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# # 5874086330 : MAJOR MEDICAL IMAGING
KEYWORDS: MULTI-DETECTOR COMPUTED TOMOGRAPHY / SIZE-SPECIFIC DOSE ESTIMATE /
THORACIC CT EXAMINATION / PATIENT SIZE
SAOWAPARK YOYKAEW: Size-Specific Dose Estimates for Thoracic Imaging in 320 Row Detector
Computed Tomography. ADVISOR: ASSOC. PROF. ANCHALI KRISANACHINDA, Ph.D., 111 pp.

The patient dose from CT scan is normally displayed in Dose Length Product (DLP) and volume CT
dose index (CTDlvor). Actually, CTDIvol represents the scanner output, does not address patient size, can be used to
estimate patient radiation dose but the dose value is inaccurate as it is estimated from the cylindrical phantom of
particular size. AAPM Report n0.204 [1] introduced in 2011 and AAPM Report no.220 [2] introduced in 2014 on
the size-specific dose estimates (SSDEs) for CT examination in order to provide high accuracy on radiation dose to
the patient. The purpose of this study was to determine the patient radiation dose using SSDEs for thoracic imaging
in 320 MDCT and the parameters influenced SSDEs.

This study is retrospective analysis with 230 patients, 115 male and 115 female of the age range from 18
to 93 years old, the selected weight range from 40 to 70 kg. All of the patients underwent the thoracic contrast
enhancement with venous phase protocol scanned by 320 MDCT. The patient radiation dose in terms of SSDE was
calculated based on AP+LAT dimension, effective diameter, and water equivalent diameter. The conversion factors
following the body size and composition according to the AAPM no.204 and 220 recommendations were applied.

SSDE was measured from middle slice of chest and middle slice of scan range. The results showed that
the SSDE calculated from the middle of scan range was a little higher than SSDE calculated from middle of organ.
At the middle slice of organ, the range of SSDEap+LaT SSDEEerrand SSDEpw were 10.50-24.45, 10.43-24.25 and
11.66-26.83 mGy respectively. At the middle slice of scan range, the range of SSDEap+LaT, SSDEerrand
SSDEpw were 10.83-24.85, 10.70-24.70 and 11.33-27.13 mGy respectively. The correlation of CTDlvol, body
weight, BMI, AP+LAT dimension, effective diameter and water equivalent diameter with SSDE were moderately

linear relationship.

In conclusions, SSDE had been estimated using 3 methods (SSDEap+Lat, SSDEerr and SSDEpw) of body
configurations in CT dosimetry. SSDEpw is most appropriate for determination as the CT patient dose indicator
further from CTDIvo especially in various body sizes and body composition in thorax region.

Department: Radiology Student's Signature .

Field of Study: Medical Imaging Advisor's Signature
Academic Year: 2016
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CHAPTER I

INTRODUCTION

1.1 Background and Rationale

CT is the best modality for low contrast imaging in human and the clinical
applications. The CT scanner has increased rapidly because of the short scan time and
best image quality resulting in the major source of human exposure and highest
collective effective dose from medical exposure [1].

The radiation dose from CT scan can damage the cells and tissues causing
stochastic effect and cancer induction [2]. The probability of this effect depends on the
quantity of radiation dose. Therefore, the radiation dose determination is very important
and would be more accurate.

CT chest examination can demonstrate lung disorders such as nodules and
lesions in the lung. The radiation dose delivered to the patient should be concerned
because the increasing use of MDCT in patient studies and the thoracic region has
several sensitive organs to radiation with high risk of fatal cancer such as lung and
breast [3].

The patient dose estimation from CT scan is displayed in terms of Dose Length
Product (DLP) with the unit of mGy.cm and the volumetric CT dose index (CTDlvor)
in mGy. CTDIvo represented the scanner output, depends on several parameters such as
tube current time product (mAs), tube potential (kVp), pitch, gantry rotation time, slice
collimation and filters. Actually, CTDIvo has not been considered to the actual patient
size and only be used to estimate patient radiation dose based on the determination from
the polymethyl methacrylate (PMMA) cylindrical phantom of particular size. One
phantom size is 16 cm diameter to approximate the size of head and the other is 32 cm
diameter to approximate the size of body. Both phantom is 15 cm length. Moreover,
the composition inside the phantoms is constructed from homogeneous materials. As a
result, the radiation dose value to the patient is inaccurate [4].

In fact, patient radiation dose should take into account for both output radiation
dose and the patient characteristics, therefore patient size and tissue as well as organ
composition should be considered to estimate patient radiation dose by using the
concepts of the size-specific dose estimates (SSDEs).

AAPM Report number 204[5] introduced on the SSDEs for estimation of
patient dose based on CTDlIyo and patient size. Later on, AAPM Report number 220
[6] allows the estimation of patient dose based on CTDIyo and the body composition,
water equivalent diameter (Dw) for CT examination to provide more accurately on
radiation dose to the patient.



CTDlvo and DLP have been used for the patient radiation dose estimation at
most institutions in Thailand. It is not realistic and inaccurate. When the radiation
delivered to small or large patients displayed the same amount of CTDlIyoI, estimated
from same cylindrical phantom size.

At King Chulalongkorn Memorial Hospital (KCMH), the patients had been
examined for the diagnosis and follow up of the lesions in thoracic region by using
thoracic contrast enhancement with venous phase protocol in CT study. Regarding to
scanner, the radiation output (CTDIvo) had been determined and verified by using 32
cm in diameter of homogeneous cylindrical phantoms. On the contrary human thoracic
region is not cylindrical shape, uniform in size and density, therefore, SSDE should be
implemented for patient dose from CT scan in thoracic region.

1.2 Research objectives

1.2.1 To determine the patient dose using SSDE for thoracic imaging in 320
row detector computed tomography.
1.2.2 To determine parameters influence SSDE.

1.3 Definition
Volume CT dose index (CTDlyvor) The multiplication of weighted CT Dose
Index (CTDIw) by pitch factor, the unit is
mGy and it is used to compare radiation
output level between different CT scanners.
Dose Length Product (DLP) The product of CTDIvo and scan length, the

unit mGy.cm, is related to the total ionizing
energy imparted to the referenced phantom.

Size-specific dose estimates (SSDEs)  SSDE is patient dose estimated from the
factors that take into account to the patient
size and the body composition of different
attenuation during CT scan.

320 MDCT CT scanner with detector array of 320 row
detector that allows the simultaneous
scanning of more than one slice.



CT chest with venous phase protocol

AP+LAT dimension

Effective diameter

Water equivalent diameter (Dw)

Attenuation

Thoracic contrast enhancement using
iodine contrast media and scan at 70-90
seconds after injection to separate lesion
and surrounding  tissue. This sequence is
performed through the liver in the portal
venous phase of enhancement.

The sum of anterior-posterior (AP)
dimension demonstrates the thickness of
patient body and lateral (LAT) dimension
demonstrates left side to right side
dimension of patient body.

The diameter of the patient at a given the
z-axis of the patient, assuming that the
patient has a circular cross section.

Effective diameter = v AP x LAT

The x-ray attenuation of a patient in terms
of a water cylinder having the same x-ray
attenuation. The diameter of such a cylinder
of water are referred to as the Water
equivalent diameter (Dw)

The reduction in radiation from passing
through a tissue or material. This takes
place through absorption or scatter of x-ray
photons.



CHAPTER Il

REVIEW OF RELATED LITERATURE

2.1 Theory
2.1.1 Introduction of computed tomography

Computed Tomography (CT) imaging is also known as "CAT imaging"
(computed axial tomography). The word “tomography” is derived from the Greek word
“tomos” (act of cutting) and “graphos” (image). Tomography refers to the cross-
sectional imaging of an object from either transmission or reflection data collected by
illuminating the object from many different directions [1].

Since the first CT scanner was developed in 1972 by Sir Godfrey Hounsfield,
the modality has become established as an essential radiological technique applicable
in a wide range of clinical situations. X-rays had been used to generate cross-sectional,
two-dimensional images of the body. Images are acquired by rapid rotation of the x-ray
tube 360° around the patient. The transmitted radiation is then measured by the ring of
sensitive radiation detectors located on the gantry around the patient. The final image
is generated from these measurements utilizing the basic principle that the internal
structure of the body can be reconstructed from multiple x-ray projections.

Early CT scanners acquired images a single slice at a time (sequential
scanning). However, during the 1980s significant advancements in technology heralded
the development of slip ring technology, which enabled the x-ray tube to rotate
continuously in one direction around the patient. This has contributed to the
development of helical or spiral CT.

The first clinically available CT device was installed at London’s Atkinson
Morley Hospital in September 1971, after further refinement on the data acquisition
and reconstruction techniques. Images could be produced in 4.5 minutes. On October
4, 1971, the first patient as in Figure 2.1, who had a large cyst, was scanned and the
pathology was clearly visible in the cross-sectional image [2].



Figure 2.1 CT head images acquired of the first CT scanners [2].

CT has evolved into an indispensable imaging method in clinical routine. It was
the first method to non-invasively acquire images of the inside of the human body that
were not biased by superposition of distinct anatomical structures. This is due to the
projection of all the information into a two-dimensional imaging plane, as typically
seen in planar x-ray fluoroscopy. Therefore, CT yields images of much higher contrast
compared with conventional radiography. Additionally, due to its ease of use, clear
interpretation in terms of physical attenuation values, progress in detector technology,
reconstruction mathematics, and reduction of radiation exposure, computed
tomography will maintain and expand its established position in the field of radiology.
[2, 7]

2.1.2 Principle of CT

2.1.2.1 X ray projection, attenuation and acquisition of
transmission profiles

The process of CT image acquisition involves the measurement of x- ray
transmission profiles through a patient for a large number of views. A profile from each
view is achieved primarily by using a detector arc generally consisting of 800—-900
detector elements (dels), referred to as a detector row. By rotation of the x-ray tube and
detector row around the patient, a large number of views can be obtained. The use of
tens or even hundreds of detector rows aligned along the axis of rotation allows even
more rapid acquisition (Figure 2.2). The acquired transmission profiles are used to
reconstruct the CT image, composed of a matrix of picture elements (pixels).
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Figure 2.2 CT image acquisition showing the transmission of X-rays through the
patient by using a detector row (a), with rotation of the x-ray tube and detector (b)
and by multiple detectors (c) [7].

The values assigned to the pixels in a CT image are associated with the
attenuation of the corresponding tissue, or, more specifically, to their linear attenuation
coefficient u (m™2). The linear attenuation coefficient depends on the composition of
the material, the density of the material and the photon energy, as seen in Beer’s law:

1(x) =1,

Where 1(x) is the intensity of the attenuated x- ray beam, lo the unattenuated x-
ray beam and x the thickness of the material. As an x- ray beam is transmitted through
the patient, different tissues are encountered with different linear attenuation
coefficients. If the pathway through the patient ranges from 0 to d, then the intensity of
the attenuated x- ray beam, transmitted a distance d, can be expressed as:

I(d) = I Oe—fg p(x)d (x)

From the above, it can be seen that the basic data needed for CT are the
intensities of the attenuated and unattenuated x-ray beams, respectively I(d) and lo , and
that these can be measured. Image reconstruction techniques can then be applied to
derive the matrix of linear attenuation coefficients, which is the basis of the CT image.

2.1.2.2 Hounsfield units

In the CT image, the matrix of reconstructed linear attenuation coefficients
(umaterial) IS transformed into a corresponding matrix of Hounsfield units (HUmaterial),
where the HU scale is expressed relative to the linear attenuation coefficient of water
at room temperature (pwater):

_ Humaterial — Hwater %1000

materail
:uwater

HU




It can be seen that HUwater = O (Ltmaterial = pwater), HUair =—1000 (ptmateriat = 0) and
HU = 1 is associated with 0.1% of the linear attenuation coefficient of water. From the
definition of the HU, it follows that for all substances except water and air, variations
of the HU values occur when they are determined at different tube voltages. The reason
is that, as a function of photon energy, different substances exhibit a non-linear
relationship of their linear attenuation coefficient relative to that of water. This effect is
most notable for substances that have a relatively high effective atomic number, such
as contrast enhanced blood and bone.

CT images are usually visualized on a monitor using an eight-bit greyscale
offering only 256 grey values. Each pixel HU value then has to undergo a linear
mapping to a ‘window’ 8 bit value. The window width defines the range of HUs that is
represented by the mapped values (ranging from white to black) and the window level
defines the central HU value within the selected window width. Optimal visualization
of the tissues of interest in the image can only be achieved by selecting the most
appropriate window width and window level. Consequently, different settings of the
window width and window level are used to visualize soft tissue, lung tissue or bone.
The greyscale, as defined by window level and window width, is adapted to the
diagnostic task and is thus dependent on the clinical question. [2, 4, 7, 8]

2.1.3 Components of Computed Tomography Scanner

The components of CT scanner include the gantry, X-ray source, a high-
powered generator, detectors and detector electronics, data transmission systems (slip
rings) and the computer system for image reconstruction and manipulation, as shown
in Figure 2.3.

G\_—— X-ray tube
ganty emms —

patient
table

Figure 2.3 Schematic diagram of the CT scanner [9].

The gantry is the backbone of a CT system. The rotating side of the gantry
typically contains the x-ray tube, detector, high-voltage device, tube-cooling tank, slip
ring, and other supporting devices, as shown in Figure 2.4. With such a large load, the
gantry still needs to maintain angular and position accuracy. Angular accuracy requires
the gantry to rotate at highly constant speeds. Position accuracy requires the gantry to



be free of significant vibrations in all directions and the clinical applications in which
sub millimeter slice thickness is required. Since the width of the x-ray beam is less than
a millimeter, the position of the x-ray beam should not vary more than a small fraction
of the beam width during gantry rotation to ensure true sub millimeter imaging.
Consequently, the gantry must be stable within a fraction of a millimeter for all
projection angles. With increased demanding scan speeds, the requirements of gantry
performance have also increased significantly. These requirements place large design
constraints on the components mounted on the gantry.

Figure 2.4 Basic system components of a third-generation CT system [2].

One of the components of the CT system is the slip ring which allows the gantry
components to be coupled without cables. The x-ray tube rotates continuously around
the gantry without hanging up the electronic mechanisms. The technology eliminates
the time-consuming, start-and-stop process of earlier CT scanners and permits data
acquisition to begin very quickly. Faster scan times led to the development of
continuous acquisition exams such as computed tomography angiography. Slip-ring
technology made helical CT scanning a reality.

Slip rings compose of electrical conductive rings and brushes. The slip ring
transmits an electrical current across the rotating surface and supplies the electrical
power to the x-ray tube and helps transfer the signals from the detectors to the computer

for image reconstruction. High-voltage slip rings provide greater voltage capacity,
typically more than 600 volts, as shown in Figure 2.5. [2, 4]
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Figure 2.5 Photograph of a slip ring used for power and data transmission [2].

