{\text {b,d }}$ | $1.588^{\text {a }}$ | 1.118 | 0.811 |
| 1.725 | $1.425^{\text {b,e }}$ | $1.298^{\text {a,d }}$ | $1.369^{\text {b,d }}$ | $1.6{ }^{\text {b,e }}$ | $1.606^{\text {b,e }}$ | $1.675^{\text {b,e }}$ | $1.896^{\text {c,e }}$ | $1.962^{\text {c,e }}$ | $1.982^{\text {c,e }}$ | $2.207^{\text {c.f }}$ | $2.197^{\text {c,e }}$ | $2.054^{\text {c,e }}$ | $2.472^{\text {c,f }}$ | $2.063^{\text {bee }}$ | $2.167^{\text {b,e }}$ | $1.989^{\text {b,d }}$ | 1.459 | 1.214 |
| 1.85 | $1.341^{\text {b,d }}$ | 1.144 | $1.239^{\text {a }}$ | $1.419^{\text {b,d }}$ | $1.471^{\text {b,d }}$ | $1.657^{\text {b,e }}$ | $1.867^{\text {b,e }}$ | $1.937^{\text {b,e }}$ | $2.059^{\text {c,e }}$ | $2.278^{\text {c.f }}$ | $2.369^{\text {c,f }}$ | $2.214^{\text {c,e }}$ | $2.65{ }^{\text {c,f }}$ | $2.211^{\text {bee }}$ | $2.264^{\text {c,e }}$ | $2.098{ }^{\text {b,d }}$ | $1.706^{\text {a }}$ | 1.275 |
| 1.975 | $1.584^{\text {b,e }}$ | $1.486^{\text {a,d }}$ | $1.529^{\text {a,d }}$ | $1.687^{\text {b,d }}$ | $1.823^{\text {b,e }}$ | $1.982^{\text {b,e }}$ | $2.481{ }^{\text {c,f }}$ | $2.624{ }^{\text {c,f }}$ | $2.624^{\text {c.f }}$ | $2.61{ }^{\text {c,f }}$ | $2.561^{\text {c.f }}$ | $2.434^{\text {c,e }}$ | $2.548^{\text {c,f }}$ | $2.294^{\text {b,e }}$ | $2.239^{\text {bee }}$ | $1.92{ }^{\text {a }}$ | $1.81{ }^{\text {a }}$ | 1.652 |
| 2.1 | $1.755^{\text {b,e }}$ | $1.728^{\text {b,e }}$ | $1.772^{\text {b,e }}$ | $2.034^{\text {b,e }}$ | $2.068^{\text {b,e }}$ | $2.218^{\text {b,e }}$ | $2.533^{\text {c.f }}$ | $2.688^{\text {c,f }}$ | $2.688^{\text {c,f }}$ | $2.673^{\text {c.f }}$ | $2.629^{\text {c,e }}$ | $2.486^{\text {c,e }}$ | $2.589^{\text {c,e }}$ | $2.343^{\text {bee }}$ | $2.447^{\text {bee }}$ | $2.153^{\text {b,d }}$ | $2.179^{\text {b,d }}$ | $2.074^{\text {a }}$ |
| 2.225 | $2.148^{\text {b,e }}$ | $2.158^{\text {b,e }}$ | $2.214^{\text {b,e }}$ | 2.529,ee | $2.52{ }^{\text {c,e }}$ | $2.698{ }^{\text {c,f }}$ | $2.896{ }^{\text {c,f }}$ | $3.066^{\text {c,f }}$ | $3.01{ }^{\text {c,f }}$ | $3.021^{\text {c.f }}$ | $2.98{ }^{\text {c,f }}$ | $2.74{ }^{\text {c, }}$ | 2.839 ${ }^{\text {cee }}$ | $2.588^{\text {b,e }}$ | $2.769^{\text {bee }}$ | $2.414^{\text {b,d }}$ | $2.452^{\text {b,d }}$ | $2.406^{\text {a,d }}$ |
| 2.35 | 1.464 | $1.712^{\text {a }}$ | $1.774^{\text {a }}$ | 1.694 | 1.561 | $1.871^{\text {a }}$ | $1.876^{\text {a }}$ | $2.048^{\text {a,d }}$ | $2.142^{\text {b,d }}$ | $1.992^{\text {a,d }}$ | $2.057^{\text {a,d }}$ | $2.183^{\text {a,d }}$ | $2.207^{\text {a,d }}$ | $1.965^{\text {a }}$ | $2.206^{\text {a,d }}$ | 1.855 | 1.856 | 1.838 |
| 2.475 | 0.617 | 0.861 | 0.923 | 0.975 | 1.133 | 1.513 | $1.895^{\circ}$ | $2.038^{\text {a,d }}$ | $2.334^{\text {b,e }}$ | $2.207^{\text {a,d }}$ | $2.301^{\text {a,e }}$ | $2.455^{\text {b,e }}$ | $2.495^{\text {b,e }}$ | $2.406^{\text {a,e }}$ | $2.421^{\text {a,e }}$ | $2.035^{\text {d }}$ | $1.994^{\text {d }}$ | 1.912 |
| 2.6 | -0.124 | 0.127 | 0.124 | 0.251 | 0.435 | 0.726 | 1.19 | 1.346 | 1.496 | 1.65 | 1.764 | 1.764 | 1.7 | 1.575 | 1.575 | 1.406 | 1.164 | 1.157 |
| 2.725 | -0.793 | -0.793 | -0.793 | -0.732 | -0.515 | -0.133 | 0.622 | 0.658 | 0.849 | 0.805 | 0.805 | 0.805 | 0.86 | 0.86 | 0.86 | 0.888 | 0.571 | 0.572 |
| 2.85 | 1.624 | 1.624 | 1.624 | 1.762 | 1.823 | 1.823 | 2.215 | 2.215 | 2.215 | 2.25 | 2.294 | 2.294 | 2.407 | 2.407 | 2.407 | 2.581 | 2.2 | 2.231 |
| 2.975 | 1.93 | 1.93 | 1.93 | 1.93 | 2.013 | 2.013 | 2.357 | 2.357 | 2.357 | 2.487 | 2.548 | 2.548 | 2.548 | 2.548 | 2.548 | 2.548 | 2.127 | 2.078 |
| 3.1 | $4.146{ }^{\text {a }}$ | $4.146^{\text {a }}$ | $4.146{ }^{\text {a }}$ | $4.146^{\circ}$ | $4.386^{\text {a }}$ | $4.386^{\text {a }}$ | $5.072^{\text {a,d }}$ | $5.072^{\text {a,d }}$ | $5.072^{\text {a,d }}$ | $5.434^{\text {b,d }}$ | $5.434{ }^{\text {b,d }}$ | $5.434^{\text {b,d }}$ | $4.892^{\text {a }}$ | $4.892^{\text {a }}$ |
| 3.225 | 4.073 | 4.073 | 4.073 | 4.073 | 4.073 | 4.073 | $4.861^{\text {a,d }}$ | $4.861^{\text {a,d }}$ | $4.861^{\text {a,d }}$ | $5.277^{\text {a,d }}$ | 4.617 | 4.617 |