The patient table, patient couch, is made of a material that will absorb the least
amount of radiation possible while still supporting the weight of the patient. Carbon
fiber is the most common material used in CT tables. The table does much more than
simply transport the patient into the scanner; its movement determine which part of a
patient’s anatomy is scanned and the thickness of the image sections [9].

The x-ray tube is mounted inside the gantry and rotates continuously around the
patient. The tube consists of two major components: a cathode and an anode. The
electron beam travels from the cathode and strikes a target on the anode. The tube then
generates high-energy photons from the anode. The cathode contains compact tungsten
filaments that set the current of the electrons flowing to the anode. The rotating anode
usually is composed of an alloy of tungsten, and the target area of the anode is made of
tungsten. Tungsten is an ideal metal for use in multislice CT scanners because of its
high heat tolerance and high melting point of 3,400° C. Tungsten also dissipates heat
quickly so that the target area can cool rapidly and be ready for the next bombardment
of electrons. The target is fixed at an angle of approximately 11° to 12°. The cathode
and anode are enclosed in a metal tube as shown in Figure 2.6.

The CT tube voltage (kV), and tube current, (mA), move the electron beams
from the cathode to the anode. Changing the mA changes the cathode filament
temperature so that the cathode produces the desired number of electrons. The energy
level of these electrons can be controlled by adjusting the kV affects the penetrating
power of the electrons that pass through the patient’s body.

h

=

Cathode

z-axis Anode

Figure 2.6 A rotating-envelope X-ray tube [10].
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The generator is responsible for the high voltage needed to create x-rays. It
produces voltages from 90 to 140 kV, with a typical CT scan using 120 kV. Generators
convert the low-voltage alternating current to a high-voltage direct current that powers
the x-ray tube with constant energy. The incoming power supply of 60 hertz (Hz) is
transformed into a high-voltage, high-frequency current of 500 to 25,000 Hz. The
power demands on a multislice CT unit are enormous, typically 20 to 100 kilowatts
(kW). A 60-kW generator produces enough voltage to provide 80 to 120 kV and 20 to
500 mA.

The detectors, which measure the patient’s x-ray attenuation data, are located
opposite the x-ray tube. Detectors are very sensitive. They recognize the ionizing
radiation that has passed through the patient, capture the signal and then transport the
signal to the digitizer. X-rays produce an analog signal that must be converted into a
digital signal so that the computer can read the information and produce the final CT
image. The detector geometry is the relationship of the tube, the beam shape and the
detectors. Current CT scanners use hundreds of detectors that are arranged in a curved
array and aligned with the x-ray tube. (Figure2.7)

Detector efficiency determines how accurately the CT image is reproduced
every time and with every patient. Different terms describe the detector efficiency.
Capture efficiency is the measurement of how efficiently the detectors gather the
photons coming from the patient. Absorption efficiency describes how efficiently the
photons are captured by the detectors. Stability is the measurement of how consistently
the detectors respond. The response time is how fast the detectors record the photons
and how quickly they recover for the next event. Dynamic range refers to the accuracy
of the detector’s response to both high-energy and low-energy radiations. Finally,
reproducibility describes how consistently the detectors respond to similar transmitted
radiation events.

detector array ——>

electronics

Figure 2.7 Detector array of modern CT [4].

In CT scanner the collimators is to provide a consistent beam width, which is
defined by slice thickness. The beam width is measured in the z-axis at the center of
the rotation for a single-row detector array. Collimation limits the amount of x-ray
exposure to the patient by reducing scatter radiation and improves image contrast. CT
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scanners contain both pre-patient and post-patient collimators. Pre-patient collimators
are located just outside the x-ray tube where the beam leaves the tube. These
collimators, which are made of thick metal plates, define beam width and restrict the
shape of the x-ray beam before it ever reaches the patient. In single-slice CT scanning,
the collimators define the thickness of the cross-sectional slice. Pre-patient collimators
also define the thickness of the x-ray beam in multislice CT scanning, which spreads
the beam over the entire detector array, or multiple rows of detectors. In multidetector
CT scanning, however, image reconstruction rather than pre-patient collimation
determines the slice thickness. Post-patient collimators are positioned just above the
detector array. These collimators improve image quality and axial resolution. Post-
patient collimation also works in conjunction with pre-patient collimation to help define
slice thickness. If post-patient collimation is reduced, the slice thickness decreases.
Thin collimation results in better resolution, but it take longer to scan a particular area
of anatomy. Wider collimation results in lower resolution, but it provide better volume
coverage speed. [2, 4, 8, 9]

The x-ray photons emitted from an x-ray tube represent a wide spectrum. Many
soft (low-energy) x-rays are present. The low-energy x rays are primarily absorbed by
the patient and contribute little to the detected signal. Therefore, it is necessary to
remove these soft x- rays to reduce the patient dose. To achieve this objective, most CT
manufacturers employ additional x-ray filtration to improve beam quality. The most
commonly used filters are the flat filter and the bowtie filter. The flat filter is typically
made of copper or aluminum and is placed between the x-ray source and the patient.
The flat filter modifies the x-ray spectrum uniformly across the entire FOV. Since the
cross section of a patient is mostly oval-shaped, some manufacturers employ a bowtie
filter to modify the x-ray beam intensity inside the FOV to further reduce the patient
dose (Figure2.8). [2]

N=TEly =0Urce

bowtie filter

flat filter

patient

detecior

Figure 2. 8 Schematic diagram of a bowtie filter and a flat filter [2].
2.1.4 The principle of Multislice/ Multidetector Computed Tomography
Rapid acquisition of data, both for improved volume coverage and to minimize

patient movement, is a major goal in CT and, as a means to this end, faster rotation
times and spiral CT has already been discussed. The development of scanners in the
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mid1990s which allowed the simultaneous acquisition of more than one slice presented
a further significant advance in CT technology

The principle of multi-slice CT is relatively straightforward. In a third generate
on single slice design, up to 900 detector elements were arranged in an arc that was
concentric with the z-axis but the detectors were only one element deep (typically 10
mm) in the z direction. To achieve slices less than 10 mm thick the beam width was
restricted using physical collimators, often both between the x-ray tube and the patient
and between the patient and the detectors. In multi-slice systems the detectors are
physically and electronically separated along the z-axis and thus form a matrix of
elements (Figure 2.9). Several designs of detector array have been developed by
different manufacturers. Two basic designs have been used filed array detectors, in
which all elements have the same width, and adaptive array detectors, in which the
outer detectors are wider than those nearer the center.

An example of each is shown in Figure 2.9. Figure 2.9(a) shows a filed array
detector with 64 detector rows and a collimated detector of 0.625 mm giving a
maximum coverage of 40 mm along the z-axis. Thicker z values may be obtained by
combining the detectors in groups. Figure 2.9(b) shows an adaptive array detector with
24 detector rows. In the middle there are 16 detectors with a width of 0.75 at the center
of rotation. These are flanked by eight outer detector rows 1.5 mm wide. This array
may operate as a 16 x 0.75 mm array covering 12 mm or as a 16 x 1.5 mm array
covering 24 mm.

The development of multi-slice CT allowed imaging time to be significantly
reduced. For example, an early multi-slice scanner offering four 5 mm slices per
rotation allowed a volume of data to be acquired in a quarter of the time that a single-
slice scanner would have taken to acquire 5 mm images through the same volume.
However, the scanner could alternatively be used to acquire thinner slices, and hence
achieve better z-axis resolution. The development of CT has been to acquire images
with isotropic resolution, in the z direction matches that in the x-y plane. Once this is
achieved, high quality images can be reconstructed in the coronal and sagittal planes,
and various 3-D visualization techniques can be applied.[2, 4]
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Figure 2.9 Multi-detector arrangements; (a) A filed array detector with 64 x 0.625
mm detectors, (b) an adaptive array with 16 x 0.75 mm detectors at the center
and 4 x 1.5 mm detectors on each side [2].

2.1.5 Image reconstruction of CT

Each registered beam is just a projection of attenuation characteristics of the
irradiated tissue. The aim of the reconstruction algorithm is to estimate how the tissue
absorptions are distributed along the x-ray path. This goal is not achievable using a
single projection profile. Instead it needs a large number of projections for many
different angles. The acquired projection profile can be displayed as a sinogram (Figure
2.10). Sinograms are not used for clinical routine, but they are relevant for
understanding tomographic principles. The horizontal axis of the sinogram represents
the different projection profiles. The vertical axis in the sinograms corresponds to each
angle of projections. Objects closer to the center of the field of view produce small
sinusoid amplitudes in the sinogram, and objects closer to the edge produce heightened
sinusoidal amplitudes.

Reconstructing an image from the projection profiles is a classical inverse
problem. Early attempts at CT reconstruction used an iterative approach called
algebraic reconstruction algorithm. This algorithm starts with an assumed image,
computes projections from the image, compares the original projection data, and
updates the image based on errors between projections that would be obtained from the
current pixels, values, and actual projection. This method was very time-consuming and
computationally intensive.

A faster CT reconstruction approach has been developed called filtered back-
projection. It became widely accepted because reconstruction of the images is
completed as soon as the CT examination is finished.

20° 130°
Projection Angle

Figure 2.10 The sinogram contains the raw data of a CT acquisition [11].

Today, faster computer processors are allowing for the use of iterative
reconstruction algorithms. These algorithms begin to replace filtered back-projection
algorithms because they permit reduced image noise with low milli-Ampere/peak
kilovolt settings. The algorithms use approximations of voxel attenuation to calculate
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projection data; these approximations of voxel attenuation are iteratively adjusted to
decrease the difference between the measured data and the estimated data. The signal-
to-noise ratios obtained by iterative reconstruction techniques are better compared with
filtered back-projection while simultaneously conserving spatial resolution. [4, 9]

2.1.6 The dosimetry in computed tomography

For asingle CT scan taken with a step-and-shoot mode, nearly all of the primary
radiation is confined to a thin cross-section of the nominal slice thickness T. Because
of the beam divergence, the penumbra of the beam, and the scattered radiation, dose is
also delivered to tissues outside the nominal imaging section. This results in a dose
profile in z (perpendicular to the cross-section) with long tails, as illustrated in Figure
2.11 for the dose profile of a 10-mm scan.
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Figure 2.11 The single-scan dose profile for 10-mm slice thickness [8].

When multiple scans are performed in the adjacent region, x-ray dose from
nearby scans also contributes to the dose to the current location, due to the long tails of
the dose profile. If we combine the x-ray dose from all scans, we obtain a composite
dose profile, as shown in Figure 2.12. This figure illustrates the composite dose profile
of seven scans acquired with 10-mm collimation at 10-mm increments (the table travels
10 mm between adjacent scans). The dose at the center section is significantly higher
than the single-slice dose profile. In this particular example, the average composite dose
within the center region of width T is roughly 85% higher than the average dose of a
single scan. Although this example is obtained with scans taken with step-and-shoot
mode, similar conclusions can be obtained for the helical/spiral scan mode as well. In
fact, the multiple-scan dose profiles for the helical mode are very similar to those of the
step-and-shoot scans with the exception of inhomogeneities following the spiral
pattern.
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Figure 2.12 Multiple-scan dose contributions for 10-mm slice thickness at 10-mm
increments [8].

To account for the fact that the majority of CT scans performed in a clinical
environment consist of multiple scans, Computed Tomography Dose Index (CTDI) was
proposed. The most commonly used index is CTDl10o, Which refers to the dose absorbed
in air, although it is measured in the standard polymethylmethacrylate (PMMA)
phantoms as shown in Figure 2.13. For this index, the dose is integrated over a fixed
length of 100 mm,

4 [T b, (2)dz

CTDIlOO = ﬁ

—50mm

Where Da(z) is the dose absorption distribution in z for a single axial scan, n is
the number of detector rows used during the scan, and T is the nominal thickness of
each row. The quantity nT, therefore, is the nominal x-ray beam width during the data
acquisition.

ey -

10 mm pencll chamber

PMMA plug

e periphecal hole

32cm body PMMA phantom

e CENMET hOlE

16 cm head PMMA phantom

Figure 2.13 The computed tomography dose index (CTDI) is measured using either a
16-cm or 32-cmdiameter polymethyl methacrylate (PMMA) phantom [4].
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CT scanners expose patients to x-rays over 360 degrees, the x-ray dose is
significantly more homogeneous than in conventional x-ray. In CT scans, the portion
of the phantom that directly faces the x-ray source changes constantly as the x-ray tube
rotates about the patient. As a result, doses are distributed more evenly across the entire
phantom, as shown by Figure 2.14. A closer inspection of Figure 2.14 shows that
variation in dose still exists between the periphery of the phantom and the center of the
phantom. The degree of dose non-uniformity depends highly on the size, shape, and
composition of the object. For CT head scans, for example, the center of the patient
receives nearly as much radiation dose as the periphery. For body scans, the dose
uniformity decreases with the patient size increase. For a 35-cm diameter body, the
central dose is roughly one fifth to one third of the peripheral dose. To account for the
spatial variation of the dose, a weighted dose index, CTDIw, which combines dose
information at different locations, was proposed, and is calculated based on the formula:

1 2
CTDIW = (éjCTDllOO(center) + (g]CTDlloo( peripheral)

Figure 2.14 CT dose distribution when the gantry rotates 360 deg [8].

The most commonly used phantoms for dosimetry are the PMMA phantoms
with a diameter of 16 cm for head and 32 cm for body. Figure 2.15 shows the CT dose
measurement setup with a 32-cm body phantom. The peripheral dose is based on the
dose measurements of the ion chamber in the four predrilled peripheral holes near the
rim of the phantom that is highlighted by the dotted circles. The center dose is based on
the measurement of the ion chamber in the center hole of the phantom that is highlighted
by the solid circle.
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Figure 2.15 Dose measurement setup with CTDI body phantom (32-cm diameter) and
ion chamber (100-mm length) [8].

The definition of CTDIw considers only the x-ray exposure for a step-and shoot
scan, and does not take into account the x-ray dose received when a helical scan is
performed. In helical or spiral scans, the patient table travels at a constant speed while
data collection takes place. One parameter that describes how fast the patient table
travels is the helical pitch, defined as the ratio of the table traveling distance in one
gantry rotation over the nominal beam width. As the helical pitch increases (assuming
all other parameters are kept constant), the same amount of x-ray radiation is distributed
over a longer z. Since CTDI is defined as the dose per unit length in z, its value should
reduce with the increase in helical pitch. This led to the introduction of CTDIyol.

Most scanners have the ability to display the CTDIyo on the CT scanner console
prior to the actual scan. The value can be displayed because the CT manufacturer has
measured CTDlyo in the factory over the range of kV values for that model of scanner,
and then that stored value, scaled appropriately by the mAs and pitch, is displayed on
the console. [18]

CTDI,, = —CT_D'W
Pitch

This value is expressed in mGy and is displayed on most of the CT consoles
during the scan prescription. In a clinical environment, however, the scan range in z
can vary significantly depending on the clinical indications.