Table VIII (contimued)

| Number of events |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| c1 \c2 | 1.1 | 1.225 | 1.35 | 1.475 | 1.6 | 1.725 | 1.85 | 1.975 | 2.1 | 2.225 | 2.35 | 2.475 | 2.6 | 2.725 | 2.85 | 2.975 | 3.1 | 3.225 |
| 1.1 | 506 | 487 | 474 | 457 | 438 | 415 | 398 | 382 | 355 | 334 | 309 | 293 | 278 | 263 | 245 | 224 | 210 | 188 |
| 1.225 | 470 | 455 | 442 | 424 | 406 | 386 | 370 | 355 | 333 | 315 | 293 | 280 | 266 | 255 | 240 | 220 | 205 | 186 |
| 1.35 | 429 | 416 | 402 | 388 | 374 | 360 | 346 | 334 | 318 | 300 | 280 | 269 | 257 | 247 | 233 | 213 | 201 | 181 |
| 1.475 | 388 | 376 | 361 | 354 | 343 | 331 | 317 | 304 | 292 | 278 | 263 | 252 | 242 | 234 | 222 | 203 | 194 | 175 |
| 1.6 | 348 | 341 | 326 | 322 | 310 | 302 | 293 | 281 | 271 | 261 | 248 | 238 | 226 | 219 | 209 | 192 | 184 | 167 |
| 1.725 | 304 | 296 | 286 | 282 | 274 | 267 | 259 | 249 | 237 | 227 | 217 | 211 | 201 | 197 | 187 | 173 | 165 | 155 |
| 1.85 | 271 | 265 | 260 | 254 | 246 | 240 | 235 | 224 | 215 | 205 | 198 | 192 | 184 | 180 | 172 | 159 | 153 | 144 |
| 1.975 | 228 | 222 | 219 | 214 | 210 | 205 | 198 | 190 | 184 | 180 | 175 | 170 | 165 | 161 | 155 | 145 | 139 | 130 |
| 2.1 | 193 | 190 | 188 | 184 | 179 | 177 | 173 | 167 | 162 | 158 | 154 | 149 | 145 | 141 | 135 | 127 | 123 | 113 |
| 2.225 | 168 | 164 | 162 | 159 | 156 | 154 | 152 | 147 | 142 | 140 | 136 | 134 | 130 | 126 | 122 | 114 | 110 | 102 |
| 2.35 | 136 | 133 | 131 | 129 | 125 | 124 | 121 | 116 | 112 | 108 | 105 | 104 | 101 | 99 | 96 | 89 | 88 | 84 |
| 2.475 | 108 | 106 | 104 | 103 | 101 | 100 | 97 | 94 | 92 | 88 | 87 | 86 | 83 | 82 | 81 | 76 | 76 | 73 |
| 2.6 | 85 | 84 | 83 | 81 | 79 | 78 | 75 | 72 | 71 | 68 | 67 | 67 | 65 | 64 | 64 | 58 | 57 | 56 |
| 2.725 | 61 | 61 | 61 | 60 | 58 | 57 | 54 | 53 | 52 | 50 | 50 | 50 | 49 | 49 | 49 | 46 | 45 | 44 |
| 2.85 | 45 | 45 | 45 | 44 | 43 | 43 | 41 | 41 | 41 | 39 | 38 | 38 | 37 | 37 | 37 | 34 | 33 | 33 |
| 2.975 | 35 | 35 | 35 | 35 | 34 | 34 | 33 | 33 | 33 | 32 | 31 | 31 | 31 | 31 | 31 | 31 | 30 | 29 |
| 3.1 | 22 | 22 | 22 | 22 | 21 | 21 | 20 | 20 | 20 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 18 | 18 |
| 3.225 | 18 | 18 | 18 | 18 | 18 | 18 | 17 | 17 | 17 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 15 | 15 |

The table analyzes the relationship between abnormal volume event and the excess returns (in percentage) according to the event study. The abnormal volume event is VDP-event with different threshold values of c1 and c 2 both - June 2016. The cumulative average abnormal returns are reported for [1,22] window period. The excess log returns are computed both with a market adjusted and a market and risk adjusted (CAPM) approach. The statistical significance is calculated using the parametric student's T test and non-parametric Wilcoxon singed rank test. The superscript a,b, c and superscript $\mathrm{d}, \mathrm{e}, \mathrm{f}$ indicate that the coefficients are significantly different from zero at the $10 \%, 5 \%$, and $1 \%$ level based on parametric test and non-parametric test respectively.
Table LX: The intraday raw returns, precision and recall of prediction of ID-event

| b1 | 0.1 | 0.6 | 1.1 | 1.6 | 2.1 | 2.6 | 3.1 | 3.6 | 4.1 | 4.6 | 5.1 | 5.6 | 6.1 | 6.6 | 7.1 | 7.6 | 8.1 | 8.6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.225 | $0.846^{\text {ct }}$ | $0.953^{\text {ct }}$ | 0.9074 | 0.904. ${ }^{\text {ct }}$ | $0.952^{\text {ct }}$ | 0.949 ${ }^{\text {ct }}$ | $0.868^{\text {ct }}$ | $0.7{ }^{\text {ct }}$ | $0.692^{\text {c, }}$ | $0.704^{\text {c. }}$ | $0.733^{\text {ct }}$ | 0.724 .4 | 0.7064 | 0.729 ct | $0.705^{\text {ct }}$ | $0.687^{\text {ct }}$ | $0.638^{\text {ct }}$ | $0.621^{\text {c. }}$ |
| 0.725 | $0.741^{\text {cf }}$ | $0.747^{\text {cf, }}$ | $0.781^{\text {ct }}$ | 0.83 ${ }^{\text {ct }}$ | $0.855^{\text {cf }}$ | $0.844^{\text {ct }}$ | 0.8224.f. | 0.689ct | $0.704{ }^{\text {c. }}$ | 0.78 ct | $0.711^{\text {ct }}$ | 0.769 ct | $0.731{ }^{\text {ct }}$ | $0.728^{\text {ct }}$ | $0.6995^{\text {cf }}$ | $0.6933^{\text {cf }}$ | $0.647^{\text {ct }}$ | $0.63{ }^{\text {ct }}$ |
| 1.225 | $0.662^{\text {ct }}$ | $0.703^{\text {ct }}$ | $0.704{ }^{4 .}$ | $0.738{ }^{\text {cf }}$ | $0.883^{\text {ct }}$ | $0.8688^{\text {c }}$ | $0.864^{\text {ct }}$ | $0.739^{\text {ct }}$ | $0.734^{4.4}$ | $0.757^{\text {ct }}$ | $0.718^{\text {ct }}$ | $0.768^{\text {c }}$ | $0.745^{\text {ct }}$ | $0.728^{\text {ct }}$ | $0.707^{\text {ct }}$ | $0.7299^{\text {ct }}$ | 0.669 ct | 47 ${ }^{\text {ct }}$ |
| 1.725 | $0.733^{\text {ct }}$ | $0.6899^{\text {cf }}$ | $0.719^{\text {ct }}$ | $0.721^{\text {cf }}$ | $0.875^{\text {cf }}$ | $0.853^{\text {ct }}$ | $0.813^{\text {cf }}$ | 0.809ct | $0.768^{\text {ct }}$ | $0.776^{\text {ct }}$ | $0.789^{\text {ct }}$ | $0.829^{\text {ct }}$ | 0.80 | $0.795^{\text {ct }}$ | $0.7777^{\text {ct }}$ | 0.8044.f | 0.73 | $0.701^{\text {f. }}$ |
| 2.225 | $0.756^{\text {cf }}$ | $0.721^{\text {c }}$ | 0.706 ${ }^{\text {ct }}$ | $0.76{ }^{\text {c }}$ | 0.886 ${ }^{\text {c }}$ | 0.876 | 0.857 | $0.876^{\text {ct }}$ | $0.843^{\text {c }}$ | 0.839 | 0.83 | 0.845 | 0.824 | 0.813 | 0.821 | 0.83 | 0.761 | 0.7 |
| 2.725 | $0.819^{\text {ct }}$ | $0.7855^{\text {cf }}$ | ${ }^{0.788^{\circ}}$ | 0.757 | $0.893^{\text {cf }}$ | $0.8855^{\text {cf }}$ | $0.874^{4.4}$ | $0.894^{4 .}$ | $0.867^{\text {ct }}$ | $0^{0.871^{\text {ct }}}$ | 0.859 ${ }^{\text {ct }}$ | 0.872 | 0.859 ct | $0.856^{\text {ct }}$ | 0.84 | 0.84994 | 0.80 | 0.77 |
| 3.225 | $0.7644^{\text {ct }}$ | $0.7844^{\text {ct }}$ | $0.858^{\text {ct }}$ | $0.837^{\text {ct }}$ | $0.85{ }^{\text {ct }}$ | $0.837^{\text {cf }}$ | $0.8288^{\text {cf }}$ | $0.838{ }^{\text {cf }}$ | $0.833^{\text {c. }}$, | $0.834^{\text {ct }}$ | $0.846^{\text {cf }}$ | 0.857 | 0.859 ct | $0.849^{\text {ct }}$ | 0.85 | 0.856 ${ }^{\text {ct }}$ | 0.81 | 0.79 |
| 3.725 | $0.875^{\text {ct }}$ | $0.8611^{\text {f }}$ | $0.875^{\text {ct }}$ | $0.861^{\text {cf }}$ | $0.874^{\text {c. }}$ | $0.872^{\text {ct }}$ | $0.861^{\text {cf }}$ | $0.861^{\text {cf }}$ | $0.856^{\text {ct }}$ | $0.851^{\text {cf }}$ | 0.839 ct | 0.866 | 0.905 | 0.899, | 0.89 | 0.87 | 0.84 | 0.82 |
| 4.225 | $0.829^{\text {ct }}$ | 0.811 ${ }^{\text {ct }}$ | $0.819^{\text {ct }}$ | $0.814^{4}$ | 0.85 | $0.848^{\text {c }}$ | 0.842 | $0.84{ }^{4}$ | 0.867 | 0.862 | 0.849 ${ }^{\text {ch }}$ | 0.864 | $0.886^{\text {c }}$ | 0.882 | 0.88 | 0.871 | 0.83 | $0.836^{\text {cf }}$ |
| 4.725 | $0.911^{\text {cf }}$ | $0.899{ }^{\text {ct }}$ | $0.894^{44}$ | $0.8944^{\text {ci }}$ | $0.882^{\text {ct }}$ | $0.887^{4}$ | $0.888{ }^{\text {ct }}$ | $0.874^{\text {c. }}$ | $0.902^{\text {ct }}$ | $0.896{ }^{\text {ct }}$ | 0.882 ${ }^{\text {c }}$ | 0.887 | $0.916^{\text {ct }}$ | 0.911 | 0.91 | $0.895{ }^{\text {cf }}$ | $0.853^{\text {ct }}$ | 0.83 |
| 5.225 | $0.957^{\text {cf }}$ | $0.945^{\text {ct }}$ | $0.939^{\text {ct }}$ | $0.939{ }^{\text {ct }}$ | $0.9299^{\text {ct }}$ | $0.921^{\text {cf }}$ | $0.922^{\text {ct }}$ | 0.924 | $0.949^{\text {ct }}$ | $0.943^{\text {ct }}$ | 0.9294 | $0.934^{\text {c. }}$ | $0.958^{\text {cf }}$ | $0.953^{\text {ct }}$ | $0.946^{\text {ct }}$ | $0.936^{\text {ct }}$ | 0.895 | $0.888{ }^{\text {ct }}$ |
| 5.725 | $0.902^{\text {ct }}$ | $0.8988^{\text {cf }}$ | $0.904^{4+}$ | $0.909{ }^{\text {ct }}$ | $0.887^{\text {cf }}$ | $0.883^{\text {ct }}$ | $0.876^{\text {ct }}$ | $0.868^{\text {cf }}$ | $0.897^{\text {ct }}$ | $0.892^{\text {cf }}$ | $0.877{ }^{\text {cf }}$ | $0.882^{\text {ct }}$ | $0.886^{\text {ct }}$ | 0.896 ${ }^{\text {fi }}$ | $0.883^{\text {cf }}$ | $0.883^{\text {cf }}$ | 0.82 | $0.821^{\text {cf }}$ |
| 6.225 | $0.948{ }^{\text {cf }}$ | $0.944^{4}$ | $0.95{ }^{\text {c }}$ | $0.986^{6}$ | $0.963^{\text {cf }}$ | 0.959ct | 0.959 | 0.959 cf | 0.959 ct | $0.95{ }^{\text {c }}$ | 0.938 ${ }^{\text {ct }}$ | $0.9388^{\text {cf }}$ | $0.952^{\text {ct }}$ | $0.922^{\text {ct }}$ | 0.918 | $0.918^{\text {ct }}$ | 0.897 | $0.891^{\text {cf }}$ |
| 6.725 | $0.921^{\text {ct }}$ | $0.918^{\text {ct }}$ | $0.923^{\text {ct }}$ | $0.956^{\text {ct }}$ | $0.932^{\text {ct }}$ | $0.937^{\text {ct }}$ | $0.937{ }^{\text {ct }}$ | $0.937^{\text {ct }}$ | $0.8995^{\text {ct }}$ | $0.889{ }^{\text {ct }}$ | $0.873^{\text {ct }}$ | 0.873 ${ }^{\text {c }}$ | 0.887 | $0.892^{\text {ct }}$ | $0.888{ }^{\text {ct }}$ | 0.888 ${ }^{\text {ct }}$ | $0.8855^{\text {ct }}$ | 0.87 |
| 7.225 | $0.915^{\text {ct }}$ | $0.911^{\text {c, }}$ | $0.917^{\text {cf }}$ | $0.949^{\text {cf }}$ | $0.922^{\text {cf }}$ | 0.93 ${ }^{\text {cf }}$ | $0.93{ }^{\text {cif }}$ | $0.93{ }^{\text {cf }}$ | $0.888^{\text {ct }}$ | $0.882^{\text {ch }}$ | $0.873^{\text {cf }}$ | $0.873^{\text {cf }}$ | $0.887^{\text {ct }}$ | $0.891^{\text {cf }}$ | $0.887^{\text {ct }}$ | $0.887^{\text {cf }}$ | $0.887^{\text {ct }}$ | $0.881^{\text {f }}$ |
| 7.725 | $0.896^{\text {cf }}$ | $0.892^{\text {ch }}$ | $0.892^{\text {ct }}$ | $0.898{ }^{\text {cf }}$ | $0.872^{\text {cf }}$ | $0.877^{\text {cf }}$ | $0.877{ }^{\text {ct }}$ | $0.873^{\text {ct }}$ | $0.873^{\text {ct }}$ | $0.867^{\text {ct }}$ | $0.857^{\text {cf }}$ | $0.857^{\text {cf }}$ | 0.888 ${ }^{\text {ct }}$ | $0.884^{\text {cif }}$ | $0.874^{\text {c. }}$ | $0.874^{\text {ct }}$ | $0.874^{\text {ct }}$ | 0.874.4. |
| (225 | $0.925^{\text {ct }}$ d |  | 0.922 ${ }^{\text {cf }}$ | 2ft | $0.899^{\text {cf }}$ | 96f | $0.899{ }^{\text {cf }}$ | 0.8994 | 0.89 | $0.884^{\text {ct }}$ | $0.874^{\text {cf. }}$ | $0.874^{\text {c. }}$ | $0.87^{\text {ct }}$ | $0.8744^{\text {ct }}$ | $0.868^{\text {cf }}$ | 0.868 ${ }^{\text {ff }}$ | 0.868 ${ }^{\text {ct }}$ | 0.868 ${ }^{\text {cf }}$ |
| 8.725 | $0.856^{\text {ct }}$ | $0.851^{\text {c }}$ | 0.851 | 0.851 | $0.83^{\text {c }}$ | $0.836^{4}$ | $0.836^{4}$ | $0.83{ }^{1}$ | $0.831^{4}$ | 0.824 | $0.814^{\text {c }}$ | 0.81 | 0.81 | 0.81 | 0.80 | 0.80 | 0.80 | $0.807^{\text {ch }}$ |