The CTDI is the phantom used in the dose measurement. The dose
measurements of the two CTDI phantoms (16 and 32 cm) are used to provide the basis
for the patient dose calculation. However, patients come in different shapes and sizes,
and two round phantoms are an oversimplification of the patient population. In addition,
patient organs consist of different tissue types and are not uniform across the entire
FOV. This leads to a non-uniform dose distribution inside the patient, which is in sharp
contrast to the uniform CTDI phantoms. [4, 12]
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DLP =CTDI,,, x scan length

The product of the CTDIyvo and the length of the CT scan along the z-axis of
the patient, L, is the dose length product (DLP) with the unit in mGy.cm

Limitations of CTDlyol, the most important limitation of CTDIyo is that it is a
dose index, and was not initially meant to be a measurement of dose per se. CTDI
concepts were meant to enable medical physicists to compare the output between
different CT scanners and were not originally intended to provide patient-specific
dosimetry information. The body CTDIlwl as reported by the CT scanner, or as
measured on a CT scanner, is a dose index that results from air kerma measurements at
two locations to a very large (32-cm diameter) cylinder of PMMA plastic with a density
of 1.19 g/cm®. In terms of human dimensions, the 32-cm-diameter PMMA body
phantom corresponds to a person with a 119 cm waistline—a large individual, indeed.
For smaller patients, the actual doses are larger than the CTDIyq for the same technique
factors—thus, the CTDIyo tends to underestimate dose to most patients.

In light of this limitation, researchers have recently shown that patient size
conversion factors can be used with the CTDIvo reported on a given CT scanner to
produce size specific dose estimates (SSDESs). These conversion factors for the CTDlyol
measured on a 32-cm-diameter phantom. The conversion factors described in AAPM
Report 204 may be used to more accurately estimate size-corrected doses from the
CTDlIvol, and these conversion factors are independent of scanner manufacturer and tube
voltage. However, some CT scanner models use the CTDIyq value measured using the
16-cm-diameter PMMA phantom, and caution is needed to ensure that the correction
factors specific to the appropriate reference phantom are used. [4, 8]

2.1.7 Thoracic computed tomography

Computerized tomography of the chest has revolutionized thoracic imaging. It
can provide important information in the diagnosis and management of pulmonary
masses and malignancy, mediastinal disease, bronchiectasis, interstitial lung disease
and pleural abnormalities. However, it is a relatively expensive technique and carries a
risk of inducing malignant disease due to radiation exposure. To improve current
practice, requesting doctors need a greater understanding of the indications for
computerzed tomography scanning and its different forms (conventional vs high
resolution).

By altering the processing algorithms, two sets of images can be obtained — lung
windows (Figure 2.16a) and mediastinal windows (Figure 2.16 b). In the mediastinal
windows the lungs are overexposed and simply appear black. This algorithm is used to
assess chest wall and mediastinal structures, usually with intravenous contrast so that
vascular structures in the mediastinum can be distinguished from enlarged lymph nodes
or other masses. These mediastinal windows are also appropriate to look at the chest
wall and pleura and in particular for pleural plaques such as calcium containing asbestos
pleural plaques. In the lung windows the mediastinal and chest wall structures are
essentially whited out and the lung tissue can be seen in detail including areas of
consolidation, and pulmonary vascular structures.
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Figure 2.16 Processing algorithms of thoracic images (a) Lung windows and (b)
mediastinal windows.

In staging of lung cancer a contrast CT is needed and should include the upper
abdomen to assess the liver and adrenal glands. Usually detectable on plain chest
radiographs) is very reassuring and implies that the lesion is both chronic and benign.
However, a specialist referral is almost always indicated and CT scanning is unlikely
to alter this requirement.[12, 13]

2.2 Review of related literature

American Association of Physicists in Medicine (AAPM) Report no.204 [5]
described the use of a size metric that involved the physical dimensions of the patient
(anteroposterior [AP], lateral, AP+ lateral, or effective diameter), in combination with
scanner output (CTDlIvar), to determine size specific dose estimates (SSDE) from CT
scanning. The electronic measurement tools can be used to measure physical
dimensions from either the CT localizer radiograph or an axial CT image on the
monitor. The conversion factors used to calculate SSDE from CTDIvol were derived
from four different methods: measurements in anthropomorphic phantoms or
polymethy-methacrylate cylindrical phantoms and Monte Carlo simulations in
cylinders or voxelized phantoms and normalized to patient size. The specific formula
to estimate patient dose for a specific patient size is given by:

SSDE = f,, xCTDI,,

size

Where fsize is the correction factor that takes into account the patient size
(anteroposterior [AP], lateral, AP+ lateral, or effective diameter).

American Association of Physicists in Medicine (AAPM) Report no.220 [6]
introduced SSDE to allow estimation of patient dose based on CTDlIyo and water
equivalent diameter (Dw). This task group was to develop a robust and scientifically
sound metric for automatically estimating patient size in CT that would account for
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patient attenuation and allow routine determination of SSDE for all patients, with little
or no user intervention. AAPM report 220 had a specific goal of developing a practical,
standardized approach to estimating patient size that could be implemented by CT
scanner manufacturers and others using CT localizer radiographs, axial CT images
reconstructed using a full FOV, or other data derived from the scanning process (e.g.,
projection data). The specific formula to estimate patient dose for a specific patient size
is given by:

SSDE= f,, xCTDI,

Where fow represents the SSDE conversion factor as a function of patient size (Dw).

Determination of water-equivalent diameter (Dw) from the CT Image was
computed from the attenuation-area product of each image. The attenuation values, or
CT numbers, in the axial CT image are expressed using a special unit known as
Hounsfield Units (HU):

CT,

xy) —

(X y) luwater Xlooo (1)
:uwater
Where u(x,y) is the linear attenuation coefficient for a voxel in an axial CT
image at position(x,y). Because u(x,y) is normalized to the attenuation of water in the
definition of CT number, water equivalent area (Aw) can be represented in terms of CT
numbers, as shown in Equation 2,

AN Z{ (X y)} Apixel (28.)
:uwater

HY) | b

AW z 1000 X Aplxel ( )

Where Ayixel iS the area of a pixel in the CT image and CT(x,y) is the CT number of a
voxel. The parameter a determines the weighting of the linear attenuation coefficients
relative to water. Linear dependence (o = 1) was assumed. Aw can be calculated using
the mean CT number within a region of interest (ROI). The ROl must be large enough
to include the entire patient cross section, but should not include irrelevant objects such
as the patient table, since it is only the dose to the patient that is of interest. Equation
2b can then be expanded as,

A= Z{ﬁg = } X Agie (3a)

A= Loap Ao+ X (30)
CT

AW 21000 Z N (X y) x (N pixel x Apixel )+ (N pixel x Apixel) (3C)

pixel
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1

A, = mCT(X’ y) rol Aror T Aro (3d)

Where the mean CT number in the ROI, Npixer IS the number of pixels in the
region of interest, and, which is the total area of the ROI. The ROI may include the air
surrounding the patient, since voxels that have an attenuation coefficient of nearly zero
negligibly change the value of the sum in Equation 2b.

Dw is calculated from the CT images as Equation:

D, =2JA, /7

pw=2x || STEWeot g | p g7
1000

Thus, Dw of an object can be calculated from the mean CT number in an ROI
containing that object. The mean CT number can be evaluated using tools readily
available on most CT operator consoles or workstations. Alternatively, automatic
segmentation algorithms could be used.

Christner JAet al [14] studied on: size-specific dose estimates for adult
patients at CT of the torso.The purpose of the study was to determine the relationships
among patient size, scanner radiation output, and size-specific dose estimates (SSDES)
for adults who underwent CT of torso. 545 adult patients (322 men, 223 women) were
included in the study. CTDIvo was used with measurements of patient size (AP+LAT)
and the conversion factors from the AAPM Report 204 to determine SSDE. Linear
regression models were used to assess the dependence of CTDIvo and SSDE on patient
size.
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Figure 2.17 Graph shows how fsize was used to convert CTDIvo to SSDE, according to
method in AAPM Report 204 [14].

The result showed patient sizes ranged from 42 to 84 cm. In this range, CTDlvol
was significantly correlated with size (slope = 0.34 mGy/cm; 95% confidence interval
[CI]: 0.31,0.37 mGy/cm; R?=0.48; P < .001), but SSDE was independent of size (slope
= 0.02 mGy/cm; 95% CI: -0.02, 0.07 mGy/cm; R? = 0.003; P = 0.3). These R? values
indicated that patient size explained 48% of the observed variability in CTDIlyol but less
than 1% of the observed variability in SSDE. The regression of CTDIvoi versus patient
size demonstrated that, in the 42-84 cm range, CTDlIyo varied from 12 to 26 mGy.
However, use of the evaluated automatic exposure control system to adjust scanner
output for patient size resulted in SSDE values that were independent of size.

It can be concluded that for the evaluated automatic exposure control, CTDlyo
(scanner output) increased linearly with patient size; however, patient dose (as indicated
by SSDE) was independent of patient size.

Imai R et al [15] studied on: Local diagnostic reference level based on size-
specific dose estimates: assessment of pediatric abdominal/pelvic computed
tomography at a Japanese national children's hospital. The purpose of the study was to
calculate the SSDE of abdominal/pelvic CT, compare the SSDE with CTDIvo and
calculate the DRLs of CTDlIyo and SSDE. The results showed the CTDlIvo and DLP of
117 children who underwent abdominal/pelvic CT examinations. The SSDE was
calculated from the sum of the LAT and AP diameters. The relationship between body
weight and effective diameter and between effective diameter and CTDIvo/SSDE were
compared. Further, the local DRL was compared with the DRLs of other countries. The
result showed the body weight and effective diameter and effective diameter and SSDE
were positively correlated.
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Figure 2.18 The relationship between the mean body weight of each color code and

effective diameter [15].
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Figure 2. 19 The relationship between SSDE or CTDIvo and effective diameter [15].

In children age of 1, 5 and 10 years, the SSDE is closer to the exposure dose of
CTDlyo for the 16-cm cylindrical phantom. The local DRL was lower than those of
other countries. The conclusion was that with SSDE, the radiation dose increased with
increasing body weight. Since SSDE takes body size into account, it proved to be a
useful indicator for estimating the exposure dose.

Leng S et al [16] studied on: size-specific dose estimates for chest, abdominal,
and pelvic CT: Effect of intrapatient variability in water-equivalent diameter. The
purpose of the study was to develop software to automatically calculate size SSDE and
to assess the impact of variations in water equivalent diameter (Dw) along the z axis on
SSDE for CT examinations of the torso. This study used Matlab program to calculate
Dw at each image position from 102 consecutive CT exams of the combined chest,
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abdomen and pelvis (CAP). SSDE was calculated by multiplying the size-dependent
conversion factor and CTDlIyo at each image position. The variations in Dw along the
z axis were determined for 6 hypothetical scan ranges: chest alone; abdomen alone;
pelvis alone; chest and abdomen; abdomen and pelvis; and CAP. Mean SSDE was
calculated in two ways: (A) from the SSDE at each position; (B) from mean CTDlyo
over each scan range and the conversion factor corresponding to Dw at the middle of
the scan range. The result showed the scan ranges 1 to 6, the average across patients of
the difference between maximal and minimal Dw within a given patient was 5.2, 4.9,
2.5, 6.0, 5.6, and 6.5 cm. The mean SSDE values calculated using methods A and B
were in close agreement, with root mean square differences of 0.9, 0.5, 0.5, 1.4, 1.0,
and 1.1 mGy or 6%, 3%, 2%, 9%, 4%, and 6%. In conclusions, using the mean CTD o
from over the whole scan range and Dw from the image at the center of the scan range
provided an easily obtained estimate of SSDE for the whole scan range that agreed well
with an image by image approach, having a root mean square difference below 1.4 mGy
(9%).

Khawaja RD et al [17] studied on: Simplifying SSDE in pediatric CT. The
purpose of the study was to determine whether body weight can be used as a surrogate
for measuring diameter in children. Dap and Diat were measured in 522 consecutive
CT examinations (chest, 187 and abdomen-pelvis, 335). Effective diameter (Dg1) was
calculated as the square root of the product of Dap and Drat. A second measurement of
effective diameter (De2) was obtained using automated software. Correlation
coefficients between patient body weight, age, and diameter were measured in addition
to 95% prediction interval analysis for diameters corresponding to body weight. The
result showed median body weight was 51 kg, and mean Dap, DiaT, De1, and Dez were
207.1 £ 50.8 mm, 289.8 £ 72.6 mm, 243.3 + 62.0 mm, and 233.6 + 55.4 mm,
respectively. Overall body weight had a strong correlation with diameter (0.88, 0.85,
0.86, and 0.93 respectively; all p < 0.0001). SSDE measured using body weight was
statistically not different than SSDE measured using effective diameters (p = 0.9).
Children weighing less than 27 kg and between 46 and 100 kg had statistically
significant correlations with torso diameters, whereas only anteroposterior and effective
diameters were correlated with children weighing between 27 and 45 kg. Children less
than 4 years old had strong correlation with all diameters. Adolescents (15-18 years)
did not have statistically significant correlation with any of the diameters. In
conclusions, body weight, instead of body diameter, can be used as a surrogate to
estimate size-specific dose in children, making dose estimation clinically simpler and
more rapid.


https://www.ncbi.nlm.nih.gov/pubmed/?term=Khawaja%20RD%5BAuthor%5D&cauthor=true&cauthor_uid=25539253
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CHAPTER 11

RESEARCH METHODOLOGY

3.1 Research Design

This study is an observational descriptive research design in type of
retrospective study.

3.2 Conceptual framework

Effective dose from SSDE is affected by sum of anterior-posterior and lateral
dimension (AP+LAT), body weight, body mass index (BMI), gender, anterior-posterior
dimension ( AP, lateral dimension (LAT), water- equivalent diameter ( Dw) and
CTDIvol.

Sum of anterior-posterior and lateral
dimension (AP+LAT)

‘body mass Body weight
index(BMI)

Size-Specific Dose Estimates for
) Thoracic Imaging in 320 Row CTDI
Detector Computed Tomography

N

s / Lateral
Gender Anterior-posterior dimension dimension
(AP) (LAT)

.

Water-
equivalent
diameter(Dw)

vol

Figure 3.1 Conceptual framework

In this study, we focus on sum of anterior-posterior and lateral dimension
(AP+LAT), body weight, body mass index (BMI), gender and water-equivalent
diameter (Dw).