| Missed event CAAR[After 50 $0^{\text {th }}$ bin till next open] (\%) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| b11b |  |  |  |  |  | 2.6 | 3.1 | 3.6 | 4.1 | 4.6 | 5.1 | 5.6 | 6.1 | . | 7.1 | 7.6 | \%.1 |  |
| 0.225 | $2.041^{1}$ | $1.976^{\text {a,d }}$ | $2.041^{\text {a }}$. |  | 1.7 | 1.4 | 1.012 | $1.943^{\text {a,d }}$ | 1.114 | 1.0 | 0.989 | 1.22 | 1.003 | 1.127 | 08 | 1.07 | 0.925 |  |
| 0.725 |  |  |  |  |  |  | $1.226^{\text {a }}$, | 1.377 | 1.27 | 1.26 | 0.90 | 1.10 | 0.9 | 0.9 | 0.9 | 1.02 |  |  |
| 1.225 | $1.791^{\text {b }}$ | $1.791^{\text {b,f }}$ | $1.632^{\text {b }}$ | 1.782 | 1.782 | 1.865 | 1.447 | 1.358 | 1.262 | 0.831 | 1.105 | 0.90 | 0.971 | 0.93 | 0.975 | 0.9 |  | $1.002^{8}$ |
| 1.725 | $1.275^{\text {b }}$ | $1.275^{\text {bee }}$ | $1.275^{\text {bed }}$ | $1.261^{\text {bee }}$ | 1.191 | $1.191^{\text {b }}$ | $0.858^{\circ}$ | 0.692 | 0.914 | 0.977 | 0.84 | $0^{0.817^{\circ}}$ | 0.791 | 0.791 | 0.759 | . 81 | 0.816 |  |
| 2.225 | 1.129 ${ }^{\text {ce }}$ | $1.129^{\text {ce }}$ | $1.129^{\text {ce }}$ | $1.206^{\text {bee }}$ | 1.206 | $1.024^{\text {b }}$ | $1.024^{\text {be, }}$ | $1.111^{\text {ce }}$ | 1.111 | $1.123^{\text {ce }}$ | $0.929^{\text {b }}$ | $0.929^{\text {be. }}$ | $0.892^{\text {bee }}$ | $0.892^{\text {bee }}$ | 0.956 | 0.956 | 0.828 | $0.828^{\text {b,d }}$ |
| 2.725 | $0.912^{\text {c }}$ | $0.912^{\text {ce }}$ | $0.912^{\text {ch }}$ | $0.91{ }^{\text {c }}$ | 0.954 | 0.954 | $0.843^{\text {b }}$ | 0.843 | 0.843 | $0.843^{\text {b }}$ | $0.8{ }^{\text {b }}$ | $0.8{ }^{\text {b }}$ | $0.803^{\text {b,d }}$ | 0.803 | 0.73 | 0.73 | $0.73^{\text {b }}$ | 0.571 |
| 3.225 | $0.793^{\text {b }}$ | $0.793^{\text {bee }}$ | $0.793^{\text {b }}$ | $0.793^{\text {b }}$ | 0.797 | $0.797{ }^{\text {b }}$ | $0.797^{\text {b }}$ | $0.79{ }^{\text {b }}$ | 0.797 | 0.797 | $0.797^{\text {b,d }}$ | $0.726^{\text {b }}$ | 0.726 | 0.726 | 0.57 | 0.573 | 0.573 | 0.71 |
| 3.725 | $0.700^{\text {b,d }}$ | $0.706^{\text {b }}$ | $0.706^{\text {b }}$ | $0.706^{\text {b }}$ | $0.706^{\text {b,d }}$ | $0.700^{\text {b,d }}$ | 0.591 | 0.591 | 0.591 | 0.591 | 0.591 | 0.591 | 0.591 | 0.699,d | $0.6999^{\text {ad d }}$ | 0.699ad | 0.69 |  |
| 4.225 | 0.543 | 0.543 | 0.543 | 0.543 | 0.647 | 0.647 | $0.647^{\circ}$ | $0.647^{\circ}$ | $0.647^{\circ}$ | 0.64 | $0.647^{\circ}$ | $0.647^{\circ}$ | 0.64 | 0.589 | 0.5 | 0.589 | 0.589 |  |
| 4.725 | $0.787^{\text {b }}$ | $0.787^{\text {b,e }}$ | $0.787^{\text {b }}$, | $0.787^{\text {b,e }}$ | $0.70{ }^{\text {a }}$ | $0.705^{\text {a }}$ | $0.705^{\text {ad }}$ | $0.705^{\text {a }}$ | $0.705^{\text {s.d }}$ | 0.705 | $0.705^{\text {ad }}$ | $0.705^{\text {ad, }}$ | $0.705^{\text {ad, }}$ | $0.705^{\text {ad }}$ | $0.705^{\text {ad }}$ | $0.705^{\text {a }}$ d | $0.727^{\text {b,d }}$ | 0.72 |
| 5.225 | $0.635^{\text {s.d }}$ | $0.635^{\text {ad }}$ | $0.635^{\text {s.d }}$ | $0.635^{\text {add }}$ | $0.635^{\text {ad }}$ | $0.635^{\text {sod }}$ | $0.635^{\text {add }}$ | 0.635 | 0.635 | 0.635 | $0.623^{\circ}$ | $0.623^{\circ}$ | $0.623^{3}$ | $0.623^{\circ}$ | $0.623^{\circ}$ | $0.623^{\circ}$ | $0.623^{\text {a }}$ | 0.623 ${ }^{\text {a }}$ |
| 5.725 | $0.787^{\text {b,e }}$ | $0.733^{\text {bee }}$ | $0.733^{\text {be }}$ | $0.733^{\text {bee }}$ | $0.733^{\text {bee }}$ | $0.733^{\text {bed }}$ | $0.733^{\text {be }}$ | 0.733 | 0.733 | 0.73 | $0.733^{\circ}$ | $0.733^{\text {bee }}$ | 0.73 | $0.733^{\text {be }}$ | $0.733^{\text {bed }}$ | $0.733^{\text {bed }}$ | $0.733^{\text {bed }}$ | $0.733^{\text {bee }}$ |
| 6.225 | $0.703^{\text {bee }}$ | $0.703^{\text {bee }}$ | $0.703^{\text {be }}$ | $0.703^{\text {bee }}$ | 0.703 | 0.70 | 0.703 | $0.703^{\text {be }}$ | $0.703^{\text {bee }}$ | 0.47 | 0.47 | 0.47 | 0.47 |  |
| 6.725 | $0.758^{\text {bee }}$ | $0.758^{\text {bee }}$ | $0.758^{\text {bed }}$ | $0.758^{\text {bee }}$ | $0.758^{\text {b }}$ | $0.758^{\text {be. }}$ | $0.758^{\text {be }}$ | 0.75 | 0.556 | 0.55 | 0.55 | 0.556 | $0.556^{\text {ad, }}$ | $0.556^{\circ}$ | 0.556 | 0.556 | $0.556^{\text {a,d }}$ | $0.556^{\text {a d }}$ |
| 7.225 | $0.556^{\text {ad, }}$ | $0.556^{\text {a,d }}$ |  | $0.556^{\text {ad. }}$ |  | $0.556^{\text {as,d }}$ | $0.556^{\text {a }}$ |  | 0.55 | 0.55 |  | 0.556 | 0.55 |  | 0.55 | 0.55 | $0.556^{\text {ad }}$ |  |
| 7.725 | $0.594^{\text {b.d }}$ | $0.5944^{\text {b,d }}$ | $0.594^{\text {b }}$ | $0.594^{\text {b.d }}$ | $0.594^{\text {b,d }}$ | $0.594^{\text {b,d }}$ | $0.594^{\text {b,d }}$ | $0.594{ }^{\text {b.d }}$ | $0.594^{\text {b,d }}$ | 0.594 | $0.594^{\text {b,d }}$ | $0.594^{\text {b, }}$ | 0.594 | $0.594^{\text {b,d }}$ | 0.59 | $0.594^{\text {b,d }}$ | $0.594^{\text {b,d }}$ | $0.594^{\text {b,d }}$ |
| 8.225 | $0.594^{\text {b,d }}$ | $0.701^{\text {bee }}$ | $0.701^{\text {be }}$ | $0.701^{\text {bee }}$ |
| 8.725 | 0.752 | 0.752 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.7 | 0.75 | 0.75 | 0.75 | 0.752 | 0.75 | 0.75 | 0.75 | $0.752^{\text {ct }}$ |


| b1\b3 | 0.1 | 0.6 | 1.1 | 1.6 | 2.1 | 2.6 | 3.1 | 3.6 | 4.1 | 4.6 | 5.1 | 5.6 | 6.1 | 6.6 | 7.1 | 7.6 | 8.1 | 8.6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.225 | 31.02 | 34.44 | 38.58 | 44.33 | 51.65 | 58.49 | 62.94 | 66.49 | 69.49 | 72.78 | 75.93 | 78.34 | 81.46 | 83.11 | 83.67 | 84.83 | 86.62 | 87.23 |
| 0.725 | 45.56 | 48.81 | 52.56 | 56.42 | 61.81 | 66.67 | 69.71 | 73.17 | 75.47 | 76.77 | 79.87 | 81.51 | 83.80 | 85.61 | 86.86 | 86.86 | 89.47 | 89.47 |
| 1.225 | 63.44 | 65.19 | 67.05 | 69.01 | 72.84 | 74.68 | 77.12 | 80.27 | 82.52 | 84.89 | 87.97 | 89.31 | 91.41 | 92.13 | 92.13 | 92.13 | 94.35 | 94.35 |
| 1.725 | 71.60 | 72.05 | 76.32 | 77.85 | 81.69 | 82.27 | 83.45 | 84.67 | 85.93 | 87.88 | 89.92 | 90.63 | 92.06 | 92.80 | 92.80 | 92.80 | 94.31 | 94.31 |
| 2.225 | 78.72 | 79.29 | 79.86 | 81.62 | 84.73 | 86.72 | 87.40 | 87.40 | 90.24 | 90.24 | 90.98 | 92.50 | 93.28 | 94.07 | 94.07 | 94.07 | 94.87 | 94.87 |
| 2.725 | 84.13 | 85.48 | 85.48 | 85.48 | 89.83 | 90.60 | 90.60 | 91.38 | 92.17 | 92.17 | 93.81 | 94.64 | 95.50 | 96.36 | 96.36 | 96.36 | 97.25 | 97.25 |
| 3.225 | 86.78 | 87.50 | 89.74 | 89.74 | 92.11 | 92.92 | 92.92 | 92.92 | 92.92 | 92.92 | 93.75 | 94.59 | 95.45 | 96.33 | 96.33 | 96.33 | 97.22 | 97.22 |
| 3.725 | 91.15 | 91.15 | 91.96 | 91.96 | 93.64 | 93.64 | 93.64 | 93.64 | 93.64 | 93.64 | 93.64 | 94.50 | 95.37 | 96.26 | 96.26 | 96.26 | 97.17 | 97.17 |
| 4.225 | 91.89 | 91.89 | 92.73 | 92.73 | 93.58 | 93.58 | 93.58 | 93.58 | 94.44 | 94.44 | 94.44 | 94.44 | 96.23 | 96.23 | 96.23 | 96.23 | 97.14 | 97.14 |
| 4.725 | 93.40 | 93.40 | 93.40 | 93.40 | 94.29 | 94.29 | 94.29 | 94.29 | 95.19 | 95.19 | 95.19 | 95.19 | 96.12 | 96.12 | 96.12 | 96.12 | 97.06 | 97.06 |
| 5.225 | 93.33 | 93.33 | 93.33 | 93.33 | 94.23 | 94.23 | 94.23 | 94.23 | 95.15 | 95.15 | 95.15 | 95.15 | 96.08 | 96.08 | 96.08 | 96.08 | 97.03 | 97.03 |
| 5.725 | 93.14 | 93.14 | 93.14 | 93.14 | 94.06 | 94.06 | 94.06 | 94.06 | 95.00 | 95.00 | 95.00 | 95.00 | 95.96 | 95.96 | 95.96 | 95.96 | 96.94 | 96.94 |
| 6.225 | 93.00 | 93.00 | 93.00 | 93.94 | 94.90 | 94.90 | 94.90 | 94.90 | 94.90 | 94.90 | 94.90 | 94.90 | 95.88 | 96.88 | 96.88 | 96.88 | 96.88 | 96.88 |
| 6.725 | 92.78 | 92.78 | 92.78 | 93.75 | 94.74 | 94.74 | 94.74 | 94.74 | 95.74 | 95.74 | 95.74 | 95.74 | 96.77 | 96.77 | 96.77 | 96.77 | 96.77 | 96.77 |
| 7.225 | 92.78 | 92.78 | 92.78 | 93.75 | 94.74 | 94.74 | 94.74 | 94.74 | 95.74 | 95.74 | 95.74 | 95.74 | 96.77 | 96.77 | 96.77 | 96.77 | 96.77 | 96.77 |
| 7.725 | 94.57 | 94.57 | 94.57 | 94.57 | 95.60 | 95.60 | 95.60 | 95.60 | 95.60 | 95.60 | 95.60 | 95.60 | 96.67 | 96.67 | 96.67 | 96.67 | 96.67 | 96.67 |
| 8.225 | 96.67 | 96.67 | 96.67 | 96.67 | 97.75 | 97.75 | 97.75 | 97.75 | 97.75 | 97.75 | 97.75 | 97.75 | 97.75 | 97.75 | 97.75 | 97.75 | 97.75 | 97.75 |
| 8.725 | 97.70 | 97.70 | 97.70 | 97.70 | 98.84 | 98.84 | 98.84 | 98.84 | 98.84 | 98.84 | 98.84 | 98.84 | 98.84 | 98.84 | 98.84 | 98.84 | 98.84 | 98.84 |