3.3 Research design model

QC of MDCT system

Acquire CT chest venous phase protocol: 320 Detector
MDCT

Collect patient parameters
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Measure AP-LAT dimensions and draw a region of interest (ROI) at the mid chest
level and middle of scan range from the CT axial image

Calculate SSDE

Evaluate radiation dose

Determine factors influenced
SSDE

Correlate SSDE and influenced factors
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3.4 Research questions and research objectives

3.4.1 Research questions
3.4.1.1 What is the radiation dose to patient, SSDE, from thoracic CT
examination?
3.4.1.2 Which parameters influence SSDE?
3.4.2 Research objectives
3.4.2.1 To determine the patient dose using SSDE for thoracic imaging
in 320 row detector computed tomography.
3.4.2.2 To determine parameters influence SSDE.

3.5 Key words

Multi-detector computed tomography, Size-specific dose estimates, Thoracic
CT examination, Patient size, MDCT 320

3.6 Material

3.6.1 Computed Tomography scanner

Figure 3.2 CT Toshiba Aquilion ONE, 320-row detector.

In this study, Toshiba Aquilion ONE, 320-row detector CT scanner at 2" Floor
of Bhumisiri Mangkalanusorn Building, Department of Radiology, King
Chulalongkorn Memorial Hospital was used. CT scanner has been installed in January
2011. Computer software unit was used for the WindowNT® operating system and the
application software coneXact™ was used for acquisition and processing.
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3.6.2 Patients information

Figure 3.3 Image DICOM header (a) and workstation of CT scanner (b).

Patient data with thoracic MDCT scan from the synapse workstation version
4.3.221 were extracted from DICOM header and workstation of CT scanner at King
Chulalongkorn Memorial Hospital as shown in the Figure 3.3.

3.6.3 QC equipment for MDCT

3.6.3.1 The cylindrical PMMA phantom of 16 and 32 cm diameters

Figure 3.4 PMMA head phantom 16 cm (a) and body phantom 32 cm diameters (b).

The CT phantoms were used to perform CT dosimetry verification in terms CT
Dose Index (CTDI) for CT scanner. The phantoms are made by polymethyl
methacrylate (PMMA). There are two standard PMMA dosimetry phantoms; the body
phantom is 32 cm in diameter and the head phantom is 16 cm in diameter and 15 cm in
length as shown in figure 3.4. The PMMA phantoms consist of 5 holes (one hole at the
center and four holes at the peripheral at the 3, 6, 9, 12 o’clock position) to insert the
ion chamber.



3.6.3.2 Catphan® 600 phantom

Figure 3.5 Catphan® 600 phantom.
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Catphan® 600 phantom was used for performance of CT scanner study in part
of the image quality evaluation. The Catphan® phantom was positioned in the CT gantry
as shown in figure 3.5.

The Catphan® 600 phantoms are designed so all test sections can be located by
precisely indexing the table from the center of section 1 (CTP404) to the center of each
subsequent test module.

Catphan® 600 phantoms test module location:

Module
CTP404
CTP591
CTP528
CTP528
CTP515
CTP486

Bead geometry

21 line pair high resol
Point source
Sub-slice and supra-si

ution

ice low contrast

Solid image uniformity module

70mm——»

32.5mm—=

~——160mm—|

a——1 1 O0mrer|
[-—-—

=

G
CTP404
CTP591
CTP528 LA
CTP515 ..
CTP486 q—

;/

2.5mm
10mm

Distance from section 1 center
Slice width, sensitometry and pixel size

mm
mm
mm
mm
mm

Figure 3.6 Catphan® 600 phantom with internal dimension and details on various

Modules
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3.6.3.3 The pencil type ionization chamber

Figure 3.7 Pencil-type ionization Unfors Xi CT Detector.

The ionization pencil chamber utilized for CT dosimetry as illustrated in figure
3.7 is a non-sealed cylindrical chamber with sensitive length 10 cm. One typical
characteristic of this chamber is uniform response to incident radiations in every angle
around its axis. In this study, the RaySafe Xi CT detector has been used. It is a hybrid
ion chamber designed by Unfors RaySafe. The ion chamber and electronics are
combined into one unit making it possible to measure both temperature and pressure to
actively compensate for this dependency. The temperature is actually measured inside
the ion chamber giving very precise compensations both with and without a CT
phantom. With no baseline drift, this carbon fiber ion chamber is ready to use within
one minute.

Usually the reading by this chamber is expressed in dose or exposure units x
scan length (mGy.cm or R.cm), so as to provide the computed tomography dose index
(CTDI). The dosimetric quantity was reported by digital display of dosimeter.

Figure 3.8 Unfors model Xi platinum dosimeter.
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3.7 Sample

3.7.1 Target population

Adult patients’ weight between 40-70 kilograms underwent CT thoracic
contrast enhancement with venous phase protocol examined in September 2015 to
December 2016 at King Chulalongkorn Memorial Hospital.

3.7.2 Eligible criteria

3.7.2.1 Inclusion criteria

- Patient data analyzed from CT Toshiba's Aquilion ONE, 320 MDCT.
- Adult patients’ weight between 40-70 kilograms underwent thoracic
contrast enhancement with venous phase protocol

- CT scanner automatic exposure control systems (AEC)

- Same levels of CT image noise setting (targeted SD) for patients of
various sizes.

3.7.2.2 Exclusion criteria

- Patients underwent thoracic CT with non-contrast or arterial phase
protocol

- Non AEC or low dose technique

- Patients with breast prosthesis implant

- Patient with Implantable cardioverter defibrillator (ICD) and
pacemaker.

- The contour skin of chest level not visible on the FOV reconstruction.

3.8 Methods

3.8.1 Perform the quality control of CT Toshiba Aquilion ONE, 320-row
detector

The quality control of CT scanner was performed following the IAEA Human
Health Series N0.19 [18]. The quality control in acceptance test consists of mechanical
accuracy, radiation output to determine CTDlair, CTDIvoi using PMMA phantoms and
image quality evaluation using Catphan ®600 phantom.



32

3.8.2 Patient study

3.8.2.1 Select patients in accordance with inclusion and exclusion
criteria as mentioned above. The data of the patients who have already been performed
thoracic CT examination using contrast enhancement with venous phase CT routine
protocol in September 2015 to December 2016 at King Chulalongkorn Memorial
Hospital were collected.

3.8.2.2 Collect the patients’ data for thoracic CT examination in terms
of body weight, body mass index (BMI), height, gender and age.

3.8.2.3 Measure AP-LAT dimensions at mid chest level and middle of
the scan range from the CT axial image by using ruler on image tools.

\ _ :
\- ‘,‘i&/ o :
205.29mm

Figure 3.9 AP-LAT dimensions measurement at the midline from transverse CT
image at thorax.

3.8.2.4 Draw region of interest (ROI) at the mid chest level and middle
of scan range from the CT axial image, include the whole patient cross section (full
FOV) by using free hand ROI on image tools and record the mean CT number (HU)
and the area of the ROI.

Figure 3.10 Region of interest (ROI) contouring from the CT chest transaxial slice.
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3.8.2.5 Record CTDlyo from CT monitor or PACS system.

3.8.2.6 Apply the conversion factors (fsie) from the AAPM Report
n0.204 and no. 220 [5, 6] to determine SSDE in terms of sum AP and LAT (AP+LAT)
dimension, effective diameter and water equivalent diameter (Dw).

3.8.2.7 Calculate SSDE by equation: SSDE = fsize (Size-dependent
conversion factor) x CTDlyol.

3.8.2.8 Analyze the data.

3.8.2.9 Determine parameters affected SSDE.

3.9 Sample size determination

The sample population is retrospective data, determined by this equation:
2
27
N=| —%2 | +3
Zu = ZL
ZU — 1 |n(]ﬂ]
2 \1-py

2 \1-p

Define: N/group
Reference from literature review: Correlation coefficient (r) = 0.96
Where o = 0.05, Z 2 = 1.96

p = Population correlation coefficient
p_= Lower limit of population correlation; 0.95

Py = Upper limit of population correlation; 0.97

7, =21 1097 ) 509
2 (1-097

1, (1+0.95
Z =—1In
2 (1-0.95

j:1.83
Define from formula:
2
N :( 2x1.96 J 43
2.09-1.83
=230.3

N= 230 sample size
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3.10 Measurement variable

- Independent variable: AP+LAT dimensions, effective diameter, body weight,
body mass index (BMI), water-equivalent diameter and CTDlyol
- Dependent variable: SSDE

3.11 Data analysis

- Descriptive statistics: SSDE and CTDIvo presented by mean, median,
percentage and range (min—max). Data were analyzed using SPSS version 22.0 and
Microsoft excel version.2013

- Correlation coefficient between SSDE and related factors.

- Presentation format in scatter plot and tables.

3.12 Data collection

In this study, the data were collected from Toshiba Aquilion ONE, 320-row
detector CT scanner at 2" Floor of Bhumisiri Mangkhalanusorn Building, Department
of Radiology, King Chulalongkorn Memorial Hospital.

3.12.1 Patient information: body weight, height, body mass index (BMI),
gender and age from DICOM header.

3.11.2 CTDIvo had been recorded from CT monitor or PACS system.

3.13 Expected benefits

SSDE to apply for the patients of different sizes (AP+LAT dimensions,
effective diameter and water equivalent diameter (Dw)) with higher accuracy is
expected for this study. The location for determination SSDE, middle of scan range and
middle of organ (chest) that suitable for measurement the dimension from CT image is
also expected.

3.14 Ethic consideration

This research involves the determination of patient dose in Computed
Tomographic. The patient data collection during the period from September 2015 to
December 2016 had been extracted from the image DICOM header. The research
proposal was submitted for approval by Ethical Committee of Faculty of Medicine,
Chulalongkorn University.

The researcher was ethical conduct research follow in Belmont Report
Principles, consists of 3 basic principles.

- Respect for person by consent from patients to participate in research. But this
study, using data collected radiation dose a patient receives from a DICOM header, for
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this reason, are exceptions to the consent of the patient. However, researcher will
conceal the information, it’s cannot identify to patient.

-Beneficence (Maximize benefits/minimize risks) patients will not receive
benefits and risk because of this study using data collected radiation dose a patient
receives from a retrospective tool. The data is not identify the patient.

- Justice is a clear inclusion and exclusion criteria. Researcher used the data of
adult patients weight between 40-70 kilograms underwent thoracic contrast
enhancement with venous phase protocol examined in September 2015 to December
2016 at King Chulalongkorn Memorial Hospital.
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CHAPTER IV

RESULTS

4.1 Quality control of the Multidetector Computed Tomography scanner:
Toshiba Aquilion ONE

The quality control of CT scanner was performed following IAEA report No.19
[24]. It includes the test of electromechanical component, image quality and radiation
dose. The details of quality control of CT scanner are shown with the summarized report
of CT scanner performance test in Appendix B.

4,2 Patient data and radiation dose determined from thoracic CT examination

Patient information of 230 cases that underwent thoracic contrast enhancement
with venous phase protocol scanned by CT Toshiba Aquilion ONE, 320-row detector
from September 2015 to December 2016 was collected. Patient data from the image
DICOM header or CT control with thoracic MDCT is scanned at King Chulalongkorn
Memorial Hospital.

4.2.1 Patient characteristics of thoracic CT examination

The patient characteristics of 230 adult patients (115 males and 115 females) of

the mean age were 60.36 + 15.11 (range 18-93) years old. The mean + SD of patient
body weight was 55.42 £ 7.75(range 40-70) kg. The mean + SD of patient height was
160.26 + 8.04(range 140-186) cm. The mean = SD of patient BMI was 21.58 + 2.71
(range 15.62-29.08) kg/m?. The results are shown in Table 4.1-4.3.

Table 4.1 Patient characteristics of thoracic CT examination

Statistics Mean + SD Minimum Maximum
Age (year) 60.36 £ 15.11 18 93
Body weight (kg) 55.42 +7.75 40 70
Height (cm) 160.26 + 8.04 140 186
BMI (kg/m?) 2158 +2.71 15.62 29.08

Table 4.2 Patient characteristics of 115 male patients
Statistics Mean + SD Minimum Maximum

Age (year) 61.62 + 14.99 20 93
Body weight (kg) 58.35+7.39 40 70




Height (cm) 165.21 + 6.46 142 186
BMI (kg/m?) 21.39 £ 2.65 15.77 27.34
Table 4.3 Patient characteristics of 115 female patients
Statistics Mean + SD Minimum Maximum
Age (year) 59.09 +15.19 18 87
Body weight (kg) 52.49 + 6.98 40 70
Height (cm) 155.31 + 6.23 140 175
BMI (kg/m?) 21.78 +2.76 15.62 29.08

4.2.2 Patient data and radiation dose determined from middle slice of

organ (chest).

SSDE estimated from middle slice of organ (chest) of 230 adult patients (115
males and 115 females). The middle slice of organ (chest) located at center of chest (71"
thoracic vertebrae). CTDIvor was recorded from PACS system or CT monitor. The

results are shown in Table 4.4.

Table 4.4 Patient data and radiation dose determined from middle slice of organ

(chest).
Statistics Mean + SD Minimum Maximum
AP length(cm) 20.08 £1.81 15.88 25.91
LAT length(cm) 31.40 £ 2.58 25.11 39.23
AP+LAT(cm) 51.49 + 3.78 41.52 63.14
Effective diameter 25.09£1.85 20.17 30.62
(cm)
Mean CT number -285.70 + 60.53 -422.53 -100.59
(HY)
Area of ROI (cm?) 544.63 + 75.77 356.10 808.34
Water equivalent 22.19+1.97 17.28 30.42
diameter (Dw)(cm)
Conversion factor 1.48 £0.10 1.19 1.76
based on AP+LAT
(fap+LAT)
Conversion factor 1.47 £0.10 1.20 1.76
based on effective
diameter (ferr)
Conversion factor 164 +£0.11 1.21 1.96
based on Dw (fow)
CTDlva (MGY) 12.40 + 2.55 6.00 19.20
SSDEAap+LAT (MGY) 18.13 +2.75 10.50 24.45
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SSDEerr (MGY) 18.09 £ 2.75 10.43 2425
SSDEpw (MGy) 20.12 +2.93 11.66 26.83

4.2.3 Patient data and radiation dose determined from middle slice of
scan range.

SSDE estimated from middle slice of scan range of 230 adult patients (115
males and 115 females). The middle slice of scan range located at center of scan
volume. CTDIvoi were recorded from PACS system or CT monitor. The results are
shown in Table 4.5.

Table 4.5 Patient data and radiation dose determined from slice middle of scan range.