| Recall (\%) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| b1\b3 | 0.1 | 0.6 | 1.1 | 1.6 | 2.1 | 2.6 | 3.1 | 3.6 | 4.1 | 4.6 | 5.1 | 5.6 | 6.1 | 6.6 | 7.1 | 7.6 | 8.1 | 8.6 |
| 0.225 | 94.70 | 94.70 | 94.70 | 94.70 | 94.70 | 93.94 | 93.94 | 93.18 | 93.18 | 93.18 | 93.18 | 93.18 | 93.18 | 93.18 | 93.18 | 93.18 | 93.18 | 93.18 |
| 0.725 | 93.18 | 93.18 | 93.18 | 93.18 | 93.18 | 92.42 | 92.42 | 90.91 | 90.91 | 90.15 | 90.15 | 90.15 | 90.15 | 90.15 | 90.15 | 90.15 | 90.15 | 90.15 |
| 1.225 | 89.39 | 89.39 | 89.39 | 89.39 | 89.39 | 89.39 | 89.39 | 89.39 | 89.39 | 89.39 | 88.64 | 88.64 | 88.64 | 88.64 | 88.64 | 88.64 | 88.64 | 88.64 |
| 1.725 | 87.88 | 87.88 | 87.88 | 87.88 | 87.88 | 87.88 | 87.88 | 87.88 | 87.88 | 87.88 | 87.88 | 87.88 | 87.88 | 87.88 | 87.88 | 87.88 | 87.88 | 87.88 |
| 2.225 | 84.09 | 84.09 | 84.09 | 84.09 | 84.09 | 84.09 | 84.09 | 84.09 | 84.09 | 84.09 | 84.09 | 84.09 | 84.09 | 84.09 | 84.09 | 84.09 | 84.09 | 84.09 |
| 2.725 | 80.30 | 80.30 | 80.30 | 80.30 | 80.30 | 80.30 | 80.30 | 80.30 | 80.30 | 80.30 | 80.30 | 80.30 | 80.30 | 80.30 | 80.30 | 80.30 | 80.30 | 80.30 |
| 3.225 | 79.55 | 79.55 | 79.55 | 79.55 | 79.55 | 79.55 | 79.55 | 79.55 | 79.55 | 79.55 | 79.55 | 79.55 | 79.55 | 79.55 | 79.55 | 79.55 | 79.55 | 79.55 |
| 3.725 | 78.03 | 78.03 | 78.03 | 78.03 | 78.03 | 78.03 | 78.03 | 78.03 | 78.03 | 78.03 | 78.03 | 78.03 | 78.03 | 78.03 | 78.03 | 78.03 | 78.03 | 78.03 |
| 4.225 | 77.27 | 77.27 | 77.27 | 77.27 | 77.27 | 77.27 | 77.27 | 77.27 | 77.27 | 77.27 | 77.27 | 77.27 | 77.27 | 77.27 | 77.27 | 77.27 | 77.27 | 77.27 |
| 4.725 | 75.00 | 75.00 | 75.00 | 75.00 | 75.00 | 75.00 | 75.00 | 75.00 | 75.00 | 75.00 | 75.00 | 75.00 | 75.00 | 75.00 | 75.00 | 75.00 | 75.00 | 75.00 |
| 5.225 | 74.24 | 74.24 | 74.24 | 74.24 | 74.24 | 74.24 | 74.24 | 74.24 | 74.24 | 74.24 | 74.24 | 74.24 | 74.24 | 74.24 | 74.24 | 74.24 | 74.24 | 74.24 |
| 5.725 | 71.97 | 71.97 | 71.97 | 71.97 | 71.97 | 71.97 | 71.97 | 71.97 | 71.97 | 71.97 | 71.97 | 71.97 | 71.97 | 71.97 | 71.97 | 71.97 | 71.97 | 71.97 |
| 6.225 | 70.45 | 70.45 | 70.45 | 70.45 | 70.45 | 70.45 | 70.45 | 70.45 | 70.45 | 70.45 | 70.45 | 70.45 | 70.45 | 70.45 | 70.45 | 70.45 | 70.45 | 70.45 |
| 6.725 | 68.18 | 68.18 | 68.18 | 68.18 | 68.18 | 68.18 | 68.18 | 68.18 | 68.18 | 68.18 | 68.18 | 68.18 | 68.18 | 68.18 | 68.18 | 68.18 | 68.18 | 68.18 |
| 7.225 | 68.18 | 68.18 | 68.18 | 68.18 | 68.18 | 68.18 | 68.18 | 68.18 | 68.18 | 68.18 | 68.18 | 68.18 | 68.18 | 68.18 | 68.18 | 68.18 | 68.18 | 68.18 |
| 7.725 | 65.91 | 65.91 | 65.91 | 65.91 | 65.91 | 65.91 | 65.91 | 65.91 | 65.91 | 65.91 | 65.91 | 65.91 | 65.91 | 65.91 | 65.91 | 65.91 | 65.91 | 65.91 |
| 8.225 | 65.91 | 65.91 | 65.91 | 65.91 | 65.91 | 65.91 | 65.91 | 65.91 | 65.91 | 65.91 | 65.91 | 65.91 | 65.91 | 65.91 | 65.91 | 65.91 | 65.91 | 65.91 |
| 8.725 | 64.39 | 64.39 | 64.39 | 64.39 | 64.39 | 64.39 | 64.39 | 64.39 | 64.39 | 64.39 | 64.39 | 64.39 | 64.39 | 64.39 | 64.39 | 64.39 | 64.39 | 64.39 |

Table LX (contimued)

| Average prediction timing (\%) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| b1\b3 | 0.1 | 0.6 | 1.1 | 1.6 | 2.1 | 2.6 | 3.1 | 3.6 | 4.1 | 4.6 | 5.1 | 5.6 | 6.1 | 6.6 | 7.1 | 7.6 | 8.1 | 8.6 |
| 0.225 | 12.94 | 14.02 | 15.64 | 18.35 | 21.71 | 24.72 | 27.20 | 30.42 | 32.39 | 34.64 | 36.63 | 38.55 | 39.79 | 41.11 | 41.84 | 42.58 | 43.70 | 44.45 |
| 0.725 | 17.91 | 19.15 | 20.03 | 21.70 | 23.90 | 25.92 | 27.71 | 30.56 | 32.52 | 34.66 | 36.56 | 38.57 | 39.73 | 41.10 | 41.83 | 42.56 | 43.65 | 44.49 |
| 1.225 | 25.53 | 26.13 | 26.72 | 27.64 | 28.48 | 29.74 | 30.82 | 33.27 | 34.62 | 36.66 | 38.42 | 40.05 | 41.11 | 42.13 | 42.88 | 43.43 | 44.36 | 45.02 |
| 1.725 | 32.67 | 32.88 | 33.49 | 33.89 | 34.68 | 35.28 | 35.71 | 37.31 | 38.01 | 39.45 | 40.89 | 41.86 | 42.57 | 43.34 | 44.02 | 44.60 | 45.24 | 45.76 |
| 2.225 | 37.79 | 37.99 | 37.99 | 38.60 | 39.17 | 39.77 | 40.09 | 40.78 | 41.41 | 42.02 | 42.68 | 43.37 | 43.94 | 44.49 | 44.96 | 45.34 | 45.85 | 46.22 |
| 2.725 | 40.88 | 41.11 | 41.31 | 41.45 | 42.36 | 42.46 | 42.58 | 43.01 | 43.13 | 43.37 | 43.72 | 44.23 | 44.65 | 45.16 | 45.51 | 45.85 | 46.33 | 46.63 |
| 3.225 | 43.59 | 43.93 | 44.25 | 44.30 | 44.54 | 44.59 | 44.78 | 45.04 | 45.05 | 45.19 | 45.39 | 45.74 | 46.05 | 46.45 | 46.69 | 46.94 | 47.32 | 47.53 |
| 3.725 | 45.79 | 45.86 | 45.82 | 45.87 | 46.13 | 46.43 | 46.50 | 46.57 | 46.59 | 46.66 | 46.93 | 46.95 | 47.13 | 47.56 | 47.68 | 47.83 | 48.13 | 48.29 |
| 4.225 | 47.14 | 47.22 | 47.20 | 47.25 | 47.69 | 47.72 | 47.77 | 47.90 | 47.91 | 47.96 | 48.09 | 48.23 | 48.48 | 48.64 | 48.71 | 48.85 | 49.12 | 49.15 |
| 4.725 | 48.20 | 48.31 | 48.35 | 48.35 | 48.65 | 48.67 | 48.71 | 48.84 | 48.84 | 48.87 | 48.96 | 49.08 | 49.13 | 49.24 | 49.30 | 49.41 | 49.67 | 49.69 |
| 5.225 | 48.90 | 49.00 | 49.03 | 49.03 | 49.29 | 49.37 | 49.38 | 49.42 | 49.43 | 49.46 | 49.54 | 49.63 | 49.67 | 49.76 | 49.79 | 49.88 | 50.17 | 50.18 |
| 5.725 | 49.46 | 49.52 | 49.54 | 49.55 | 49.73 | 49.77 | 49.78 | 49.81 | 49.82 | 49.85 | 49.94 | 50.02 | 50.05 | 50.12 | 50.15 | 50.21 | 50.48 | 50.49 |
| 6.225 | 49.99 | 50.05 | 50.07 | 50.06 | 50.22 | 50.27 | 50.27 | 50.28 | 50.29 | 50.32 | 50.41 | 50.42 | 50.44 | 50.72 | 50.73 | 50.79 | 50.83 | 50.84 |
| 6.725 | 50.23 | 50.29 | 50.31 | 50.34 | 50.45 | 50.47 | 50.47 | 50.48 | 50.68 | 50.70 | 50.80 | 50.81 | 50.84 | 50.91 | 50.92 | 50.99 | 51.01 | 51.02 |
| 7.225 | 50.59 | 50.65 | 50.67 | 50.70 | 50.81 | 50.83 | 50.83 | 50.84 | 51.01 | 51.03 | 51.11 | 51.12 | 51.15 | 51.23 | 51.24 | 51.29 | 51.30 | 51.31 |
| 7.725 | 51.05 | 51.08 | 51.08 | 51.09 | 51.21 | 51.23 | 51.23 | 51.27 | 51.27 | 51.30 | 51.34 | 51.34 | 51.37 | 51.44 | 51.47 | 51.48 | 51.49 | 51.49 |
| 8.225 | 51.33 | 51.36 | 51.36 | 51.36 | 51.48 | 51.51 | 51.52 | 51.54 | 51.54 | 51.56 | 51.61 | 51.61 | 51.62 | 51.70 | 51.71 | 51.72 | 51.73 | 51.73 |
| 8.725 | 51.51 | 51.52 | 51.52 | 51.52 | 51.64 | 51.66 | 51.66 | 51.69 | 51.69 | 51.71 | 51.76 | 51.76 | 51.77 | 51.85 | 51.86 | 51.87 | 51.88 | 51.88 |

The table analyzes the relationship between the prediction of abnormal volume event and the excess returns according to the intraday event study. The definition of abnormal volume event is VD-event with threshold values of cl $=2.225$ and $\mathrm{c} 2=2.6$ (highest in-sample information ratio along with significant CAAR $[1,22]$ ) along with a different prediction parameters of b1 and b2 ranging from 0.225 to 8.725 and from 0.1 to 8.6 with equal spacing. This results correspond to dataset from July $2015-$ June 2016. The intraday CAAR is computed as raw returns, however, it should not deviate significantly from its market adjusted value as on average the intraday market returns in
very small. The missed events CAAR is calculated by assuming the prediction mark at $50^{\text {th }}$ bin to match the average prediction timing. The statistical significance is calculated using the parametric student's T test and nonparametric Wilcoxon singed rank test. The superscript $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and superscript $\mathrm{d}, \mathrm{e}, \mathrm{f}$ indicate that the coefficients are significantly different from zero at the $10 \%, 5 \%$, and $1 \%$ level based on parametric test and non-parametric test respectively.

## VITA

Nathawuth Dejbordin was born on October 18, 1990, in Bangkok, Thailand. He received a Bachelor of Engineering (major: nano-engineering) with the First-class Honors from Chulalongkorn University in June 2012. He continues his study in Master program in Financial Engineering (MFE) at Chulalongkorn University in July 2014. If you have any question about this thesis, please feel free to contact him via E-mail (natwuth@hotmail.com).