Statistic Mean + SD Minimum Maximum
AP length(cm) 20.42 +£2.09 16.01 31.62
LAT length(cm) 30.67+2.83 19.17 38.76
AP+LAT(cm) 51.09 + 3.89 38.17 63.11
Effective diameter 2498 £+ 191 19.08 30.72
(cm)
Mean CT number -274.83 £ 62.74 -410.98 -100.02
(HY)
Area of ROl (cm?) 541.50+ 75.26 352.53 798.70
Water equivalent 22.29+1.96 18.23 30.11
diameter (Dw)(cm)
Conversion factor 1.49+0.10 1.19 1.87
based on AP+LAT
(fap+LAT)
Conversion factor 1.48 £0.10 1.19 1.83
based on effective
diameter (ferr)
Conversion factor 1.63+0.11 1.22 1.89
based on Dw (fow)
CTDlva (MGY) 12.40 +£2.55 6.00 19.20
SSDEap+LAT (MGY) 18.26 £ 2.77 10.83 24.85
SSDEEerr (MGYy) 18.16 £ 2.74 10.70 24.70
SSDEpw (MGy) 20.04 + 2.92 11.33 27.13

4.2.4 SSDEAap+LAT, SSDEEFr and SSDEpw determined from middle slice of
organ (chest).

The SSDEap+LaT and SSDEErr related to patient geometry, mean SSDEap-+LAT
+ SD was 18.13 + 2.75 mGy and mean SSDEgrr + SD was 18.09 + 2.75 mGy
respectively. The SSDEpw related to body composition, mean SSDEpw + SD was 20.12
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+ 2.93 mGy. Statistical different between 3 methods (SSDEaptiat, SSDEErr and
SSDEpw are significant (p-value < 0.001). The results are shown in Table 4.6.

Table 4.6 SSDE measured from middle slide of organ (chest).

Mean + SD p-value
SSDEAp+LAT (MGY) 18.13 +£2.75
SSDEEerr (MGY) 18.09 £2.75 < 0.001
SSDEApP+LAT (MGY) 18.13 +£2.75
SSDEpw (MGy) 20.12 +£2.93 < 0.001
SSDEEerr (MGY) 18.09 £2.75
SSDEbw (MmGy) 20.12 +£2.93 < 0.001

*Correlation is significant at the 0.05 (p-value < 0.05) level (2 tailed)

The SSDEap+LaT, SSDEErr and SSDEpw displayed as box plots are shown in
Figurel. Box plots show the distribution of SSDE for the 230 patients. The bar indicates
the range of SSDE in each calculation method. Each box contains the values of SSDE
within 25" and 75" percentiles, error bar, and thick black lines represent the median.

257

T T T
SEDEAP+LAT) SEDE(EFF) SSDE(DW)

Figure 4.1 Box plots of SSDEap+LaT, SSDEErrand SSDEpw determined
from middle slice of organ (chest).
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4.2.5 Comparison between SSDEap+LAT, SSDEEerr and SSDEpw determined
from middle slice of scan range.

The SSDEap+LaT and SSDEErr related to patient geometry, mean SSDEap+LAT =+
SD was 18.26 + 2.77 mGy and mean SSDEgrr = SD was 18.16 + 2.74mGy respectively.
The SSDEpw related to body composition, mean SSDEpw + SD was 20.04 + 2.92 mGy.
Statistical different between 3 SSDEap+LaT, SSDEerr and SSDEpw are significant (p-
value < 0.001). The results are shown in Table 4.7.

Table 4.7 SSDE measured from middle slice of scan range.

Mean = SD p-value
SSDEAp+LAT(MGY) 18.26 +2.77
SSDEEerr (MGY) 18.16 £ 2.74 <0.001
SSDEAp+LAT(MGY) 18.26 £ 2.77
SSDEbpw (MGY) 20.04 +£2.92 < 0.001
SSDEEerr (MGY) 18.16 £ 2.74
SSDEpw (MGY) 20.04 +£2.92 < 0.001

*Correlation is significant at the 0.05 (p-value < 0.05) level (2 tailed)

The SSDEap+LaT, SSDEerr and SSDEpw displayed as box plots are shown in
Figure 2. Box plots show the distribution of SSDE for the 230 patients. The bar
indicates the range of SSDE, boxes contain the values of SSDE within 25" and 75"
percentiles and thick black lines represent the median.
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Figure 4.2 Box plots of SSDEap+LaT, SSDEErr and SSDEpw determined from middle
slice of scan range.

4.3 The slice locations used to estimate SSDE

SSDE estimated from two locations, at the middle slice of scan range and at the
middle slice of the organ (chest).

The SSDEap+LAT, SSDEEerr and SSDEpw were estimated from the middle slice
of the organ (chest), mean SSDEap+LaT Was 18.13 (range 10.50-24.45) mGy and mean
SSDEErr 18.09 (range 10.43 — 24.25) mGy. The mean SSDEpw was 20.12 (range 11.66
— 26.83) mGy.

The SSDEap+LAT, SSDEerr and SSDEpw were estimated from the middle slice
of scan range, mean SSDEap+aT Was 18.26 (range 10.83-24.85) mGy and mean
SSDEErr 18.16 (range 10.70 — 24.70) mGy. The mean SSDEpw was 20.04 (range 11.33
—27.13) mGy.

The correlation of SSDEs was estimated between the middle slice of the organ
(chest) and the middle slice of scan range as shown in Table 4.8.

- The correlation of SSDEap+LaT between the middle slice of the organ (chest)
and the middle slice of scan range were perfectly correlated, R? = 0.9820

- The correlation of SSDEEgrr between the middle slice of the organ (chest) and
the middle slice of scan range were perfectly correlated, R? = 0.9864
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- The correlation of SSDEpw between the middle slice of the organ (chest) and
the middle slice of scan range were perfectly correlated, R? = 0.9933.

Table 4.8 SSDE were determined from mid organ (chest) and middle of scan ranges.

Mid organ Middle of scan
(chest) range range R?
Mean + SD Mean + SD
SSDEApP+LAT(MGY) 18.13 £ 2.75 18.26 £ 2.77 0.9820
SSDEerr (MGY) 18.09 £2.75 18.16 £ 2.74 0.9864
SSDEbw (MGY) 20.12 +£2.93 20.04 +£2.92 0.9933

The correlation of SSDEap+LaT, SSDEEerFF and SSDEpw between the middle slice
of the organ (chest) and the middle slice of scan range were perfectly correlated.
Therefore, the middle slice of the organ (chest) has been used to determine parameters
affecting SSDE.

4.4 The correlation

4.4.1 The correlation between SSDE and CTDlvol

The correlation between SSDEap+Lat, SSDEgrr o SSDEpw and CTDlyol of
thoracic CT examination has been investigated. The results are shown in Table 4.9.
- Very strong linear relationship between the SSDEap+LaT and CTDIvor was significant
at R? equal 0.9433 and p-value < 0.001.
- Very strong linear relationship between the SSDEerr and CTDIvowas significant at
R? equal 0.9420 and p-value < 0.001.
- The strongest linear relationship between the SSDEpw and CTDIyo was significant at
R? equal0.9529 and p-value < 0.001.

Table 4. 9 SSDE and CTDlyol

SSDEap+LAT CTDlvol R?
(mGy) (mGy) p-value< 0.001
Mean +SD | 18.13+2.75 12.40 £ 2.55 0.9489
SSDEErrF CTDlval
(mGy) (mGy) p-value< 0.001
Mean +SD | 18.09 +2.75 12.40 + 2.55 0.9495
SSDEbw CTDlval
(MmGy) (MmGy) p-value< 0.001

Mean + SD | 20.12+2.93 12.40 + 2.55 0.9529

- Correlation is significant at the 0.05 (p-value < 0.05) level (2 tailed)
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The correlation of CTDIvo and SSDE of thoracic CT examination are plotted
as shown in figure 4.3.
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C. CTDlI,, and SSDE,,
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Figure 4.3 A-C The correlation of CTDlvo and SSDE; A. CTDlvol and SSDEap+LAT,
B. CTDlyol and SSDEgrr and C. CTDlyo and SSDEpw.

The correlation of SSDEpw and CTDIvo were perfectly correlated with R? =
0.9529. The exponential equation for using as the prediction function for SSDEpw in
chest CT study was y= 13.378In(x) — 13.269. This function can be used to calcuate
SSDEpw based on CTDlye as shown in Table 4.10. The calculation of SSDE is as the

following equation:
y=13.378In(x) — 13.269
where, X is the CTDlvoi (MGY) displayed on CT monitor.

Table 4.10 Determination of SSDEpw from CTDIvo displayed on the CT monitor

CTDlval SSDEpw

(MGy) (MGy)
5 8.26
6 10.70
7 12.76
8 14.55
9 16.13
10 17.53
11 18.81
12 19.97
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13 21.04
14 22.04
15 22.96
16 23.82
17 24.63
18 25.40
19 26.12
20 26.81

4.4.2 Body weight and SSDE

4.4.2.1 Data on body weight and SSDEap+LAT

230 Adult patient weight between 40-70 kilograms underwent thoracic contrast
enhancement with venous phase protocol examined in September 2015 to December
2016 at King Chulalongkorn Memorial Hospital. The results are shown in Table 4.11.

Body weight from 40-50 kg, mean SSDEap+LaT + SD was 16.06 + 2.42 mGy

(range 10.50 — 21.50 mGy).

Body weight from 51-60 kg, mean SSDEap+LaT + SD was 18.33 + 2.09 mGy

(range 12.61-23.18 mGy).

Body weight from 61-70 kg, mean SSDEap+LaT + SD was 20.06 + 1.81 mGy

(range 14.94-24.45 mGy).

Table 4.11 Data are presented of body weight and SSDEap+AT.

Body SSDEap+LAT (MGY)
weight Mean + SD Minimum Maximum
(kg)
40-50 16.06 + 2.42 10.50 21.50
(n=78)
51-60 18.33 £2.09 12.61 23.18
(n=94)
61-70 20.06 £ 1.81 14.94 24.45
(n=58)
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4.4.2.2 The correlation between body weight and SSDEap+LAT.
The correlation between body weight and SSDEap+at for thoracic CT
examination has been investigated. The results are shown in Figure 4.4.
- The moderate linear relationship between the body weight and SSDEap+1aT, R? Was

0.473.

The relationship between body weight and SSDE pp, ar-
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Figure 4.4 The correlation of body weight and SSDEap+LAT.

4.4.3 Body weight and SSDEEerr
4.4.3.1 Data on body weight and SSDEErr.

230 Adult patient weight between 40-70 kilograms underwent thoracic contrast
enhancement with venous phase protocol from September 2015 to December 2016 at
King Chulalongkorn Memorial Hospital. The results are shown in Table 4.12.

Body weight from 40-50 kg, mean SSDEgrr+ SD was 16.03 + 2.42 mGy (range

10.50 — 21.50 mGy).
Body weight from 51-60 kg, mean SSDEgrr £ SD was 18.29 + 2.10 mGy (range

12.61-23.34 mGy).
Body weight from 61-70 kg, mean SSDEgrr £ SD was 20.53 + 1.80 mGy (range

14.81-24.25 mGy).
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Table 4.12 Data on body weight and SSDEgkr.

Body weight SSDEerr(MGY)

(kg) Mean + SD Minimum Maximum
40-50 16.03 +2.42 10.50 21.50
(n=78)

51-60 18.29+£2.10 12.61 23.34
(n=94)
61-70 20.53+1.80 14.81 24.25
(n=58)

4.4.3.2 The correlation between body weight and SSDEErr.
The correlation between body weight and SSDEgrr for thoracic CT examination

has been investigated. The results are shown in Figure 4.5.
- The moderate linear relationship between the body weight and SSDEgrr, R?

was 0.4724.
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Figure 4.5 The correlation of body weight and SSDEEgrr.
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4.4.4 Body weight and SSDEbw
4.4.4.1 Data on body weight and SSDEpw.

230 Adult patients weight between 40-70 kilograms underwent thoracic contrast
enhancement with venous phase protocol between September 2015 to December 2016
at King Chulalongkorn Memorial Hospital. The results are shown in Table 4.13.

Body weight from 40-50 kg, mean SSDEpw+ SD was 17.70 + 2.49 mGy (range
11.66-23.81 mGy).

Body weight from 51-60 kg, mean SSDEpw = SD was 20.37 £ 2.09 mGy (range
13.54-25.58 mGy).

Body weight from 61-70 kg, mean SSDEpw = SD was 22.96 + 1.64 mGy (range
16.55-26.83 mGy).

Table 4.13 Data on body weight and SSDEpw.

Body SSDEpw (MGY)
weight (kg) Mean + SD Minimum Maximum
40-50 17.70 £ 2.49 11.66 23.81
(n=78)
51-60 20.37 £ 2.09 13.54 25.58
(n=94)
61-70 22.96 +1.64 16.55 26.83
(n=58)

4.4.4.2 The correlation between body weight and SSDEpuw.

The correlation between body weight and SSDEpw for thoracic CT examination
has been investigated. The results are shown in Figure 4.6.

- The moderate linear relationship between the body weight and SSDEpw, R?
was 0.5571.
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Figure 4.6 The correlation of body weight and SSDEpw.

4.4.5 Body mass index (BMI) and SSDE
4.4.5.1 Data on BMI and SSDEAap+LAT.
At BMI less than 18.5 kg/m?, mean SSDEap+LaT + SD was 15.45 + 2.38 mGy

(range 12.19-21.43 mGy).
At BMI from 18.5-22.9 kg/m?, mean SSDEap+LaT * SD was 17.41 + 2.27 mGy

(range 10.43-23. 34mGy).
BMI greater than or equal to 23 kg/m?, mean SSDEap+LaT + SD was 20.44 +

1.97 mGy (range 14.94-24.45 mGy).
The results are shown in Table 4.14

Table 4.14 Data are presented of BMI and SSDEap+LAT.

BMI SSDEap+LAT (MGY)
(kg/m?) Mean £ SD Minimum Maximum
<185 15.45 +2.38 12.19 21.43
(n=27)
18.5-22.9 1741 £2.27 10.43 23.34
(n=131)
>23 20.44 £1.97 14.94 24.45
(n=72)

4.4,5.2 The correlation between BMI and SSDEap+LAT.

The correlation between BMI and SSDEap-LaT for thoracic CT examination has
been investigated. The results are shown in Figure 4.7.
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- The moderate linear relationship between the BMI and SSDEap+1aT, R? Was

0.4728.

30

25

20

SSDEpps a1 (MGY)

15

10

10

15 20

BMI (kg/m?)

The relationship between BMI and SSDE sp, ar

y =0.6993x + 3.0385
R?=10.4728

25 30

35

Figure 4.7 The correlation of body mass index (BMI) and SSDE ap+LaT.

4.4.6 BMI and SSDEErr

4.4.6.1 Data on BMI and SSDEEgrr

At BMI less than 18.5 kg/m?, mean SSDEgre+ SD was 15.43 + 2.37 mGy (range

12.17-21.32mGy).

At BMI from 18.5-22.9 kg/m?, mean SSDEgrr + SD was 17.38 + 2.27 mGy

(range 10.43-23.34 mGy).

At BMI greater than or equal to 23 kg/m?, mean SSDEgrr + SD was 20.38 +
1.98 mGy (range 14.81-24.25 mGy). The results are shown in Table 4.15

Table 4.15 Data are presented of body mass index (BMI) and SSDEErr.

BMI SSDEEerr (MGY)
(kg/m?) Mean + SD Minimum Maximum
<18.5 15.43 + 2.37 12.17 21.32
(n=27)
18.5-22.9 17.38 + 2.27 10.43 23.34
(n=131)
> 23 20.38 +1.98 14.81 24.25
(n=72)

4.4.6.2 The correlation between BMI and SSDEErr
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The correlation between BMI and SSDEgrr for thoracic CT examination has
been investigated. The results are shown in Figure 4.8.
- The moderate linear relationship between the BMI and SSDEgrr, R? was

0.4698.
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Figure 4.8 The correlation of body mass index (BMI) and SSDEErr.

4.4.7 BMI and SSDEpw

4.4.7.1 Data on BMI and SSDEpw
At BMI less than 18.5 kg/m?2, mean SSDEpw+ SD was 17.41 + 2.60 mGy
(range 12.66-23.81 mGy).
At BMI from 18.5-22.9 kg/m?, mean SSDEpw * SD was 19.41 + 2.53 mGy
(range 11.66- 24.79 mGy).
At BMI greater than or equal to 23 kg/m?, mean SSDEpw + SD was 22.41 +

2.12 mGy (range 16.24-26.83 mGy). The results are shown in Table 4.16

Table 4.16 Data on body mass index (BMI) and SSDEpw.

BMI SSDEpw(mGYy)
(kg/m?)
Mean + SD Minimum Maximum
<18.5 17.41 £ 2.60 12.66 2381
(n=27)
18.5-22.9 19.41 + 2,53 11.66 24.79
(n=131)
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> 23
(n=72)

2241 +2.12

16.24

26.83

4.4.7.2 The correlation between BMI and SSDEpw
The correlation between BMI and SSDEpy, for thoracic CT examination

has been investigated. The results are shown in Figure 4.9.
- The moderate linear relationship between the BMI and SSDEpw, R? was

0.4347.
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Figure 4.9 The correlation of body mass index (BMI) and SSDEpw.

4.4.8 AP+LAT dimension and SSDEap+LAT
4.4.8.1 Data on AP+LAT dimension and SSDEap+LAT
At AP+LAT dimension less than 50 cm, mean SSDEap+aT + SD was 15.97 +

2.32 mGy (range 10.50-23.71 mGy).
At AP+LAT dimension from 50- 53 cm, mean SSDEap+.aT £ SD was 18.58 +

2.05 mGy (range 14.23-23.18 mGy).
At AP+LAT dimension greater than or equal to 54 cm, mean SSDEap+LaT £ SD
was 20.73 + 1.59 mGy (range 16.21-24.45 mGy). The results are shown in Table 4.17

Table 4.17 Data are presented of patient size in terms of AP+LAT dimension and

SSDEap+LAT.
AP+LAT SSDEAp+LAT (MGY)
(cm) Mean = SD Minimum Maximum
<50 1597 +2.32 10.50 23.71
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(n=84)

50-53 18. 58 £2.05 14.23 23.18
(n=91)

>54 20.73 £1.59 16.21 24.45
(n=55)

0.7763.

Radiation dose (mGy)
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4.4.8.2 The correlation between AP+LAT dimension and
SSDEAP+LAT.

The correlation between SSDEap+LaT Or CTDlvor and AP+LAT dimension for
thoracic CT examination has been investigated. The results are shown in Figure 4.10.
- The moderate linear relationship between the SSDEap+LaT and AP+LAT dimension ,

R? was 0.5642.
- The strong linear relationship between the CTDIvoi and AP+LAT dimension, R? was

The relationship between AP+LAT and SSDE pp, | at

or CTDI,
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Figure 4.10 The correlation of AP+LAT dimension and CTDIvoi or SSDEap+LAT.

4.4.9 Effective diameter (EFF) and SSDEEerr
4.4.9.1 Data on effective diameter (EFF) and SSDEEerr
At effective diameter (EFF) less than 23 cm, mean SSDEEgrr + SD was 13.90 +

1.81mGy (range 10.43-18.82 mGy).
At effective diameter (EFF) from 23- 25 cm, mean SSDEgrr + SD was 17.69 £

2.12 mGy (range 13.15-23.34 mGy).
At effective diameter (EFF) greater than or equal to 26 cm, mean SSDEgrr£ SD
was 20.44 + 1.65 mGy (range 16.27-24.25 mGy). The results are shown in Table 4.18.
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Table 4.18 Data are presented of patient size in terms of effective diameter and

SSDEEgFr.
Effective SSDEerr(MGY)
diameter(cm)
Mean + SD Minimum Maximum
<23 13.90+1.81 10.43 18.82
(n=26)
23-25 17.69 £2.12 13.15 23.34
(n=134)
> 26 20.40 £ 1.65 16.27 24.25
(n=70)

4.4.9.2 The correlation between effective diameter (EFF) and

SSDEEErr

The correlation between SSDEgrr or CTDIvo and effective diameter for thoracic
CT examination has been investigated. The results are shown in Figure 4.11.
- The moderate linear relationship between the SSDEgrr and effective diameter, R?

was 0.5696.

- The strong linear relationship between the CTDIyo and effective diameter, R? was

0.77809.
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Figure 4.11 The correlation of effective diameter and CTDIvo and SSDEEgk.

4.4.10 Water equivalent diameter (Dw) and SSDEpw
4.4.10.1 Data on water equivalent diameter (Dw) and
SSDEpw of male adult patients.
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At water equivalent diameter (Dw) less than 20 cm, mean SSDEpw = SD was
16.36 = 1.45mGy (range 13.54-18.55 mGy).

At water equivalent diameter (Dw) from 20-23 cm, mean SSDEpw + SD was
20.77 £ 2.14 mGy (range 16.55-25.58 mGy).

At water equivalent diameter (Dw) greater than or equal to 24 cm, mean
SSDEpw + SD was 24.25 + 1.14 mGy (range 21.76-26.83 mGy).

4.4.10.2 Data on water equivalent diameter (Dw) and

SSDEpw of female adult patients.

At water equivalent diameter (Dw) less than 20 cm, mean SSDEpw = SD was
15.23 £ 2.15 mGy (range 11.66-21.21 mGy).

At water equivalent diameter (Dw) from 20-23 cm, mean SSDEpw = SD was
19.19 £ 2.10 mGy (range 14.11-23.80 mGy).

At water equivalent diameter (Dw) greater than or equal to 24 cm, mean
SSDEpw* SD was 22.80 + 1.06 mGy (range 20.55-24.42 mGy). The results are
shown in Table 4.19

Table 4.19 Data on patient size in terms of water equivalent diameter and SSDEpw.

Gender Dw SSDEpw (MGY)
(cm) Mean + SD Minimum Maximum
<20 16.36 +1.45 13.54 18.55
(n=9)
Male 20-23 20.77 £2.14 16.55 25.58
(n=90)
> 24 24.25+1.14 21.76 26.83
(n=16)
<20 15.23 £2.15 11.66 21.21
(n=18)
Female | 20-23 19.19 +£2.10 1411 23.80
(n=73)
> 24 22.80 +1.06 20.55 24.41
(n=24)

4.4.10.3 The correlation between water equivalent diameter

(Dw) and SSDEbw

The correlation between water equivalent diameter (Dw) and SSDEpw of male
and female for thoracic CT examination has been investigated. The results are shown
in Figure 4.12.
- The strong linear relationship between the water equivalent diameter (Dw) and
SSDEpw of male, R? was 0.7307.
- The moderate linear relationship between the water equivalent diameter (Dw) and
SSDEpw of female, R? was 0.6679.
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Figure 4.12 The correlation of water equivalent diameter (Dw) of male and female
patients.
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CHAPTER V

DISCUSSION AND CONCLUSIONS

5.1 Discussion

The modern CT scanners can display the patient dose in terms of the volume
computed tomography dose index (CTDlvo) and the dose length product (DLP) [1].
The dose received by patient from CT scan is dependent on both patient size and
scanner radiation output. However, CTDIvo provides information regarding only the
scanner output. It does not address patient size, and hence does not estimate patient
dose accurately.

AAPM Report no.204 [5] was introduced in 2011 and AAPM Report n0.220 [6]
was also introduced in 2014 on the size-specific dose estimates (SSDEs) for CT
examination in order to provide more accurate on radiation dose estimation to the
patients. The conversion factors that take into account the patient size, and can be
applied to the displayed CTDIyol to estimate patient dose were developed and available
in the reports.

In this study, the conversion factors (fsize) from the AAPM Reports were applied
to determine SSDE for thoracic imaging in 320 row detector computed tomography.
The parameters affecting SSDE were also evaluated.

5.1.1 SSDE for thoracic imaging in 320 row detector computed
tomography

In this study, 230 adult patients of the age range from 18-93 years old, the
weight range from 40 — 70 kg were included to determine SSDEs. The patient radiation
dose was calculated in terms of SSDE, product of conversion factor (fsize) and the
CTDlyvoi. The fsize was shown in AAPM Reports [5, 6] based on patient size sum of
anterior-posterior, lateral dimension, effective diameter and water equivalent diameter
(Dw). Patient sizes were measured at the middle of organ (chest) and from the slice at
the middle of scan range by using digital caliper on image tools from PACS system.
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5.1.1.1 The slice locations used to estimate SSDE

At our institute, CT chest is routinely used the scan range from apex of the lung
to adrenal gland or include liver so the slice at the middle of scan range located at lower
lung zone but mid organ (chest) range is located at center of chest (7" thoracic
vertebrae). SSDEap+LaT, SSDEErr and SSDEpw had been estimated from two locations,
at the middle slice of scan range and the middle slice of the organ (chest).

In this study, according to Figure 4.2, the outlier of SSDEpw at the middle slice
of scan range caused by large size of the mass in the lung as shown in Figure5.1. When
Dw increased, the mean CT number increased. On the other word, the conversion factor
(fow) to calculate SSDEpw will decrease, so SSDEpw was also decreased.

Figure 5.1 Example of CT chest transaxial image at the middle slice of scan with mass
in lung region which is largely affected the CT number for SSDEpw calculation.

In previous study, Leng S et al [16] reported on SSDE for chest, abdominal and
pelvic CT: effect of intra-patient variability in Dw. The results showed Dy from the
image at the center of the scan range provided an easily obtained estimate of SSDE for
the whole scan range that agreed well with values from an image-by-image approach,
with a root mean square difference of less than 9%. SSDEmiq and SSDE were almost
perfectly correlated (R was 0.9914) for chest as shown in Figure5.2.
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Figure 5.2 Scatterplots for SSDEmiq in relative to SSDE for chest CT. The correlation
coefficient (R?) as determined from the linear regression is also shown [16].

In our study, SSDE calculated from the middle slice at scan range is a little
higher than SSDE calculated from slice at middle of organ. The correlation of
SSDEap+LaT, SSDEErr and SSDEpw between the middle slice of the organ (chest) and
the middle slice of scan range were perfectly correlated, R? of 0.9820, 0.9864 and
0.9933 respectively(Figure5.3), root mean square difference were 0.003%, 0.001% and

0.001% respectively.

SSDE,,,, calculated at mid-chest and middle
of scan ranges
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SSDE,,(mGy) : middle slice of the organ (chest)

Figure 5.3 The correlation of SSDEpw between the middle slice of the organ (chest)
and the middle slice of scan range were perfectly correlated.

Both locations can be used to determine SSDE but in clinical, slice at middle of
the scan range is recommended which is more convenient than at the slice at center of
chest (7th thoracic vertebrae) and similar to Leng S et al for estimation of SSDE.
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5.1.1.2 Determination of SSDE from middle slice of the chest.

230 adult patients weight range from 40 — 70 kg were included. They underwent
thoracic contrast enhancement with venous phase protocol scanned by CT Toshiba
Aquilion ONE, 320-row. The CT scanner was operated with automatic exposure control
systems (AEC). The CTDIlvoi was displayed on CT monitor and determined from the
32-cm cylindrical phantom. The patient radiation dose (SSDE) was taken into a
function of patient size (AP+LAT dimension, effective diameter (EFF) and water-
equivalent diameter (Dw)).

The SSDEap+LaT and SSDEEgrr related to patient geometry, mean SSDEap-+LaT
+ SD was 18.13 + 2.75 mGy and mean SSDEgrr = SD was 18.09 + 2.75 mGy
respectively .The SSDEpw related to body composition, the mean SSDEpw = SD was
20.12 = 2.93 mGy. SSDEpw was considered to water equivalent diameter, therefore it
needs to be applied to estimate the patient radiation dose in the thorax which consists
of air, tissue and lung of different x-ray attenuations. Statistical difference between 3
methods, SSDEap+LaT, SSDEEerr and SSDEpw, are significant (p-value < 0.001).

The mean CTDIlvo + SD was 12.40 + 2.55 mGy which was less than
SSDEap+LAT, SSDEErr and SSDEpw as shown in Table5.1. CTDlvo is used for the
patient radiation dose estimation but it is not realistic and inaccurate as it was
determined from 32 cm diameter PMMA cylindrical and homogeneous phantom, on
the contrary thoracic region is not in the cylindrical shape, non-uniform in size and
density.

Table 5. 1 Data on CTDlvol, SSDEap+LaT, SSDEErr and SSDEpw

Radiation dose Mean = SD Minimum Maximum
(MmGy)
CTDlvo (MGY) 12.40 + 2.55 6.00 19.20
SSDEap+LAT (MGY) 18.13 +2.75 10.50 24.45
SSDEgrr (MGY) 18.09 +2.75 10.43 24.25
SSDEpw (MGY) 20.12 +2.93 11.66 26.83

As the recommendations and guidance published by the International
Commission on Radiological Protection (ICRP publication 87) , European Commission
Guidelines (EUR 16262) [19] and national diagnostic refence levels (Japan 2015),
stated that diagnostic refence levels (DRL) are the important tools for optimization of
image quality and the radiation dose delivered to patients . The internatonal and national
DRL data were shown in table 5.2.
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Table 5.2 Diagnostic reference level for CT chest in adult patients

Diagnostic reference level for CT chest in adult patients
CTDlvol
(mGy)
EUR 16262 30
ICRP publication 87 30
Japan (2015) 15

*The application of this concept is in line with the reference dose values for a
standard sized patient (70kg) indicated in the European Guidelines.
* ICRP publication 87 relate to body phantom (PMMA, 32 cm diameter)

In our study, the result of the mean CTDIvo was lower than the European
Commission Guidelines (EUR 16262), ICRP publication 87 and Japan (2015) dose
reference level for chest as shown in Figure5.4.

CTDI,,, for CT chest
35
30 30
30
25

20

mGy

15 12.4

10

(6]

EUR16262 DRL ICRP'87 DRL Japan DRL Mean CTDlIvol in
our study

Figure 5.4 CTDlIvo in comparison to Diagnostic Reference Levels and our study for
chest CT.