[^0]:    ${ }^{1}$ Use actual historical constituent to prevent survivorship bias. However, this work intentionally remove U City PCL $(U)$ from the list as the price is too low such that one up/down tick tend to hit the ceiling/floor price.
    ${ }^{2}$ Due to limitation of data source.

[^1]:    ${ }^{3}$ Auto matching deals refers to a trade in the main trading board which have an up/down tick.

[^2]:    ${ }^{4}$ Computed as daily buy volume minus daily sell volume. Does not apply natural logarithm function as the empirical skewness is very close to zero.

[^3]:    ${ }^{5}$ Trading session for each day is split into 55 equal intervals with duration of 5-minute each (see Intraday bin and time interval in Table 1) with the last interval as the closing auction, therefore, the value for n ranges from 1 to 54 (at $n=55$ the prediction is no longer necessary). The 65 daily data prior to the current date remains the same.

[^4]:    ${ }^{6}$ All returns on day $t$ are calculated as $\log \left(c l o s e_{t} / c l o s e_{t-1}\right)$ except at day 0 (event date) and day 1 that are calculated as $\log \left(\right.$ open $_{1} /$ close $\left._{-1}\right)$ and $\log \left(\right.$ close $_{1} /$ open $\left._{1}\right)$, respectively, to reflect the appropriate realizable excess returns.

[^5]:    ${ }^{7}$ Incur extra bid-ask spread round-trip cost from buying at ask price and selling at bid price.

[^6]:    ${ }^{8}$ If annualized, the number of days would be used as 252 . Else the actual number of trading days is used instead.

[^7]:    ${ }^{9}$ Precision is calculated as the number of correct prediction divided by total of number prediction
    ${ }^{10}$ Missed event refers to the event that fails to be predicted by the algorithm. Therefore, to compare with the prediction, a prediction mark is assumed using the average prediction timing ( $\mathrm{n}=50$ )

[^8]:    ${ }^{11}$ Recall is calculated as number of correct prediction divided by total number of events

[^9]:    |  |  |  |  |  |  |  |  |  | ber of |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | c1\|c3 | -4.5 | -4 | -3.5 | -3 | 2.5 | -2 | -1.5 | -1 | -0.5 | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
    | 1.1 | 4065 | 4040 | 4012 | 3971 | 3915 | 3874 | 3812 | 3764 | 3682 | 3531 | 3491 | 3327 | 3165 | 2959 | 2772 | 2497 | 2221 | 1922 |
    | 1.225 | 3785 | 3765 | 3731 | 3687 | 3629 | 3586 | 3530 | 3477 | 3405 | 3284 | 3239 | 3083 | 2939 | 2752 | 2579 | 2322 | 2071 | 1803 |
    | 1.35 | 3488 | 3460 | 3426 | 3380 | 3329 | 3286 | 3232 | 3189 | 3123 | 3005 | 2967 | 2834 | 2709 | 2553 | 2386 | 2148 | 1913 | 1674 |
    | 1.475 | 3174 | 3144 | 3112 | 3070 | 3019 | 2985 | 2943 | 2903 | 2839 | 2731 | 2699 | 2566 | 2454 | 2322 | 2168 | 1953 | 1749 | 1530 |
    | 1.6 | 2866 | 2842 | 2813 | 2773 | 2727 | 2690 | 2650 | 2614 | 2559 | 2453 | 2428 | 2325 | 2229 | 2105 | 1952 | 1772 | 1590 | 1394 |
    | 1.725 | 2522 | 2496 | 2464 | 2427 | 2392 | 2356 | 2318 | 2274 | 2221 | 2138 | 2114 | 2026 | 1951 | 1850 | 1738 | 1586 | 1419 | 1247 |
    | 1.85 | 2225 | 2204 | 2176 | 2138 | 2102 | 2070 | 2035 | 2005 | 1960 | 1877 | 1855 | 1778 | 1720 | 1637 | 1539 | 1408 | 1267 | 1122 |
    | 1.975 | 1896 | 1880 | 1856 | 1820 | 1787 | 1759 | 1735 | 1709 | 1663 | 1595 | 1579 | 1506 | 1456 | 1385 | 1309 | 1202 | 1092 | 966 |
    | 2.1 | 1595 | 1572 | 1553 | 1522 | 1493 | 1465 | 1447 | 1426 | 1390 | 1338 | 1323 | 1264 | 1225 | 1167 | 1107 | 1019 | 925 | 820 |
    | 2.225 | 1338 | 1315 | 1296 | 1271 | 1242 | 1219 | 1207 | 1194 | 1165 | 1113 | 1098 | 1052 | 1022 | 979 | 928 | 863 | 790 | 697 |
    | 2.35 | 1096 | 1076 | 1057 | 1039 | 1010 | 992 | 982 | 968 | 946 | 906 | 895 | 865 | 839 | 803 | 768 | 716 | 653 | 580 |
    | 2.475 | 876 | 857 | 840 | 827 | 801 | 787 | 779 | 767 | 752 | 728 | 718 | 695 | 675 | 643 | 617 | 584 | 529 | 470 |
    | 2.6 | 706 | 691 | 679 | 669 | 644 | 633 | 625 | 613 | 601 | 584 | 578 | 556 | 539 | 520 | 494 | 469 | 428 | 374 |
    | 2.725 | 544 | 527 | 519 | 511 | 493 | 484 | 476 | 467 | 458 | 444 | 440 | 426 | 416 | 400 | 380 | 360 | 335 | 298 |
    | 2.85 | 428 | 415 | 406 | 399 | 382 | 375 | 369 | 362 | 352 | 339 | 336 | 324 | 316 | 305 | 289 | 274 | 253 | 229 |
    | 2.975 | 322 | 313 | 307 | 304 | 290 | 283 | 280 | 275 | 269 | 261 | 259 | 250 | 244 | 240 | 227 | 216 | 202 | 184 |
    | 3.1 | 245 | 238 | 233 | 231 | 220 | 214 | 212 | 207 | 203 | 198 | 196 | 190 | 186 | 184 | 172 | 166 | 158 | 148 |
    | 3.225 | 176 | 171 | 168 | 167 | 157 | 153 | 152 | 148 | 144 | 140 | 139 | 135 | 133 | 130 | 123 | 120 | 115 | 107 |

    The table analyzes the relationship between abnormal volume event and the excess returns (in percentage) according to the event study. The abnormal volume event VP-event with different threshold values ( c 1 and c 3 ) ranging from 1.1 to 3.225 and - 4.5 to 4 with equal
    spacing. The Period1 for panel A correspond to dataset from July 2015 - June 2016 while Period 2 for panel B correspond to July 2010 June 2016 . The cumulative average abnormal returns are reported for $[1,22]$ window period. The excess log returns are computed both with a market adjusted and a market and risk adjusted (CAPM) approach. The statistical significance is calculated using the parasectively
    coefficients are significantly different from zero at the $10 \%, 5 \%$, and $1 \%$ level based on parametric test and non-parametric test respection