According to patient information of 230 cases in this study, the weight ranges
from 40 — 70 kg were included to determine SSDEs. They underwent thoracic contrast
enhancement with venous phase protocol scanned by CT Toshiba Aquilion ONE, 320-
row detector. The 75" percentiles in the distribution of SSDEpw was 22.45 mGy as
shown in Figure 5.5. This value could be used as the guidance level for SSDEpw at our
institution.
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Figure 5.5 The distribution of SSDEpw, the weight range from 40 — 70 kg.

As the guidance level in this study was investigated from only one
manufacturer, it should be therefore investigated for several CT scanners to represent
the guidance level of institution for the future study.

5.1.2 The parameters influence SSDE

5.1.2.1 CTDlvo and SSDE

The correlation of SSDEpw and CTDIvo was perfectly correlated, R? = 0.9529.
SSDEpwcan be determined from CTDIyq displayed on the CT monitor for adult patients
weight range from 40 — 70 kg and underwent thoracic CT examination by this function:
y =13.378In(x)-13.269, X is the CTDIvo (MGy). However, the limitation of this function
is specific for 320 row MDCT in thoracic examination.

5.1.2.2 Body weight and SSDE

Imai R et al [15] studied on: Local diagnostic reference level based on size-
specific dose estimates: assessment of pediatric abdominal/pelvic computed
tomography at a Japanese national children's hospital. This is a result of the switch in
the SFOV from the 16-cm phantom to the 32-cm phantom, leading to a massive drop
in the exposure dose. In contrast, SSDE is adjusted for body size, the dose gradually
increased with increasing body weight. The difference between CTDIyvo and SSDE was
greatest in the yellow section (11.5-14.5 kg), corresponding to the switch from the 16-
cm to the 32-cm phantom, where CTDIyoi Was estimated to be half of SSDE as shown
in Figure 5.6.
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Figure 5.6 The relationship between SSDE and CTDIyo 0n the basis of the body
weight.

In our study with 230 adult patients, the weight range from 40 — 70 kg was
included in the study. When body weight increased, the pateint size (AP+LAT
dimension, effective diameter(EFF), water equivalent diameter(Dw)) increased, so
SSDEap+1aT, SSDEEFF and SSDEpw also increased. The result similar to Imai R et al for
the dose increased with increasing body weight when corresponding to 32-cm
cylindrical phantom and SSDE was higher than CTDIyo as shown in Figure 5.7.
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Figure 5. 7 SSDE and CTDIvoi based on body weight.

The correlation of body weight and SSDEap+LaT, SSDEerr and SSDEpw for
thoracic CT examination was moderate linear relationship (R? were 0.4730, 0.4724 and
0.5571 respectively). However, body weight is one of factors affected SSDE.

5.1.2.3 AP+LAT dimension and SSDEap+LAT
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Christner JA , Braun N. et al [14] studied on: size-specific dose estimates for
adult patients at CT of the torso.The data were obtained from Siemens Healthcare,
Forchheim, Germany.The result showed, for the evaluated automatic exposure control,
CTDlvol (scanner output) increased linearly with patient size; however, patient dose (as
indicated by SSDEap+LaT) Was independent of patient size. The results were shown in

Figure5.8.
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Figure 5.8 Data on CTDIyo or SSDE and AP+LAT.

Table 5. 3 Data are presented from Christner JA and our study

CT scanner | Patientsize | Conversion CTDlvl SSDEap+LAT
(AP+LAT) factor (MmGy) (mGy)
(cm) basedon | Mean+SD | Mean = SD
Mean + SD AP+LAT
(fsize)
Christner Siemens 612+74 Range 18.10+3.7 21.8+34
JA et al Healthcare, (41.8-84.2) 0.80-1.74 (5.90-26.70) | (10.20-31.10)
Forchheim,
Germany.
In this CT 51.49 +3.78 Range 1240+ 255 | 18.13+2.75
study Toshiba (41.52-63.14) 1.19-1.76 (6.00-19.20) (10.5-24.45)
Aquilion
ONE

Our study, the data obtained from CT Toshiba Aquilion ONE, AEC system with
standard strength was used. CTDIlvoi and SSDE increased when patient size increased,
the moderate linear relationship between the SSDEap+LaT and AP+LAT dimension, R?
was 0.5642 and strong linear relationship between the CTDIlvo and AP+LAT
dimension, R? was 0.7763. The conversion factor of our study was 1.19-1.76 and sum
of AP and LAT was 41.52-63.14 cm while Christner JA et al reported, the relationship
between SSDEap+iat and AP+LAT dimension, R? was 0.003. This is because of the
conversion factor range from 0.80-1.74 and sum of AP and LAT was 41.8-84.2 cm.
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When the sum of AP and LAT dimension length was greater than 72cm, the conversion
factor was less than 1. So, the result was decreasing in SSDEap+LaT. In the opposite
way, the AP and LAT dimension lengths of less than 72cm, the conversion factor was
greater than 1, result in increasing SSDEap+LAT.

In our study, sum of AP and LAT at less than 72cm were collected. The
conversion factor according to AAPM no.204 was greater than 1. The result showed
that when patient size (AP and LAT dimension) increased, the SSDEap+LaT increased.

The result showed (Figure4.10) that correlation of SSDEap+aT and AP+LAT
dimension for thoracic CT examination was moderated linear relationship (R? was
0.5642). However, AP+LAT dimension is one of the factors affected SSDE.

5.1.2.4 Effective diameter (Derr) and SSDEEerrF

In the result, mean effective diameter + SD was 25.09 + 1.85 cm, range was
20.17-30.62 cm, and the conversion factor range from 1.20-1.76. Mean SSDEgrr £ SD
was 18. 09 + 2.75 (10.43 -24.25) mGy and CTDlv 12.40 + 2.55 (6.00-19.20) mGy,
CTDlvoi was lower than SSDEErr.

When the effective diameter was less than 35.2 cm, the conversion factor was
greater than 1, the result was increasing in SSDEEgrr in comparison to CTDlyol.

The correlation between SSDEerr and effective diameter for thoracic CT
examination, the results showed the moderate linear relationship between the SSDEErr
and effective diameter, R? was 0.5696. However, effective diameter is one of the factors
affected SSDE.

5.1.2.5 Water equivalent diameter and SSDEEerr

In our study, the patient size in terms of water equivalent diameter was
measured by manual contour at the middle slice of chest. The benefit of manual
measuring is suitable for clinical users (physician and radiological technologist) and
save the cost instead of purchasing commercial software.

Mean water equivalent diameter (Dw) &= SD was 22.19 + 1.97 cm (range 17.28-
30.42 cm), mean SSDEpw = SD was 20.19 + 1.97 mGy (range 17.28-30.42 mGy). The
correlation between water equivalent diameter (Dw) and SSDEpw, R? was 0.6096.
When water equivalent diameter decreased, resulting in a decrease in the value of
SSDEpw.

The relationship between the water equivalent diameter (Dw) and SSDEpw of
male is higher than female, R? was 0.7307 and 0.6679 in male and female respectively.
For male patients, the thoracic cavity size is bigger than female of larger lungs. When
Dw decreased, the mean CT number decreased. On the other hand, the conversion
factor (fow) to calculate SSDEpw will increase, so SSDEpwwas also increased, therefore
SSDEpw of male is higher than female.
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The result showed (Figure 4.12) that correlation between SSDEpw and water
equivalent diameter (Dw) for thoracic CT, R? was 0.6096. Therefore, water equivalent
diameter (Dw) is one of the factors affected SSDE.
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5.2 Conclusions

This study revealed the SSDE for 320 detector row MDCT in thoracic
examination at King Chulalongkorn Memorial Hospital. The SSDE had been estimated
by 3 methods, i.e. SSDEap+LaT, SSDEEerr and SSDEpw of patient configurations in CT
dosimetry. The results indicated that mean SSDEap+LaT, SSDEErr and SSDEpw Were
18.13, 18.09 and 20.12 mGy while mean CTDIlvo was 12.39 mGy and statistical
difference between 3 methods, were significant (p-value < 0.001). For the location to
determine SSDE, at the middle of scan range and middle of organ (chest) are both
suitable for measuring the patient size from CT images for all 3 methods. When using
the automatic mA modulation technique, the patient AP+LAT dimension, effective
diameter, body weight, and body attenuation are the factors affecting SSDE. The strong
correlation was found between SSDE and water equivalent diameter.
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5.3 Recommendations

1. SSDEs should be applied as the CT patient dose indicator further from
CTDlIvor and provide higher accuracy especially in patients of different sizes and body
composition.

2. SSDEDpw is considered to patient size and composition, so SSDEpw should be
reported in patients of different attenuations especially in thorax region.

3. The in-vivo measurement is a gold standard to determine patient radiation
dose that takes into account for both output radiation dose and the patient
characteristics. However, such method is difficult to use in clinical situation. So, the
concepts of the size-specific dose estimates (SSDES) is more appropriate to be used as
in clinical studies for patient dose estimation.
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Appendix B: Quality Control of Multi-Detector Computed Tomography System

Location : Bhumi Siri Building (2" floor) King Chulalongkorn
Memorial Hospital

Date : 1 June 2016

Manufacturer : Toshiba Aquilion ONE; 11/2011

M/N and S/N : m/n TSX-3014 s/n LCC10Y2249

Pass Scan Localization Light Accuracy

Pass Alignment of Table to Gantry

Pass Table Increments Accuracy

Pass Gantry Tilt

Pass C.T.# Position Dependence and S/N

Pass Reproducibility of C.T. Numbers

Pass mAS Linearity

Pass Linearity of C.T. Numbers

Pass High Contrast Resolution

Pass Low Contrast Resolution

Pass Slice Thickness Accuracy

Pass Image Uniformity

Pass Accuracy of distance measurement

Pass CTDI Measurement
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1. General and mechanical tests

1.1. Scan localization light accuracy

Purpose: To test congruency of scan localization light and scan plane.

Method:

1.Place the tape measurement vertically along the midline the couch aligned with the
longitudinal axis.

2. Set external light align with the reference point on the tape measurement.

3. Set table position to zero. Move table by monitor scanner, the table position move
from external to internal localization light. Measure and record deviation position.

Figure B 1 Localization light accuracy setting on the tape measurement.
Results:
Table B 1 Scan Localization Light Accuracy

Measured Deviation External 0 mm
Internal 0 mm

Tolerance: The center of the irradiation field from internal laser should be less
than 2 mm.
Comment: Pass

1.2. Alignment of table to gantry

Purpose: To ensure that long axis of the table is horizontally aligned with a vertical
line passing through the rotational axis of the scanner.

Method:

1. Locate the table midline using a ruler and mark it on a tape affixed to the table.
With the gantry untitled, extend the table top into gantry to tape position.

2. Measure the horizontal deviation between the gantry aperture center and the table
midline.
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Results:

Table B 2 Alignment of table to gantry

Table Bore
Distance from Right to Centre 237 359
(mm)
Distance from Centre to Left 235 361
(mm)
Measured Deviation 1 1

Measured deviation: (Distance from right to center — Distance from center to left)/2

Tolerance: The Deviation should be within 5 mm
Comment: Pass

1.3. Table increment accuracy

Purpose: To determine accuracy and reproducibility of table longitudinal motion
Method:

1. Tape a measuring tape at the foot end of the table.

2. Place a paper clip at the center of the tape to function as an indicator.

3. Load the table uniformly with 150 Ibs. From the initial position move the table
300, 400 and 500 mm into the gantry under software control (+ ve).

4. Record the relative displacement of the pointer on the ruler. Reverse the direction
of motion (-ve) and repeat.

5. Repeat the measurements four times.

Results:

Table B 3 Table increment accuracy

Indicated Measured Deviation
300 300 0
400 400 0
500 500 0
-300 300 0
-400 400.5 0.5
-500 500 0

Deviation = | Indicated — Measured|
Tolerance: Positional errors should be less than 3 mm.
Comment: Pass



1.4. Gantry angle tilt
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Purpose: To determine the limit of gantry tilt and the accuracy of tilt angle indicator

Method:

1. Raise the table to the head position and move the table into the gantry.

2. Tilt the gantry towards and away from the table. Measure the clearance from the

close point of gantry to midline of table.

Results:

Table B 4 Gantry Angle Tilt

Away

Towards

Clearance

32

30.5

Tolerance: Gantry clearance should be >30cm

Comment: Pass

1.5. Position dependence and S/N ratio of C.T. numbers

Method:

1. Position the C.T. head phantom centered in the gantry.

2. Using 1 cm slice thickness obtain one scan using typical head technique.
3. Select a circular region of interest of approximately 400 sg. mm.
4. Record the mean C.T. number and standard deviation for each of the positions 1

through 5.

Technique: 120 kV, 300 mA, 1 second, 250 mm. FOV

Figure B 2 Draw region of interest for each of the positions 1 through 5.
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Results:

Table B 5 Position dependence and S/N ratio of C.T. numbers

Position Mean C.T. S.D. C.V.
1 121.7 13 -
2 121.9 7.9 0.065
3 1215 7.4 0.061
4 121.6 7.8 0.064
5 118.1 8.6 0.073

*CV = Standard deviation/mean CT number
Tolerance: The coefficient of variation of mean CT numbers of the four scans should

be less than 0.2.

Comment: Pass

1.6. Reproducibility of C.T. numbers

Method:

1. Using the same set up and technique as position dependence, obtain three scans.

2. Using the same ROI as position dependence in location 5, which is the center of the
phantom, obtain mean C.T. numbers for each of the four scans

Figure B 3 Draw region of interest of the positions 5.
Results:

Table B 6 Reproducibility of C.T. numbers

Run Number 1 2 3 4
Mean C.T 118.1 118.1 118.0 118.4
Mean Global C.T Number 118.15

Standard Deviation 0.173

Coefficient of variation 0.001

Tolerance: The coefficient of variation of mean C.T. numbers of the four scans
should be less than 0.002
Comment: Pass



2. Electrical test

2.1. mAs linearity

Method:

1. Set up the same as position dependence and insert 10 cm long pencil chamber in
the center slot of the C.T. dose head phantom.
2. Select the same kVp and time as used for head scan. Obtain four scans in each of
the mA stations normally used in the clinic. For each mA station record the exposure
in mGy for each scan. Scans should be performed in the increasing order of mA.
Compute mGy/mAs for each mA setting.
Technique: 120 kV, 300 mA, 1 second, 250 mm. FOV, slice collimation 8 mm

Table B 7 mAs linearity
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mA Exposure in mGy mGy/mAs | C.V.
Run 1 Run 2 Run 3 Run 4
50 1.648 1.642 1.649 1.644 0.03 -
100 3.282 3.292 3.290 3.286 0.03 0.0006
200 6.568 6.556 6.555 6.565 0.03 0.0011
250 8.211 8.206 8.204 8.195 0.03 0.0002
300 11.41 11.39 11.40 11.40 0.04 0.0732
400 15.21 15.20 15.20 15.21 0.04 0.0002
500 19.02 19.00 19.00 19.01 0.04 0.0000
mAs Linearity
20
18 y = 0.0393x - 0.7867
16 R2=0.993
14
5 12
€ 10
8
6
4
2
0
100 200 300 400 500 600
mAS

Figure B 4 The relationship of mGy and mAs.

Comment: Pass

1.7. Linearity of C.T. numbers

Method:

1. Set up the CATPHAN performance phantom as described in beam alignment.
2. Select the section containing the test objects of different C.T. numbers.



98

Figure B 5 Catphan phantom setting and reference line of CTP 404 section.
3. Select the head technique and perform a single transverse scan.
4. Select a region of interest (ROI) of sufficient size to cover the test objects.
5. Place the ROI in the middle of each test object and record the mean C.T. number.

Technique: 120kVp, 300 mA, 1sec, 300mm FOV, slice collimation 8 mm

2.5mm
10mm

ICTP 4 O—";H

CTP591
CTP525
CTP515
CTP486

N 10, 8.6, 4, 2mm
acrylic spheres

Figure B 6 The section containing the test objects of different CT numbers.
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Results:
Material Expected CT Number # Measured CT Number #
Acrylic 120 115.4
Polystyrene -35 -46.7
LDPE -100 -103.3
PMP -200 -188.6
Delrin 340 350.0
Teflon 990 1032.0
Air (inferior) -1000 -1007.8
Air (superior) -1000 -1007.8

Linear attenuation coefficient

0.35
0.3
pem 0.25

R?=0.9957
0.2

0.45
0.1
0.05

0
-1500 -1000 -500 0 500 1000 1500

Measured CT Number

Figure B 7 Linearity of CT number.

Tolerance: R-square between measured CT number and linear attenuation coefficient
(1) more than 0.9
Comment: Pass

1.8. Slice thickness accuracy

Purpose: To Determine the accuracy of the slice thickness.

Method:

1. Set up the catphan phantom as described in beam alignment set up as you would for
beam profile measurement.

2. Select the section containing the accuracy of the slice thickness test objects
(CTP404 slice width Module)



Figure B 8 Catphan phantom setting and reference line of CTP 404 section.

3. Select the head technique, 120 kVp, 300 mAs, smallest slit width.

4. Perform several scans with different programmed slice thicknesses under auto
control.

5. Perform scan following catphan manual in each slice collimation.

6. Calculate the real slice thickness.

Result:

Table B 8 Slice thickness accuracy

100

Slice Thickness (mm) 1 4 8

Peak 577.20 195.67 157.75

BG 101.42 95.53 97.09

Net peak(NP) 475.78 100.14 60.66
50% NP 237.89 50.07 30.33
HM(50%NP+BG) 339.31 145.60 127.42
FWHM L1 2.55 9.82 19.71
FWHM L2 2.78 10.28 19.33
FWHM L3 2.65 9.79 19.50
FWHM L4 2.68 9.93 19.70
Average FWHM 2.665 9.955 19.56
SL=Avg FWHM x 0.42 1.119 4.181 8.215
% Diff (set vs calculate) 0.119 0.181 0.215
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Slice Thick in Measured Thick Deviation Slice Thick in
mm in mm (mm) min
1 1.119 0.119 1
4 4.181 0.181 4
8 8.215 0.215 8

Tolerance: Deviation should be < Imm

Comment: Pass

3. Image quality test

3.1. High contrast resolution

Method:

1. Set up the Catphan phantom in beam alignment.

2. Select the section containing the high resolution test object. (CTP528 21 line pair
high resolution Module).

drrane
Crrsa

CTrSas
s

CTrisG

Figure B 9 Catphan phantom setting and reference line of CTP 528 section.

3. Select the head technique and perform a single transverse scan.

4. Select the area containing the high resolution test objects.

5. Select appropriate window and level for the best visualization of the test objects.
Technique: kVp: 120 mA: 300Seconds: 1.0 FOV: 300 mm Slice Thickness

:4.8,.12mm
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Figure B 10 The number of line pair per centimeter (1 to 21 line pair per centimeter)

of high resolution test.

Results:

Table B 9 High contrast resolution

Slice Thickness in mm Resolution Gap size
4 mm 8 line pair/cm 0.063 cm
8 mm 8 line pair/cm 0.063 cm
12 mm 8 line pair/cm 0.063 cm

Tolerance: > 5 Ip/cm visible
Comment: Pass

3.2. Low contrast resolution
Method:

1. Set up the Catphan 600 phantom in beam alignment.

2. Select the section containing the low resolution test object CTP515 Sub-slice and

supra-slice low contrast Module).

......

Figure B 11 Catphan phantom setting and reference line of CTP 515 section.

3. Select the head technique and perform a single transverse scan.
4. Select the area containing the low resolution test objects.

5. Select appropriate window and level for the best visualization of the test objects.

6. Record the smallest test object visualized.



103

~

L S
o Supra-Slice
0.5%

A
-

Figure B 12 Low contrast resolution measurement.
Result:

Table B 10 Low contrast resolution

Slice Smallest target(spokes) diameter (mm) should been seen
thickness Contrast level of supra-slice Length of sub-slice 1.0%
in mm
1.00% 0.50% 0.30% 7 mm 5 mm 3 mm
4 8 5 4 4 3 3
8 9 7 5 4 3 3
12 9 8 6 4 3 3

Tolerance: The smallest target diameter at 0.5% contrast level of supra-slice should
be seen 4 spokes.

Comment: Pass
3.3. Image uniformity

Method:

1. Set up the Catphan phantom as described in beam alignment.

2. Select the CTP486 solid image uniformity module.

3. Select the head technique and perform a single transverse scan.

4. Select a region of interest (ROI) of sufficient size to cover the test objects.

5. Place the ROI in the middle of each test object and record the mean C.T. number

Technique: 120kVp, 300 mA, 1sec, 250mm FOV, slice collimation 1 mm
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Figure B 13 Image uniformity measurement.

Results:
Table B 11 Image uniformity
Position Mean C.T S.D. Difference (HU)
Number
1 15 9.1 0.3
2 1.3 8.7 0.5
3 0.9 8.7 0.9
4 0.3 9.1 1.5
5(center) 1.8 10.1 -

Different = |CT number center — CT number peripheral
Tolerance: Less than 5 HU

Comment: Pass

3.4 Accuracy of distance measurement

Purpose: To test accuracy of distance measurement and for circular symmetry of the

CT image.
Method:

1. Set up the Catphan phantom as described in beam alignment.

2. Select the section containing the test accuracy of distance measurement.

3. Select the head technique and perform a single transverse scan.

4. Measured object in X and y axes.

Result:
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Table B 12 Accuracy of distance measurement

Indicated distance (mm) | Measured distance (mm) Difference
(mm)
50 mm 50.32 0.32
50 mm 50.03 0.03
50 mm 50.20 0.20
50 mm 50.49 0.49

Tolerance: The measured distance should be within £ 1 mm (NCRP No.99: Quality
control test for CT scanner, section 14).
Comment: Pass

4. Verification of Computed Tomography Dose Index (CTDI)

4.1 Measurement of Ca00 free in air (Cair or CTDlair)

Purpose: To verification of Computed Tomography Dose Index (CTDI)

Method:

1. Set the 100 mm pencil chamber at the iso-center of the CT bore.

2. Using head and body protocols.

3. Set scan parameter at 100 mA, 1 sec scan time and 1, 2, 4,8,12,16,20,32 mm slice
thickness.

4. Change kilovoltage at 80,100,120 and 135.

5. Record CT dose in unit of mGy.

6. Calculate Ca 100 and nCa 100 following;

Ca,lOO = % M NKLQO kaTP
Where; M : Mean value of dosimeter readings
KTP - Correction factor for temperature and pressure
Np,, q,- Dosimeter calibration coefficient

ko : Beam quality correction factor
NT . Nominal width of irradiation beam
C — Ca,lOO
n~a,100 P|t

Where; Pyt : Tube loading for 1 complete rotation
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Figure B 14 CTDl1o0 in air measurement using 100 mm pencil ion chamber.

Result:

Table B 13 The measured CTDl1qo in air for head protocol with 180 mm FOV(s)

Slice collimation (mm)

Figure B 15 CTDl1qo in air for head protocol.

Ca,100 (MGY) in air, Head protocol
kVp 1 2 4 8 12 16 20 32
(Ix1) | (0.5x4) | (AX4) | (2x4) | (3x4) | (4x4) | (5x4) | (8x4)
80 5.12 3.25 2.24 1.71 1.53 1.44 1.39 1.30
100 8.49 5.35 3.69 2.81 251 2.37 2.29 2.14
120 12.82 | 8.02 6.14 4.14 3.67 3.46 3.33 3.10
135 17.29 | 10.66 | 7.22 5.43 4.71 4.42 4.29 3.93
CTDlI5(mGy) in air in head protocol
20
18 g
16
—~ 14 —8— 80 kVp
3 1 —8— 100 kVp
% 10 ~®— 120 kVp
é 2 o) . 0135 kVp
4 0
’ —$— —
0 4 8 12 16 20 24 28 32



Table B 14 The measured CTDlI1oo in air for body protocol with 500 mm FOV (L).
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Figure B 16 CTDl10 in air for body protocol.

4.2 Measurement of CTDl1oo in PMMA phantom
Purpose: To verification of Computed Tomography Dose Index (CTDI)

Method:

28 32

Ca100 (MGY) in air, body protocol
kVp 1 2 4 8 12 16 20 32
(Ax1) | (0.5x4 | (AX4) | (2x4) | (3x4) | (4xd) | (5x4) | (8x4d)
)
80 5.80 3.45 2.24 1.60 1.35 1.26 1.20 1.11
100 7.07 5.94 3.11 2.37 2.33 2.15 2.04 1.89
120 | 1545 | 9.12 5.86 4.15 3.50 3.24 3.08 2.84
135 | 2096 | 1224 | 7.79 5.44 4.56 4.22 3.74 3.65
CTDlI5(mGy) in air in body protocol
25
20 80 kVp
& 15 100 kVp
% 120 kVp
g 135 kVp

1. The CTDl1g0 in head and body PMMA phantom by using a 100 mm pencil chamber
place in each hole of 16(32) cm diameter PMMA phantom at the iso-center of C.T.

bore.

2. Using head and body protocols.
3. The scan parameters were 100 mA, 1 sec scan time, 180 and 500 mm FOV for all
measurements at each kVp setting of 80, 100, 120 and 135 in axial volume mode.
4. Record C.T. dose in unit of mGy.
3. Calculate Cw and nCyw following
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1
C:W: 5 (CPMMA,100,C + 2PMMA,100,P )
c _Cu
n w F)I

Figure B 17 CTDI100 measurement in body and head PMMA phantoms using 100 mm
pencil ion chamber.

Table B 15 CTDI100 measurement in head PMMA phantom with 180 mm FOV (S).

CTDlio in head PMMA phantom (mGy)

At At peripheral CTDIwor | nCTDI
kVp | center 3 6 9 12 Average Cw wOor
o’clock | o’cloc | o’clock | o’clock (mGy at nCw

k 100 mAs) | (mGy/

mMAS)

80 | 0.6958 | 0.7640 | 0.8055 | 0.7676 | 0.7758 0.7618 9.3851 0.0939
100 | 1.2133 | 1.3650 | 1.4429 | 1.3751 | 1.4449 1.3682 16.7809 0.1678
120 | 2.0627 | 2.3347 | 2.3458 | 2.1689 | 2.1891 2.2202 27.4254 0.2743
135 | 2.6805 | 2.9818 | 3.0820 | 2.8797 | 3.0425 2.9333 36.1403 0.3614

Table B 16 CTDI100 measurement in body PMMA phantom with 500 mm FOV (L).

CTDl1oo in body PMMA phantom (mGy)

At At peripheral CTDIlwor | nCTDIw
kVp | center 3 6 9 12 Average Cw or \Cw
o’clock | o’clock | o’clock | o’clock (mGyat10 | (mGy/

0 mAs) mAS)
80 | 0.1760 | 0.4166 | 0.3729 | 0.4081 | 0.4157 0.3579 4.0409 0.0409
100 | 0.3817 | 0.8061 | 0.9634 | 0.7321 | 0.8970 0.7561 8.6714 0.0867
120 | 0.6773 | 14692 | 1.2133 | 1.2902 | 1.3276 1.1955 13.8650 0.1387
135 | 0.9653 | 1.7937 | 1.9050 | 1.7836 | 1.8585 1.6612 19.3159 0.1932

4,3 CTDIlvo on monitor and calculated CTDIw

Purpose: To compare the CTDIvo displayed on CT monitor with calculated CTDl.



Method:

1. Determine the CTDIw by using the results in Table 3 and 4.
2. The CTDlyo displayed on CT monitor were recorded to compare percentage
difference with the calculated values as shown in Table5 for CTDlvor in head phantom

and table 6 for CTDlvoi in body phantom.

Results:
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Table B 17 CTDIyvo displayed on monitor and calculated CTDIyw in head phantom

using head techniques: mAs 100, collimation 8 mm and 180 mm FOV.

CTDlIvo (MGy) in 16 cm head phantom

kVp Calculated CTDIw | Displayed CTDIva | % Difference
80 9.38 10 6.60

100 16.78 18.3 9.05

120 27.42 28.1 2.11

135 36.14 37.1 2.65

CTDIw (mGy)

40
35
30
25
20
15
10

CTDI,,, on monitor and calculated CTDI,,
in 16 cm PMMA head phantom

80 90 100

Measured CTDIw

Displayed CTDlvol

110 120 130

kVp

140

Figure B 18 CTDlIyo on monitor and calculated CTDIwin 16 cm PMMA head
phantom.

Tolerance: The difference between measured CTDIy and display should be less than

+10%

Comment: Pass

Table B 18 CTDlIyo displayed on monitor and calculated CTDIy in body phantom

using body techniqgues: mAs 100, collimation 8 mm and 500 mm FOV.

kVp

CTDlvo (mGy) in 32 cm body phantom

Calculated CTDIw

Displayed
CTDlvol

% Difference
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80 4.04 4.4 8.91
100 8.67 9 3.80
120 13.86 14.7 6.06
135 19.31 20.4 5.64

CTDI,,, on monitor and calculated CTDI,,
in 32 cm PMMA body phantom

25
20

15

10
—@®— Measured CTDIw

Displayed CTDIvol

CTDIw (mGy)

80 90 100 110 120 130 140
kVp

Figure B 19 CTDIyo on monitor and calculated CTDIwin 32 cm PMMA body
phantom.

Tolerance: The difference between measured CTDIw and display should be less than

+10%
Comment: Pass
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